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Exact solution of the envelope equations for a matched
quadrupole-focused beam in the zero space-charge limit

O. A. Anderson, LBNL, Berkeley, CA 94720, USA
L. L. LoDestro, LLNL, Livermore, CA 94551, USA

The Kapchinskij-Vladimirskij equations are widely used to study the evolution of the beam en-
velopes in a periodic system of quadrupole focusing cells. In this paper, we analyze the case of a
matched beam. Our model is analogous to that used by Courant and Snyder [E.D. Courant and H.S.
Snyder, Ann. Phys. 3, 1 (1958)] in obtaining a first-order approximate solution for a synchrotron.
Here, we treat a linear machine and obtain an exact solution. The model uses a full occupancy,
piecewise-constant focusing function and neglects space charge. There are solutions in an infinite
number of bands as the focus strength is increased. We show that all these bands are stable. Our
explicit results for the phase advance σ and the envelope a(z) are exact for all phase advances except
multiples of 180◦, where the behavior is singular. We find that the peak envelope size is minimized
at σ = 90◦. Actual operation in the higher bands would require very large, very accurate field
strengths and would produce significantly larger envelope excursions.

I. INTRODUCTION

The Kapchinskij-Vladimirskij (KV) equations describe
the evolution of the beam envelopes in a periodic system
of quadrupole focusing cells and are widely used to help
predict the performance of such systems. When the fo-
cusing fields are moderately strong, numerical solutions
are easily obtained. Problems can arise with very strong
fields [1], especially when the phase advances are larger
than 180◦. Analytic solutions are often useful in the
latter case and can provide helpful insight at any focus
strength. Thus, there have been numerous analytic pa-
pers describing approximate solutions with varying de-
grees of accuracy.

In this paper, we present an exact solution for a
matched beam (periodic envelope with the same period
as the focusing lattice) for arbitrary phase advance. We
treat a problem examined by Courant and Snyder in
their classic paper [2], except that we assume a linear
rather than circular machine. They discussed the case in
which the focus and defocus sections each had uniform
focusing strength with no intervening gaps. They called
this the CLS configuration [3]. Their model neglected
space-charge, as we do in the present paper. Although
space charge is no longer negligible in typical modern de-
vices, the exact solution for this case does provide in-
sight into the general behavior of alternating-gradient
systems and can provide a starting point for analysis of
other focusing models and for the case of finite space
charge. (Exact results have also been obtained—for the
thin-lens [δ-function] focussing model—by K. Takayama
in the zero space-charge limit [4] and by Lund and Bukh
in their full analysis of the zero-emittance case [5].)

Courant and Snyder used the CLS model for a syn-
chrotron, obtaining approximate solutions for the enve-
lope and phase advance. We show here that the anal-
ogous model for a linear machine is exactly solvable
and explore the consequences. We will refer to our
model (piecewise-constant focus, negligible space charge,
straight rather than circular beam axis) as the CSS
model [6]. For this model: (1) We find that solutions exist

in an infinite number of bands coinciding with bands of
stability. (2) We obtain a well-defined expression for the
phase advance σ as a function of focusing strength that
applies to all bands. All values of σ are theoretically pos-
sible except exact multiples of 180◦. (3) For fixed emit-
tance, the peak beam radius is minimized when σ = 90◦
and increases rapidly past that point. The higher bands
give larger beam excursions in spite of greatly increased
focusing fields [5]. Although the minimum radius is re-
duced (cf. Ref. [7]), the average radius and peak radius
are increased. It is the peak radius that is significant for
transport systems of fixed aperture. For such systems, in
the emittance-dominated regime at least, there seems to
be no advantage in increasing the focusing strength be-
yond the value that gives σ = 90◦ — except possibly for
special applications, such as those discussed in Sec. X.

II. FOCUSING MODEL

We assume a quadrupole-symmetric focusing function
K(z) that is piecewise constant with values ±k and pe-
riodic over a lattice with period 2L. This model is de-
scribed for the xz-plane by Eqs. (1) and Fig. 1:

K(z) = +k, 0 < z < L; (1a)

K(z) = −k, L < z < 2L. (1b)
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FIG. 1: CSS focusing model for the xz-plane. The yz-plane
fields are the same but shifted by the distance L.

In a lattice with quadrupole symmetry, the xz-plane
and yz-plane envelopes a(z) and b(z) for a matched beam
are identical except for a shift of length L [8], [9]. Thus,
it is only necessary to analyze the dynamics in one of the
planes; we choose the xz-plane here.
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III. SINGLE-PARTICLE STABILITY

In the absence of space charge, the transverse position
x(z) of a particle is determined by

x′′(z) + K(z)x(z) = 0. (2)

The stability of the single-particle orbit is easily found
from the period-transfer matrix M [2], [10] and is given
by |Tr(M)| < 2. With K(z) defined by Eq. (1), this
yields ∣∣∣ cos

√
kL

∣∣∣ < sech
√

kL. (3)

Figure 2 shows that there are multiple bands of real
solutions over increasingly narrow ranges of

√
kL.

0

0.5

1

0 1 2 3

A B

FIG. 2: A= | cos
√

kL|; B= sech
√

kL. Stable solutions exist
in the regions where curve A lies below curve B.

IV. DERIVATION OF THE EXACT SOLUTION
OF THE ENVELOPE EQUATIONS

In the CSS model, which neglects space charge, the
xz-plane envelope a(z) of a beam with emittance ∈
obeys [10]:

a(z)′′ + K(z)a− ∈
2

a3
= 0 (4)

with K(z) from Eqs. (1). The boundary conditions are
periodic for a matched beam.

Multiplying Eq. (4) by 2a′ and integrating, one obtains

a′ 2 + K(z)a2 +
∈2

a2
= C . (5)

Then, multiplying Eq. (5) by a2 yields

dz =
da2

2
√
−K(z)a4 + Ca2 −∈2

. (6)

Any standard table of integrals shows that the solu-
tion for a2(z) will involve trigonometric or hyperbolic
functions, depending on the sign of K. We will find the
appropriate constants by using trial solutions.

We define separate functions for the focus (K = +k)
and defocus (K = −k) sections:

a(z) =

{
a+(z) for 0 < z < L

a−(z) for L < z < 2L
(7)

and choose trial solutions that satisfy the symmetry of
K(z): √

k

∈ a+
2(z) = ϕ + F cos λ(z − L/2), (8a)

√
k

∈ a−
2(z) = γ + G coshλ(z − 3L/2), (8b)

where λ, ϕ, F, γ, and G are constants. They will be deter-
mined by substituting Eqs. (8) into Eq. (4) and invoking
continuity of values and derivatives of a+ and a− at the
junctions. (Ref. [1] points out a different methodology,
good for arbitrary piecewise-constant periodic lattices.)

For the focus section, we differentiate Eq. (8a) twice
and find after some algebra that

a+
′′ = −λ2

4
a+(z)

(
1 +
∈2

k

F 2 − ϕ2

a+
4

)
. (9)

Comparison with Eq. (4) gives

λ = 2
√

k, (10)

the first of the five unknown constants, and

ϕ2 = F 2 + 1. (11)

For the defocus section, Eq. (10) still applies and we
find similarly

γ2 = G2 − 1. (12)

A. Introduction of the focus-strength parameter θ

The focus-strength parameter, used throughout this
paper, is defined by

θ ≡
√

kL, (13)

and our trial solutions become
√

k

∈ a+
2(z) = ϕ + F cos θ(2z/L− 1), (14)

√
k

∈ a−
2(z) = γ + G cosh θ(2z/L− 3), (15)

The first derivatives are
√

k

∈ a+
2(z)′ = −(2θ/L)F sin θ(2z/L− 1), (16)

√
k

∈ a−
2(z)′ = +(2θ/L)G sinh θ(2z/L− 3). (17)

We introduce the following quantities that depend only
on the focus-strength parameter:

sn(θ) ≡ sin θ, cs(θ) ≡ cos θ,

sh(θ) ≡ sinh θ, ch(θ) ≡ cosh θ, (18)
ρ ≡ sn/sh. (19)

For simplicity, we drop the arguments of sn, cs, sh, and
ch henceforth.
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B. Continuity conditions

The four remaining unknown constants, ϕ, F, γ, and
G, are found by invoking continuity of a and a′ at z = L,
the boundary between focus and defocus sections. The
symmetries built into our trial solutions guarantee peri-
odicity of a(z) with period 2L.

Using Eqs. (16) and (17), we equate derivatives at
z = L:

G = ρF. (20)

We equate a+
2(L) and a−2(L) using Eqs. (14) and (15):

γ − ϕ = (cs− ρ ch)F. (21)

For our four unknowns we now have four equations: (11),
(12), (20) and (21). The first three yield

ϕ2 + γ2 = (1 + ρ2)F 2. (22)

From Eq. (21),

γ2 + ϕ2 − 2γϕ = (cs− ρ ch)2F 2. (23)

Combining Eqs. (22) and (23) yields

γ ϕ = F 2ρ ch cs. (24)

We square this and use Eqs. (11) and (12). After a little
more algebra, we find

ρ2(1− cs2ch2)F 4 − (1− ρ2)F 2 − 1 = 0. (25)

The real solutions are F = ±(ρ2ch2 − 1)−1/2 with F
negative for π < (θ − 2πn) < 2π. We write

F =
P√

ρ2ch2 − 1
=

Psh√
1− cs2ch2

, (26)

where
P(θ) ≡ sign(sn). (27)

From Eq. (11), ϕ = P sn ch(1−cs2ch2)−1/2. The P func-
tion is required here since, according to Eq. (8a), ϕ is
necessarily positive. The P function in Eq. (26) then en-
sures that a−2 maintains a positive value for any θ [see
Eqs. (15) and (20)].

C. Exact solution

Finally, then, Eqs. (14) and (15) yield the exact solu-
tion

a+
2(z) = ∈L

sn ch + sh cos[θ(2z/L− 1)]
P θ
√

1− cs2ch2
, (28a)

a−
2(z) = ∈L

sh cs + sn cosh[θ(2z/L− 3)]
P θ
√

1− cs2ch2
, (28b)

where the second equation utilizes Eqs. (20) and (21).

Figure 3 plots a(z)/
√∈L for various focusing strengths

θ within the stable pass bands discussed below.
Equations (28) have real solutions (pass bands) when
their denominators are real. The existence criterion is

cs2ch2 < 1. (29)

This agrees with the stability criterion, Eq. (3), showing
that a solution is stable if it exists.
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FIG. 3: Plots of Eqs. (28) for various focusing strengths θ
with fixed emittance ∈: (a) θ=0.5π, midpoint of the first
stable band; (b) θ=0.5968π, near band 1 edge; (c) θ=1.5π,
the midpoint of band 2; (d) θ=1.50561868π, near band 2 edge;
(e) θ=2.5π, band 3 midpoint. Peak radius is smallest where
θ and σ are 90◦ — see Figs. 5 and 6. (The phase advance σ
is discussed in Sec. V.) The minimum of the envelope a(z)
can be very small but it is always finite. In the even bands,
a(z) and b(z) have minima at the same z values. Therefore,
in case (d) there are huge reductions in beam area at z = L/2
and 3L/2. (See Figs. 8 and 9.)
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V. PHASE ADVANCE IN THE STABLE BANDS

The matched solution of Eq. (4), Eqs. (28), has stable
bands which surround the points where cs = 0. We call
these the midpoints θn for the focus-strength parameter:

θn ≡ (n− 1
2 )π n = 1, 2, 3 · · · (30)

where n is the pass-band number.
From Ref. [2], the full-period phase advance σ(θ) for

the CSS case is (assuming |cs ch| < 1),

cos σ = 1
2 TrM = cos θ cosh θ. (31)

(Note that cos σ = 0 when cos θ = 0, so that σn = θn.)
Solving for σ by writing σ(θ) = cos−1(cos θ cosh θ)

raises the issue of determining which branch of cos−1 to
use for the higher pass bands. To avoid this problem, we
first introduce the deviations ∆θ and ∆σ, defined by

θ = θn + ∆θ; σ = θn + ∆σ, (32)

where −π
2 < ∆σ < π

2 and where ∆θ has a smaller range
(extremely small for n > 1). Substitution of Eqs. (32)
into Eq. (31) gives

sin∆σ = sin∆θ cosh θ (33)

with | sin∆θ cosh θ| < 1. Then

σ(θ) = θn + sin−1(sin∆θ cosh θ). (34)

Here, sin−1 is restricted to the principal value, removing
the ambiguity mentioned above. Figure 4 displays σ(θ)
for the first two bands.

From Eq. (34) and Fig. 4 we see that, for any band n,
σ has maximum and minimum values

σmax = nπ, σmin = (n− 1)π. (35)

In all pass bands, σ ranges over 180◦, so that arbitrary σ
is possible except for the singular points σ = nπ. The re-
quired precision of k becomes extreme near these points.

0

0.5

1

1.5

2

0 0.5 1 1.5 2

1.5

1

2

1.49 1.5 1.51

0.5

0

(a) (b)

FIG. 4: (a) Phase advance [Eq. (34)] for the first two stable
bands. (b) The second band again with the θ axis magnified.

VI. MAXIMUM ENVELOPE EXCURSION

The peak radius amax is found from Eq. (28a) by set-
ting the cosine term (containing z) equal to P, yielding:

a2
max(θ)
∈L

=
P sn ch + sh

θ
√

1− cs2ch2
. (36)

0

5

10

0 0.5 1.0 1.49 1.50 1.51

(a) (b)

! /" ! /"

n = 1 n = 2

FIG. 5: (a) Values of amax/
√∈L [Eq. (36)] for the first stable

band. (b) The second band with the θ axis magnified. The
smallest possible envelope excursions occur for θ = 90◦.

Figure 5 illustrates Eq. (36), showing amax/
√∈L as a

function of θ for the first two stable bands. In Fig. 5(a),
the peak radius amax decreases with increasing field
strength up to the point where θ and σ reach 90◦. Further
increase of θ causes a rapid increase in the peak radius,
which diverges as σ approaches 180◦. In the narrow sec-
ond band, the peak radius has a minimum value where θ
and σ are very close to 270◦.

The peak radius at the center of any band (essentially
the minimum peak radius) is found by setting θ = θn:

a+
2
max(θn) = ∈L

eθn

θn
, (37)

where θn is given by Eq. (30). From this, one finds that
the minimum peak radius in the second band is about
2.78 times larger than in the first band and that it in-
creases almost exponentially for larger n.

With the CSS model, then, for given ∈ and L the
smallest peak radius occurs when the phase advance
is 90◦.

0

5

10

0.0 0.5 1.0 1.5 2.0

! /"

FIG. 6: Values of amax/
√∈L [Eq. (36)] for the first two stable

bands as a function of phase advance σ [Eq. (34)]. Minimum
beam size occurs at σ = 90◦.
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Figure 6 shows amax for the first two bands in terms
of the phase advance σ rather than the field-strength pa-
rameter used for Fig. 5. As mentioned at the end of
Sec. V, all the pass bands have width 180◦. The stop
bands [5], in the absence of space charge, shrink to points
at 180◦, 360◦, etc.

VII. PHASE ADVANCE AS A FUNCTION OF z
FOR PASS-BAND MIDPOINTS

At the midpoints θn, the cosine factor containing z in
Eq. (28) becomes

cos θ

(
2z

L
− 1

)
= sin

(
θn

2z

L

)
(38)

and the denominators become P θ. Thus, a2 at the mid-
point of any band n is

an+
2(n; z) = ∈L

chn + shn P sin(θn2z/L)
θn

(39a)

an−
2(n; z) =

∈L

θn
cosh[θn(2z/L− 3)]. (39b)

The reciprocals of Eqs. (39) are easily integrated (using
appropriate branch selection), yielding the exact phase
advance σ(θ; z) along the z-axis:

σ(θ; z) = ∈
∫ z

0

dz′

a2
(40)

where the θ-dependence enters through a. The integral is
done in sections. We illustrate for band 2, where θ2 = 3π

2 .

σ(θ2; z) =




tan−1(eθ2 tanx)− tan−1 eθ2 +






0, 0 < z < 1
6L

π, 1
6L < z < 5

6L

2π, 5
6L < z < L

tan−1(ey)− tan−1 eθ2 + 3
2π, L < z < 2L,

where
x ≡ 1

2θ2( 2z
L − 1)

y ≡ θ2( 2z
L − 3)

(41)

and where the principal values of tan−1 are used. The
phase advance over a full period (0, 2L) is 3π/2, which
agrees with Eq. (34) for θ2. The above result is plotted
in Fig. 7.

VIII. SECOND-BAND BEAM COMPRESSION

Figure 3 shows that, in the second band, the beam ra-
dius is small in both the x and y directions for z/L = 0.5
and for z/L = 1.5 so that the beam area is highly com-
pressed at these points. (Recall that b(z) = a(z + L) for
our matched beam.) The beam area is plotted on linear

FIG. 7: Phase σ as a function of z for the center of the second
stable band, from Eq. (41). Note the phase jump at z = L/2.

0 0.2 0.4 0.6 0.8 1

1 1.2 1.4 1.6 1.8 2

z / L

10 
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10-2

40

10 
2

20 

0

FIG. 8: Normalized beam area πa(z)a(z + L)/∈L as a func-
tion of z for the center of the second band. Focus-strength
parameter θ = 1.5π; σ = 270◦. (Cf. Fig. 3c.)

and log scales for the center (Fig. 8) and the edge (Fig. 9)
of the second band. The KV equation predicts that the
compression ratio is more than 200 in the former case
and more than 107 in the latter. However, various effects
not taken into account by the CSS model will limit the
beam compression. These and other practical matters
are discussed in Sec. X.

IX. BEAM MATCHING EQUATION

We now return to Eq. (28a) and restrict z to a constant
value, z0, regarding the right-hand side as a function of
θ, ∈, and L. For z0 = 0, this yields a0 = f(θ,∈, L).
That is, we have obtained a matching condition relating
the initial beam amplitude and the parameters θ, ∈, and
L. In the limit θ → 0, we find a0

2 → 2
√

3∈L/θ2, the
usual smooth-approximation matching condition [11].

From another viewpoint, we observe that Eq. (4), to-
gether with periodic K and the requirement that the
beam be matched to the lattice, is a homogeneous sys-
tem with periodic boundary conditions. This leads us
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FIG. 9: Normalized beam area πa(z)a(z + L)/∈L as a func-
tion of z near the edge of the second band. Focus-strength
parameter θ = 1.50561868π; σ = 359.75◦. (Cf. Fig. 3d.)

to interpret the solution of the envelope equations for
matched beams as an eigenvalue problem. The match-
ing condition is then understood as the (nonlinear) equa-
tion for the eigenvalues. As typically occurs for nonlinear
problems, the eigenfunction normalization, of which a0 is
a measure, enters the eigenvalue equation.

Specifically, we observe that Eq. (36) is a transcen-
dental equation for θ, the eigenvalue. (The measure is
amax instead of a0—the difference is unimportant.) Some
modes of its spectrum are indicated graphically in Fig. 5.
One sees that the ordinate value amax/

√∈L = 5 inter-
sects the plot twice in each of the first two bands; it has
no intersections in higher bands. There is a total of four
modes in this example.

X. DISCUSSION OF THE SECOND BAND

For charge-dominated beams, some authors, e.g. [7],
have recommended operating in higher bands to trans-
port larger beam current. Lund has pointed out that the
envelope excursions will then increase [5]. Emittance-
dominated beams also exhibit this excursion increase, as
shown by Eq. (37). For a given aperture, the particle
flux is reduced in the higher bands. Nevertheless, there

may be some uses for the second band, assuming such
operation to be feasible in practice.

In the emittance-dominated case, the second band has
a special feature: The beam radii in both planes can be
small at the same points, as noted in Fig. 3. The series
of localized regions of high compression (Sec. VIII) has
possible applications such as differential pumping of the
beam line using diaphragms. A truncated lattice could
produce an extremely dense final focal spot, which, if
achievable, would have various applications—for exam-
ple, heating or compression of targets, which might be
useful for WDM (warm dense matter) studies.

The design of a machine for second-band operation
would face formidable difficulties. Compared with the
focusing field for σ = 90◦, the field for 270◦ is nine times
stronger. The narrowness in θ of the second band would
require accurate field regulation—extremely accurate if
operating near the band edge as in Fig. 9. It would be
difficult to launch a beam in the second band. Launch-
ing at z = 0, for example, would require steeply converg-
ing and diverging envelope angles in the two symmetry
planes. All these would be technical challenges.

Effects have been neglected in this paper that would re-
duce the beam compression. Large beam excursions will
produce focusing aberrations, not treatable by the KV
equations with their paraxial approximation. As men-
tioned above, significant space-charge fields will widen
the focus. (However, this may be mitigated since emit-
tance pressure eventually dominates as the beam is com-
pressed.) All these effects remain to be studied.

A final remark applies to any band: The full KV equa-
tions, which include space charge terms, require the KV
distribution function [10] for the beam in order to pro-
duce the linear transverse self-field required for a periodic
solution. The beam density is uniform with a sharp cutoff
at the boundary. On the other hand, periodic solutions
can be obtained with the CSS model using distributions
that give realistic density profiles.
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