
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Packet pacer : an application over NetBump

Permalink
https://escholarship.org/uc/item/4cg7394z

Author
Das, Sambit Kumar

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4cg7394z
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Packet Pacer: An application over NetBump

A thesis submitted in partial satisfaction of the

requirements for the degree

Master of Science

in

Computer Engineering

by

Sambit Kumar Das

Committee in charge:

Professor Amin Vahdat, Chair
Professor George Papen, Co-Chair
Professor Yeshaiahu Fainman
Professor Bill Lin

2011

Copyright

Sambit Kumar Das, 2011

All rights reserved.

The thesis of Sambit Kumar Das is approved, and it is ac-

ceptable in quality and form for publication on microfilm

and electronically:

Co-Chair

Chair

University of California, San Diego

2011

iii

DEDICATION

Dedicated to my parents and grandparents ...

iv

EPIGRAPH

Your time is limited, so don’t waste it living someone else’s life. Don’t be trapped

by dogma - which is living with the results of other people’s thinking. Don’t let the

noise of other’s opinions drown out your own inner voice. And most important,

have the courage to follow your heart and intuition. They somehow already know

what you truly want to become. Everything else is secondary.

-Steve Jobs, Stanford University commencement address, June 12, 2005.

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . viii

List of Tables . ix

Acknowledgements . x

Vita and Publications . xi

Abstract of the Thesis . xii

Chapter 1 Introduction . 1
1.1 Data Center Networks 1
1.2 Deployment in Data Center Networks 1
1.3 NetBump . 2
1.4 Packet Pacing . 3
1.5 Organization of the Thesis 4

Chapter 2 Related Work . 5
2.1 NetBump . 5
2.2 Packet Pacing . 6

2.2.1 Packet Pacing in Endhost 6
2.2.2 Packet Pacing in NIC 7
2.2.3 Packet Pacing in Switches 7

Chapter 3 NetBump Architecture . 9
3.1 Design Requirements . 9
3.2 NetBump Design . 11

3.2.1 Packet Reception 11
3.2.2 Virtual Active Queue Management 11
3.2.3 Application . 12
3.2.4 Packet Transmission 12
3.2.5 Multi-core parallelism 13

vi

Chapter 4 Research Motivation for TCP Packet Pacing 14
4.1 Burstiness in TCP . 14

4.1.1 TCP mechanism 15
4.1.2 Large Segment Offload 17
4.1.3 Ethernet Flow Control 18

4.2 Effects of Packet Pacing 18

Chapter 5 Packet Pacing: An application on NetBump 20
5.1 Packet Pacing . 20
5.2 Packet Pacing Design . 21

5.2.1 Multi-Threaded Implementation 21
5.3 Pacing Mechanism . 22

5.3.1 Which flow to pace? 22
5.3.2 Flow classification 23
5.3.3 Delay Based approach 24
5.3.4 Modified Token Bucket approach 26

5.4 Token Thread Approach 28

Chapter 6 Experiments Methodology . 31
6.1 Implementation . 31
6.2 Methodology . 32

Chapter 7 Evaluation . 35
7.1 Inter-Packet Arrival Time 35
7.2 Microbenchmark . 36
7.3 Delay Based Approach 38
7.4 Modified Token Bucket Approach 39
7.5 Effect on Buffer Overflow 41
7.6 Token Thread approach 42

Chapter 8 Discussion . 45

Chapter 9 Conclusion . 47

Bibliography . 48

vii

LIST OF FIGURES

Figure 3.1: The design of the NetBump pipeline. 11

Figure 4.1: Effect of bi-directional flow on inter packet time 16
Figure 4.2: Effect of TCP Segment Offload on Inter Packet Arrival Time . 17

Figure 5.1: Sample Code for delay iter . 25
Figure 5.2: Variation of delay generated using the NOP and volatile approach 26
Figure 5.3: Schematic of the bursty behavior of TCP 27
Figure 5.4: Schematic of the events for modified token bucket approach . . 27
Figure 5.5: Pseudo-code for modified token bucket implementation 29

Figure 6.1: Testbed configuration to evaluate Packet Pacing 32
Figure 6.2: Testbed configuration to evaluate 1G flows 33
Figure 6.3: 2-Rack testbed to evaluate QCN 34

Figure 7.1: Comparison between sendto() and myrisnf inject() API . . . 37
Figure 7.2: Packet Pacing using the NOP and Volatile delay approach . . . 39
Figure 7.3: Effect of offered bandwidth on inter packet arrival time 40
Figure 7.4: Packet Pacing using the Modified token bucket approach 41
Figure 7.5: Buffer overflow for different approaches 42
Figure 7.6: Effect of Token Thread based approach on QCN performance . 43

viii

LIST OF TABLES

Table 5.1: The NetBump packet data structure. 24

Table 7.1: Inter Packet Time for different offered load 36
Table 7.2: Lock overhead in multi-recv single-send setup 38

ix

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my

advisor Prof. Amin Vahdat for his supervision, advice and guidance from the

very early stage of my journey through the M.S. program, as well as giving me

extraordinary experience throughout my stay. Above all and the most needed,

he provided me unflinching encouragement and support in various ways. I am

indebted to him more than he knows.

I would like to thank my teammates in this research - George Porter, Rishi

Kapoor and Mohammad Al-Fares. Each one has made significant contribution to

the “NetBump” project. Without the advice I received from them - in the form of

awesome ideas from George to design discussions with Rishi to details of the QCN

implementation from Mohammad - this thesis would not be in its current stage.

I would like to thank Nathan Farrington, who was my first mentor when I

joined the team. Working with him was an amazing experience and gave me an

ideal launching ground into the research world. My acknowledgements also goes

to the rest of the members of DCSwitch group. It was a great learning experience

to interact and work with each one of them.

Last but not the least, I would like to thank all the distinguished faculty at

UC San Diego. It was truly a great research experience and I have gained a wealth

of knowledge. The graduate program blended with high quality reseach with real

world impact has always motivated me to innovate and I thank everyone for that.

x

VITA

2003-2007 Bachelor of Technology in Electronics and Communication
Engineering, National Institute of Technology, Rourkela, In-
dia.

2006 Summer Research Intern in the Department of Electrical En-
gineering, Indian Institute of Technology, Madras, India.

2007-2009 Sr. Subject Matter Expert, Product Development Business
Unit, Amdocs Development Ltd., Limassol, Cyprus.

2009-2011 Master of Science in Computer Engineering, Department of
Electrical and Computer Engineering, University of Califor-
nia, San Diego.

2010 Research Intern, Packet Processing, Ericsson Research, San
Jose, CA.

2009-2011 Graduate Student Researcher/Tutor, University of Califor-
nia, San Diego.

PUBLICATIONS

Porter, George; Kapoor, Rishi; Das, Sambit K.; Al-Fares, Mohammad; Weather-
spoon, Hakim; Prabhakar, Balaji; Vahdat, Amin. “User-extensible Active Queue
Management with Bumps on the Wire”, Submitted for SOSP.2011.

G. Chandramowli, Buvaneshwari M., Alpesh Chaddha, Sambit Das and R.Manivasakan
“Simulation and Performance of RPR (Resilient Packet Ring- IEEE 802.17) - MAC
in Network Simulator.”- Proceedings of the eighth international conference, Pho-
tonics 2006, December 13-16, 2006, Hyderabad, India.

xi

ABSTRACT OF THE THESIS

Packet Pacer: An application over NetBump

by

Sambit Kumar Das

Master of Science in Computer Engineering

University of California, San Diego, 2011

Professor Amin Vahdat, Chair
Professor George Papen, Co-Chair

Many ideas for adding innovative functionalities to networks require either

modifying packets or performing alternative queuing to packets in flight on the

data-plane. Modifications to existing network is difficult and often faced with

hindrance like ease of deployability and ability to test with production-like traffic.

NetBump is a platform for experimenting, evaluating and deploying these ideas

with minimal intrusiveness, while leaving the switches and endhosts unmodified.

In this thesis, we evaluate TCP packet pacing as an application over Net-

Bump. We propose a modified token bucket implementation which accurately

estimates the token requirement for sustained well-paced TCP flow, thus smooth-

ing the bursty behavior. We were able to able to monitor various crucial features of

xii

the TCP flow and take informed decisions to pace the out going flow. Finally, we

perform micro-benchmarks to see the effect of pacing. In general, our packet pacer

implementations reduces the number of buffer overflows. Specifically, the modified

token bucket implementation performs the best with zero buffer overflows.

xiii

Chapter 1

Introduction

1.1 Data Center Networks

Data Center Networks have been primary focus of research for the past

decade. This trend has been triggered as more and more data are pushed to the

cloud leading to an explosion in the size of the data center networks. What is also

notable is the remarkable change in perception towards datacenter sizes.

In a parallel trend, virtualization of applications, servers, storage, and net-

works is becoming a common case. Consolidation of data center resources has

offered opportunity for architectural transformation based on the use of 10GbE

switches/routers. This has called for a complex network interconnect [MPF+,

GHJ+] which provisions full bandwidth between two arbitrary nodes. Such large

scale distributed systems and complex fabric are difficult to extend, thus hindering

the deployability of innovative ideas.

1.2 Deployment in Data Center Networks

Deployment of new ideas in production networks has always been chal-

lenging. Standard deployment in data center networks requires either end host

modification or modifications to network infrastructure. Changes to endhosts are

not perceivable because of the sheer number. A server farm of 200,000 servers

can only be termed a “moderately-size” datacenter today. Endhost modification

1

2

calls for incremental deployment which has a longer execution time. Any hardware

modification in the endhosts adds to the overall deployment of the idea.

The rate of innovation in network infrastructure has also been slow. Al-

though there are a lot of possible approaches, each have constraints associated

with them. The programming complexity of NetFPGAs and Network Processors

impedes deployment. Also, NetFPGAs do not scale as well. Vendor switches

provide most of the advantage on performance, scalability front. They can also

handle production traffic and the complexity is abstracted away from the user. But

these vendor switches are closed systems and the features exported can not be ex-

tended easily. Openflow [MAB+] has shown some promises on handling most of the

problem, but the OpenFlow functionalities are limited to the restricted supported

features and header specific operations. Although these features are extendibles,

the application has to adhere to OpenFlow specifications. Deep-packet inspection

is not supported.

Software switches are traditionally known to be challenged on the scalability

and the performance front. But advances in the field of multi-core technology has

helped us narrow this gap. Now, the question we are trying to answer is: What

if we had a system which has high performance, scalable and provides interfaces

to work at the granularity of packets without having to deal with the programming

complexities of NetFPFAs and Network processors?

NetBump is a step in this direction. These “bumps” can be placed in

strategic places in the network, thus making the wire intelligent. This leaves the

endhosts, unmodified; and network infrastructure, simple.

1.3 NetBump

NetBump is a simple programming model where new NIC and switch func-

tionality can be deployed and evaluated as “bumps on the wire” in existing hard-

ware/software network environments. This goal leads to at least the following

requirements: rapid prototyping and evaluation, support for line rate processing,

easy of deployment, low latency, and packet modification for a range of AQM

3

policies.

The fundamental philosophy of the NetBump is to quickly evaluate new

packet buffer and queuing mechanisms in deployed networks with minimal in-

trusiveness. Instead of adding programmability to the switches themselves, the

NetBump augments existing switching infrastructure, allowing line rate processing

with user-level C code.

NetBump exports a virtual queue primitive to implement a range of AQM

mechanisms [GK99a, GK99b]. The contribution of the NetBump is to decouple

virtual Active Queue Management (vAQM) from the switches themselves, enabling

a variety of AQM functions to be deployed and evaluated by placing NetBumps at

key points in the network.

Simple programming environment is a key advantage for NetBump. Net-

work operators and application developers can develop and test their code in user-

level C code, rather than Verilog, VHDL, or kernel code. This reduces the deploy-

ment time compared to fabricating custom ASICs for such functionalities. Pro-

grammable network processors have been a hot topic for number of years [Sha01].

However, their utility has been hampered by a difficult programming model. The

complexities and the lead time of these approaches prevent experimenting with

novel ideas.

In short, NetBump relies on a user-level, kernel bypass networking interface

to move packets to and from the NIC and user-level threads with low latency (20

- 30 µs).

1.4 Packet Pacing

NetBump provides us with a programming paradigm to implement and

evaluate a variety of network protocols involving packet modification at line rate.

All our implementation till date has been focused on the use of virtual Active

Queue Management (vAQM) to estimate the queue occupancy of the downstream

port. RED, DCTCP, IEEE 802.1Qau-QCN are examples of implementation in this

direction.

4

In this thesis, we shift our focus to a non-AQM based application. TCP

packet pacing is one such application which is traditionally implemented with end

host modifications. We claim that TCP pacing can be trivially implemented on

the NetBump without the use the specialized hardware. We have implemented

a modified token bucket approach which relies on packet reception as a primary

event and non-blocking receive as secondary events to precisely track the token

requirements to smoothen out the outgoing traffic and maintain appropriate Inter

Packet Time (IPT).

1.5 Organization of the Thesis

This thesis is organized as follows: In Chapter 2, we discuss research related

work to packet pacers. In Chapter 3, we briefly discuss the design requirements and

the architectural details of the NetBump. Packet Pacer has been developed using

the features exported by NetBump. Chapter 4 talks about the research motivation

of packet pacing. Burstiness in TCP can be caused by multiple reasons, but,

burstiness in general creates buffer overflow leading to packet drops. In Chapter

5, we discuss about different approaches taken for packet pacing. We describe the

experimental setup and methodology in chapter 6 and evaluate the performance of

packet pacers in chapter 7. We discuss the findings in Chapter 8 before concluding

the thesis in Chapter 9.

Chapter 2

Related Work

2.1 NetBump

Software-based packet switches and routers have a long history as a platform

for rapidly developing new functionality. The Click Modular Router [KMC+00] is a

pipeline-oriented, modular software router consisting of a large number of building

blocks, each performing a single packet-handling task. Click’s library of modules

can be extended by writing code in C++ designed to work in the Linux kernel (or

at userspace, albeit at generally reduced performance).

More recently, the RouteBricks [DEA+] project has focused on scaling out

a Click runtime to support forwarding rates in excess of tens of Gbps by relying on

distribution of packet processing across cores, as well as across a small cluster of

servers. A key distinction from NetBump is that RouteBricks and Click are both

multi-port software switches focused on packet routing, while NetBump focuses on

implementing virtual queuing within a pre-existing switching layer.

Typically the O/S kernel translates streams of raw packets to and from a

higher level programmatic interface such as a socket. While a useful primitive,

the involvement of the kernel can become a bottleneck. An alternative set of

user-level networking abstractions and techniques have been developed [vEBBV,

WBvE, ESW, BGC]. Here, user-space programs are responsible for packet han-

dling, retransmission, and TCP sequence reassembly. To improve efficiency, user-

level networking is typically coupled with zero-copy buffering, in which the mem-

5

6

ory that a packet is initially stored in is shared with each target application,

avoiding extra per-packet copies. A second source of efficiency are kernel-bypass

network drivers. These enable the application to directly access packets directly

from the NIC memory, avoiding the need for kernel involvement on the datap-

ath. Commercially-available NICs support these mechanisms [myr, che], and we

use [myr] to implement NetBump.

2.2 Packet Pacing

Packet pacing as a technique to improve TCP performance by smoothing

the traffic pattern has been around for a while. The main purpose of packet pacing

is to reduce the number of buffer overflows in the switches. The buffer requirements

in datacenters have been extensively studied in [AlCDR,AKM04]. In this section,

we describe previous works on packet pacing with shallow buffers.

2.2.1 Packet Pacing in Endhost

Packet pacing in the endhost has been extensively analyzed. [Agg00] gives

a very good understanding of how TCP congestion control mechanics can con-

tribute to bursty behavior. TCP slow start, ACK compression and “holes” in

TCP sequence number space because of packet losses are primary reasons behind

burstiness. These effects are explained in section 4.1. Here, the authors evenly

spread the transmission of a window of packets across the entire duration of the

round trip time. Instead of transmitting the packets immediately, the sender delays

the packets to spread them out at the rate refined by the congestion control algo-

rithm - window size divided by the estimated round trip time. Similar technique

is also applied for the ACK packets at the receiver.

Razdan et al. [RNN+02] also suggested packet pacing as a potential solution

to increase TCP behavior with small buffers. It was noted that packet inter-

departure time used instantaneous TCP sending rate. Instead, the authors used

Bandwidth Share Estimate (BSE), maintained by TCP Westwood to set the pacing

interval.

7

Precise Software Pacer (PSPacer) suggested by [PSP] is a software module

which achieves precise network bandwidth control and smoothing of bursty traffic

without any hardware support. Here, the key idea is to determine the transmission

timings of packet by the number of bytes transmitted. If packets are transmitted

back to back, the timing at which a packet is sent out can be determined by the

number of bytes sent before the packet. The authors refer this as byte clock. As per

the implementation, the gap between the “real packets” is filled with “gap packets”.

So, the timing for packet transmission can be precisely controlled by adjusting the

size of the gap packets. PSPacer was capable of controlling the interpacket gap at 8

nanosecond resolution for Gigabit Ethernet. IEEE 802.3x PAUSE frames were used

as gap packets, as they are discarded at the switch input port, thus maintaining

the required interval. PSPacer was ethernet dependent and did not work with

pseudo network devices. To avoid these limitation, PSPacer/HT [TTKO10] was

suggested which used high resolution timers instead of gap packets. PSPacer/HT

was implemented as a Queueing Discipline (QDisc) module.

2.2.2 Packet Pacing in NIC

[traa] suggests a packet pacing approach which uses specialized NIC hard-

ware. The authors incorporate a per packet transmission timer field in operating

systems packet buffer data structure (skbuf for Linux), which represents when

the packet should be sent out. This information is used by the NIC which has a

per-packet timer function implemented over a network processor.

2.2.3 Packet Pacing in Switches

Most of the initiative towards packet pacing in switches has been con-

centrated on Optical Packet Switched (OPS) Network buffering optical packets.

These high-bandwidth networks have a significantly large delay-bandwidth prod-

uct. Burstiness of internet traffic causes high packet drop rate and low utilization

in small buffered OPS network.

[AAM10] talks about one such implementation on OPS networks. Here the

8

authors have implemented a combination of XCP pacing and shared buffered switch

architecture to increase goodput and reduce packet drop rate. The authors also

compare various switch architecture and find that advanced switch architectures

like combined input output buffered switches have high scheduling complexity,

which may become a bottle neck at ultra-high speed of optical networks.

Similarly, [SEMO06] is another effort in this direction. Here, the authors

claim that short-time-scale burstiness is the major contributor to performance

degradation. It is proposed to mitigate the problem by pacing the traffic at the

optical edge prior to injection into the OPS core.

Deploybility of all the above approaches is limited due to endhost modifi-

cations, specialized hardware, or switch level changes. In this thesis, we present

packet pacers implemented over NetBump which does not have any such limita-

tions. The implementation transparently paces out the packets, without negatively

affecting the flows. Packet pacing can be implementation along with other Net-

Bump applications/protocols thus, reducing the overall deployment cost.

Chapter 3

NetBump Architecture

3.1 Design Requirements

The primary goal of NetBump is to enable rapid development and easy

evaluation of new ideas and protocols related to packet processing. To reach these

goals, the NetBump must meet the following requirements:

1. Development with unmodified switches and endhosts: NetBump en-

ables development to take place in the datacenter or enterprise network it-

self. It does this by leaving the switches and endhosts unmodified. vAQM

within NetBump simulates the status of downstream switch buffers. This

provides several benefits, including significantly reducing the occupancy of

switch buffers network wide.

2. Ease of development: Datapath-modifying applications deployed within

NetBump are written in userspace with C. NetBump applications can utilize

any third-party libraries and development tools, making it easier to design,

deploy, measure, and redesign new network mechanisms. Additionally, the

overhead introduced by the NetBump is only a small constant above the

latency of the program written by the user.

3. Minimize latency Many datacenter and enterprise applications have strict

latency requirements, and any datapath processing elements must likewise

9

10

have strict performance guarantees. Since the network layer is the lowest

layer in the stack, and since a single application-layer request might result in

several round-trips, its switching and forwarding latency must be very low.

A significant source of latency in commodity servers is the O/S kernel. While

some progress has been made, kernel code does not yet scale linearly with

the number of cores [BWCM+] . The approach taken in NetBump is to rely

on kernel-bypass functionality now available in commercial NICs [myr, che]

to completely avoid the kernel altogether, resulting in an average latency of

approximately 20− 30µs.

Average latency introduced per packet is function of application running

atop. Applications like packet pacing inherently queue the packets which

adds to the overall end-to-end latency.

4. Forwarding at line rate 10Gbps is becoming standard in datacenters.

Deploying a NetBump in link with top-of-rack uplinks and between 10Gbps

switches will require an implementation that can support 10Gbps line rates.

The challenge then becomes keeping up with packet arrival rates: 10 Gb/s

corresponds to 14.88M 64-byte minimum sized packets per second, including

Ethernet overheads. Our NetBump implementation is able to implement

basic vAQM at very close to line rate with minimum-sized packets at 10

Gbps on a single core. It does this by allocating user-level application threads

to their own cores, and avoiding packet copies by referencing the packets

directly in the NIC buffer. For more complex protocols, we rely on multicore

processors coupled with multi-processor motherboards. To provide sufficient

parallelism, our hardware NICs support in-built hash functions to distribute

flows across CPU cores.

11

Figure 3.1: The design of the NetBump pipeline.

3.2 NetBump Design

3.2.1 Packet Reception

NetBump is based on NICs which supports kernel-bypass zero-copy APIs.

The controller has NIC-local memory containing a circular ring buffer that points

to driver allocated main memory used to store packets coming from the wire.

On startup, the NetBump user-space application opens the NIC in kernel-bypass

mode, specifying the number of rings. The NIC driver then allocates a region of

main memory to store incoming packets. After receiving, the packets are placed

in rings determined by hash function.

3.2.2 Virtual Active Queue Management

The Virtual Active Queue Management module estimate the downstream

the queue occupancy. The module consists of three algorithms: packet classifi-

12

cation, virtual queue drain estimation, and packet marking/dropping. When a

packet is received from the NIC, it must be classified to determine which virtual

queue will be enqueued into. The classification API is extensible in NetBump, and

can be overridden by the user.

The purpose of the queue drain estimation algorithm is to simulate, at the

time packet is received into the NetBump, what the queue occupancy is in the

virtual queue associated with the packet. The virtual queue estimator is a leaky

bucket that fills up as packets are assigned to it, and drained according to a fixed

drain rate, based on port speed. The size of the virtual queue inside the bump is

coupled with the actual size of the physical buffer in the downstream switch. Once

the the packet reception crosses the vAQM threshold, the packet can be marked.

Here packet marking takes place in the form of setting the ECN bit in the header.

3.2.3 Application

NetBump exports an ideal platform to implement a large number of network

protocols which are based on queue length estimation. Along with that, NetBump

can also be used to implement various non-vAQM types applications. Packet pacer

is one such application. Internal buffers have the capability to queue the packets

before sending it out. Additionally, deep packet inspection is an unique advantage

exported by NetBump which makes it application-versatile, even extending to the

security domain.

3.2.4 Packet Transmission

Packet transmission is done by issuing non-blocking, zero-copy, kernel-

bypass send call on the packet. This copy will copy the packet content into the

NIC-local memory. In rare cases it is possible that the send call might fail, so

in that case the send thread loops on sending the packet until transmission is

successful.

13

3.2.5 Multi-core parallelism

NetBump supports a multi-threaded implementation which relies in part

on hardware support for multiple receive rings in the NIC, one for each NetBump

thread. Each thread independently binds to its own receive ring, and the NIC in-

cludes a hardware based hash function that hashes packets to receive rings based

on a configurable set of fields. Here each thread implements the entire pipeline

and runs in its own core. The degree of parallelism supported depends on the

number of compute cores; higher the parallelism, the more times that can be spent

processing each incoming packet.

I would like to thank the entire NetBump team, especially, George Porter, Rishi

Kapoor and Mohammad Al-Fares. Their sincere effort and contribution has made

this architecture possible and the project successful.

Chapter 4

Research Motivation for TCP

Packet Pacing

Originally, TCP was conceived and designed to run over a variety of com-

munication links. The amount of data sent out per round trip time (RTT) is

roughly equal to the delay-bandwidth product of the link. Typically, 75µs is a

conservative estimate of the network budget for responding to a request in a data

center. This implies that the switches should be capable of handling approximately

100 Kilobytes of in-flight data per port. On a switch level (typically 48 ports), we

run into Megabytes of shared memory. The mismatch between the high capacity

of these networks, and available buffer at the queues of individual network routers

poses problem for TCP. Bursty behavior can easily fill-up the switch buffers, even

through the average bandwidth of the flow is not significantly high. This scenario

triggers a instantaneous buffer overflow in the switches, leading to packet drops.

TCP reacts adversely to packet drops and gets into the state of fast recovery. In

a worst case when more than 3 consecutive packets are dropped, TCP enters slow

start leading to poor flow performance.

4.1 Burstiness in TCP

In this section, we describe some of the common causes for bursty nature

of TCP.

14

15

4.1.1 TCP mechanism

There are various prior works describing the dynamics of TCP congestion

control algorithm to be the major cause of bursty behavior in TCP. [SZC90,Agg00]

extensively describe few of the common reasons.

TCP is a sliding window protocol, where the effective window used by a

TCP sender is the minimum of the congestion window and the receiver’s buffers

size. This window is the number of bytes the sender is allowed to send without

an acknowledgment. The sender uses the incoming acknowledgments to determine

when to send new data, a mechanism referred to as ack-clocking [JK88].

The congestion window adjustment algorithm has two phases. In the slow

start phase [JK88], the sender increases the congestion window rapidly in order to

quickly identify the bottleneck rate. The sender typically starts with a window of 1

packet and doubling the window every round trip time (RTT), until a packet drop

is detected. At this point the window is cut in half and sender enter the congestion

avoidance phase. In this phase, the sender increases the congestion window by 1

packet per RTT.

Slow Start

During the slow start phase, the sender transmits two packets for every new

acknowledgment. Since the acknowledgments are generated at the bottleneck rate,

this implies that the sender is bursting data twice the bottleneck rate, leading to

the formation of queue at the bottleneck link.

Since the buffer size at the bottle-necked link is limited, this bursty behavior

will cause the switch to drop packets when the window size exceeds the switch

buffer size by some small constant factor. In the worst case, if the switch buffer

size is much less than the delay-bandwidth product, the sender will encounter drop

too early in the slow start phase and the sender might take many round-trip to fill

the bottle-necked bandwidth.

16

Losses

Successful retransmission of a lost packet may also trigger a traffic burst.

At the receiver, the retransmitted packet will typically fill a “hole” in the sequence

number space, enabling the receiver to acknowledge not just the lost packet but

other packet that has been successfully received in the window. This triggers the

sender to send a burst of packets.

ACK Compression

In the presence of two-way TCP traffic, ack-clocking can be disrupted due

to ack-compression [SZC90]. Acknowledgments form the receiver can be queued

behind data packets on the reverse path. Assuming that the switch services packets

in FIFO order, this can cause acknowledgments to lose their spacing and reach the

sender in a burst. This in turn causes bursty transmission at the sender.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inter Packet Arrival Time (in us)

C
D

F

Two way traffic

One way traffic

Figure 4.1: Effect of bi-directional flow on inter packet time

Figure 4.1 shows the inter packet time in case of single directional and bi-

17

directional flows over a 1Gbps link. As expected, in case of a one-way traffic, the

inter packet time is maintained at 12.5µs. But, in case of two-way traffic, TCP

looses ack-clocking leading to burstiness. In this particular run, approximately

32% of the packets were bursty.

4.1.2 Large Segment Offload

Large Segment Offload (LSO) or TCP Offload Engine (TOE) is a technology

used in the NIC to offload the processing of entire TCP/IP stack to the network

controller. It is primarily used with high-speed network interface, such as Gigabit

Ethernet and 10 Gigabit Ethernet, where the processing overhead of the network

stack becomes significant [LSO,Wik].

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inter Packet Arrival Time (in us)

C
D

F

Without TSO

With TSO

Figure 4.2: Effect of TCP Segment Offload on Inter Packet Arrival Time

In case of LSO, the TCP layer builds TCP message up to 64KB long and

sends it down the networking stack through IP and ethernet device driver. The

adapter then re-segments the message into multiple TCP frames to transmit on

18

the wire. The TCP packets sent on the wire are either 1500 byte frames for a MTU

of 1500 or up to 9000 byte frames for a MTU of 9000 (jumbo frames).

Figure 4.2 shows the effect of LSO on inter packet time for 1Gbps flow on

a 10Gbps link. The NIC tries to send the TCP segments as fast as possible. This

creates a burst on the wire. 82% of the packets were sent out in bursts. These

bursts were separated by an idle phase of approximately 30µs− 70µs.

4.1.3 Ethernet Flow Control

PAUSE is a flow control mechanism on full duplex Ethernet link segments

defined by IEEE 802.3x and uses MAC Control frames to carry the PAUSE com-

mands. Flow control in Ethernet is a data link layer protocol to cater a situation

where a sender may be transmitting data faster than some other part of the net-

work (including the receiving station) can accept it. The overwhelmed network

element sends a PAUSE frame, which halts the transmission of the sender for a

specified period of time.

Flow control using PAUSE frames is being widely deployed for data center

bridging [flo]. In these scenarios, a PAUSE frame can cause buffer buildup in the

upstream network element. This buffer is drained immediately after the pause

duration, thus leading to a bursty behavior.

4.2 Effects of Packet Pacing

The primary effect to TCP packet pacing is to reduce the number of buffer

overflows in downstream switches. A well-paced flow reduces the number of spikes

in buffer utilization, thus leading to fewer packet drops. The drop-tail queue im-

plementation in switches cause consecutive packet drops in case of buffer overflow.

Consequently, packet pacing also reduces the number of slow starts and improve

the performance of TCP flow.

Receive Livelock [MWMR97] is a state of the system where no useful

progress is made, because some necessary resource is entirely consumed with pro-

cessing receiver interrupts. Bursty nature of TCP traffic is one of the major cause

19

of momentary receive livelock. The latency to deliver the first packet in a burst

is increased almost by the time it takes to receive the entire burst. All these

phenomenon adds jitter to the packets. TCP packet pacing reduces this jitter by

reducing the number of receive livelocks and eliminating bursts.

In a data center network with strict SLAs, there are requirements to have

reliable latency measurements for all the packets. But, most of the time we observe

that there are some outlines. From Figure 4.2 its observed that approximately

17% of the packets have inter packet gap of more than 30µs. These types of

behaviors affect the end-to-end SLA of the request. Ideally, packet pacing reduced

the number of outlines, thus leading to reliable response time.

Chapter 5

Packet Pacing: An application on

NetBump

5.1 Packet Pacing

Packet Pacing has been developed as an application on the top of NetBump.

Unlike previous approaches described Chapter 4, where pacing is either done at the

endhosts or at the switches, we opt to implement packet packing at there “bumps

on the wire” strategically placed throughout the network. The implementation is

completely transparent as neither the endhosts nor the switches are aware of the

presence of the bump other than in a positive way.

We believe that the packet packing should meet the following design re-

quirements:

R1 Buffer Overflow: The primary goal for packet pacing is to smoothen out the

flow and reduce buffer flow.

R2 Multiple Flows: The NetBump should be able to handle and pace multiple

flows at the same time. The pacing on a given flow should not affect the

throughput. Nor should it affect the throughput or add undue latency to

parallel flows.

R3 Flow Integrity: Packets from a flow should not be reordered. Packets from

20

21

different flows should be scheduled appropriately to maintain the inter packet

gap.

R4 Transparency: Packet pacing should not pose any overhead for the endhosts

or switches. Packet pacing should be done transparently without affecting

the flow.

5.2 Packet Pacing Design

To cater to requirement R2 and R3, we are drawn to an implementation

where flows are not blocked because of pacing. The high performance single

threaded implementation of NetBump does not suit in this situation.

5.2.1 Multi-Threaded Implementation

Figure 3.1 shows an overview of the multi-threaded implementation of

packet pacer. Here the receive side is decoupled from the send side to avoid packet

blocking.

Taking advantage of NetBump’s kernel-bypass, zero-copy programming model,

the packet can be received off the wire with minimal overhead. Instead of being

notified of packet reception, the NetBump polls for packets using receive() API

call. The non-blocking receive() functionality from sniffer10g is used so that,

the packet is immediately delivered to the user-space application without adding

any additional delay. The receive() call will return the pointer to the packet and

packet length, and will also set it timestamp. The receive thread copies the packet

content stored in the rings into the preallocated receive queues.

Similarly, the send thread is responsible for sending out the packets. This

is done by issuing a non-blocking, zero-copy, kernel-bypass send call on the packet.

This call will copy the packet content into the NIC-local memory if space is avail-

able, and arrange the packets to be transmitted on the wire. NetBump is respon-

sible for reliably transmitting the packet on the wire.

During the course of the experiments, we observed limitation with the in-

jector10g API from myricom where the API buffers packets before sending out on

22

the wire. This behavior is limited to low bandwidth flows and is not observed with

10G flows. The API buffers the packets till it receives multiple packets to be sent

out. This works against the software pacing and introduces bursts in the outgoing

traffic. As an alternative implementation, we also used kernel based sendto()

implementation to transmit packets. We have discussed the results for such an

approach in the following sections.

To take advantage of the multi-core capabilities, the threads are pinned to

different cores thus reducing CPU contentions. The receive and send threads are

co-located on the same CPU die. This approach takes advantage of shared L3 cache

and reduces the movement of packets among cores over the QPI bus. The packets

can also be tied to their respective memory banks in the NUMA architecture.

5.3 Pacing Mechanism

The key idea behind packet pacing is to precisely time when the pack-

ets are sent out. Different previous implementations (Pause frames, NIC based

hardware timer paper) rely on endhost kernel modifications, or custom NICs to

implement packet pacing. Our implementation obviates the need for any custom

hardware/software changes in the endhost and does packet pacing when packets

are in-flight. This satisfies requirement R3 stated above.

5.3.1 Which flow to pace?

Packet pacing is an expensive operation and care is taken to choose which

flows need to be paced. Buffer overflow is a primary side-effect of bursty traffic

and we use that as a metric to choose the flows to be paced. This idea is inspired

by the HULL implementation [AKE+]. We mark the flow to be paced only when

it leads to a buffer overflow. We assume an ECN aware downstream switch is

capable of marking the ECN bit in the packet once the queue size exceeds the

queue threshold. For this reason, we monitor the ACK packets. Once we receive

an ACK with ECN bit marked, we move the flow to the paced set. In case of

multiple competing flows, a timeout can be placed on the flow, to prevent the

23

starvation of new flows to be paced in the presence of old flows.

This design decision is consistent with the real-life datacenter traffic pattern

which consists of few elephant flows and multiple small flows. The elephant flows

have high degree of burstiness because of higher delay-bandwidth product. We

target these flows for better performance.

5.3.2 Flow classification

As the packets are received from the NIC, it must be classified into flows.

These classified flows are input to the packet pacer module. In this section, we

explore two different techniques for packet classification, namely, RSS hashing and

NetBump classifier. One or more of these classifications can be marked to be ’un-

paced’ where the corresponding flows will not be paced. These classifications are

reserved for control packets which should not be delayed by the NetBump. These

un-paced traffic is handed over to the send thread immediately, without any delay

or buffering.

RSS Hash

Receive Side Scaling (RSS) is a feature available in modern NICs where

incoming traffic can be routed to specific queues efficiently balancing network

load across CPU cores and increasing performance in a multi-processor systems.

By default, the myricom library uses deterministic hashing to make sure that

packets that are contained in a particular flow are always delivered to the same

ring/thread. The myricom library can operate in either SNF RSS FLAGS or

SNF RSS FUNCTION. The SNF RSS FLAGS mode allows the user to function-

ally specify which parts of a packet are significant in the RSS hashing process. The

packets can be classified on the basis of IP address, source port or destination port.

In the SNF RSS FUNCTION mode, the API provides the flexibility to segregate

the traffic on the basis of a custom hash function. The limitation of this mode is

that the hashing is serialized in the software.

24

Table 5.1: The NetBump packet data structure.

Field name Description
data Pointer to packet contents
len Length of packet

mark Used internally for packet marking
timestamp NIC-supplied timestamp, in ns

delay Delay to be added for that packet, in ns

NetBump Classifier

NetBump exports API for fine grain custom packet classification. The

classification API is overwritten to classify the traffic on the basis of destination

port. The control traffic is placed on ’un-paced’ classifier.

5.3.3 Delay Based approach

NetBump monitors the flows and estimates throughput and corresponding

inter-packet time. The packets are timestamped by the NIC on arrival. The values

are stored in per-packet data structure as shown in Figure 5.1. The per-packet

timestamp by the NIC is used to accurately determine the flow bandwidth without

the use of expensive timing calls (like clock gettime()). clock gettime() has

an overhead of 600ns per call.

The bandwidth of the flow is measured at a granularity of 1000 packets.

Once the packet bandwidth is determined, the inter-packet time is calculated. The

packet timestamp is used to evaluate the current inter packet delay. Additional

delay to maintain appropriate spacing is calculated and stored in the ’delay’ field

of the packet. The packet is then transferred to the send thread.

We take advantage of multi-core architecture and have a send thread for

every receive thread. There is a one-to-one mapping between the threads and

flows. For higher performance, we pin the receive and the send thread to the same

CPU die. Typically, the send threads are allocated to the hyperthreads (core 8-15).

The send threads wait for predetermined duration before sending out the packet.

System call to sleep() is too expensive for introducing delay at the granularity of

25

Procedure delay iters(int64 t n): {
1 static volatile double x, y;

2 static volatile double z = 1.000001;

3 int64 t i;

4 y = z;

5 x = 1.0;

6 for (i = 0; i < n; i++)

7 x *= y;

8 return x;

9 }

Figure 5.1: Sample Code for delay iter

nanoseconds. Instead, we use tight loop to introduce delay between the packets.

Tight Loop Delaying

We employ tight loop for a fixed number of iterations to introduce delay.

The volatile keyword is intended to prevent the (pseudo)compiler from applying

any optimizations on the code that assume values of variables cannot change “on

their own.” Figure 5.2 shows the variation of observed delay. The variation is more

or less linear with spikes observed in between.

The use of volatile variable restricts its use in multi-threaded environment

as concurrent call to the procedure does not guarantee reliable delay.

NOP based Delay

To avoid the limitation of delay using volatile variable, we have taken a

naive approach to execute NOP assembly instruction in tight loop. This approach

generates delay in a reliable manner. Figure 5.2 compares the delay observed with

both approaches. We attribute the spikes in the Volatile based method to context

switching by the operating system.

Only one flow can be paced per thread. This is major limitation of the

26

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

25

30

35

40

Iterations

D
el

ay
 (

in
 m

ic
ro

se
co

n
d
s)

NOP

Volatile

Figure 5.2: Variation of delay generated using the NOP and volatile approach

approach as the number of flows that can be paced is limited by the number of

available cores.

5.3.4 Modified Token Bucket approach

Token bucket is a common algorithm used to control the amount of traffic

that can be injected into a network. Packet reception is treated as events for the

token bucket implementation. Typically, the amount of tokens added to the token

bucket is proportional to the time difference between the events and the bandwidth

of the flow.

TCP behavior has been bursty (Section 4) and can be best described in

Figure 5.4 Typically, the packets arrive in short bursts. For a 1Gbps flow (over

10Gbps link), the inter-packet arrival time between the packets is typically 1.5µs.

The bursts are separated by approximately 40µs. So, as per the traditional token

bucket implementation, although we add tokens in a restricted manner in the

27

Figure 5.3: Schematic of the bursty behavior of TCP

Figure 5.4: Schematic of the events for modified token bucket approach

bursty phase, we end up adding a burst of tokens after the end of the idle phase.

This excess token is responsible to bursty output traffic.

To avoid this problem, we have developed a modified token bucket imple-

mentation with two event mechanisms. The primary event mechanism is based

on the packet reception. As expected, the amount of token added for the primary

event is proportional to the time gap between the events.

The secondary event mechanism is a virtual ‘tick’ which is generated in the

idle phase. As mentioned earlier, we employ a non-blocking receive() poll based

implementation to receive the packets. receive() returns EAGAIN when there

is no packet in the NIC rings to be received. We observed that in the idle phase,

receive() returns EAGAIN reliably. 10 EAGAIN returns from receive() call

approximates to 4819ns of elapsed time. This can be used as the secondary event

28

where tokens are added. The estimated timestamp is incremented accordingly.

The estimated timestamp is reset to the timestamp for the packet received. In our

experience, the estimated timestamp closely followed the actual timestamp.

Packets are transferred to the send thread at both primary and secondary

event. We employ C++ STL splice() operation to move packets from the receive

threads to the send thread. The list containing the ‘un-paced’ packets (control

packets) is spliced entirely. For the rest of the queues, packets are spliced in a

controlled manner depending on the amount of available tokens. Before the splice

operation, the number of packets, numPkt, that can be trasferred is computed.

numPkt packets are then spliced from the head of the queue.

This technique can be implemented over a multi-receive single-send setup.

Here every different receive thread has its own queue and mutex. The send thread

polls the receive threads for packets. Distinct mutex per thread reduces lock con-

tentions. The send thread takes the lock and splices the packets to its buffer which

can then be sent out asynchronously.

5.4 Token Thread Approach

In most of the other NetBump applications like rate limiting, QCN, we use

packet reception as an event to add tokens. Even for a well paced 1Gbps flow,

tokens were added at ideal IPT, i.e 12µs, which is very course grained.

Instead of having the token bucket mechanism completely ingrained in the

packet bucket implementation, we have an alternate mechanism where the token

handling is done by a separate token threads. These threads are pinned to unused

cores. In this mechanism, we can have different token bucket threads adding

tokens at different rate. The receive thread can derive its tokens from any one

of the available token threads. These token threads generate tokens are different

rates and the inter packet time can be determined accordingly. This model is very

similar to a actual hardware implementation where there is dedicated module for

token generation.

We use this model to increase the efficiency of the rate limiter module in

29

Procedure modified token bucket(): {
1 int i, numPkt;

2 std::list<struct packet *>::iterator end;

3 std::list<struct packet *>::iterator localListEnd;

4 idleCount++;

5 if(idleCount == 10) {
6 idleCount = 0;

7 for(i =0 ; i < 10; i++) {
8 if(token[i] < 4500) //Limit Queue Length to 3Pkts

9 token[i] += 550; } //Tokens for 1Gbps

10 if(idleLastTS != 0)

11 idleLastTS += 4500;

12 for(i = 1; i < 10; i++) {
13 numPkt = token[i] / 1500; // Determine the number of packets

14 int llSize = llCount[i];

15 if(numPkt > 0) {
16 localListEnd = localList.end();

17 end = localListArray[i].begin();

18 if(numPkt < llSize) { // In case we have more packets

19 advance(end, numPkt);

20 token[i] -= numPkt*1500;

21 llCount[i] -= numPkt;

22 } else { // splice the entire list

23 end = localListArray[i].end();

24 token[i] -= llSize*1500;

25 llCount[i] = 0; }
26 if(token[i] < 0) token[i] = 0; // Limit queue length

27 localList.splice(localList.end(), localListArray[i], localListArray[i].begin(),

end);} // Splice the required number of packets.

28 }
29 }

Figure 5.5: Pseudo-code for modified token bucket implementation

30

NetBump. Instead of adding tokens every 12µs, using this approach we reduce the

granularity, which in turn provides a much tighter control over the output rate.

In our implementation, the token threads are also capable of keeping track of the

capacity of the virtual port, thus enabling them to react to capacity changes. We

maintain low queue occupancy in the NetBump which enables us to reduce the

feedback loop and reaction time.

The tokens are updated by the token thread, which runs on a different core

than the rate limiter. At such fine granularity, maintaining consistency of data

structures between the cores becomes a big problem. The updates between cores

are not visible without appropriate synchronization because of compiler optimiza-

tions. But, locking overhead (Table 7.2) is also significantly high which causes the

system to halt. To avoid this situation, we declare the data structures as volatile.

This avoids any kind of compiler optimizations, thus enabling the updates to be

eventually visible between cores. This is a very relaxed consistency model where

the system operates on the available value of share data structures, assuming that

its not too stale. [pin] states that the cache-to-cache ping pong latency for 2 cores

on different dies and different socket is 225 cycles. This is worst case situation, and

in our case, both the cores are on the same socket. This means that the updates

are visible and the values in the shared data structure are still valid. We use this

approach to improve the performance of the rate limiter module in NetBump.

Chapter 6

Experiments Methodology

6.1 Implementation

Equipment: Our NetBump implementation of a single HP DL380G6 server with

two Intel E5520 four-core CPUs, each operating at 2.26GHz with 8MB of cache.

This server has 24 GB of DRAM separated into two 12 GB banks, operating at

a speed of 1066 MHz. Plugged into the PCI-Express Gen 2 bus is a single 8-

lane Myricom 10G-PCIE2-8B2-2S+E dual-port 10Gbps NIC which has two SFP+

interfaces, as well as a 10G-PCIE2-8B2-2C+E dual-port NIC with two CX-4 in-

terfaces. Both cards load Myricom’s Sniffer10G driver version 1.1.0b3. The host

runs Debian Linux 2.6.28. We use copper direct-attach SFP+ connectors to inter-

connect the 10 Gbps endhosts and our NetBump. Experiments involving 1 Gbps

endhosts rely on a pair of SMC 8748L2 switches that each has 1.5 MB of shared

buffering across all ports. Each SMC switch has a 10 Gbps CX-4 uplink that we

connect to the CX-4 ports of one of our NICs. The 10Gbps uplinks were intro-

duced through CX-4 modules in the expansion slot. Auto-negotiation could not

be turned ON on these slots as a result of which, burstiness due to PAUSE frame

(Section 4.1.3) could not be simulated. NetBump is built with GNU gcc 4.4.5,

using the -O3 optimization setting.

NetBump Configuration: Extensive care has been taken in the NetBump im-

plementation to not just maintain low average latency , but also to reduce variance

31

32

in latency. A major source of latency outlines comes from multi-core processors.

Modern CPU architecture provide both separate memory across NUMA banks.

This means that the access time to different memory banks changes based on

which codes issues a given request. To reduce latency outlines, NetBump was

booted with a Linux instance in which all but one core were removed from the de-

fault Linux scheduler. The cores (7 in our case) could only be used when NetBump

explicitly set a given thread’s affinity to that particular core.

6.2 Methodology

Figure 6.1 shows the testbed setup to evaluate the performance of the packet

pacer. The testbed involves 2 NetBumps: Pacer and Monitor. The endhosts

and NetBumps are connected over 10Gbps interface using SFP+ connectors. The

‘Pacer’ NetBump implements the various packet pacing techniques. The ‘Monitor’

NetBump is used for measurements purpose and keeps track of the inter packet

arrival time of the paced flow.

The ‘monitor’ testbed can also be used as a trigger point to start packet

pacing. Once the monitor detects buffer overflows using the vAQM mechanism, it

marks the ECN bit of the packet. The ‘pacer’ NetBump detects the corresponding

ACK packet from the server and moves the flow to the pacing mode. Alternatively,

to reduce the control loop, the ‘monitor’ can also send a message to the ‘pacer’

informing about the buffer flow.

Figure 6.1: Testbed configuration to evaluate Packet Pacing

33

We use iperf as the packet generator on the client side. We restrict the

outgoing traffic from the client to 1G using standard Linux traffic control technique,

tc [Trab].

The setting for tc:

tc qdisc add dev eth5 root handle 1: htb default 99

tc class add dev eth5 parent 1: classid 1:99 htb rate 1000Mbit

Figure 6.2: Testbed configuration to evaluate 1G flows

The second testbed, shown in Figure 6.2, evaluates the NetBump in a dat-

acenter environment in which it might be deployed right above the top-of-rack

switch. Here, we have two twelve-node racks of endhosts, each connected to a

1Gbps switch. A 10Gbps link connects the 2 1Gbps switches and the NetBump is

deployed inline with those uplinks. The NetBump is connected to the SMC switch

uplink over CX-4 connectors. We use this setup to evaluate the inter packet time

for 1Gbps flows with and without cross traffic. This also enables us to observe the

IPT when the packet traverses from a 1G interface to 10G uplink.

We employ a slightly different testbed configuration (shown in Figure 6.3)

to evaluate the effect of token threads approach on rate limiting and 802.1Qau-

QCN layer-two congestion control specification. In this case, the NetBump actually

have four 10Gbps interfaces - two CX-4 connectors to each of the two SMC 1 Gbps

34

Host24 …

N
et
bu

m
p1

	 (R
P)
	 N

etbum
p0	 (CP)	

Switch	 1	 Switch	 0	

Virtual	 Queues	

Classifier	
Dow

nstream
	

Virtual	 Buffer	

Host13 Host12 … Host1
1GigE	

10GigE	

Figure 6.3: 2-Rack testbed to evaluate QCN

switches, and two SFP+ connectors that connect to a second NetBump. Here one

NetBump acts as the Congestion Point (CP) and the other acts as the Reaction

Point (RP).

I would like to thank George Porter for the testbed setup which enables us

to run a variety of experiments. I would also like to thank Mohammand Al-Fares

for original the QCN implementation.

Chapter 7

Evaluation

7.1 Inter-Packet Arrival Time

We consider inter-packet arrival time (IPT) to be our primary metric of

evaluation. Bursty TCP traffic with low inter-packet arrival time fill up the switch

buffer quickly, thus leading to packet drops.

Observations:

• Inter-packet time for a line rate flow is function of packet size. The time

taken to transmit a packet is dependent on the underlying NIC architecture.

For example, the time taken to transmit a 1514 byte packet (along with

preamble and FCS) is approximately 12µs - 15µs over a 1Gbps link, where

as the same is observed to be around 1.5µs over a 10Gbps link.

• TCP Segmentation Offload (TSO) has no effect on IPT for 1Gbps flow. The

effect is pronounced over the 10Gpbs link. At high delay-bandwidth link,

the congestion window can be significantly large, which leads to huge buffers

being transferred from the kernel to TCP offload engine. This causes large

number of TCP segments, which leads to burstiness.

• When packets from a 1Gbps interface is transferred to a 10Gbps up-link,

the transmission time over 10Gbps interface is reduced, but the IPT is still

maintained. So, it is very difficult to simulate burstiness over 1G interface.

35

36

Table 7.1: Inter Packet Time for different offered load

Required Load(in Gbps) Inter Packet Time (µs)
1 10.550507
2 5.540362
3 3.662109
4 2.659462
5 2.116895
6 1.781650
7 1.389060
8 1.198500
9 1.060432

9.5 0.940450

A synthetic packet generator was used to generate traffic with different

offered load using the myricom APIs. Table 7.1 shows the inter-packet delay

that needs to be introduced to achieve the required load. The required delay is

consistent with the calculated inter packet arrival time. As seen from the table, the

inter packet delay is less than 2µs for a 6Gbps flow. This implies that the scope

of pacing a flow decreases at higher bandwidth. In this thesis, we focus on pacing

the common case flow of 1Gbps. This handles the general case where the servers

in the racks are connected to the Top of Rack (ToR) switch. The input traffic can

consist of multiple 1Gbps flow which is first classified and paced separately.

7.2 Microbenchmark

The performance of the packet pacer is heavily dependent on the accuracy of

the myrisnf send() API. To evaluate the performance of the send() API, we send

out packets every 5.4µs from a synthetic packet generator in the client. The client

was configured to use myrisnf driver. The ‘Pacer’ NetBump measured the inter-

packet arrival time and used raw socket based sendto() to send out the packets.

The output of the ‘Pacer’ was sent out to the ‘Monitor’ where the interpacket

arrival time was measured.

From Figure 7.1 we observe that the inter-packet arrival of the packets from

the Client is not exactly 5.4µs. 50% of the packets had an IPT of 1.5µs while rest

37

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inter Packet Arrival Timer (is microseconds)

C
D

F

sendto

myrisnf

Figure 7.1: Comparison between sendto() and myrisnf inject() API

of the packets had 10.5µs. This implies that the myricom send() functionality

internally buffers the packets for a while before sending it out. This behavior

is only observed at low throughput and not visible at 10Gbps. When the same

traffic is sent out using raw sockets, it was observed that the sendto() has an

operating granularity of 4µs. Additionally, the sendto() introduces considerable

kernel overhead.

On the basis of these results, we assume that the incoming flows are less

than 1Gbps. This assumption also relates to the real life scenario where the input

from the endhosts is limited to interface speed.

Effect of Lock

Synchronization overhead is significantly visible while operating at higher

bandwidth. So, in this section, we evaluate the overhead of locking on inter-bump

latency. The packets were timestamped when received. Latency was calculated on

38

Table 7.2: Lock overhead in multi-recv single-send setup

Receive Threads (per port) Avg. Latency (ns) Std. Deviation (ns)
1 3298.20 1265.55
2 3669.28 1631.20
3 3945.31 1766.57
4 4036.08 3907.43
5 4085.19 6007.71
6 4160.16 2471.18

the basis of timestamp just before the packet was handed over to the send API. We

use clock gettime() for getting the timestamps. The timestamps were measured

every 1000 packets.

Table 7.2 shows the effect of lock contentions. Reliable latency with low

standard deviation was observed till 3 receive threads were used. In this setup, we

had a total of 6 receive threads (3 threads per port) each pinned to their respective

cores. The send threads were pinned to hyperthreads 14 and 15 respectively. When

the number of receive threads was increased, we observed high standard deviation.

We attribute this variation to the use of hyperthreads causing cache contentions.

To avoid variability, we restrict the setup to use only one hyperthread per core.

7.3 Delay Based Approach

In this section we evaluate the delay based approach for packet pacing.

Here, we had 3 flows through the NetBump. The traffic was classified using RSS

Hash on the basis of destination port. Packet pacing was done using the NOP -

delay approach and volatile variables.

Figure 7.2 shows the effect of packet pacing by NOP and volatile based

approach. As expected from Figure 5.2, the NOP based approach has less variation

with respect to the volatile approach. This result is also reflected in the inter-packet

arrival time. The NOP approach does an accurate packet pacing. The inter-packet

time for 98% of the packets was between 10µs to 13µs.

Variation in the delay 5.2 observed by the volatile method is the probable

39

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inter Packet Time (in microseconds)

C
D

F

NOP

Volatile

Figure 7.2: Packet Pacing using the NOP and Volatile delay approach

cause of variation in packet pacing, where 6% of the packets had IPT greater than

20µs. In this approach, only 80% of the packets were paced. 11% of the packets

remained unpaced. We attribute this to the send() API limitation where variation

in delay causes the packet to the buffered by the API before being sent out.

7.4 Modified Token Bucket Approach

The delay based approach is limited to the number of cores in the system.

As each thread paces its corresponding flows. This limitation is alleviated by the

modified token bucket approach. Here a single core is capable of handling many

flows. The implementation should have the capability to tune the inter packet

time with respect to the offered bandwidth. In this setup, we vary the offered

load and observe its effect on the inter packet arrival time. The pacer module is

capable of adjusting to different offered load. The mean IPT varies as calculated.

40

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inter Packet Arrival Time (in microseconds)

C
D

F

600 Mbps

800 Mbps

1Gbps

1.2Gbps

Figure 7.3: Effect of offered bandwidth on inter packet arrival time

It is also observed that the performance is better for flows less than 1Gbps. Once

the system is subjected to a flow greater than 1Gbps, we observe that 20% of the

packets are still bursty. This is because send() API limitations, where the API

waits for some kind of timeout before sending the packet out.

Figure 7.4 shows the effect of modified token bucket implementation on

an unpaced TCP flow. Approximately 86% of packets from the unpaced flow

are bursty. The gap between the burst usually refers to the sender waiting for

acknowledgment. The modified token bucket based packet pacer is able to pace

out the packets with average IPT as 14µs. The minimum gap between any 2

packets is approximately 10µs, whereas the maximum gap is approximately 20µs.

The implementation is able to trace the approximate timestamp in the idle phase.

The number of tokens added is proportional to the time different between events.

The time difference for token addition is capped to 5µs.

41

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inter Packet Arrival Time (in microseconds)

C
D

F

Unpaced TCP Flow

Modified Token Buucket Paced Flow

Figure 7.4: Packet Pacing using the Modified token bucket approach

7.5 Effect on Buffer Overflow

The primary goal of packet pacing is to reduce buffer overflow in the down-

stream switches. To validate this requirement, we ran experiments to evaluate the

effect of packet pacing of 1Gbps flow on buffer overflow. Packet pacing is done by

the ‘Pacer’. We program the drain rate of the ‘monitor’ to be 1Gbps. The monitor

maintains the number of times the vAQM module runs out of token. Ideally, the

packet should be marked/dropped, but we leave the packet unchanged, so that it

does not affect the TCP flow adversely.

In the absence of packet pacing, the effect of burstiness is distinctly observed

with 20,044 instances of buffer overflow. The vAQM module is not able to keep

up with the token requirement for the long bursts. The NOP based approach

has better performance on packet pacing with only 1,565 buffer overflows. The

modified token bucket approach performs the best with no buffer overflows.

This shows that Modified token bucket approach works best for packet

42

UnPaced Delay Based Approach Modified Token Bucket Approach
0

5

10

15

20

25

#
 o

f
B

u
ff

er
 O

v
er

fl
o
w

 (
in

 t
h
o
u
sa

n
d
s)

Figure 7.5: Buffer overflow for different approaches

pacing. The combination of primary and secondary events precisely tracks the

token requirements of the pacer and help precisely determine the send time for the

packet.

7.6 Token Thread approach

We use the Token Thread approach to see the effect of rate limiting and

802.1Qau-QCN layer-two congestion control specication [AAK+]. QCN switches

(Congestion Point) monitor their output queue occupancies and upon sensing con-

gestion (using a combination of queue buildup rate and queue occupancy), they

send feedback packets to upstream Reaction Points (RP). The Reaction Points

are then responsible for adjusting the sending rate accordingly. The original QCN

implementation(for NetBump) was developed by Mohammad Al-Fares and was de-

ployed on the traditional packet reception based rate limiter. The implementation

43

suffered from wavy throughput behavior at the receiver.

In our current implementation, we have multiple token threads. These token

threads generate tokens at the capacity of the virtual ports, which is continuously

updated on the basis of the feedback from the Congestion Point (CP). Tokens are

added a granularity of 2.71µs and we assume that updates from different cores are

visible to the rate limiter with in approximately 250 cycles.

0 5 10 15 20 25
0

200

400

600

800

1000
Virtual Port Current Rates at RP

Time (s)

R
at

e
(M

b
p

s)

Flow 1

Flow 2

Flow 3

Figure 7.6: Effect of Token Thread based approach on QCN performance

The Token thread approach improves the convergence behavior of the the

UDP flows. The fine grain timer based token thread provides a much tighter

control over the output rate and the Reaction Point was able to converge to the

target rate (from Congestion Point) within a buffer capacity of 12 packets. Along

with this, we also reduced the probability of feedback messages from CP so as to

avoid consecutive feedback messages from CP.

In our experience, we find couple of QCN parameters which affect the con-

vergence property. We observe that the feedback control loop tends to be more

stable when the frequency of feedback is lower and their effect smaller. One of the

primary reason behind the wavy characteristics in the previous implementation

44

was large number of consecutive feedback messages. The packet reception based

rate limiter was not able to react to these quickly changes, as a result of which

the target rate was reduced drastically. To avoid this scenario, we reduced the

probability of sending feedback messages from 20% to 5%.

Along with the frequency of feedback generation, the effect of individual

messages plays an important role. In the original implementation, the feedback

message was quantized in a scale of 128. To reduce the feedback effect, we currently

quantize in a scale of 1024. We believe that, this change will increase the sensitivity

of the QCN implementation. All these changes contributed to better convergence

to fair-share bandwidth (as shown in Figure 7.6).

Chapter 8

Discussion

On the basis of our experiments, we find that the modified token bucket

method performs better in comparison to the delay based method. The primary

events are used to add tokens at packet reception. The fine grain timing estimates

using the non-blocking receive implementation was used to avoid large token ad-

ditions at the end of the idle phase. This was the key concept which reduced TCP

bursts.

The delay-based approach is simple naive approach which does packet pac-

ing on the basis of the calculated bandwidth. The multi-threaded implementation

of the NetBump provides an ideal platform for packet pacing as the receive side

is decoupled from the send side. The multi-core parallelism can be exploited to

share load between the cores and pace packets independently.

We observed that the accuracy of packet pacing reduces by 10% in the

presence of multiple flows. This was observed both in case of delay-based and

modified token bucket approach. The primary cause of this kind of behavior is

send() API where the API coalesces packets with low inter packet time or waits

for a timeout of approximately 10µs. We tried going through the API source code

to manipulate configurations to avoid this kind of timeout. Although we were able

to tweak the settings, the observed variation was not predictable. The lack of

proper documentation and comment in the myrisnf source code made it difficult

to estimate the effect.

The sniffer10g API from myricom has been design to target high throughput

45

46

even with minimum sized packets. So, some of the design decisions might not be

turned for low throughput low latency setup. But, it would great if there was

some support from myricom to get reliable packet transmission without buffering

or timeouts.

Although we are aware of the DBL library from Myricom which guarantees

packets to be sent out in a reliable fashion with least possible latency, we didn’t go

ahead with the implementation as it breaks the transparency requirements. In an

attempt to implement NetBump using the DBL API, we found that raw sockets

were not supported, ie, packets over raw socket were not accelerated. Moreover,

packet reception using DBL API needs the application to be bound to a given

port. This means that the NetBump has to be designed as a gateway and special

attention is required for control packets. The NetBump could not be placed inline

with the network elements.

Chapter 9

Conclusion

On the basis of our experiments, we conclude that NetBump provides an

ideal platform for implementing packet pacing. The NetBump provided a very

good platform to understand the flow characteristics at different offered load. This

provided a very strong motivation behind this work. We have devised multiple

approaches for implementing pacers and found that the modified token bucket

approach works the best. The ultimate goal for packet pacing is to reduce the

number of buffer overflows, and this approach achieves that by recording zero

buffer overflows.

With our understanding of token bucket implementation on high through-

put networks, we were able to implement similar approach to the rate limiter

module of NetBump and significantly improve its performance. This was reflected

in better convergence characteristics of 3-flow QCN experiment.

The accuracy of packet pacing in the presence of multiple flows can be

increased further by doing driver/firmware level modifications which will enable

packet transmission without buffering. For this, we need support from Myricom.

47

Bibliography

[AAK+] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha, Rong Pan,
B. Prabhakar, and M. Seaman. Data center transport mechanisms:
Congestion control theory and ieee standardization. In Allerton CCC,
2008.

[AAM10] Onur Alparslan, Shin’ichi Arakawa, and Masayuki Murata. Compar-
ison of packet switch architectures and pacing algorithms for very
small optical ram. In International Journal on Advances in Internet
Technology, 2010.

[Agg00] Amit Aggarwal. Understanding the performance of tcp pacing. pages
1157–1165, 2000.

[AKE+] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar,
Amin Vahdat, and Masato Yasuda. Hull: A high bandwidth, ultra-
low latency data center fabric architecture. In Under Submission.

[AKM04] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. Sizing router
buffers. In IN PROCEEDINGS OF ACM SIGCOMM, pages 281–292,
2004.

[AlCDR] Hussam Abu-libdeh, Paolo Costa, Austin Donnelly, and Antony Row-
stron. Symbiotic routing in future data centers.

[BGC] Philip Buonadonna, Andrew Geweke, and David Culler. An im-
plementation and analysis of the virtual interface architecture. In
ACM/IEEE CDROM 1998.

[BWCM+] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey
Pesterev, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich.
An analysis of linux scalability to many cores. In USENIX OSDI 2010.

[che] Chelsio Network Interface. http://www.chelsio.com.

[DEA+] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun,
Kevin Fall, Gianluca Iannaccone, Allan Knies, Maziar Manesh, and

48

49

Sylvia Ratnasamy. Routebricks: exploiting parallelism to scale soft-
ware routers. In ACM SOSP 2009.

[ESW] David Ely, Stefan Savage, and David Wetherall. Alpine: a user-level
infrastructure for network protocol development. In USITS 2001.

[flo] Ethernet Flow Control. http://www.cisco.com/en/US/prod/

collateral/switches/ps9441/ps9670/white_paper_c11-542809_

ns783_Networking_Solutions_White_Paper.html.

[GHJ+] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kan-
dula, Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen
Patel, Sudipta Sengupta, and Generalterms Design Performance Re-
liability. Vl2:a scalable and flexible datacenter network.

[GK99a] R. J. Gibbens and F. Kelly. Distributed connection acceptance control
for a connectionless network. In Teletraffic Engineering in a Compet-
itive World, pages 941–952. Elsevier, 1999.

[GK99b] R. J. Gibbens and F. Kelly. Resource pricing and the evolution of
congestion control. In Automatica 35, pages 1969–1985, 1999.

[JK88] Van Jacobson and Michael J. Karels. Congestion avoidance and con-
trol, 1988.

[KMC+00] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and
M. Frans Kaashoek. The click modular router. ACM ToCS, 2000.

[LSO] Large Segment Offload. http://en.wikipedia.org/wiki/Large_

segment_offload.

[MAB+] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan
Turner. Openflow: enabling innovation in campus networks. SIG-
COMM CCR 2008.

[MPF+] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington,
Nelson Huang, Pardis Miri, Sivasankar Radhakrishnan, Vikram Sub-
ramanya, and Amin Vahdat. Portland: A scalable fault-tolerant layer
2 data center network fabric.

[MWMR97] Jeffrey Mogul, Dec Western, Jeffrey C. Mogul, and K. K. Ramakrish-
nan. Eliminating receive livelock in an interrupt-driven kernel. ACM
Transactions on Computer Systems, 15:217–252, 1997.

[myr] Myricom Sniffer10G. http://www.myri.com/scs/download-SNF.

html.

50

[pin] Ping Pong Latency. http://www.anandtech.com/show/2143/2.

[PSP] PSPacer. http://code.google.com/p/pspacer/.

[RNN+02] Ashu Razdan, Alok Nandan, Alok N, Ren Wang, Medy Sanadidi,
and Mario Gerla. Enhancing tcp performance in networks with small
buffers, 2002.

[SEMO06] Vijay Sivaraman, Hossam Elgindy, David Morel, and Diethelm Ostry.
Packet pacing in short buffer optical packet switched networks. In in
Proceedings of IEEE Infocom, 2006.

[Sha01] N. Shah. Understanding network processors. Master’s thesis, Univer-
sity of California, Berkeley, Calif., 2001.

[SZC90] Scott Shenker, Lixia Zhang, and David D. Clark. Some observations
on the dynamics of a congestion control algorithm, 1990.

[traa] Transmission timer approach for rate based pacing tcp with hardware
support.

[Trab] Traffic Control. http://tldp.org/HOWTO/

Traffic-Control-HOWTO/index.html.

[TTKO10] Ryousei Takano, TomohiroKudoh, Yuetsu Kodama, and Fumihiro
Okazaki. High-resolution timer-based packet pacing mechanism on
the linux operating system, 2010.

[vEBBV] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-net: a user-level
network interface for parallel and distributed computing. In ACM
SOSP 1995.

[WBvE] Matt Welsh, Anindya Basu, and Thorsten von Eicken. Atm and
fast ethernet network interfaces for user-level communication. IEEE
HPCA 1997.

[Wik] TCP Offload Engine. http://en.wikipedia.org/wiki/TCP_

Offload_Engine.

