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Abstract

I discuss the role of quantum effects in the phenomenology of effective supergravity theories from com-
pactification of the weakly coupled heterotic string. An accurate incorporation of these effects requires a 
regularization procedure that respects local supersymmetry and BRST invariance and that retains informa-
tion associated with the cut-off scale, which has physical meaning in an effective theory. I briefly outline 
the Pauli–Villars regularization procedure, describe some applications, and comment on what remains to be 
done to fully define the effective quantum field theory.
© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Since the first “string revolution” of 1984, starting with the Green–Schwarz discovery [1]
that string theories with an SO(32) or E8 ⊗ E8 gauge sector are anomaly-free, there has been 
a considerable amount of work on orbifold compactifications of the heterotic E8 ⊗ E8 string 
theory [2] that mimic Calabi–Yau compactification [3] on a six-dimensional manifold. In these 
studies, the favored mechanism for supersymmetry breaking has been gaugino condensation in 
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the subgroup of the hidden sector E8 that survives after symmetry breaking by Wilson lines, aka 
the Hositani mechanism. Gaugino condensation is an inherently quantum effect in the effective 
supergravity theory that is the large tension limit of the string theory, and, as described below, 
quantum anomalies play an essential role in its description. Other aspects where quantum effects 
play a role include the issues of vacuum stability and flavor changing neutral currents, axion 
physics and soft supersymmetry breaking. The last of these have contributions that are specific 
to supergravity, and a reliable method for computing them is imperative.

Specifically, we require a regularization procedure that respects gauge invariance and lo-
cal supersymmetry. In renormalizable, globally supersymmetric theories one uses dimensional 
reduction. Like dimensional regularization, used for ordinary gauge theories, this procedure 
eliminates quadratic divergences altogether. However, in an effective theory, such as a four-
dimensional supergravity theory from a ten-dimensional string theory, the quadratic divergences, 
or more specifically the effective cut-offs, have physical significance. For example, the effective 
cut-off of a few hundred GeV for the Fermi theory of weak interactions pointed the way towards 
relevant energies to search for new physics, and this new physics manifested itself in the form of 
the W and Z bosons with masses of about 100 GeV. Similarly, the need to suppress strangeness-
changing neutral currents indicated a scale of a few GeV, and led to the successful prediction 
of the charmed quark mass. In a simple field theory one can just introduce a momentum cut-off, 
which generally gives correct results at one-loop, up to the precise coefficient of the quadratically 
divergent operators. However this procedure does not respect local symmetries, or even global 
supersymmetry, which is why one uses dimensional regularization or reduction in renormaliz-
able theories with these symmetries. In the case of local supersymmetry, or supergravity, the use 
of a momentum cut-off can produce misleading results, as illustrated in some examples below.

The ultraviolet divergent part of the on-shell effective Lagrangian for a general supergravity 
theory with at most two derivatives at tree-level was determined [4] using the covariant deriva-
tive expansion [5]. As is well known, the quadratically divergent contribution is prescription-
dependent. Specifically, the use of a simple cut-off or subtraction procedure for a supersymmetric 
theory does not yield a supersymmetric result. However, as first shown in [6], when the theory is 
regulated by Pauli–Villars fields embedded in a supersymmetric Lagrangian, there are additional 
finite terms quadratic in the PV masses that complete the one-loop action in such a way that the 
result is supersymmetric.

2. Pauli–Villars regularization of supersymmetry and supergravity

Pauli–Villars (PV) regularization was initially used to regulate the divergences in quantum 
electrodynamics. However this procedure could not be generalized to non-Abelian gauge theo-
ries because the introduction of the needed massive PV gauge bosons breaks gauge invariance, 
or–in the gauge-fixed version of the theory–BRST invariance [7]. However, in supersymmetric 
theories, the same cancellation of ultraviolet divergences that leads to the well-known nonrenor-
malization theorems also allows for PV regularization of these theories.

For example, some of the divergences arising from loop diagrams involving gauge boson self-
couplings, that require the introduction of massive vector PV fields, are canceled in supersym-
metric theories by loops involving gauginos. As a consequence a renormalizable supersymmetric 
theory can be regulated by introducing PV fields only in chiral supermultiplets, and BRST in-
variance is unbroken. In the case of supergravity, the theory can be regulated by the introduction 
of massive PV chiral supermultiplets and Abelian vector multiplets, and BRST invariance again 
remains unbroken. As a result, all the on-shell logarithmic and quadratic divergences can be 
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canceled [8] in a supergravity theory defined in the usual way [9] by an arbitrary holomorphic 
superpotential W(Z), a real Kähler potential K(Z, Z̄) and a holomorphic gauge kinetic function 
f (Z), provided the gauge charges of matter fields have the same overall quadratic Casimirs [10]
as those of some real (reducible) representation R of the Yang–Mills gauge group:

Ca
M = TrT aT a ≡ Ca

R. (2.1)

Here Z represents the chiral matter superfields, and the sum in the trace (2.1) runs over all 
the chiral fields Zi . The condition (2.1) on the Casimirs is satisfied in the Minimal Supersym-
metric Standard Model (MSSM) and in extensions thereof. In addition to two Higgs doublets, 
the MSSM, has 2Nf fundamental representations (reps) n of each group factor Gn = SU(n), 
n = 2, 3, where Nf is the number of quark flavors. Their Casimirs can be mimicked by Nf

real PV reps (n + n̄). Further extensions necessarily involve real representations of the Standard 
Model gauge group, so that the additional states can get SM gauge invariant masses. The condi-
tion (2.1) is also satisfied in the hidden sectors [11] that can accompany the Standard-Model-like 
ZN orbifolds found in [12]. These hidden sectors also come in even numbers of representa-
tions, except for two cases. In one the hidden sector contains 3 16’s of SO(10) which contribute 
C

SO(10)
M = 6; this can be mimicked by a real PV rep with 6 10’s. The other has a hidden sector 

with 3 (5 + 10)’s and 6 5̄’s of SU(5) with CSU(5)
M = 9, that can be mimicked by 9 real PV reps 

(5 + 5̄). Since the underlying theory is finite when all degrees of freedom are included, one would 
expect (2.1) to have a solution for general superstring compactifications.

The part of the resulting one-loop action that is quadratic in the PV masses is just a renor-
malization of the Kähler potential, while the part logarithmic in PV masses contributes to the 
renormalization of both the Kähler potential and the gauge kinetic function (which is no longer 
holomorphic at the quantum level). In addition there are new operators of dimension 6–12; those 
of dimension six involve the curvature of the Kähler metric and derivatives of the gauge kinetic 
function.

Most of the linear divergences of a generic supergravity theory can be canceled by the PV 
fields introduced above. Their associated chiral anomalies1 either disappear or reappear through 
noninvariant PV mass terms, forming an “F-term” anomaly that incorporates the associated con-
formal anomaly [10]. However there are chiral anomalies associated with the affine connection 
in the gravitino covariant derivative and with an off-diagonal gravitino–gaugino connection that 
cannot be canceled by the PV fields. These form supersymmetric “F-term” anomalies together 
with conformal anomalies associated with total derivatives that are not canceled by the PV fields, 
provided the cut-off is field dependent:

�(Z, Z̄) = μ0 exp(K/4), (2.2)

where μ0 is a constant that can be set to infinity at the end of the calculation; the only effect of the 
field-dependence in (2.2) is that total derivatives with nonvanishing coefficients of ln� do not 
drop out of the S-matrix of the regulated theory. For example, the conformal anomaly associated 
with the Gauss–Bonnet term combines with the chiral anomaly proportional to the space–time 
curvature term r · r̃ , with an overall coefficient [10] that agrees with string loop calculations [15].

1 The chiral anomalies of supergravity were first evaluated in [13], including those arising from an additional connec-
tion [14] in theories with an anomalous U(1) and no compensating Green–Schwarz term; these contributions are not 
present in the class of string-derived theories considered here.
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In addition to the above-described “F-term” anomalies, there are “D-term” anomalies associ-
ated with logarithmic divergences that are not canceled by the PV regulator fields, and that have 
no chiral counter-parts.

The anomalies that we are concerned with here involve symmetries of the underlying string 
theory that are not respected at the quantum level of the effective field theory without the 
introduction of some cancellation mechanism that appears only at one-loop order. In compactifi-
cations of the weakly coupled heterotic string theory these are a discrete group of transformations 
known as “T-duality” or “target space modular invariance” [16], present in all heterotic string 
compactifications, and an anomalous U(1) symmetry, often referred to as U(1)X , that is present 
in most compactifications involving Wilson lines. Gauge symmetry breaking by Wilson lines 
is generally needed both for providing a gauge group that resembles the Standard Model and 
for gaugino condensation in the hidden sector, which can provide a source of supersymmetry 
breaking.

The effective four dimensional (4d) theory from the heterotic string includes several important 
“moduli” chiral supermultiplets: the dilaton supermultiplet S, whose vacuum value determines 
the gauge coupling constant and the θ -parameter of the 4d gauge theory, and “Kähler moduli” T i

whose vacuum values determine the size and shape of the compact six dimensional space. There 
are at least three of the latter in orbifold compactifications, and the group of T-duality trans-
formations always contains an SL(2, Z) subgroup under which these three “diagonal moduli” 
transform as

T ′ i = aT i − ib

icT i + d
, ad − bc = 1, (2.3)

and which is generated by two elements: the inversion of the radii (in string units) Re t i →
1/ Re t i of the three 2-tori in the compact six dimensional space, and the axionic shifts Im t i →
Im t i + 1. Here t i = T i

∣∣ is the scalar component of the chiral superfield T i . More generally, 
T-duality acts as follows on chiral (antichiral) superfields Zp = T i, �a (Z̄p̄ = T̄ ı̄ , �̄ā):

T i → h(T j ), �a → f (qa
i , T j )�a, T̄ ı̄ → h∗(T̄ j̄ ), �̄ā → f ∗(qa

i , T̄ j̄ )�̄ā,

(2.4)

where qa
i are the modular weights of �a , and, under U(1)X transformations,

VX → VX + �X + �̄X, �a → e−qa
X�X�a, �̄a → e−qa

X�̄X�̄a, (2.5)

where VX is the U(1)X vector superfield, with �X (�̄X) chiral (antichiral), and qa
X are U(1)X

gauge charges.
In order to faithfully represent the underlying string theory, in which both of the above sym-

metries are exact to all orders in perturbation theory [16], additional terms must be added to the 
effective supergravity Lagrangian. The terms that restore the symmetry to the coefficients of bi-
linears in the Yang–Mills fields and the space–time Riemann tensor at one loop were identified 
some time ago as a combination of four-dimensional counterparts [17] of the ten-dimensional 
Green–Schwarz term [1] and, for some compactifications, threshold corrections [18] that con-
tribute to the cancellation of the modular anomaly. The implementation of these cancellations 
is possible only if the loop corrections in the regulated theory satisfy certain constraints. For 
example, in the absence of threshold corrections, the gauge charges and modular weights must 
satisfy:
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8π2b = 1

24

(
2
∑
p

q
p
i − N + NG − 21

)
∀ i

= Ca − Ca
M + 2

∑
b

(T 2
a )bbq

b
i ∀ i, a, (2.6)

2π2δX = − 1

24
TrTX = −1

3
TrT 3

X = −Tr(T 2
a TX) ∀ a �= X, (2.7)

where Ca is the quadratic Casimir in the adjoint of the gauge group factor Ga , and the matter 
Casimir Ca

M is defined in (2.1).
The above expressions for the coefficients of one-loop generated operators that are linear in the 

parameters qp
i , qa

X of the anomalous transformations are universal. They are independent of the 
precise choice of PV regulator fields, provided the one-loop, on-shell quadratic and logarithmic 
divergences are canceled. However this is not the case for operator coefficients that are quadratic 
and higher order in these parameters [19,10]. We will return to this issue in Section 6.

3. Quadratic divergences

It has been pointed out [20,21] that the loop suppression parameter

ε = 1

16π2
(3.1)

may be compensated by large coefficients, leading to significant effects from loop corrections. 
For example, if supersymmetry is F-term dominated with negligible vacuum energy 〈V 〉 ≈ 0 at 
tree level, the quadratically divergent correction to the scalar potential reduces to:

VQ = ε�2[(Nχ − 1)|Mψ |2 − NG|Mλ|2 − Rim̄F iF̄ m̄
]
, (3.2)

where Nχ and NG are the number of chiral and gauge supermultiplets, respectively, Mψ = eKW

is the gravitino mass, Mλ is the gaugino mass, which depends on derivatives of the kinetic func-
tion f (z) = f (Z)| , z = Z|, and Rim̄ is the Ricci tensor associated with the Kähler metric Kim̄.

3.1. Vacuum stability

Typical orbifold compactifications have many more chiral multiplets than gauge multiplets: 
Nχ � 300, NG � 65. In addition, in many gravity mediated supersymmetry-breaking scenarios 
the gaugino mass Mλ is much smaller than the gravitino mass:

M2
λ = 1

4
fif̄

iM2
ψ � M2

ψ. (3.3)

Thus the first term in (3.2) suggests the possibility of a significant positive contribution to the 
vacuum energy [20], perhaps curing the problems with classes of models that have negative 
vacuum energy at tree level. However, in the regulated theory (3.2) is replaced by

VQ → ε
[|Mψ |2(Nχ�2

χ − �2
grav

) − NGM2
λ�2

G − Rim̄F iF̄ m̄�′ 2
χ

] + · · · , (3.4)

where the ellipsis indicates finite terms proportional to the PV squared masses such that the 
one-loop quadratically divergent corrections are completely absorbed into renormalizations:

LQ = Ltree(g
R
μν,K

R) −Ltree(gμν,K) + O(ε2), KR = K + ε
∑

�2
A. (3.5)
A
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The effective squared cut-offs �2
A in (3.4) and (3.5) are determined by combinations of the PV 

masses MI weighted by their signatures ηI = ±1:

�2
A =

∑
I

CI
AηIM

2
I lnM2

I ,
∑
I∈A

ηIM
2
I = 0, (3.6)

where CI
A is a constant. In fact, the apparent appearance of a sizable, positive cosmological 

constant in (3.2) and (3.4) is misleading on several counts [22]. The sign of �2
A is, in fact, inde-

terminate [23] if there are five or more terms in the sum, which is generally required to eliminate 
all the UV divergences of SUGRA. More importantly, if Nχ ∼ ε−1 one has to sum the leading 
(ε�2)n terms, and supersymmetry dictates that the higher order terms complete the Lagrangian 
Ltree(g

R
μν, K

R) with KR given by (3.5). So, for example, if the M2
I are field independent con-

stants, we just get for this contribution to the loop corrected potential

VQ = eK+�K
[
(Wi + KiW)Kim̄

(
Wm̄ + Km̄W

) − 3|W |2] + Ref

2
DaDa,

Wi + KiW = e−K ∂

∂zi
(eKW) = −e−K/2Kim̄F̄ m̄, (3.7)

where Kim̄ is the inverse of the Kähler metric, Fm = (F̄ m̄)† is the auxiliary field for the chiral 
superfield Zm, and

Da = Ki(Taz)
i = Km̄(T T

a z̄)m̄, Ki = ∂K

∂zi

, Km̄ = ∂K

∂zm̄

, (3.8)

is the auxiliary field for the vector supermultiplet Va . If, in addition, supersymmetry is broken 
only by F-terms, 〈Da〉 = 0, the vacuum energy is just multiplied by a positive constant, so if it 
vanishes at tree level, there is no large correction of order εN .

3.2. Flavor changing neutral currents

It was also pointed out [21] that the last term in (3.2) or (3.4) can be significant because the 
contracted indices of the Kähler Riemann tensor implicit in the Ricci tensor imply a sum over all 
the chiral supermultiplets. The Kähler potential for the twisted sector from orbifold compactifi-
cation of the heterotic string is not known beyond leading (quadratic) order, and could include 
terms that induce flavor changing neutral current (FCNC) effects in the observable sector. Ex-
perimental limits on these effects therefore imply restrictions on the tree-level Kähler potential. 
A sufficient condition [22] for a “safe” Kähler potential at the quantum level is the presence of 
isometries of the Kähler geometry. For example, the Kähler potential for an untwisted sector (i)
from orbifold compactification takes the form

K(i) = − ln

⎛⎝T i + T̄ ī −
Ni∑

a=1

|�a
i |2

⎞⎠ , (3.9)

which has an SU(Ni + 1, 1) symmetry that is necessarily also a symmetry of the Ricci tensor:

R
(i)
pq̄ = (Ni + 2)K

(i)
pq̄ , p, q = i, a ∈ (i). (3.10)

Alternatively the suppression of FCNC effects can by achieved through a judicious choice of PV 
masses [22].
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4. Anomaly cancellation and its implications

In Z3 and Z7 compactifications of the heterotic string, with no threshold corrections, the vari-
ation under (2.4) and (2.5) of the anomalous part of the one-loop corrected Lagrangian contains 
the term

�Lanom = 1

8

∫
d4θ

E

R
�H + h.c., (4.1)

as expressed in the Kähler U(1) [U(1)K ] superspace formulation of supergravity [24]. Here E
is the superdeterminant of the supervielbein and R = 1

2eK/2W, R| = 1
2Mψ is an auxiliary field 

of the supergravity supermultiplet. Also

� = 1

3
Wαβγ Wαβγ + Wα

a Wa
α (4.2)

is a chiral superfield with U(1)K weight 2 with Wa
α and Wαβγ the Yang–Mills and spacetime 

curvature superfield strengths, respectively, and

H = −bF(T ) + 1

2
δX�X (4.3)

is a zero weight chiral supermultiplet, with b and δX subject to the conditions (2.6) and (2.7). 
The Kähler potential can be decomposed as

K = G(T , T̄ ) + Kinv (4.4)

with Kinv modular invariant, and

G(T , T̄ ) → G(T , T̄ ) + F(T ) + F̄ (T̄ ) (4.5)

under the T-duality transformation (2.4). In component notation, (4.1) reads

�Lanom = −1

4
√

g

[
ReH

(
Fμν

a F a
μν − 2

x2
DaDa

)
+ ImHFa · F̃ a

]
+

√
g

96

[
ReH

(
rμνρσ rμνρσ − 2rμνr

μν + 1

3
r2

)
+ ImHr · r̃

]
+

√
g

144

(
ReHXμνX

μν + ImHX̃μνX
μν

) + fermions, (4.6)

where Xμν is the field strength associated with the Kähler U(1) connection in the fermion co-
variant derivatives.

4.1. Anomaly cancellation

Anomaly cancellation is most readily implemented using the linear multiplet formulation for 
the dilaton [25]. A linear supermultiplet is a real superfield that satisfies

(D2 − 8R̄)L = (D̄2 − 8R)L = 0, (4.7)

where D̄2 − 8R is the chiral projection operator in supergravity. The superfield L has three 
components: a scalar, the dilaton � = L|, a spin- 1

2 fermion, the dilatino χ , and a two-form bμν

that is dual to the axion Im s; it has no auxiliary field. For the purpose of anomaly cancellation 
we want instead to use a real superfield that satisfies the modified linearity condition:
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(D̄2 − 8R)L = −�, (D2 − 8R̄)L = −�̄, (4.8)

where � is a chiral multiplet with U(1)K and Weyl weights [24] wK(�) = 2, wW(�) = 1, 
respectively. Consider a theory defined by the Kähler potential K and the kinetic Lagrangian 
LKE:

K = k(L) + K(Z, Z̄), LKE = −3
∫

d4θ E F(Z, Z̄,VX,L). (4.9)

The condition for a canonical Einstein term in U(1)K superspace is give by

F − L
∂F

∂L
= −L2 ∂

∂L

(
1

L
F

)
= 1 − 1

3
L

∂k

∂L
, (4.10)

with the solution:

F(Z, Z̄,VX,L) = 1 + 1

3
LV (Z, Z̄,VX) + 1

3
L

∫
dL

L

∂k(L)

∂L
, (4.11)

where 1
3V is a constant of integration of (4.10) over L, and is therefore independent of L. If we 

take

V = −bV (Z, Z̄) + 1

2
δXVX, V (Z, Z̄) = G(T , T̄ ) + Vinv(Z, Z̄), (4.12)

with Vinv modular invariant, under an anomalous transformation we have �V = H(T , �X) +
H̄ (T̄ , �̄X), with H given by (4.3), and

�LKE = 1

8

∫
d4θ

E

8R
(D̄2 − 8R)LH + h.c. = −1

8

∫
d4θ

E

R
�H + h.c., (4.13)

since the term involving D̄2 vanishes by partial integration [24]. The anomaly (4.1) is canceled: 
�LKE = −�Lanom.

Now consider the following Lagrangian

Llin = −3
∫

d4θ E

[
F(Z, Z̄,VX,L) + 1

3
(L + �)(S + S̄)

]
, (4.14)

where S (S̄) is chiral (antichiral):

S = (D̄2 − 8R)�, S̄ = (D2 − 8R̄)�†, � �= �†, (4.15)

with � unconstrained; L = L† is real but otherwise unconstrained, and � is a real superfield that 
satisfies

(D̄2 − 8R)� = �, (D2 − 8R̄)� = �̄. (4.16)

If we vary the Lagrangian (4.14) with respect to the unconstrained superfields �, �†, we recover 
the modified linearity condition (4.8). This results in the term proportional to S + S̄ dropping out 
from (4.14), which reduces to (4.9), with

F(Z, Z̄,VX,L) = 1 − 1

3
L

[
2s(L) − V (Z, Z̄,VX)

]
, s(L) = −1

2

∫
dL

L

∂k(L)

∂L
, (4.17)

where the vacuum value 〈 s(L)|〉 = 〈s(�)〉 = g−2
s is the gauge coupling constant at the string 

scale.
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Alternatively, we can vary the Lagrangian (4.14) with respect to L, which determines L as a 
function of S + S̄ + V , subject to the condition

F(Z, Z̄,VX,L) + 1

3
L(S + S̄) = 1 ≡ F(Z, Z̄,VX,S + S̄ + V ), (4.18)

which assures that once the (modified) linear multiplet is eliminated, the requirement

LKE = −3
∫

d4θEF(Z, Z̄,VX,S + S̄) = −3
∫

d4θE, K = K(Z, Z̄,VX,S + S̄),

for a canonically normalized Einstein term with only chiral matter is recovered. Together with 
the equation of motion2 for L, the condition (4.18) is equivalent to the condition (4.10) and the 
Lagrangian (4.14) becomes

Llin = −3
∫

d4θ E −
∫

d4θ E(S + S̄)� = −3
∫

d4θ E + 1

8

(∫
d4θ

E

R
S� + h.c.

)
.

(4.19)

Since L = L(S + S̄ + V ) is invariant under T-duality and U(1)X, we require �S = −H , so the 
variation of (4.19) is again given by (4.13).

For other orbifolds with T -dependent threshold corrections, the conditions (2.6) are modified 
somewhat, but the cancellation of the anomaly (4.1) goes through as above. In this case the mod-
ular anomaly in (4.1) is partially canceled by the threshold cancellations, and partially canceled 
by the “Green–Schwarz” term encoded in the terms proportional to V (Z, Z̄, VX) in (4.11) and 
(4.18).

4.2. Gauge coupling unification

The form of V (Z, Z̄) in (4.12) is not completely determined by the requirement of anomaly 
cancellation, because Vinv(Z, Z̄) can be any invariant function of the chiral supermultiplets. For 
example, in ZN models with just the three “diagonal” Kähler moduli introduced in (2.3), under 
the SL(2, Z) subgroup the transformations (2.4) reduce to (2.3) and

�a → e− ∑
i qa

i F i

F i = ln(icT i + d),
∑

i

F i = F(T ), (4.20)

and the Kähler potential takes the form

K = K(L) + G(T , T̄ ) +
∑
a

|�a |2e
∑

i qa
i gi + O(�3),

∑
i

gi = G(T , T̄ ), (4.21)

with

gi → gi + F i + F̄ i (4.22)

under a T-duality transformation. If we took, for example,

Vinv =
n∑

a=1

ca ln
(
|�a |2e

∑
i qa

i gi
)

,

n∑
a=1

caq
a
i = −1 ∀i, (4.23)

the Kähler moduli would drop out of V (Z, Z̄), but the anomaly would still be canceled.

2 In U(1)K superspace E has an implicit dependence on the Kähler potential K such that ∂E/∂L = −E(∂K/3∂L). 
With the conventions of [24], � has Weyl weight wW (�) = −wW (E) = 2, so E� is independent of K , i.e. of L, and 
δLlin/δL = 0 together with (4.18) gives (4.10).
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In fact, the T -dependence of V has been determined [26,27] by matching string theory cal-
culations to the effective field theory. For example, in ZZZ3 and ZZZ7 orbifolds, with no threshold 
corrections, the T -dependence drops out of the coefficient of F · F̃ when the matter fields �a

are set to zero. By supersymmetry, which implies a holomorphic gauge kinetic function, the co-
efficient of F · F also vanishes, which means that the contribution from the field theory loop 
corrections must be exactly canceled by that from the “Green–Schwarz” term in (4.11) or (4.18); 
this requires [26] Vinv(T , T̄ , � = 0) = 0. This result remains true for orbifolds with threshold 
corrections, but the coefficient b → bloop �= b of the loop correction in (4.1), (4.3) is modified in 
such a way that the full anomaly is canceled in the presence of additional T-dependent threshold 
contributions.

In the regulated theory, the coefficient g−2
a eff of Fa · Fa at the string scale is determined by 

the masses of the PV fields that replace the cut-off �. The relevant PV masses are uniquely 
determined by the requirement of the cancellation of ultra-violet divergences. For orbifolds with 
no threshold corrections one gets

1

g2
a eff

= 1

g2(�0)
− 1

16π2

(
Ca − Ca

M

)
k(�0) − 2

16π2

∑
b

Ca
b ln(1 − pb�0)

1

g2(�)
≡ s(�) = −

∫
d�

k′

2�
, (4.24)

where pb is the coefficient of |�b|2e
∑

i qb
i gi

in V (Z, Z̄, VX), and �0 = 〈�〉 is the vacuum value of 
the scalar component � of L. The expression (4.24) is independent of the renormalization scale, 
and may be compared [26] with the two-loop order renormalization group invariant quantity [28]

δa = 1

g2
a(μ)

− 1

16π2
(3Ca − Ca

M) lnμ2 + 2Ca

16π2
lng2

a(μ) + 2

16π2

∑
b

Ca
b lnZa

b(μ) , (4.25)

where Za
b are the renormalization factors for the matter fields, and μ is the renormalization scale. 

If we equate the scale-independent quantity δa with g−2
a eff and impose the boundary conditions

g(�0) = gs = ga(μs), Za
b (μs) = (1 − pbl)

−1, k(�0) = lnμ2
s , (4.26)

where μs is the string scale in reduced Planck mass units: mP = (8πGN)− 1
2 = 1, we obtain the 

renormalization group equation

g−2
a (μ) = g−2(μs) − εa − 1

8π2

(
3Ca − Ca

M

)
ln(μs/μ) + Ca

8π2
ln

[
g2(μs)/g

2
a(μ)

]
+ 1

8π2

∑
b

Ca
b ln

[
Zb(μs)/Zb(μ)

]
, (4.27)

where

εa = Ca

8π2

lng2(�0)

k(�0)
(4.28)

is a scale-independent threshold correction. For example, in the classical limit we have

k(�) = ln�, g−2(�) = s(�) = −
∫

d�
k′

= 1
, εa = ln 2

Ca

2
. (4.29)
2� 2� 8π



182 M.K. Gaillard / Nuclear Physics B 912 (2016) 172–191
This gives for the gauge unification scale in the MS scheme [29]

μ2
unif = μ2

s

2e
= g2

s m
2
P

2e
∼ 2 × 1017 GeV. (4.30)

This is an order of magnitude larger than what is obtained by extrapolating from low energy 
data [30] in the context of the minimal supersymmetric extension of the Standard Model, but 
in effective theories from superstrings one expects heavy states that are vector-like under the 
Standard Model gauge group, as well as corrections to the dilaton Kähler potential from string 
nonperturbative effects and/or field theory loop effects. For orbifold compactifications with 
threshold corrections, there are additional T -dependent terms in (4.24); these give small cor-
rections in the weak coupling limit T ∼ 1.

Note that the result (4.24) of the one-loop calculation incorporates the two-loop result 
in (4.25). This is because a supersymmetric regularization procedure necessarily gives a super-
symmetric result [31]. The chiral anomaly, which is completely determined at one loop, must 
form a supersymmetric operator with the conformal anomaly. This two-loop “correction” to the 
standard one-loop form of the beta-function is encoded in the dilaton dependence of the effective 
cut-offs, in this case the PV masses.

4.3. Hidden gaugino condensation

A popular candidate for supersymmetry breaking in the context of superstring theory is 
through gaugino condensation in a hidden sector, that is, a Yang–Mills sector that couples to 
the Standard Model only through gravitational strength couplings. Effective theories for gaugino 
and matter condensates were first constructed in globally symmetric theories [32], by matching 
the anomalies of the effective condensate Lagrangian to those of the underlying Yang–Mills La-
grangian. This can be generalized [33] to the supergravity case by introducing chiral superfields 
with U(1)K weight 2 and 0, respectively, for gaugino condensates Ua and matter condensates 
�α

a :

Ua � (Wα
a Wa

α )hid, �α
a �

∏
b

(�b
a)

nα
b

hid, (4.31)

where the elementary chiral field �b
a is charged under the strongly coupled hidden sector gauge 

group Ga . The effective Lagrangian for these fields is

Leff(Ua,�
α
a ) = 1

8

∫
d4θ

E

R

∑
a

Ua

[
b′
a ln

(
e−K/2Ua

) +
∑
α

bα
a ln�α

a

]
+ h.c. (4.32)

with the constant coefficients

b′
a = 1

8π2

(
Ca −

∑
b

Ca
b

)
, bα

a =
∑
b∈α

Ca
b

4π2dα
a

, dα
a = dim

(
�α

a

)
, (4.33)

determined [33,34] by requiring that the variation of (4.32) reproduce the variation (4.1), (4.3)
of the underlying theory, with Ua identified as in (4.31), and by matching the other anomalies 
of the effective theory to those of the underlying theory, including the anomalies under U(1)K
(R-symmetry) and conformal transformations. Since the right hand side of the modified linearity 
constraint (4.8) now has WaWa in (4.2) replaced by Ua for the strongly coupled hidden gauge 
groups, overall modular and U(1)X invariance are restored as before.
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Adding a gauge invariant superpotential to the effective theory

W(�) =
∑
a,α

Ca
α(T )�α

a , (4.34)

where the T-dependence of the coefficients C assures invariance under T-duality, leads to a so-
lution to the equations of motion with nonvanishing condensate vacuum values and masses of 
order of the condensate scale or larger. Integrating out these heavy condensates gives a potential 
for the scalar moduli t i , s. This potential always has a minimum at the vanishing coupling limit 
〈s〉 = g−2(μs) → ∞, with no gaugino condensate and no supersymmetry breaking. In fact, this 
is the only minimum in the absence of the symmetry-restoring Green–Schwarz term in (4.11)
or (4.18) if the classical form k(L) = lnL, or equivalently k(S, S̄) = − ln(S + S), of the dilaton 
Kähler potential is used. This was known as the “runaway dilaton problem”. However, when the 
Green–Schwarz term is included, there is a second runaway direction, this time in the direction 
of strong coupling, where string nonperturbative effects cannot be ignored. Including these ef-
fects provides a mechanism [35] for dilaton stabilization, known as Kähler stabilization, at finite 
coupling and with nonvanishing condensates and supersymmetry breaking.

4.4. Axion physics

The last term in the Lagrangian (4.19), with � = Wα
a Wa

α has a classical R-symmetry, under 
which the Yang–Mills fields strengths Wα and the condensates U transform, respectively, as

Wa
α (θ) → W ′ a

α (θ ′) = e
i
2 αWα(θ ′), Ua(θ) → U ′

a(θ
′) = eiαU(θ ′) (4.35)

where α is a constant parameter, and θ ′ is related to θ in such a way that the integral over θ in∫
d4θ

E′(θ ′)
R′(θ ′)

eiα�(θ ′) =
∫

d4θ ′ E(θ ′)
R(θ ′)

�(θ ′) =
∫

d4θ
E(θ)

R(θ)
�(θ), (4.36)

is invariant.3 For an arbitrary chiral superfield � such that

�′(θ ′) = eiβ�(θ ′), (4.37)

under R-symmetry with gauge superfields transforming as in (4.35), the component fields trans-
form as

∂n

∂θn
�(θ)

∣∣∣∣ → ei(β− n
2 α) ∂n

∂θn
�(θ)

∣∣∣∣ , n = 0,1,2. (4.38)

The symmetry under (4.35) is anomalous at the quantum level. For example, under U(1)K the 
gauge supermultiplets transform as in (4.35), while matter chiral supermultiplets transform sim-
ply as

�A
a (θ) → �A

a (θ ′), �α
a (θ) → �α

a (θ ′), (4.39)

and the shift in the Yang–Mills coupling in (4.19) is given by

�LYM(α) = iα

8

∑
a

b′
a

∫
d2θWα

a Wa
α + h.c. = −α

4
√

g
∑
a

b′
aFa · F̃ a, (4.40)

3 The integral 
∫

d4θE/R in local supersymmetry transforms the same way as 
∫

d2θ → e−iα
∫

d2θ ′ in global super-
symmetry.
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with b′
a given in (4.33). In the absence of nonperturbative effects, the right-hand side of (4.40)

is a total derivative, and has no effect on the S-matrix. This is no longer true when condensation 
occurs, and Wα

a Wa
α is replaced by the condensate Ua for one or more gauge group factors Ga . 

Then R-symmetry is generally broken, just as quark condensation in QCD breaks chiral symme-
try. However, if the Lagrangian is independent of the axion a = Im s except for its coupling to �
in (4.19), there is a residual R-symmetry [36] in the case of just one condensate Uc. The variation 
of the condensate term in, e.g., (4.40) can be compensated by for a shift in the axion:

Im s → Im s − αb′
c. (4.41)

In the class of models for gaugino condensation discussed above, the “classical” condensate 
Lagrangian (i.e. the part without the logs) is not invariant under U(1)K in the presence of the 
superpotential (4.34), which gives a superpotential Lagrangian term of the form (4.36) with � =
1
2eKW(�). In this case the classical R-symmetry has, instead of (4.39)

�b∈α
a (θ) → eiα/dα

a �b∈α
a (θ ′), �α

a (θ) → eiα�α
a (θ ′), (4.42)

and, for the strongly coupled condensate Uc, the shifts (4.40), (4.41) are replaced by

�LYM(α) = iα

8
b′′
c

∫
d2θUc + h.c., � Im s = −αb′′

c , b′′
c = b′

c +
∑
α

bα
c . (4.43)

If the condensates �α
c have dimension 3, from (4.33) we have simply

b′′
c = bc = 1

8π2

(
Cc − 1

3

∑
A

Cc
A

)
, (4.44)

which is related to the β-function by the one-loop order RGE

∂ga(μ)

∂ lnμ
= −3ba

2
g3

a(μ). (4.45)

The dilaton potential4 is dominated by the gauge group Gc with the largest beta-function coeffi-
cient bc and the largest condensation scale

�c ∼ e−1/3bcg
2
s μs, 〈|uc|〉 ∼ �3

c, uc = Uc| . (4.46)

The dilaton acquires a mass of order 〈|uc|〉 in reduced Planck units, but the axion remains mass-
less if there is a single condensate. In this case it is a prime candidate for the QCD axion.

If there is more than one term in the sum over a in (4.32), the axion acquires a small mass ma . 

For example if there are two strongly coupled gauge groups Gc, Gd , both with dim
(
�α

c,d

)
= 3, 

we get [33]

ma ∼ (bc − bd)
〈√|u1u2|

〉
. (4.47)

This two-condensate system has a point of enhanced symmetry where the β-functions are equal, 
and R-symmetry remains unbroken. If the string a axion is to play the role of the QCD, or 
Peccei–Quinn, axion its mass due to symmetry-breaking must be much smaller than the QCD 

4 In Kähler stabilization models the T-moduli are generically stabilized at self-dual points with vanishing F-terms, and 
supersymmetry breaking is dilaton dominated. We fix t i = T i

∣∣∣ at these self-dual points in what follows.
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condensation scale. The only realistic possibility in the heterotic string context is that of a single 
hidden sector gaugino condensate.5

The Peccei–Quinn symmetry was introduced to eliminate the CP violating term in the QCD 
Lagrangian

LQCD = θ

32π2
Fa · F̃a, (4.48)

where Fa
μν is the gluon field strength, that is expected to contribute to the S-matrix in the pres-

ence of nonperturbative strong coupling effects. The term in (4.48) can be rotated away by a 
chiral transformation on quarks because the associated anomaly generates a term of the same 
form. However, unless there is at least one massless quark, any chiral symmetry is broken by 
quark masses, and CP violation reappears in the form of phases in the quark mass matrix. CP 
conservation is preserved only if there is a nonanomalous symmetry involving chiral transforma-
tions on the quarks such that θ in (4.48) can be set to zero in the basis in which the quark mass 
matrix is real. If this symmetry is broken only by quark masses much smaller than the QCD 
condensation scale, there will be a small violation of CP that is acceptable as long as θ̄ , the value 
of θ in the real quark mass basis, is less than 10−10 as required by the stringent limits on the 
neutron dipole moment.

A convenient toy model for studying the axion mass is supersymmetric SU(Nc) with N
flavors, i.e. N quark and N antiquark chiral superfields QA, Qc

A. The effective theory for a 
condensate in this case can be constructed as above, except that the matter condensate

�α
Q = det�, �A

B = QAQc
B, dim�α

Q = 2N, (4.49)

is determined by the requirement of invariance under the nonanomalous symmetry SU(N)L ⊗
SU(N)R . The condensate Lagrangian takes the form

L(UQ) = 1

8

∫
d4θ

E

R
UQ

[
S + b′

Q lnUQ + bα
Q ln det�

] + h.c.,

b′
Q = 1

8π2 (Nc − N) , bα
Q = 1

8π2
. (4.50)

If we add a superpotential for �,

W(�) = Tr
[
C(T )�Cc(T )M

]
, (4.51)

where M is the quark mass matrix and C, Cc are matrix-valued functions of the Kähler moduli 
that assure T-duality invariance of the “classical” condensate Lagrangian. The classical La-
grangian is also invariant under an R-symmetry if UQ transforms as in (4.35) and

� → eiα�, det� → eiNα det�. (4.52)

Then (4.50) transforms as

5 A possibly dangerous contribution to the axion mass is from higher dimension operators [36] such as L �∑
n

∫
d4θ(E/R)cn(Z)Un+1

c m−3n
P

. However, the dimension of these operators is severely restricted by T-duality [37]. 
The minimal T-duality SL(2, Z) group of (2.3) requires n ≥ 4 which gives a contribution that could be comparable to 
the axion mass generated by the QCD condensate [38] if 〈|uc|〉/m3

P
∼ 10−12, and therefore problematic. However any 

group larger than the minimal one should result in a negligible contribution. For example SL[(2, Z)]2 and SL[(2, Z)]3
require n ≥ 8 and n ≥ 12, respectively.
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�L(UQ) = 1

8

∫
d4θ

E

R
UQ

[
�S + iα

(
b′
Q + Nbα

Q

)] + h.c., (4.53)

and is invariant provided

�S = i� Im s = −iα
(
b′
Q + Nbα

Q

)
= −i

αNc

8π2
. (4.54)

In the global supersymmetry limit, mP → ∞, Re s → g−2, the results found for supersym-
metric Yang–Mills theories using holomorphic arguments [39] are recovered in this effective 
theory [38].

If a confined sector with dimension-three matter condensates is also present, there is a 
nonanomalous R-symmetry in the absence of quark masses. It is defined by (4.35), (4.42)–(4.44)
and

� → eiβ�, det� → eiNβ det�, β = α

(
8π2bc − Nc

N
+ 1

)
. (4.55)

In the presence of quark masses, det M �= 0, the R-symmetry is broken, except at the point of 
enhanced symmetry:

β = α, bc = Nc

8π2
, (4.56)

and the axion acquires a mass [38]

ma = Fπ

Fa

|8π2bc − Nc|√
2nbc

mπ, (4.57)

where n is the number of flavors with quark masses below the QCD condensation scale (here 
taken to be degenerate), mπ is the common mass of the corresponding light pseudoscalars, Fπ is 
the pion decay constant (93 MeV in QCD),

a =
〈√

2�/k′(�)
〉
Im s = Fa Im s (4.58)

is the canonically normalized axion, and Fa is its coupling to the Yang–Mills sector at the string 
scale in reduced Planck units:

Lst � − Im s

4

∑
a

F a · F̃a = − a

4Fa

∑
a

F a · F̃a. (4.59)

In the case that we are actually interested in, QCD condensation occurs well below the scale 
of supersymmetry breaking, and one must find the correct effective pion–axion theory by first 
integrating out the heavy superpartners of Standard Model particles, as well as the heavy quarks. 
However the result in (4.57) is essentially unchanged; for just two light quarks u, d , it is simply 
multiplied by a function of the quark mass ratio:

ma|n=2 → 2
√

z

1 + z
ma|n=2 , z = mu

md

. (4.60)

The result (4.57) appears to be at odds with the well-known relation [40] between the axion mass 
and its coupling strength. However Fa is the axion coupling at the string scale. When the gaug-
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inos are integrated out, their coupling to the axion generates new terms in the couplings of the 
axion to gauge field strengths. For the axion coupling to QCD gluons, one gets a contribution [38]

�LQCD = a

4Fa

Nc

8π2
(F · F̃ )Q. (4.61)

Combining this term with the QCD term in (4.59) one gets for the total axion–gluon coupling at 
low energy

LQCD � − a

4Fa

(
1 − Nc

8π2

)
(F · F̃ )Q ≡ − na

32π2fa

(F · F̃ )Q, (4.62)

where we have introduced an alternative normalization fa for the axion coupling that is often 
found in the literature. In terms of this parameter, the axion mass for n = 2 takes the familiar 
form

ma = 2
√

z

1 + z

Fπ

fa

mπ . (4.63)

The axion mass vanishes at the point of enhanced symmetry (4.56) and one loses a potential 
solution to the “strong CP problem”. This is because, under (4.37), (4.38) and (4.55) the quark 
superfields Q transform with phase 1

2β and the quarks q = ∂Q/∂θ | with phase

1

2
(β − α) = α

8π2bc − Nc

2N
, (4.64)

which vanishes at the symmetry point, so the nonanomalous R-symmetry does not affect the 
quark mass matrix and cannot be used to set θ to zero in the basis where the masses are real.

5. Soft supersymmetry breaking at one-loop

When supersymmetry is broken in a hidden sector of a generic supergravity theory, the 
Lagrangian for the “observable” (i.e. Standard Model) sector acquires “soft” supersymmetry-
breaking terms. These are terms of dimension two or three that do not affect the cancellations 
of ultraviolet divergences that are present in the supersymmetric theory. They include gaugino 
masses, holomorphic functions of chiral scalars that are cubic (A-terms) and quadratic (B-terms), 
and “soft” scalar masses, that, is scalar squared mass terms m2

j̄ i φ̄
j̄ φi that have no fermionic 

counterparts. However, there are cases where these terms are absent at tree level. For example, if 
supersymmetry is F-term mediated, 〈Da〉 = 0, 

〈
FT

〉 �= 0, the so-called “no-scale” Kähler poten-
tial of (3.9) leads to vanishing soft terms at tree level if the superpotential is independent of the 
Kähler moduli T i . In such cases loop-induced soft terms become important, as they do if some 
tree-level soft terms are suppressed. For example, in the class of models outlined in Section 4.3, 
the gaugino masses and A-terms are much smaller than soft scalar masses [41] if the β-function 
coefficient bc of the dominant condensing gauge group is an order of magnitude or so smaller 
than the parameter b appearing in the Green–Schwarz term (4.12).

The loop corrections to soft supersymmetry-breaking terms include the so-called “anomaly 
mediated” contributions that are present even when there are no soft terms at tree-level; they arise 
from the super-Weyl anomaly of standard supergravity. Some of these are model independent in 
the sense that they are determined only by the β- and γ -functions appearing in the RGE’s of the 
low energy theory, and are independent of the mechanism by which supergravity is broken. That 
is, they are independent of the vacuum values of the auxiliary fields except for the supergravity 
auxiliary field, whose vacuum value 〈R〉 = Mψ signals the breaking of local supersymmetry.
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The “model-independent” contribution to gaugino masses ma was first identified in [42,43]. 
This result was subsequently confirmed and completed [44–46], with the result

m
1-loop
a = −g2

a(ma)

(
3

2
baMψ + 1

2
b′
a

〈
F iKi

〉
+ 1

8π2

∑
b

Cb
a

〈
F i∂i lnKbb̄

〉)
, (5.1)

where the first term is the “model independent” one alluded to above. In the models of interest 
here, only the auxiliary fields FS, FT i

have nonvanishing vacuum values at the hidden sector 
supersymmetry scale, and the class of condensation models described in Section 4.3 generally 

have 
〈
FT i

〉
= 0. When the 4d Green–Schwarz term and threshold effects are included, there are 

additional contributions to the gaugino masses; these modify only the coefficients of 
〈
FT i

〉
. The 

full expressions for the gaugino masses as well as other soft terms are given in [47].
The result (5.1) was obtained by analyses [44,45] of the loop-induced operator that transforms 

as in (4.1), by using [48] spurion techniques [49], and by an explicit PV calculation [44]. In the 
last case, the “anomaly-induced” gaugino mass results from a B-term insertion on the squark 
lines in PV squark–quark (φP –χP ) loop contributions to the gaugino masses:

LPV

(
φP

)
� −eKWPV(φ)

〈
W

〉 + h.c. = −eKμPQφP φQM̄ψ + h.c. (5.2)

Model independent contributions to A-terms were also found using spurion techniques [48,49], 
namely:

A
1-loop
abc � (γa + γb + γc)Mψ, (5.3)

where γa is the anomalous dimension for the light supermultiplet φa, χa . However, this tech-
nique failed to yield an analogous contribution to soft scalar masses, for which a such a contribu-
tion appeared only at two-loop order, proportional to the derivative of the anomalous dimension.

Pauli–Villars calculations [46] of these effects confirmed the contribution (5.3), and a similar 
B-term contribution

B
1-loop
ab � (γa + γb)Mψ, (5.4)

but in addition yielded a one-loop model-independent contribution to soft scalar masses:

(m2
a)

1-loop
soft � γa|Mψ |2. (5.5)

The source of this discrepancy can be traced to the fact that in the earlier calculations a holo-
morphic form for the supersymmetry-breaking spurion was assumed. This corresponds, in PV 
language, to PV B-terms, but no soft PV masses. If only B-terms were present soft scalar masses 
could result from a double B-term insertion, but these contributions in fact cancel; the result 
in (5.5) instead arises from a PV soft (squared) mass insertion. Repeating the spurion analysis 
without the assumption of holomorphism indeed reproduces [46] the term in (5.5).

The compete expressions for the soft supersymmetry breaking terms in the scalar potential 
are quite complicated. They depend on the tree-level soft terms, as well as on unknown mass 
parameters in the Pauli–Villars sector. This is in contrast to the result (5.1), which is completely 
determined by the low energy theory. The PV masses depend on the PV Kähler metric. In the case 
of gauge couplings, all PV chiral multiplets that are charged under Ga contribute both to the ultra-
violet divergences associated with the loop-induced Yang–Mills operator containing Wα

a Wa
α and 
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to the soft masses ma ; their gauge-charge weighted masses are constrained by the requirement of 
ultraviolet finiteness. On the other hand, only a subset �P of PV chiral multiplets contribute to 
the renormalization of the Kähler potential through their couplings to light fields φp in superpo-
tential terms W ∼ �P �Qφr . The Kähler metric of the �P is fixed by the finiteness requirement. 
However each PV field �P has a PV mass coupling to some other field �P ′

which need have no 
coupling to light fields and no restriction on its Kähler metric. As a result the masses

mP = eK/2(KPP KP ′P ′)−
1
2 μPP ′ (5.6)

of the fields �P that contribute to the scalar soft terms are not fixed by finiteness alone, and 
depend on the details of string/Planck scale physics.

6. Unfinished business

The F-term anomalies of the form (4.1) that are linear in the parameters of the anomalous 
transformations are well understood and can be canceled by a combination of the 4d Green–
Schwarz term and string loop threshold effects. However the anomalous terms that are higher 
order in these parameters depend on the details of the regularization procedure [10,19]. It ap-
pears likely that if a regularization procedure can be found that allows for the implementation of 
full anomaly cancellation in the context of the weakly coupled heterotic string, it will entail some 
constraints on higher order terms in the Kähler potential (4.21) for the untwisted sector fields �a

of orbifold compactifications. This is reminiscent of the constraint (2.1) on gauge charges, and 
could have important implications for flavor changing neutral currents discussed in Section 3.2. 
Such a procedure would certainly entail restrictions on the PV masses, which, as discussed in the 
previous section, play a role in soft supersymmetry breaking parameters in the case that loop cor-
rections to these are important. Therefore the solution to the problem of full anomaly cancellation 
will have direct implications for phenomenology.

Finally, as mentioned Section 2 there are also D-term anomalies, and as yet there has been 
no serious attempt to determine how they might be canceled in a string theory context. The 
resolution of this issue may also have a bearing on the effective supergravity Lagrangian.

7. Final word

Raymond Stora was a cherished friend and colleague who was always very supportive. I had 
the great pleasure of organizing with Raymond a very successful summer school at Les Houches 
in 1981; most of the participants in that session are still active in particle physics today. Bruno 
Zumino and I shared many pleasurable occasions with Raymond and Marie-France. I will miss 
him.
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