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MATEEMATICAL MODELS FCR VERBAL LEABNINGé/
by
R. C. Calfee, R. C. Atkingon and T. Shelton, Jr.

Stanford University

The use of langusge is perhaps the most distinctive feature of
human behavior. At an early age we learn the appropriste words for the
objects and evenlts which surround us, as well as how to communicate our
needs and feelings to other people° As we grow older we develop associ-
ative relations of varying complexity among the words in our vocabuiary,
gs for example in the uée of grammatical rules to form sentences. To

illustrate a simple type of wverbal association, suppose someone asgks you

1t o,

to respond with the first word that comes to mind when he says cat ;
your response will probably be “"dog" or perhsps "rat". If he says
ﬁblack", tndoubtediy you will say "white"”. The problem facing a french
student, on the other hand, is to learn to respond to "dog" with "le
chien" and to "black” with-:"noir". The lsboratory study of how such
verbal associations are formed, in addition to having practical impli-
cations, has'played an important role in testing theoretical ideas about
the nature of the learning prccess. It ig this last matter which wiil
chiefly concern us in this paper, and we will concentrate our attention

on a particular kind of verbal learning problem known as paired-

assoclate learning.

1/,
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Tnstitute of Health (Grant USPHS-5 ROl HD 00918-03%) and by the Naticnal
Science Foundation (Grant 24264). The paper is a contribution to, a
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In paired-associate learning, the subject leatrns to give the correct
response as each stimulus from a list of stimulus items is presented.
In the experiments which will be considered in this paper, the subject
is informed in advance of what responses he may use. He is then shown
the stimulil one at & time in some random order, and is asked to guess
which of the responges has been designated as the correct answer for that
particular stimuius. After the response i1s made, the subject is told
the correct answer and then the next stimulus 1s presented. After the
entire list of stimulus items has been presented, the experimenter re-
arranges the items in a new random order and again presénts the list to
the subject. As each item is shown to him, the'subjgct attempts to
anticipate the correct response, following which he is informed of the
right answer. Each run through the list constitutes a EEEE&? and when

the subject is told the correct answer, we will speak of this event as

2 reinforcement.

An example of one such paired-associate study is an experiment by
Atkinson and Crothers (1964), in which the stimulus items were 18 Greek
letters and the respdnses were three nonsense syllables, RIX, FUB, and
GED. ZFach response was paired with six stimuli, so that the three re-
sponses were used egually often as the correct answer, Fig. 1 presents
ﬁhe proportion of correct anticipations on each trial forlthis study.
On the first tfial, the proportion of successes is very close to the
value of .35 to be expected if the subject simply chose-one of the re-

gponses at random as. each stimulus was presented. The curve rises



exponentially and gréduélly approaches an aéymptofic value of l, i.e.;
.eventually only correct anticipationé occurs | |
One of the first theoretical attempts to account for data of this
sort assumed that the effect of.each feinforcement wasrto add an incre-
ment to the strength of the association between the stimulus and the
correct response. Suppose that the probability of a correct anticipation
on trial n, which will be denoted Pr(cn), is taken as an estimate of
the agsociative strength on trial n. The probability of an error on
trial n, Pr(en), ig an indication.of how much remains to be learned.
The basic assumption that is made in the "incremental™ theory is that
the effect of the reinforcement on trial n is to increase the proba-
bility of a correct response by an amount which is a constant proportion

6 of the amount remaining to be learned, i.e.,

Pr(cn+ = Pr(cn) + GPr(en) . | (1a)

1)

Thus, evéry time a subject i1s told the correct answer to a stimuius item,
there'is.an increase in the probability that the correct answer will be
given.wheh the item is presented again. Notice that this increase does
not'depena upon whether the correct or incorrect answer is given. Using
.Eq. la may be rewritten as

the fact that Pr(e =1 - Pr(

1) Cpt1)?

Pr{c

a1 - (1-8)Pr(c ) + 6 . (1v)

In this form it is easy to see that the probability of a correct response

on trial ntl is assumed to be.a linear function of the probability on




the preceding trial, and hence this model frequently is referred to zs a
linéar modei, The properties of this model‘have.been extensively investi-
gated (Bush & Mosteller, 1955; Estes & Suppes, 1959; Sternberg, 1963).

in particular, it can be shown thét Pr(cn) may be written as a function
_of.the parameter 6 énd £ (the guessing probebility on trial 1 which

will be the reciprocal of the number of responses), namely

Pric ) =1 - (1-g)(1-6)7"1 | (2)

Alderivation Qf Eq. 2 as the solution of the linear difference equation
given in Eg. 1lb may be found in any of the refergnces above.

The theoretical curve in Fig. 1 was obtained from Eq. 2 with e
_equal‘to 42, and it agrees very closely with the observed values. It
ig important to realize that the learning process for each individual
item in the list is represented by Eg. 2. That.is, if the probability
bf a correct response for a giveﬁ stimulus item could be measured by
some hypothetical "probability meter", the course of learning would
fgsemble measurements from am analogue device such as a variable resistor
operating in the foliowing mgnner. On trial 1, the probabllity measure-
ment Wduld be equal to the guessing rate g, and on each succeeding trisl
fhe probability vaiue would graduslly move upward by some amcunt, ag if
the knob of the resistor were being turned in the same direction on each
trial by an exponentially decreasing amount.

There have been objections to this type of representation of the
learning process on several grounds. For éxample, some psychologists

have argued that while very simple organismg might behave in this




faéhion, higher animals, especially when confronfed with more complex
proﬁiems, éhow learning of an éllnor—ndne sort. It is not our ihtenfion
to go into the history of the controversy ééncerning tﬁe relétive merits
of continuous and discontinuous characterizatioﬁé of the learning
process. (For some recent contributions to the issue see Bower, 1962;
Estes, 1964; and Underwood and Keppel, 1962.) Rather, we want to con-
gider & model that assumes that lesrning is all-or-none, éﬁd then lock
at the kinds of differential predictions made by the. two types of modeis.
Following the analogy between the linear mode; and‘a variable re=-
sistor, the all-or-none model may be represented by a two-position
switch which operates in this manner: initielly the,$Wit¢h,i$.in the
"unlearned" position and responses are made at random froﬁ the available
response seb. _After each reinforcement the switch is‘turﬁed from the
"unlearned" to the "learned" position with probability a, whereas with
uprobabilit& l-a fhe switch remains in the "unlearned" position. Once
the switéh has been turned to the "learned” position, it remains there,
and the correct response is always given. More specificaliy, the model
may be formulated as a two-state Markov process in which an item is
assumed to be in the unlearned state U at the start of the experiment.
When the'subject is informed of the correct response to be associated
with an item, then with probability =a learning occurs, and there is a
transition to the learned state L, whereas with probability 1 -a, the
item remains in state U. If an item is in state U, then the proba-
bility of a correct response is g, the guessing probability. Once an

item is learned, however, then there will be no subsequent errcrs. These




gssumptions are incorporated in the matrix below, which specifies the
transition probabilities between the two states U and L from trial
n to trial ntl, and the response vector which gives the probabilit& of

a correct response in each of the states:

Lota ' U1 Pr{Success)
Ln 1L Q0 1
(5)
] a 1l-a g .

For a detailed anaiysis_of this model, see Bower (1961).

The probability of a correct response on trial n, Pr(cn), for
the all-or-none model is readily derived by considering the probability
of an efror on trial n. In order for an error to occur on trial n,
(1) an item mist remain in state U for n-1 trials, this with proba;
Bility (lﬁg)n_l,.and (2) an incorrect guess must be made when this item

is presented on trial n, this with probability 1l-g. Thus, Pr(en) is

)n-l, and so

(1-g) (1-a

Pr(c ) =1 - Pr(e ) = 1 - (1-g)(1-a)""t . - (6)

It is evident that when an identification is made between € and a,
the two models, though based on very different premises about the under-
lying learning process, predict the same mean learning curve.

. As an example of a statistic that dces differentiate the two models,
consider for a particular. stimulus-response pair the conditional proba-

bility of an error on trial n given an error on trial n-1, i.e.,



Pr(e In the linear model the probability of an error on trial

n+l'en)°
at+l does not depend upon whether the preceding response was right or

wrong, and so

P CPa(e ) - (1197 . (1)

en+1|en)

Thus, for this model, the conditional probability of an error ié an
exponentially decreasing function of the trial numbefo

For the all-or-none mgdels,'however, the fact that:ah error occurs
on trial n Zfurnishes an important piece of information, viz., the item
must have been in the unlearned state at the beginning of trial n, sinée
no errors can occur once the item becomes learned. In ﬁfder for.an error
to cccur on trial n+l, therefore (1) learning must not ﬁavéléccurred
followiﬁg the reinforcement on trial n, that with probabiiity- l-a,
and CEj an incorrect response must be made on trial nt+l, that with

probability 1~g; therefore
Pr(e ,,le ) = (1-g)(1-a) . (8)

Thus, the linear model predicts that Pr(e will decrease expo-

n+l’en)
nentielly -over trials, whereas the all-or-none model predicts that this_
probability will remain constant over trials. In Fig. 2 the conditional
probability from Atkinson and Crofhers' experiment is presented,.along
with the predictions from the all-or-none and linear mpdels baged on the
same parameter value used to fit the mean learning curve. Although the

conditional probability does tend to decrease over trials, the data are

more 1in agreement with the constancy prediction of the all=-or-none model,

T



than with the decrease predicted by the linear model. HNevertheless,; the
noticeable decline over trials in the data of Fig. 2 has been found to
characterize many paired~associate studies, and when appropriate statisti-
cal tests zre applied, this decline has proven to differ significantly
from the constancy predicted by the all-or-none model. (For similar
experimental results see Atkinson and Crothers, 196k ; Egtes, 1960; and
Suppes and Ginsberg; 1963.)

Consequently, consideration has been given to ways in which the
bagic models described above may be modified so as to yield a more ade-
_ guate account of paired-associate learning. We shall not attempt tq
deal with all the variations that have been proposed, but rather will
restrict our_attention to an extension of the all-or-none model suggested
by Atkingon and Crothers (1964). As these authors point out, the'in-.
ability of simpler ﬁodels to account for all ithe details of the data
'indicaﬁes that ore or more impoftant psjchological processes have been
disregarded. For example, in paired~associate learning, it has been
shown that considerable forgetting may result because the subject is
trying to learn a number of stimulus-response pairs simultaneously
(Melton, 1963; Murdock, 1961; Peterson & Peterson, 1959; Tulving, 1964).
One way in which forgetting may affect the learning of paired-associates
is suggested in the following analysis. Suppose we consider the course
of learning for a single ifem. i {from a list. The item is presented to
the subject, and following his response, he is .told the correct answer.
Now if item i is presented again immediately, it is very likely.that

the correct answer will be given. However;, if other items from the lisit




- are interpolated between the two presentations of item 1, the subject
will be less likely to answer correctly on the second presentation of
item 1. The interpolated items are said to interfere with the retention
of item i, or, more commonly, the subject forgets the association to
item 1., In general,; as the number of interpolated items between the

nth and (n+l)st presentation of item i 1is Increased, the amount of
forgetting increases.

The two compliementary processes -~ learning due to reinforcement and
forgetting due to interference — are both incorporated in the model that
will be considered now. It will be assumed that each item in a list may
be in one of three states: (1) state U is an unlearned state, in which
the subject guesses at random from the set of response alternatives,
(2) state S8 is a short-term memofy state, and (3) state L is a long-
ferm memory state. The subject will always give a correct response to
an item in the short-term state, but it is possible for an item in
state S5 +to be forgotten, i.e., to return tc state U. Once an item
moves to.state I it is completely learned, in the sense that it will.
remain in state L and the correct response will always be given on
.subseqguent presentations of the item.

The assoclative effect of a reinforcement is described by matrix é

below:

L S U
L 1 0 C

% = 8 a | 1~z 0 (8)
) a 1-a 0




This matrix gives the probabiiities of transitions between states for an
item immediately after reinforcemernt. Thus, if an item is in the un- -
Jdearned state, and the correct answer is told to the subject, then with
probability a the item 1s learned (i.e., it moves to state L), whereas
with probability 1-a it moves to short-term memory. Thus, immediately
following a reinforcement, an item will be either in long-term or short-
term memory, and if the item is ilmmediately presented again, the subject
- will give the correct response.

The effect of an interpolated unlearned stimulus-response pair oh

‘the learning state of a particular item is described by matrix F,

L S U
L 1 0 0

F =8 0 1-f f ' (9)
U 0 o 1 .

if an item is in short-term memory and an uniearned stimulus-response
pair is presented, then the interference produced by the unlearned pair
. results in forgetting of the item (i.e., transition to state U) with
probability f, whereas with probability 1-f the item remains in shori-
term memory. If an item is in long-term memory, the interference-has no
effect, and if an item is in the unlearned state then again the inter-
ference will have no effect.

The matrix describing the transitions between states from trisl n
to trial ntl for a given item, which will be denoted En’ is found byr

- taking the product of % and the Znﬁh power of F, where .Zn .is the

10



_numbér of unlearned pairé which intervene between the nth and (ﬁ+l)st
presentations of the particular item. The association matrix é fepre-
sentgs the nth reinforced presentation of the item, and the forgetting
matrix- Er is applied Zn times, once for each of the interveniﬁg un=-

learned pairs. Performing the matyrix multiplication yields

Ln+l Sn+l Un+l
1 1 0 o ]
n -
T =8 e . (1-a)(1-F) (l—a)?n | (10)
U, e (1wa)(1an) (1-a)Fn_ )
z

where F_=1- (I-r) ™.

Unfortunately, there is no way of-eitracting from the data the exact
value of Zn’ the number of interpolated pairs which are not in siate L.
If an incorrect response is given to an intervening stimﬁlus-response
pair, then the pair must be in the unlearned state, but if a correct
' response cccurs, then the pair may be in either long-term or short-term
memory, or it may even he that'the intervening pair is in the unlearned
state and the correct response occurred‘by chance. Since the exact value

of Zn is indeterminate, as an approximgtion we will use the expected

number of unlearned items intervening between the nth ard (nt+l)st presen-
tation of an item. Suppose.that there are X+1 items in the 1ist being
learned; dn the average, X 1items will be interpolated between any two
consecutive presentations of a particular item. Since the items are

arranged in random order, the average position of a particular item will

1l



be in the middle of a trial. Thus, for half the interpolated items,
{those which folldw itemA.g_ on trial n}, the probability—of being either
in state U or state S will be (1-2)""1. Similarly, for the other
‘half of the interpolated items, (those which precede item i on trial
n4l), the probability that learning has not taken place is (11§)n;
Combining these results, the expecfed number of unlearned items inter-
vening between the nth and (n+l)st presentation of item 1 will be
X(1-a/2)(1-a)"}, and it is this value which will be used 25 an approxi-
mation to Zn in Bg. 10.

Next we turn to the derivation of several statistics of interest
for this mode_la In these derivations, it should be kept in mind that
Fn is a function of Zn’ for which the approximation Jjust discussed
will be used. The mean learning curve may be obtained by noting that
for an error to occur on trial n+l (1) an item must have failed to
move to the long-term state on n preceding trials, which has proba-
bility (l—g)n, (2) the item must change from state § to state U
between the nth and {ntl)st presentations, which occurs with probability
F , and (%) while in state U an incorrect guess must be made with

probability 1-g; hence
Pric ,,) =1 - (l—g)(l—a)nFn (12)

For fixed values of a and £, as the length of the list is increased
(i.e., as X becomes larger) F_ increases and therefore Pr(cn+l)
will decrease. In other words, the model predicts that the longer lists

will be more difficult to learn, which of course is in agreement with

empirical findings.

12




The probabllity of an error conditional con an error, Pr(en+l|en),
is also Tound by noting that If an error occurs on trial n, then the
item must have been in the unlearned state. Thus the probability of an

error on the next trial is

Prie ,,le ) = (1-g)(1-2)¥ (13)

n

since (1) learning must fail, with probability 1-a, to result in
transition to state L, (2) forgetting must occur with probability Fn’
and (3) an irncorrect guess must be made. Since F_ decreases over

trials; Pr(e will also decrease over trials.

n+llen)
Because the amount of forgetting is a function of the trial number,
- this model will be referred to as the trial-dependent-forgetting (TDF)
model. In the remainder of this paper we will present the results of a
paired-associate study in which list length was varied, and each cf the
three models discussed here will be applied to the dats in order to
determine their relative merits.

The subjects for the experiment were three groups of 25 college
students, each of whom learned a single paired-sassoclate list. The
stimulus member of each palir consisted of =z two-digit number,; and the
response member was one of three nonsense syilables RIX; FUB or GED. A
set of 21 stimulus items.was chosen on the bagis of low inter-item
association value, and for Groups 2; 15 and 21, the experimental list
consisted of a selection of 9, 15 or 21 items; respectively, from this

set. For Group 21, the entire set of stimulus items was used, whereas

for the other groups a different subset was randomly selected for each

15



éubjectn Fach of the three response alternatives was correct egually
often for each subject. The list was learned t¢ a criterion of two
‘consecutive errorless trials or ten trials, whichever was shorter. The
subject was first given instructions about the nature of the task and
1then ran through a practice list of four items to minimize warmup
effects. The subject was asked if he had any questiéns, and then the
expérimental run was begun. In order to reduce primacy effects
. (Peterson & Peterson, 1962), the first three stimulus items shown to
the subject were two-digit numbers which Wefe not in the set of 21 ex-
: perimental items; thesé three items d4id not recccur on later trials.
Then, without interruption, the experimental list,‘arranged in a random
order, was presented tc the subject, and for each item, the subject was
required to choose one of the three responses; folliowing which he wasg
informed of the correct answer. After the entire list had been pre-
sented in this fashion, the seccond trial then proceeded without inter-
ruption in the same manner with the items arranged in a. new random
order. Thus, the procedure invclved the continuous presentations of
items with no breaks between trials.

The mean learning curves for the three groups are presented in
Fig. 3. As may be seen, the three curves are ordered sccording to list
length, i.e., as the number of items in the list is increased, there is
a concomitant decrease in the mean proportion of successes on trial n.

The curves for Pr(e ) -are shown in Fig. k.. The three curves are

n+l,en
-again ordered by list length, and there is a decreage in the conditicnal

‘probability over trials for each of three groups. (The numerals by

1h
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each of the data points represent the number of observations on which
the point is based.)

| In order to determine the quantitative accuracy of the variocus
models that have been pregented, it is necessary toc obtain parﬁmeter
estimates. There are = mumber of alternative procedures for estimation;
we will use the technigue of chi-square minimizatiqn on spgcific re-
~sponse sequencés suggested by Atkinson and Crothers (196ﬁ), _This method
vields parameter estimates having certain desirable prqperties and alsc
ﬁrovides a gqodness-of—fit test. We begin by lookiﬁé at the seguence
of"fesponses of a single subject for one stimulus itemu_ This fgsponse
is rewritten ag a string of c¢'s representing correqt responses and
e's representing errors. For example, the response_éequence for a
particular subject-itém, beginning at trial 1 and ending at trial_lO,
ﬁight be written eceececccc. For parameter estimation, fhose portions
of the_sequence from trials 2 to 5 and from trizls 6 to 9 will be used;
in the-example above, these subsequences are ceec and eccc, respectively.
The 2lL or 16 combinations of .;’s and e's possible in each four-trial
block are listed in Table 1. Alsq in_Table 1 are the observed frequen-
cies with which eaéh éombination Gééurred for the three experimental
groups from trials 2 to 5; the data for trials 6_to 9 are in Table 2.
For example, the sequence éccc, no:errors on trials 2 through 5, was
observed in 83 out of a total of 225 subject-items in Group 9.

For notational purposes, let Oi,j,n denofe the ith sequence

listed in the table for experimental group [Jj, where the sequence starts

gt trial n, and let -N(Oi 3 n) be the observed frequency of this
ERYE )

15 .



gsequence. The predicted relative freguency of each of the specific
response sequences is derived for the models presented above. TFor the
all-or-none model, for example, the probability of the sequence, no
gsuccesses from trial 2 through trial 5, is found tc be the prdbability
thaf the item is ndt learnéd by trial 5, and that four incorrect éuesses

bk

occur, which is (1-g) (1-a) . The same sequence is predicted by the
linear mocdel to occur with probability '(l-g)u(l—e)lo, since on each
trial 'Pr(en) is equal to (115)(1-e)n'l in fhé-modélQ The derivation
of the theoretical expressions for these sequences is very lengthy, and
the interested reader is referred to the Atkinson and Crothers paper
(1964) for further details.

Suppose that for an arbitrary model, Pr(oi,j,n; p) - is the pre-
dicted probability of the ith sequence for group J starting at triél
n and ending at trial ﬁ+5, where the prediction depends on.a particu-
lar choice of the parameter(s), p, of the model. Furthér, let the

total number of subject-item combinations in a given block of four

trials for group J be denoted by Tj“ Then we define the function

2
')(_2 = ['I_':IPI'(O sds n ) o, i,J,n )] (l’-l- )
i,Jsn T.Pr(0 5 p) . ’ &
J i,J,n

A measure of the discrepancy between a model and the data from group
is found by taking the sum of Eq. lha over the sixteen seguences and

two blocks of four trials,

,2 2 . _
X7 = X
J igl i,d,2 Z 1:3:6 . (lll-b)

16
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TARLE 1

- Observed and pre&icted'frequencies for specific response

éequences from trials 2 through 5.

rial 9 Ttems 15 Ttems 21 Ttems .
3 & Observed | Timear | *21-0™) mpp | T | observed | Linear AT |y | T | Observed | Linear | A11-OT | p o
e e 83 5%.0 88.4 69.3' 79.0 o8 39.9 103.7 k.6 88,0 o7 L5.h _ 112.6 124.8 102,0
c e % 2.5 1.3 6.0 L.z 10 17.8 3.8 6.k 5.6 1 24,2 6.8 7.3 6.6
e e 10 15.2 3.0 9.5 8.7 13 23.9 | 6.6 | 10.5 | 1L.3 14 31.5 10.3 1.9 15.3
c e N 2.4 2.7 4.8 3.6 10 10.7 7.6 8.4 9.0 12 6.8 13.5 2.0 .3
e ¢ 18 25.7 10.4 7.2 | 181 25 33,1 17.3 | 21.6 | 22.9 35 42.2 23.0 26.2 26.4
e ¢ 2 ho1 2.7 5.7 4.3 i 4.8 7.6 9.6 .| 10.0 1 22.5 135.5 13.0 15.1
e = 10 6.6 6.1 | 9.0 8.2 7 19.8 13.3 | 15.7 | 16.7 17 25.3 | 207 | 21.3 23,3
e e 3 1.1 5.3 k.5 3.4 12 8.9 15.2 12.6 1%5.2 . 20 15.6 27.1 21.h 25.1
c o Ko | 8.3 | 1.9 | 3.3 1 ko.0 58 48.7 57.3 | 55.7 | 5w7 78 59.4 | 67.6 | a3 | 662
e ¢ 3 7.6 2.7 6.7 4.2 & 21.8 7.6 | 10.6 8.4 15 23,7 13.5 13.7 11.7
e e 12 12.5 6.1 | 10.5 gk 16 29.2 15.3 | 17.3 | 18.0 22 yi.2 20.7 22.5 2.3
c e 2 2.0 5.3 5.% 2.9 12 15.0 5.2 | 13.9 { 1.3 30 22.0f 27.1 22,6 | 26.1
e o 1k 2L 20.8 19.1 | 19,7 51 40.5 ™6 | 3.6 6.3 W7 55.2 15,0 1 49,3 58,3
e e 2 3. 53 | 6.3 | u.y 1 18.1 1.2 | 158 | 15.8 16 29.5] er.1 | ewl a7
& e 13 Sk 2.2 10,04 9.¢ 32 .2 26.5 | 25.9 | 264 42 8.3 b b k0. 42.6
e e 6 -9 10.7 5.0 3.7 50 10.8 30,5 | 20.8 | 21.0 55 20.k 541 504 45_'._8

*2 7345 b2.5 | 17.5°] 10.9 173:2 30,5 | 217§ 2%.2 180.5 21.8 23.6 15,8
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TAELE 2

Observed and predicted frequencies for specific response

sequences from trials 6 through 9

21 Ttems

Trial $ Ttems 15 Items
T 8 .9 | Observed | Limesr A-or | qpp | T | Observea | Tamear | A1) wpp | TR- | observea | Ltmear | 4127 | mpr e
z e 205 JITT.T | dge.2 jaéh.l | 1ge.d 271 156.% | 263.9 | 251.6 | 259.% 319 178.1 | 309.7 | 339.5 | =m0.4
¢ e o 5.3 3| b2 1.2 g 26,11 16| 55 3.5 8 35.5 5.5 | 5.9 5.9
c e 0. 7.9 7 6.3 2.8 8 32.8 2.7 8.6 7.3 13 hs.ﬁ 5.4 0.4 9.9
c e 0 .2 .6 1.6 .3 2 5.5 3.1 3.7 2.5 4 10.7 7.1 5.7 6.2
€ e 12 5.0 2.5 | 10.2 6.k 13 41.6 7.1 | 15.0 15.4 27 59.8 12.0 17.8 20.2
e ¢ 0 Wb .6 1.9 .5 1 6.9 3.1 b5 3.1 6 15.% 7.1 6.7 7.1
e e 1 .5 1.5 2.9 1.0 2 8.7 5.4 7.0 6.1 11 16.3 10.8 | 10.7 12.5
e e 0 .0 1.3 7 .1 5 1.5 6.2 3.1 2.1 10 3.6 4.1 6.5 7.8
¢ o 13 18.3 | 10.1 | 17.6 | bk 2l 55.5 | 23,5 | 30.2 | 3.7 55 ™| 33 | bos | Tk
c @ 0 .5 .6 2.3 .6 2 8.9 3.1 5.% 3,5 10 16.6 7.1 1T 6.5
c e o] .8 1.5 35 1.4 1l il.2 S.h 8.3 T3 5 20.3 _10.8 12.4 i&.o
e e 0 L0 1.3 .9 .2 1 1.9 6.2 3.6 2.5 3 k.5 1.1 7.5 8.7
e ¢ 1 12| 5.0 | 56) 3 15 W2 | iz | e | 155 17 25,11 240 | 234 ¢ 28,5
e ¢ ] .0 1.3 1.1 2 5 2.4 6.2 | 4.3 3.1 7 5.6 5.1 8.8 10.0
e e 0 .1 2.9 | 16 .5 5 5.0 10.9| 6.8 6.2 1 6.8 | 21.6 | .1 ] 17.6
e e 0 .0 2.6 4 .1 4 S | s 2.1 19 15| 28.3 8.5 | 11.0

x2 25.5 | 213 | 3.7 10.6 210.0 52.0 | 17.2 20.5 L28.9 76.0 39.2 23,7




Parameter estimates for various models and

total X? values over groups

TABLE 3

X2
o A~ Value
Model Parameter | 9 Item { 15 Item| 21 Item Trisls | Trials Totel
N ) 2“5 6"9 CT&
Linear & .32 17 .15 hotv.2 | 664k.4 | 1091.6
All-or-none ¢ .30 .20 .15 oh.6 | 31h9.3| 243.9
TDF a .16 - - 62.8 | 100.1} 162.9
f .22 - -
TDF Revised a. 3T - -
b L1l - - 5%.9 6.8 118.7
f .15 - -
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In the case of the all-or-none and linear models, estimates of the
rarameters & and @ were found which minimized Eq. 14%b for each
group. This minimization is not readily performed by analytic means,
and so & high-speed computer was programmed to find parameter estimates
by a search procedure on the parameter space. If the set of subjggtf
items is homQgeneous and stochastically independent, then under the
null hypothesis, it can be shown that the Xe‘ from Eq. 14b has the
usual limiting distribution with 29 degrees of freedom for each group;
one degree of freedom is subtracted from each of the two sets of six-
teen frequencies because of the reguirement that each set sum to the
total observed subject-item combinations, and one degree of. freedom
is subtracted for the parameter estimate. The total Xe_ value over the
three experimental groups will have 87 degrees of freedom.

Since the TDF model is formulated in a fashion that takes list
length into account, values of a and f were found for this model
which jointly minimized the X2 function for all three groups. That

is, we define the function

p:
I\
|
g\
o

1 ; (1ke)

i

J
and find the values of a and f which minimize Eg. lhc. Since two
parameters are estimated over the three groups, the X2 from Eq. lhc
will have 88 degrees of freedom.

The response-sequence frequencies predicted by each of the models

for trials 2 through 5 are listed in Table 1, and in Table 2 we present
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the predictions for trials 6 through G. In Table 3 the parameter esti-
'mates obtained by the minimization procedure are presented, as well as
-the minimum XQ values for each of the models over all groups. The
linear model is definitely inferior to the all-or-none model, and the
'TDF model does a better job than either of the other two, although one
less parameter has been estimated from the data for this model.

In spite of the Tact that the TDF mo&el'provides a more adequate
account of the data than the other models, there is some cause to be
dissatisfied with this formulation. For one thing, the overall Xe'
value is about 163, which with 88 degrees of freedom far exceeds the
.001 level of significance. More importantly, there is evidence that
-the association parameter, 3a, is not independent of list length., It

“will be recalled that in the analysis above, parameter estimation for
the TDF model was carried out under the aésumption that the parameters_
a and f are invariant over list lengths. The appropriateness of
this agsumption was evaluated by finding the best egtimate of the two
parameters separately for each experimental group; i,e;,'estimates'of
& and f were obtained using Eg. 14b for each list length. Good
agreement was found among the three estimates of the forgetting param-

.éter f; the estimates were .25, .25 and .21 for groups &, 15 and 21,
respectively. However, the separate estimates of the association
parameter a were ordered according to the number of items in fhe list;
for groups 9, 15 and 21, the estimates were .20, .17 and .14.

Consequently, consideration was given to modifications of the TDF

model which would give a more adequate account of the data and also

vield parameter values which would be relatively invariant over the list
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length variable. In the association phase of the model ag originally
formulated (Eq. 8); it was assumed that the probabiiity bf ﬁoving 10
long-term memory was the same whether an item was in the unlearned state
or the ghort-term state; in both instances the transition probability
‘was a. In the revised TDF model which will now be described, -it will
be assumed that the effect of a reinforced presentation of an item will
. depend on the state of the itém at the time of reihforcement. If the
item has been forgotten and is in state U, then .there is a transition
to long-term memory with probsbility b, whereas with probability -1-b
the item goee to short~term memory. If an item is in state S (i.e.,
it has not been iearned, but neither has it been forgetten since the
last reinforced presentation), then with probability & the item is
learned and moves to long-term memory, whereas with probability l-a.
it remains in state 8. Thus matrix 4 (Eq. 8) is replaced by matrix Al

below;

L 8 U
L 1 0 0

A" =8 a 1-a 0 (15)
i) b 1-b 0

‘Ir all other respects the revised model is unchanged from the original
formulation, and; in particular, the expecited value of Zn will he

used as an approximation to Zn in deriving all statistics. That is,
suppose that Pr(Ln) is the probability of being in long~term memory

on trial n which, for the revised TDF model, is a function of gz, b,



f, and X. Then the expected number of unlearned stimulus-response pairs

between the nth and (n+i)st presentations of an item will be

© 2o [l + Ren,)]

The minimum ,Xe estimation procedure was used to obtain estimates
~of a, band £ for the three experimental groups jointly, using

Eq. 1ltc. The results are presented'in Tables 1, 2 and 3 as the revised
TDF modei. As may be seen, the introduction of the parameter b re-
duced the overall .XE value of the original TDF model by more than 25
per cent, from 163 to 119, which represents a considerable improvement.
Moreover, when estimates of the parameters a, b and f were obtained
separately for each of the experimental grcups, it was found that the
three estimates of f were quite consistent with one another, and that
the variations in a and b were unrelated to list length.

It is of interest tec note that the probability that an item is
learned is more than three times larger if the item is in short-term
memory than if it is in the unlearned state, i.e., the estimate of the
parameter a is .37 while b is .11. This relation between a and
b suggests an explanaticn Tor the dependerncy between the association
parameter in the original TDF model and the length of the paired-
‘asscciate list. The effect of increasing list length in these models
is to make it more likely that an item is in state U. In the original
model, where a and b are assumed to be egual, the estimate of the
agsociative effect of a reinforcement will be scme weighted average of

.a anrd b, which we will callléf In the case of a list with very few
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stimulus-response pairs, the probability that an item is in state 8
is larger than when there are many pairs, since as the number of péirs
becomes larger, more forgetting will occur and hence an item is more
iikely to be in state U. Thus the relative contribution of the ﬁaram-
eter a to thé average E will decrease as list léngth increases; and
as list length becomes very large, E will approach D. Sinée a 1is
greater than b, the finding that E decreages with increasiﬁg.list
length in the original TDF modél would be expected.
| Fig, 3 presents the mean learning curves predicféd by the revised
.mmdel Tor each of tﬁe three list lengths. .As may be séen; there is
good agreement.between the data and the theoretical curves. The model
also was usged to predict the curves for Pr(en+l[en5. which are shown
in Fig. 4 aléng with the observed values. The data pointé are fairly
variéﬁle,.but overall the theoretical curves fit reasonably well. One
way 6f.directly testing.the interference assumptions of the TDF model
embodied in Eq. 9 would be to lock at the probability of a correct réw
éponée-oﬁ.trial ntl aé g function of the number of items interpolated
between the ﬁth and (n+l)st presentation of a particular stimulus-
response paira This probability shbuid decrease exponentially_aécording
to the interference hypothesis of the TDF model. Unfortunately, when
the experiment reported in this péper was conducted, no record was
made of the-specific presentation order within é trial, and so this
direct teéf cannot be made. In an unreported study by Shelton, within-

trial presentation order was recorded. Examination of these data
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clearly indicates that thaf the probabllity of a success was a decreasing
function.of the number of interpolated items.

Tt has been our goal in presenting this anélysis of paired-
essociate learning %o illustrate the manner in which mathematical repre-
éentations of psychological processes may be used to test specific
hypotheses about the way in which these processes operate. While the

.revised TDF model is sufficilently complex to present serious difficulties
in carrying out mathematical derivations, it is uniikely that the
behavioral situation i¢ as simple as the model indicétes. Indeed, ai-
though the revised model 1s the most adequate formulation that has. been.:
presented, it is not satisfactory in a2 number of respects. For one
tﬁing, the XE value of 119 with 87 degrees of freedom would lead to
réjection of the null hypothesis at the .05 level of signrificance.

This 1s not a serious fault per se, since we would certainly not discard
the model until = ﬁore adequate representation of palred-asscciate
learning could be suggested.

A more serious type of critlicism involves the application of the
model to data from other experiments to determiné its genefality. Re-
visions Wili certainly be necessary to accbunt for.some aspects of
paired-asscclate learning that are not brought out by the experiment
reported in this paper. For.examble, suppose that when a subject maskes
an incorrect response he is given a second guess at the right answer..
According to the TDF model, the second guess should be chosen atlrandom

from the reduced set of response alternatives. In fact, the probability
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of & correct response on the second gﬁess is found to be somewhat
greater than this chance expectation (Binford.&"Gettys, 1964).

While it is always possible to modify any particular mbdel to
account for empirical findings, some other formulation might be pre-
ferred on the basls of siﬁplicity and parsimony. Within the limits of
the study reported in this paper, however, the TDF model is‘éuccessful
in providing a relatively good account of‘thé data, both qualitatively
and in gquantitative detail. Moreover, it does so by incorporating both
association and forgetting processes known to be important in paired—

agsgociate learning, and these processes are represented in such a

- fashion that changes in the data produced by variations in list length

are accounted for by the representation of the learning process, rather

than.bj changes in the parameter values.
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