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MATHEMATICAL MODELS FOR VERBAL LEARNING.! /

by

R. C. Calfee, R. C. Atkinson and T. Shelton, Jr.

Stanford University

The use of language is perhaps the most distinctive feature of

human behavior. At an early age we learn the appropriate words for the

objects and events which surround us, as well as how to communicate our

needs and feelings to other people. As we grow older we develop associ-

ative relations of varying complexity among the words in our vocabulary,

as for example in the use of grammatical rules to form sentences. To

illustrate a simple type of verbal association, suppose someone asks you

to respond with the first word that comes to mind when he says "cat";

your response will probably be "dog" or perhaps "rat". If he says

"black", 1lndoubtedly you will say "white". The problem facing a french

student, on the other hand, is to learn to respond to "dog" with "Ie

chien" and to "black" witho"noir". The laboratory study of how such

verbal associations are formed, in addition to having practical impli-

cations, has played an important role in testing theoretical ideas about

the nature of the learning process. It is this last matter which will

chiefly concern us in this paper, and we will concentrate our attention

on a particular kind of verbal learning problem known as paired-

associate learning •

.!/The preparation of this document was supported by the National
Institute of Health (Grant USPHS-5 ROI HD 00918-03) and by the National
Science Foundation (Grant 24264). The paper is a contribution to a

/
forthcoming Festschrift for Norbert Weiner edited by J. P. Schade.



In paired-associate learning, the subject learns to give the correct

response as each stimulus from a list of stimulus items is presented,

In the experiments which will be considered in this paper, the subject

is informed in advance of what responses he may use. He is then shown

the stimuli one at a time in some random order, and is asked to guess

which of the responses has been designated as the correct answer for that

particular stimulus. After the response is made, the subject is told

the correct answer and then the next stimulus is presented. After the

entire list of stimulus items has been presented, the experimenter re­

arranges the items in a new random order and again presents the list to

the subject, As each item is shown to him, the subject attempts to

anticipate the correct response, following which he is informed of the

right answer. Each run through the list constitutes a trial, and when

the subject is told the correct answer, we will spe~( of this event as

a reinforcemento

An example of one such paired-associate study is an experiment by

Atkinson and Crothers (1964), in which the stimulus items were 18 Greek

letters and the responses were three nonsense syllables, RIX, FUB, and

GED. Each response was paired with six stimuli, so that the three re­

sponses were used equally often as the correct answer, Fig. 1 presents

the proportion of correct anticipations on each trial for this study,

On the first trial, the proportion of successes is very close to the

value of .33 to be expected if the subject simply chose one of the re­

sponses at random as each stimulus was presented. The curve rises
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exponentially and gradually approaches an asymptotic value of 1, .i. e.,

eventually only correct anticipations occur.

One of the first theoretical attempts to account for data of this

sort assumed that the effect of each reinforcement was to add an incre-

ment to the strength of the association between the stimulus and the

correct response. Suppose that the probability of a correct anticipation

on trial n, which will be denoted Pr(c ), is taken as an estimate of
n

the associative strength on trial n. The probability of an error on

trial n, Pr(e ), is an indication of how much remains to be learned.
n

The basic assumption that is made in the "incremental"" theory is that

the effect of the reinforcement on trial n is to increase the proba-

bility of a correct response by an amount which is a constant proportion

e of the amount remaining to be learned, i.e.,

= Pr(c ) + ePr(e ) .
n n

(la)

Thus, every time a subject is told the correct answer to a stimulus item,

there is an increase in the probability that the correct answer will be

given when the item is presented again. Notice that this increase does

not depend upon whether the correct or incorrect answer is given. Using

the fact that Pr(en+l ) = 1 - Pr(cn+l ), Eq. la may be rewritten as

= (l-e)Pr(c ) + e .
n

(lb)

In this form it is easy to see that the probability of a correct response

on trial n+l is assumed to be a linear function of the probability on
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the preceding trial, and hence this model frequently is referred to as a

linear model. The properties of this model have been extensively investi-

gated (Bush &Mosteller, 1955; Estes & Suppes, 1959; Sternberg, 1963).

In particular, it can be shown that Pr( c )
n

may be written as a function

of the parameter e and ~, (the guessing probability on trial 1 which

will be the reciprocal of the number of responses), namely

Pr(c ) = 1 - (l_g)(l_e)n-l •
n

A derivation of Eq. 2 as the solution of the linear difference equation

given in Eq. lb may be found in any of the references above.

The theoretical curve in Fig. 1 was obtained from Eq. 2 with e

equal to .42, and it agrees very closely with the observed values. It

is important to realize that the learning process for each individual

item in the list is represented by Eq. 2. That is, if the probability

of a correct response for a given stimulus item could be measured by

some hypothetical "probability meter", the course of learning would

resemble measurements from an, analogue device such as a variable resistor

operating in the following manner. On trial 1, the probability measure-

ment would be equal to the guessing rate ~, and on each succeeding trial

the probability value would gradually move upward by some amount, as if

the knob of the resistor were being turned in the same direction on each

trial by an exponentially decreasing amount.

There have been objections to this type of representation of the

learning process on several grounds. For example, some psychologists

have argued that while very simple organisms might behave in this



fashion, higher animals, especially when confronted with more complex

problems, show learning of an all-or-none sort, It is not our intention

to go into the history of the controversy concerning the relative merits

of continuous and discontinuous characterizations of the learning

process, (For some recent contributions to the issue see Bower, 1962;

Estes, 1964; and Underwood and Keppel, 1962,) Rather, we want to con­

sider a model that assumes that learning is all-or-none, and then look

at the kinds of differential predictions made by the two types of models,

Following the analogy between the linear model and a variable re­

sistor, the all-or-none model may be represented by a two-position

switch which operates in this manner: initially the switch is in the

"unlearned" position and responses are made at random from the available

response set, After each reinforcement the switch is turned from the

"unlearned" to the "learned" position with probability 2;, whereas with

probability 1 - a the switch remains in the "unlearned" position, Once

the switch has been turned to the "learned" position, it remains there,

and the correct response is always given, More specifically, the model

may be formulated as a two-state Markov process in which an item is

assumed to be in the unlearned state U at the start of the experiment,

When the subject is informed of the correct response to be associated

with an item, then with probability a learning occurs, and there is a

transition to the learned state L, whereas with probability 1 - 2;, the

item remains in state U, If an item is in state U, then the proba­

bility of a correct response is ~, the guessing probability. Once an

item is learned, however, then there will be no subsequent errors, These
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assumptions are incorporated in the matrix below, which specifies the

transition probabilities between the two states U and L from trial

n to trial n+l, and the response vector which gives the probability of

a correct response in each of the states:

L
n

U
n

[:

Pr(Success)

[:]
For a detailed analysis of this model, see Bower (1961).

The probability of a correct response on trial n, Pr(c ),
n

for

the all-or-none model is readily derived by considering the probability

of an error on trial n. In order for an error to occur on trial n,

(1) an item must remain in state U for n-l trials, this with proba-

bility ( ) n-l
l-~ ,and an incorrect guess must be made when this item

is presented on trial n, this with probability l-~. Thus,

(l_~)(l_~)n-l, and so

Pr(e )
n

is

Pr(c ) = 1 - Pr(e )
n n

1 _ (l_g)(l_a)n-l • (6)

It is evident that when an identification is made between e and ~'

the two models, though based on very different premises about the under-

lying learning process, predict the same mean learning curve.

As an example of a statistic that does differentiate the two models,

consider for a particular stimulus-response pair the conditional proba-

bility of an error on trial n given an error on trial n-l, i.e.,
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Pr(en+lle
n
), In the linear model the probability of an error on trial

n+l does not depend upon whether the preceding response was right or

wrong, and sO

(l_g)(l_e)n ,

Thus, for this model, the conditional probability of an error is an

exponentially decreasing function of the trial number,

For the all-or-none models, however, the fact that an error occurs

on trial n furnishes an important piece of information, viz" the item

must have been in the unlearned state at the beginning of trial n, since

no errors can occur once the item becomes learned, In order for an error

to occur on trial n+l, therefore (1) learning must not have occurred

following the reinforcement on trial n, that with probability l-~,

and (2) an incorrect response must be made on trial n+l, that with

probability l-g; therefore

(8)

Thus, the linear model predicts that Pr(en+llen) will decrease expo­

nentially over trials, whereas the all-or-none model predicts that this

probability will remain constant over trials, In Fig, 2 the conditional

probability from Atkinson and Crothers' experiment is presented, along

with the predictions from the all-or-none and linear models based on the

same parameter value used to fit the mean learning curve. Although the

conditional probability does tend to decrease over trials, the data are

more in agreement with the constancy prediction of the all-or-none model,
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than with the decrease predicted by the linear model. Nevertheless, the

noticeable decline over trials in the data of Fig. 2 has been found to

characterize many paired-associate studies, and when appropriate statisti­

cal tests are applied, this decline has proven to differ significantly

from the constancy predicted by the all-or-none model. (For similar

experimental results see Atkinson and Crothers, 1964; Estes, 1960; and

Suppes and Ginsberg, 1963.)

Consequently, consideration has been given to ways in which the

basic models described above may be modified so as to yield a more ade­

quate account of paired-associate learning. We shall not attempt to

deal with all the variations that have been proposed, but rather will

restrict our attention to an extension of the all-or-none model suggested

by Atkinson and Crothers (1964). As these authors point out, the in­

ability of simpler models to account for all the details of the data

indicates that one or more important psychological processes have been

disregarded. For example, in paired-associate learning, it has been

shown that considerable forgetting may result because the subject is

trying to learn a number of stimulus-response pairs simultaneously

(Melton, 1963; Murdock, 1961; Peterson & Peterson, 1959; Tulving, 1964).

One way in which forgetting may affect the learning of paired-associates

is suggested in the following analysis. Suppose we consider the course

of learning for a single item i from a list. The item is presented to

the subject, and following his response, he is told the correct answer.

Now if item i is presented again immediately, it is very likely that

the correct answer will be given. However, if other items from the l~st
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are interpolated between the two presentations of item 1, the subject

will be less likely to answer correctly on the second presentation of

item io The interpolated items are said to interfere with the retention

of item 1, or, more commonly, the subject forgets the association to

item io In general, as the number of interpolated items between the

nth and (n+l)st presentation of item i is increased, the amount of

forgetting increases 0

The two complementary processes - learning due to reinforcement and

forgetting due to interference - are both incorporated in the model that

will be considered nowo It will be assumed that each item in a list may

be in one of three states: (1) state U is an unlearned state, in which

the subject guesses at random from the set of response alternatives,

(2) state S is a short-term memory state, and (3) state L is a long-

term memory stateo The subject will always give a correct response to

an item in the short-term state, but it is possible for an item in

state S to be forgotten, ioeo, to return to state U. Once an item

moves to state L it is completely learned, in the sense that it will

remain in state L and the correct response will always be given on

subsequent presentations of the itemo

The associative effect of a reinforcement is described by matrix A
~

below:

L S U

L 1 0 0

A ~ S a l-a 0 (8)
~

U a l-a 0
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This matrix gives the probabilities of transitions between states for an

item immediately after reinforcement. ThUS, if an item is in the un~

learned state, and the correct answer is told to the subject, then with

probability a the item is learned (i.e., it moves to state L), whereas

with probability l-a it moves to short-term memory. Thus, immediately

following a reinforcement, an item will be either in long-term or short-

term memory, and if the item is immediately presented again, the subject

will give the correct response.

The effect of an interpolated unlearned stimUlus-response pair on

the learning state of a particular item is described by matrix ~,

L

F = S

u

L

1

o

o

s

o

l-f

o

u

o

f

1

If an item is in short-term memory and an unlearned stimulus-response

pair is presented, then the interference produced by the unlearned pair

results in forgetting of the item (i.e., transition to state U) with

probability 1, whereas with probability l-f the item remains in short-

term memory. If an item is in long-term memory, the interference has no

effect, and if an item is in the unlearned state then again the inter-

ference will have no effect.

The matrix describing the transitions between states from trial n

to trial for a given item, which will be denoted T , is found by
=n

taking the product of A and the Znth power of !' where

10
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number of unlearned pairs which intervene between the nth and (n+l)st

presentations of the particular item. The association matrix A repre-

sents the nth reinforced presentation of the item, and the forgetting

matrix F is applied Z times, once for each of the intervening un­
n

learned pairs. Performing the matrix multiplication yields

Ln+l Sn+l Un+l

L 1 0 0n

T = S a (l-a)(l-F ) (l-a)F (10)
=n n n n

U a (l-a)(l-F ) (l-a)Fn n n

Z
where F = 1 _ (l-f) n

n
,

Unfortunately, there is no way of extracting from the data the exact

value of Z, the number of interpolated pairs which are not in state L.
n

If an incorrect response is given to an intervening stimulus-response

pair, then the pair must be in the unlearned state, but if a correct

response occurs, then the pair may be in either long-term or short-term

memory, or it may even be that the intervening pair is in the unlearned

state and the correct response occurred by chance. Since the exact value

of Zn is indeterminate, as an approximation we will use the expected

number of unlearned items intervening between the nth and (n+l)st presen-

tat ion of an item. Suppose that there are X+l items in the list being

learned. On the average, X items will be interpolated between any two

consecutive presentations of a particular item. Since the items are

arranged in random order, the average position of a particular item will
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be in the middle of a trial. Thus, for half the interpolated items,

(those which follow item i on trial n), the probability of being either

in state U or state S will be ( )n-l
l-~ • Similarly, for the other

half of the interpolated items, (those which precede item i on trial

n+l), the probability that learning has not taken place is (l_~)n.

Combining these results, the expected number of unlearned items inter-

vening between the nth and (n+l)st presentation of item i will be

X(1_~/2)(1_~)n-l, and it is this value which will be used as an approxi-

mation to Z in Eg. 10.
n

Next we turn to the derivation of several statistics of interest

for this model. In these derivations, it should be kept in mind that

Fn is a function of Zn' for which the approximation just discussed

will be used. The ~ean learning curve may be obtained by noting that

for an error to occur on trial n+l (1) an item must have failed to

move to the long-term state on n preceding trials, which has proba­

bility (l_§)n, (2) the item must change from state S to state U

between the nth and (n+l)st presentations, which occurs with probability

F , and (3) while in state U an incorrect guess must be made with
n

probability l-~; hence

~ 1 - (l-g)(l-a)~
n

(12)

For fixed values of a and !' as the length of the list is increased

(i.e., as X becomes larger) Fn increases and therefore Pr(c
n

+
l

)

will decrease. In other words, the model predicts that the longer lists

will be more difficult to learn, which of course is in agreement with

empirical findings.
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The probability of an error conditional on an error, Pr(en+llen),

is also found by noting that if an error occurs on trial n, then the

item must have been in the unlearned state. Thus the probability of an

error on the next trial is

(l-g)(l-a)F
n

(13)

since (1) learning must fail, with probability l-~, to result in

transition to state L, (2) forgetting must occur with probability F ,
n

and (3) an incorrect guess must be made. Since F decreases over
n

trials, Pr(en+llen) will also decrease over trials.

Because the amount of forgetting is a function of the trial number,

this model will be referred to as the trial-dependent-forgetting (TDF)

model. In the remainder of this paper we will present the results of a

paired-associate study in which list length was varied, and each of the

three models discussed here will be applied to the data in order to

determine their relative merits.

The subjects for the experiment were three groups of 25 college

students, each of whom learned a single paired-associate list. The

stimulus member of each pair consisted of a two-digit number, and the

response member was one of three nonsense syllables RIX, FUB or GED. A

set of 21 stimulus items was chosen on the basis of low inter-item

association value, and for Groups 2, 15 and 21, the experimental list

consisted of a selection of 9, 15 or 21 items, respectively, from this

set. For Group~, the entire set of stimulus items was used, whereas

for the other groups a different subset was randomly selected for each

13



subject. Each of the three response alternatives was correct equally

often for each subject. The list was learned to a criterion of two

consecutive errorless trials or ten trials, whichever was shorter. The

subject was first given instructions about the nature of the task and

then ran through a practice list of four items to minimize warmup

effects. The subject was asked if he had any questions, and then the

experimental run was begun. In order to reduce primacy effects

(Peterson & Peterson, 1962), the first three stimulus items shown to

the subject were two-digit numbers which were not in the set of 21 ex­

perimental items; these three items did not reoccur on later trials.

Then, without interruption, the experimental list, arranged in a random

order, was presented to the subject, and for each item, the subject was

required to choose one of the three responses, following which he was

informed of the correct answer. After the entire list had been pre­

sented in this fashion, the second trial then proceeded without inter­

ruption in the same manner with the items arranged in a new random

order. Thus, the procedure involved the continuous presentations of

items with no breaks between trials.

The mean learning curves for the three groups are presented in

Fig. 3. As may be seen, the three curves are ordered according to list

length, i.e., as the number of items in the list is increased, there is

a concomitant decrease in the mean proportion of successes on trial n.

The curves for Pr(en+llen) are shown in Fig. 4. The three curves are

again ordered by list length, and there is a decrease in the conditional

probability over trials for each of three groups. (The numerals by

14
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For notational purposes, let

each of the data points represent the number of observations on which

the point is based.)

In order to determine the quantitative accuracy of the various

models that have been presented, it is necessary to obtain parameter

estimates. There are a number of alternative procedures for estimation;

we will use the technique of chi-square minimization on specific re-

sponse sequences suggested by Atkinson and Crothers (1964). This method

yields parameter estimates having certain desirable properties and also

provides a goodness-of-fit test. We begin by looking at the sequence

of responses of a single subject for one stimulus item. This response

is rewritten as a string of c's representing correct responses and

e's representing errors. For example, the response ?equence for a

particular subject-item, beginning at trial 1 and ending at trial 10,

might be written eceececccc. For parameter estimation, those portions

of the sequence from trials 2 to 5 and from trials 6 to 9 will be used;

in the example above, these subsequences are ceec and eccc, respectively.

The 24 or 16 combinations of ~'s and e's possible in each four-trial

block are listed in Table 1. Also in Table 1 are the observed frequen-

cies with which each combination occurred for the three experimental

groups from trials 2 to 5; the data for trials 6 to 9 are in Table 2.

For example, the sequence cccc, nO'errors on trials 2 through 5, was

observed in 83 out of a total of 225 subject-items in Group 2.
0.. denote the ~th sequence
~,J,n

listed in the table for experimental group j, where the sequence starts

at trial n, and let be the observed frequency of this

15



sequence. The predicted relative frequency of each of the specific

response sequences is derived for the models presented above. For the

all-or-none model, for example, the probability of the sequence, no

successes from trial 2 tbrough trial 5, is found to be the probability

that the item is not learned by trial 5, and that four incorrect guesses

4 4occur, which is (l-~) (l-~) • The same sequence is predicted by the

linear model to occur with probability (1_~)4(1_e)lO, since on each

trial Pr(e
n

) is equal to (l_~)(l_e)n-l in the model. The derivation

of the theoretical expressions for these sequences is very lengthy, and

the interested reader is referred to the Atkinson and Crothers paper

(1964) for further details.

Suppose that for an arbitrary model, Pr(O.. ; p)
l, J,n

is the pre-

dieted probability of the lth sequence for group j starting at trial

n and ending at trial n+3, where the prediction depends on.a particu-

lar choice of the parameter(s), p, of the model. Further, let the

total number of subject-item combinations in a given block of four

trials for group j be denoted by Tj • Then we define the function

2
X ••

1., J,n

[T .Pr( O. . ; p) _ N( O. . )] 2
;:;: J l,J,n l,J,n

T.Pr(O.. ; p)
J l,J,n

(14a)

A measure of the discrepancy between a model and the data from group j

is found by taking the sum of Eq. 14a over the sixteen sequences and

two blocks of four trials,

16
l.:
i~l

16

16
l.:
i~l

X .• 6l,J;
(14b)
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TAllLE 1

Observed and predicted frequencies for specific response

sequences from trials 2 through 5.

Trial
9 Items 15 Items 21 Items

2 4 5 Observed Linear
AJ.l..o~ TDF TDF- Observed Linear All-or- TDF TDF- Observed Linear All-or- TDF

TDFM
3 none Revised None Revised none Revised

c c c c 83 59·0 88.4 69.3 79·0 98 39.9 103.7 94.6 88.0 97 45.4 112.6 124.8 102.0

c c c e 3 9.5 1.3 6.0 4.2 10 17.8 3.8 6.4 5.6 11 24.2 6.8 7·3 6.6

c c e c 10 15.2 3.0 9.5 8.7 13 23.9 6;6 10·5 11.3 14 31.5 10.3 11·9 13.3

c c e e 4 2.4 2.7 4.8 3.6 10 10.7 7.6 8.4 9·0 12 16.8 13.5 12.0 14·3

c e c c 18 25.7 10.4 17.2 18.1 25 33.1 17.3 21.6 22.9 35 42.2 23.0 26.2 26.4

c e c e 2 4.1 2.7 5.7 4.3 4 14.8 7.6 9.6 10.0 14 22·5 13.5 13.0 15.1

c e e c 10 6.6 6.1 9.0 8.2 7 19.8 13.3 15.7 16.7 17 29.3 20.7 21.3 23.3

c e e e 3 1.1 5.3 4.5 3.4 12 8.9 15.2 12.6 13.2 20 15.6 27.1 21.4 25.1

e c c c 40 48.3 41.9 36.3 40.0 58 48.7 57.3 55.7 54.7 78 59.4 67.6 74.3 66.2

e c c e 3 7.8 2.7 6.7 4.2 6 21.8 7.6 10.6 8.4 15 31.7 13.5 13.7 11.7

e c e c 12 12.5 6.1 10.5 9.4 16 29.2 13.3 17.3 18.0 22 41.2 20.7 22.5 24.3

e c e e 2 2.0 5.3 5.3 3.9 12 13.0 15.2 13.9 14.3 30 22.0 27.1 22.6 26.1

e e c c 14 21.1 20.8 19.1 19.7 31 40.5 34.6 35.6 36.3 47 55.2 46.0 49.3 48.3

e e c e 2 3.4 5·3 6.3 4.7 11 18.1 15.2 15.8 15·8 16 29.5 27.1 24.4 27.7

e e e c 13 5.4 12.2 10.0 9·0 32 24.2 26.5 25.9 26.4 42 38.3 41.4 40.1 42.6

e e e e 6 .9 10.7 5.0 3.7 30 10.8 30.3 20.8 21.0 55 20.4 54.1 40.4 45.8

x2 73.5 42.5 17.5 . 10.9 173.2 30.3 21.7 2).2 180.5 21.8 23.6 19.8



g;

TJill[,E 2

Observed and predicted frequencies for specific response

sequences from trials 6 through 9

Trial
9 Items 15 Items 21 Items

6 7 8 9 Observed Linear All-or- TDF TDF- Observed Linear All-or- TDF TDF- Observed Linear All-ar- TDF TDF-
non. Revised none Revised none Revised

c c c c 205 277·7 292.2 264.2 192.1 272 156.3 263.9 251.6 259.3 329 178.1 309.7 339.5 310.4

c c c • 0 5.3 .3 4.2 1.2 6 26.1 1.6 5·5 3.5 8 39·5 3.5 5.9 4.9

c c • c 0 7.9 .7 6.3 2.8 8 32.8 2.7 8.6 7.3 23 48.4 5.4 9.4 9·9

c c • • 0 .2 .6 1.6 .3 2 5.5 3·2 3.7 2·5 4 10·7 7.2 5.7 6.2

c • c c 22 5.0 2.5 10.2 6.4 13 41.6 7.1 25.0 15.4 27 59.8 22.0 17.8 20.2

c • c • 0 .4 .6 1.9 .5 2 6.9 3.2 4·5 3.1 6 23·3 7.2 6.7 7.1

c • • c 2 .5 1.5 2.9 1.0 2 8.7 5.4 7.0 6.1 11 16.3 20.8 10.7 12.5

c • • • 0 .0 1.3 .7 .1 5 1.5 6.2 3.2 2.1 20 3.6 14.2 6.5 7.8

• c c c 13 18.3 10.1 27.6 14.4 24 53.5 23.5 30.2 34.7 55 74.8 35.3 40.5 47.4

• c c • 0 .5 .6 2.3 .6 2 8.9 3.1 5·3 3.3 20 26.6 7.2 7.7 6.5

• c • c 0 .8 1.5 3.5 1.4 11 11.2 5.4 8·3 7.3 5 20·3 10.8 12.4 14.0

• c • • 0 .0 2.3 .9 .2 2 1.9 6.2 3.6 2·5 3 4·5 14.1 7.5 8.7

• • c c 1 1.2 5.0 5.6 3·1 15 14.2 14.2 24.6 15·5 17 25.1 2J~.O 23.4 28.5

• • c • 0 .0 1.3 2.1 .2 5 2.4 6.2 4·3 .3.1 7 5.6 14.1 8.8 10.0

• • • c 0 .2 2.9 2.6 .5 5 3.0 10.9 6.8 6.2 11 6.8 22.6 14.2 17.6

• • • • 0 .0 2.6 .4 .1 4 .5 12.4 3.0 2.1 29 1.5 28.3 8·5 11.0

X2 25.5 21.3 43.7 10.6 210.0 52.0 17.2 20.5 428·9 76.0 39.2 ".7



TABLE 3

Parameter estimates for various models and

X·2total . values over groups

)1.2 Value
Model Parameter 9 Item 15 Item 21 Item Trials Trials

2-5 6-9 Total
.- .,,=-.,-..,-.. , ....,=,. .

Linear e .32 .17 .15 427.2 664.4 1091.6

All-or-none c ·30 .20 .15 94.6 149.3 243·9
_... - -

TDF a .16 - - 62.8 100.1 162.9

f .22 - -
-- ---~,._-

TDF Revised a ·37 - -
.b .11 - - 53.9 64.8 118.7

f .15 - -
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In the case of the all-or-none and linear models, estimates of the

parameters a and e were found which minimized Eq. 14b for each

grOUp. This minimization is not readily performed by analytic means,

and so a high-speed computer was programmed to find parameter estimates

by a search procedure on the parameter space. If the set of subject-

items is homogeneous and stochastically independent, then under the

null hypothesis, it can be shown that the X2 from Eq. 14b has the

usual limiting distribution with 29 degrees of freedom for each group;

one degree of freedom is subtracted from each of the two sets of six-

teen frequencies because of the requirement that each set sum to the

total observed subject-item combinations, and one degree of freedom

is subtracted for the parameter estimate. The total X
2 value over the

three experimental groups will have 87 degrees of freedom.

Since the TDF model is formulated in a fashion that takes list

which jointly minimized the

length into account, values of

X
2

is, we define the fUnction

a and f were found for this model

function for all three groups. That

3
I x~

j=l J
(14c)

and find the values of a and f which minimize Eq. 14c. Since two

parameters are estimated over the three groups, the X2 from Eq. 14c

will have 88 degrees of freedom.

The response-sequence frequencies predicted by each of the models

for trials 2 through 5 are listed in Table 1, and in Table 2 we present
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the predictions for trials 6 through 9. In Table 3 the parameter esti-

mates obtained by the minimization procedure are presented, as well as

the minimum values for each of the models over all groups. The

linear model is definitely inferior to the all-or-none model, and the

TDF model does a better job than either of the other two, although one

less parameter has been estimated from the data for this model.

In spite of the fact that the TDF model provides a more adequate

account of the data than the other models, there is some cause to be

dissatisfied with this formulation. For one thing, the overall X2

value is about 163, which with 88 degrees of freedom far exceeds the

.001 level of significance. More importantly, there is evidence that

the association parameter, ~, is not independent of list length, It

will be recalled that in the analysis above, parameter estimation for

the TDF model was carried out under the assumption that the parameters

a and f are invariant over list lengths. The appropriateness of

this assumption was evaluated by finding the best estimate of the two

parameters separately for each experimental group; i.e., estimates of

a and f were obtained using Eq. 14b for each list length. Good

agreement was found among the three estimates of the forgetting param­

eter !; the estimates were .25, .25 and .21 for groups 2, 15 and f!,

respectively. However, the separate estimates of the association

parameter a were ordered according to the number of items in the list;

for groups 2, 15 and 21, the estimates were .20, .17 and .14.

Consequently, consideration was given to modifications of the TDF

model which would give a more adequate account of the data and also

yield parameter values which would be relatively invariant over the list

18



length variable. In the association phase of the model as originally

formulated (Eq. 8), it was assumed that the probability of moving to

long-term memory was the same whether an item was in the unlearned state

or the short-term state; in both instances the transition probability

was a. In the revised TDF model which will now be described, it will

be assumed that the effect of a reinforced presentation of an item will

depend on the state of the item at the time of reinforcement. If the

item has been forgotten and is in state U, then there is a transition

to long-term memory with probability ~' whereas with probability l-b

the item goes to short-term memory. If an item is in state S (i.e.,

it has not been learned, but neither has it been forgotten since the

last reinforced presentation), then with probability a the item is

learned and moves to long-term memory, whereas with probability l-a

it remains in state S. Thus matrix ~ (Eq. 8) is replaced by matrix ~'

below,

A'
=

L

S

u

L

1

a

b

S

o

l-a

l-b

U

o

o

o

In all other respects the revised model is unchanged from the original

formulation, and, in particular, the expected value of Z will be
n

used as an approximation to Z
n

in deriving all statistics. That is,

suppose that Pr(Ln) is the probability of being in long-term memory

on trial n which, for the revised TDF model, is a function of ~' £,

19



!, and X. Then the expected number of unlearned stimulus-response pairs

between the nth and (n+l)st presentations of an item will be

The minimum estimation procedure was used to obtain estimates

of ~, 12 and 1. for the three experimental groups jointlY"using

Eq. 14c. The results are presented in Tables 1, 2 and 3 as the revised

TDF model. As may be seen, the introduction of the parameter b re-

duced the overall value of the original TDF model by more than 25

per cent, from 163 to 119, which represents a considerable improvement.

Moreover, when estimates of the parameters ~, 12 and f were obtained

separately for each of the experimental groups, it was found that the

three estimates of f were quite consistent with one another, and that

the variations in a and b were unrelated to list length.

It is of interest to note that the probability that an item is

learned is more than three times larger if the item is in short-term

memory than if it is in the unlearned state, i.e., the estimate of the

parameter a is .37 while b is .11. This relation between a and

b suggests an explanation for the dependency between the association

parameter in the original TDF model and the length of the paired­

associate list. The effect of increasing list length in these models

is to make it more likely that an item is in state U. In the original

model, where a and b are assumed to be equal, the estimate of the

associative effect of a reinforcement will be some weighted average of

a and 12, which we will call a. In the case of a list with very few

20



stimulus-response pairs, the probability that an item is in state S

is larger than when there are many pairs, since as the number of pairs

becomes larger, more forgetting will occur and hence an item is more

likely to be in state U, Thus the relative contribution of the param­

eter a to the average a will decrease as list length increases, and

as list length becomes very large, a will approach b, Since a is

greater than ~, the finding that a decreases with increasing list

length in the original TDF model would be expected,

Fig. 3 presents the mean learning curves predicted by the revised

model for each of the three list lengths. As may be seen, there is

good agreement between the data and the theoretical curves, The model

also was used to predict the curves for Pr(en+llen) which are shown

in Fig. 4 along with the observed values. The data points are fairly

variable, but overall the theoretical curves fit reasonably well, One

way of directly testing the interference assumptions of the TDF model

embodied in Eq. 9 would be to look at the probability of a correct re­

sponse on trial n+l as a function of the number of items interpolated

between the nth and (n+l)st presentation of a particular stimulus­

response pair. This probability should decrease exponentially according

to the interference hypothesis of the TDF model. Unfortunately, when

the experiment reported in this paper was conducted, no record was

made of the specific presentation order within a trial, and so this

direct test cannot be made, In an unreported study by Shelton, within­

trial presentation order was recorded, Examination of these data
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clearly indicates that that the probability of a success was a decreasing

function of the number of interpolated items.

It has been our goal in presenting this analysis of paired­

associate learning to illustrate the manner in which mathematical repre­

sentations of psychological processes may be used to test specific

hypotheses about the way in which these processes operate. While the

revised TDF model ~s sufficiently complex to present serious difficulties

in carrying out mathematical derivations, it is unlikely that the

behavioral situation is as simple as the model indicates. Indeed, al­

though the revised model is the most adequate formulation that has been'

presented, it is not satisfactory in a number of respects. For one

thing, the value of 119 with 87 degrees of freedom would lead to

rejection of the null hypothesis at the .05 level of significance.

This is not a serious fault per se, since we would certainly not discard

the model until a more adequate representation of paired-associate

learning could be suggested.

A more serious type of criticism involves the application of the

model to data from other experiments to determine its generality. Re­

visions will certainly be necessary to account for some aspects of

paired-associate learning that are not brought out by the experiment

reported in this paper. For example, suppose that when a subject makes

an incorrect response he is given a second guess at the right answer.

According to the TDF model, the second guess should be chosen at random

from the reduced set of response alternatives. In fact, the probability
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of a correct response on the second guess is found to be somewhat

greater than this chance expectation (Binford &'Gettys, 1964).

While it is always possible to modify any particular model to

account for empirical findings, some other formulation might be pre­

ferred on the basis of simplicity and parsimony. Within the limits of

the study reported in this paper, however, the TDF model is successful

in providing a relatively good account of the data, both qualitatively

and in quantitative detail. Moreover, it does so by incorporating both

association and forgetting processes known to be important in paired­

associate learning, and these processes are represented in such a

fashion that changes in the data produced by variations in list length

are accounted for by the representation of the learning process, rather

than by changes in the parameter values.
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