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The remaining carbon budget represents the total amount of CO2 that can still be emitted 

in the future while limiting global warming to a given temperature target. The range of 

carbon budget estimates is wide, however, and can be used to either trivialize the most 

ambitious mitigation targets as by characterizing them as impossible, or to argue that there 

is ample time to allow for a gradual transition to a low-carbon economy. Neither of these 

extremes is consistent with our best understanding of the policy implications of carbon 

budgets. Understanding the scientific and socio-economic uncertainties affecting the size of 

the remaining carbon budgets, as well as the methodological choices and assumptions that 

underlie their calculation, is essential before applying them as a policy tool. Here we discuss 

uncertainties affecting remaining carbon budget estimates, provide recommendations on 

how to calculate them in a consistent and transparent way, and discuss their implications 

for both international and national climate policies. 

Here we provide recommendations on how to calculate the remaining carbon budgets in a 

consistent and transparent way, discuss their implications for both international and 

national climate policies, as well as related uncertainties. 

Remaining carbon budgets are defined as the allowable future CO2 emissions that are consistent 

with meeting climate targets such as those of the Paris Agreement (see Box 1). Conceptually, the 

idea of a global emissions budget is a compelling way to frame and communicate the climate 

mitigation challenge: a finite cap on total CO2 emissions implies clearly that global CO2 

emissions must eventually reach net-zero to stabilize global temperatures. Estimates of the 

remaining carbon budget are subject to large uncertainty, but have also varied considerably 

among studies owing to the lack of a consistently applied definition, as well as different 

methodological approaches used to calculate the remaining budgets1,2. Furthermore, additional 

uncertainties are introduced in the process of disaggregating the global budget into national 

shares for domestic climate policy3–5. Given the increasing adoption of carbon budget estimates 

as a benchmark for national policy discussions, the full range of uncertainties and choices 

surrounding carbon budget estimates must be articulated and understood. 

In this Perspective, we present an overview of the state of our understanding of the remaining 

carbon budget, with the intent of charting a tractable path through the scientific, policy and 

ethical considerations required when applying the carbon budget concept to climate policy 
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decisions. We characterize the uncertainties and other factors affecting estimates of the 

remaining carbon budget across four broad categories: (1) geophysical uncertainties associated 

with physical climate and carbon cycle processes that determine the climate response to 

emissions; (2) socioeconomic uncertainties that reflect the societal choices and dynamics that 

determine future emission scenarios; (3) methodological approaches that reflect choices and 

assumptions made when estimating the global remaining carbon budget; and (4) allocation 

choices that emerge from the range of ethical and fairness principles that can be used to allocate 

a portion of the global budget to individual countries, economic sectors and entities such as 

individual industries and corporations. We discuss each of these in turn, and then offer some 

concluding thoughts that summarize the robust policy implications of a finite remaining carbon 

budget. 

Box 1: What is a “remaining carbon budget”? 

Here, a remaining carbon budget is the quantity of cumulative or total CO2 emissions that is consistent with 

limiting global mean warming to a given temperature level. The term “budget” is analogous to a fixed total 

financial budget, in that spending in excess of annual budget amounts in the near-term requires decreased 

spending in the future to not exceed the total budget. Here, we distinguish between the total and the remaining 

carbon budget: (1) the total carbon budget is defined as the total amount of CO2 emissions since the pre-

industrial reference period that is consistent with a specified peak temperature increase; and (2) the remaining 

carbon budget, which represents the amount of CO2 that can still be emitted from present-day onwards while 

staying below the temperature target1,2. In both cases, these budgets refer to a total quantity of CO2 emissions 

(from fossil fuels and land-use change) up to the point in time that CO2 emissions reach net-zero. Importantly, 

this quantity applies to only CO2 emissions, and does not apply to allowable CO2-equivalent emissions of other 

gases and aerosols (e.g., methane and nitrous oxide, as calculated using global warming potentials). 

There are several variants of carbon budgets that have been used in the literature (e.g. threshold exceedance 

budget, threshold avoidance budget, threshold return budget and overshoot budget; see Ref.1 and Ref.6 for a 

discussion of these variants). We do not use these terms further, and we recommend that they be used only if 

necessary to explore the sensitivity of carbon budget estimates to different types of emission scenarios or 

estimation methods. 

Another common but distinct use of the term “carbon budget” is to describe the balance of historical sources and 

sinks of CO2 in the Earth system or for a particular region. In this alternative usage, the term “budget” is similar 

to annual financial accounting in a closed system without deficits, whereby the sum of the individual positive and 

negative line items must equal zero. As a prominent example, the Global Carbon Project annually publishes a 
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historical global carbon budget, defined as the mean, variations and trends associated with the human 

perturbation to the global carbon cycle up to present-day7. This historical global carbon [cycle] budget combines 

fossil fuel and land-use CO2 emissions (or sources) with increases in atmospheric, land and ocean carbon 

reservoirs (also referred to as sinks) and places these sources and sinks in the context of natural carbon cycle 

processes.  

 

Geophysical basis of carbon budgets 

The proportionality between cumulative CO2 emissions and CO2-induced temperature change is 

the primary geophysical basis for a finite remaining carbon budget: each additional tonne of CO2 

emitted leads to an incremental temperature increase, which implies that CO2 emissions must 

decrease to net-zero to stabilize global temperature8. This proportionality is quantified by the 

Transient Climate Response to cumulative CO2 Emissions (TCRE), which defines the transient 

warming per unit cumulative CO2 emissions in a scenario with increasing CO2 emissions (see 

Box 2). The allowable cumulative CO2 emissions for a given amount of warming are therefore 

proportional to the inverse of the TCRE1,9. However, this relationship only holds for the warming 

caused by CO2, and not for additional warming (or cooling) caused by other emissions or 

forcings (e.g., methane, aerosols, or nitrous oxide). 

Using the TCRE to estimate the remaining carbon budget for a given temperature target therefore 

requires an additional estimate of the non-CO2 contribution to future warming1,9–11. One approach 

is to define an “Effective TCRE” to estimate the total anthropogenic warming at a given amount 

of cumulative CO2 emissions11–13 (see Box 2). However, unlike the TCRE, there is no 

geophysical basis for the Effective TCRE to remain constant in time.  In particular, where the 

TCRE is approximately scenario-independent14,15, this does not hold for the Effective TCRE 

which is affected by the changing rate of emissions of non-CO2 forcers with mostly shorter 

atmospheric lifetimes16. Consequently, while the Effective TCRE can be used to estimate the 

total carbon budget directly12, it is important to use an estimated value of the Effective TCRE at 

the time that the temperature target is reached in a given scenario (Figure 1).   
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(a)         (b) 

 

Figure 1: Relationship between the TCRE, the Effective TCRE, and the total and remaining carbon budgets.     

(a) Idealized representation of the TCRE, Effective TCRE and related total and remaining carbon budgets. Here, we 

show the central estimate of the TCRE (0.45 °C per 1000 Gt CO2) and an Effective TCRE value of 0.53 °C per 1000 

Gt CO2 at 1.5°C, which corresponds to the median (50th percentile) remaining carbon budget of 580 Gt CO2 from 

2018 onwards reported in the IPCC Special Report on 1.5°C (SR1.5; Ref.9, Table 2.2 therein). The 67th (420 Gt 

CO2) and 33rd (840 Gt CO2) percentile budgets are shown in lighter red, reflecting uncertainty in the TCRE only. 

Other contributions to uncertainty are shown by bars below the plot, showing the amount by which these additional 

processes affect the median budget estimate (Ref. 9, Table 2.2 therein). (b) Simulated climate response to CO2 

emissions only (blue) and all anthropogenic drivers (red) for scenarios from the SR1.5 scenario database17,18, using 

the simple model emulator MAGICC7(Refs. 19,20) with parameter settings corresponding to a TCRE of 0.44°C per Gt 

CO2. Temperature change is shown relative to the 1850-1900 period, and cumulative CO2 emissions are calculated 

from the central year of that period (year 1875). Dots mark the peak warming and the lines end at the point of net-

zero CO2 emissions in each scenario. The larger spread of red dots relative to purple shows the additional effect of 

socioeconomic uncertainty on the Effective TCRE as a result of differing non-CO2 emission scenarios. 
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Box 2: The Transient Climate Response to cumulative CO2 Emissions 

A close to proportional relationship between CO2-induced global warming and cumulative CO2 emissions is an 

emergent property of a range of Earth-system models14,15,21–23. The Transient Climate Response to cumulative 

CO2 Emissions (TCRE) quantifies the temperature change per unit of cumulative CO2 emissions (often expressed 

as °C per 1000 PgC or per 1000 Gt CO2 emitted). In a climate model, the TCRE defines the temperature change 

per unit CO2 emissions at the time of doubled CO2, in an idealized experiment where atmospheric CO2 

concentration increases at a rate of 1% per year24,25. This TCRE value can then be used to describe the general 

linear relationship between cumulative CO2 emissions and CO2-induced temperature change (Figure Box 1a, 

solid line, where the value of the TCRE defines the slope of this line).  

The TCRE has been shown to be a good predictor of warming caused by a given quantity of cumulative CO2 

emissions across a range of emissions scenarios15, though is subject to many uncertain processes that affect both 

its magnitude (the slope of the line) and its constancy in time (the robustness of the linear response to additional 

cumulative emissions) (Figure Box 1a). Among Earth system models, the magnitude of the TCRE is strongly 

related to the transient climate response (TCR) which accounts for at least half of the variation in TCRE 

values26,27; remaining TCRE variation is caused by varying carbon cycle sensitivity to global warming and 

increasing CO2
27 (Figure Box 1b). Model TCRE values are also (though to a lesser extent) related to their 

Equilibrium Climate Sensitivity (ECS), that is an estimate of the global warming in response to doubling of the 

atmospheric CO2 concentration once the Earth System reaches an equilibrium. Several models in the recent Sixth 

Coupled Model Intercomparison Project28 (CMIP6) have higher ECS values than the previous generation of 

models29 (CMIP5), most of which are also associated with high TCR and TCRE values. However, some of these 

high-ECS CMIP6 models have TCR and TCRE values that fall outside of estimates of the observationally-

constrained 5-95% range24,30,31 (Figure Box 2 b). Consequently, while these high-ECS models would predict 

smaller remaining carbon budgets, this should be considered a low-probability outcome given their current lower 

consistency with observed warming30,32. Such results can nevertheless be used to guide quantitative risk 

assessment of the implications of our imperfect knowledge of climate processes and the associated risks of low-

probability outcomes33.  

Importantly, the TCRE applies only to warming caused by CO2 emissions, and does not include the additional 

warming or cooling caused by non-CO2 emissions and other climate drivers. A common approach to incorporate 

the effect of non-CO2 forcing is to use simulations forced by all anthropogenic drivers, and plot the resulting total 

anthropogenic warming as a function of cumulative CO2 emissions. This results in a representation of total 

anthropogenic warming per unit cumulative CO2 emission that includes the effect of all climate drivers34,35. Here, 

we label this the “Effective TCRE” (following Ref.12), to define the total anthropogenic warming at a given 

quantity of cumulative CO2 emissions (Figure Box 1a, slope of dashed black line). The Effective TCRE is a 

measure of warming per unit cumulative CO2 emissions, equal to the TCRE plus an additional amount of 

scenario-dependent non-CO2 warming. This metric has been used conceptually or explicitly in several previous 
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studies to directly infer remaining carbon budgets associated with a given future emission scenario11–13,35–38. 

However, this needs to be done with an understanding that the Effective TCRE is not expected to remain constant 

in time (see Figure 1) due to its strong dependence on non-CO2 scenario variation and in particular on the 

potential unmasking of aerosol cooling in scenarios with rapid decreases in aerosol emissions16.  

(a)                                                                       (b) 

  

Figure Box 2. Uncertain processes affecting the relationship between warming and cumulative CO2 emissions. 

(a) Conceptual representation of the Transient Climate Response to cumulative CO2 Emissions (TCRE; the slope 

of the solid black line), and the Effective TCRE (represented by the dashed black line). Solid coloured arrows 

indicate scientific uncertainties affecting the value of the TCRE due to the climate (pink) and carbon cycle 

(orange) response to CO2 emissions24,26. Solid coloured lines indicate processes that may lead to deviations from 

a linear temperature response to cumulative emissions. Notable processes are the additional unrealized warming 

(or cooling) due past emissions that could occur as CO2 emissions approach zero39,40 (CO2 commitment; purple), 

permafrost carbon feedbacks41,42(green), and the increasing saturation of CO2 radiative forcing at high CO2 

levels43 (dark blue). Other nonlinear climate or carbon cycle processes act in both directions and tend to 

compensate each other (turquoise) leading to an approximately constant TCRE value across a wide range of 

cumulative CO2 emissions14,15,24,44. Dashed coloured lines indicate additional uncertainties affecting the Effective 

TCRE as a result of societal choices leading to different non-CO2 greenhouse gas emission scenarios9,10,16,35 

(dashed blue) and the warming response to decreased aerosol emissions45,46 (dashed red). (b) Relationship 

between model TCRE and TCR values in the CMIP5 models24,47,48 (triangles) and CMIP6 models26,30 (circles). 

Grey shading indicates the observationally-constrained TCR median (dashed line), likely range (>66%; dark 

grey) and 5-95% range (light grey), based on the 1981-2017 observed warming trend as a constraint based on 

Ref.30. The blue bar and blue dotted lines indicate observationally-constrained TCRE range (5-95%) reported by 

Ref 24. 
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Geophysical uncertainties affecting the remaining carbon budget 

Geophysical uncertainties affecting the TCRE (see Box 2) will propagate directly to uncertainties 

in estimates of the remaining carbon budget. In general, there are three types of geophysical 

uncertainties relevant to the TCRE that affect its robustness as a predictor of the remaining 

carbon budget. First, differing physical climate and carbon cycle responses to CO2 emissions 

alter the magnitude of the TCRE. Across Earth system models, TCRE values are generally 

proportional to models’ Transient Climate Response (TCR), though different carbon cycle 

responses will also produce a range of TCRE values among models with similar TCR values26,27 

(see Box 2). Better constraints on the TCR value as well as on the carbon cycle response to 

climate change and increasing CO2 would therefore have the effect of constraining both the 

TCRE and the remaining carbon budget. 

Second, the linearity of the TCRE relationship results from the compensation of individual non-

linear processes that act to both increase and decrease the sensitivity of the temperature response 

to additional cumulative CO2 emissions43,44,49,50. However, there is nevertheless the potential for 

strong non-linear changes in the strength of particular feedbacks to cause deviations from the 

TCRE-predicted linearity with increasing emissions. Examples include potential changes to the 

strength of physical climate feedbacks as a result of changing warming patterns51–53 or the 

behaviour of biogeochemical permafrost and wetland feedbacks that are currently poorly 

represented in Earth system models42,54. 

Third, while the TCRE has been shown to be a robust predictor of CO2-induced warming in 

scenarios with increasing CO2 emissions24,25, it is less clear that the TCRE will adequately 

capture the climate response to scenarios that rapidly decline to net-zero and/or net-negative CO2 

emissions41,55. In the event that there is unrealized warming or cooling from past CO2 emissions, 

this lagged temperature change would manifest during the time that CO2 emissions ramp down to 

zero, causing the temperature response to cumulative emissions to bend upwards or downwards 

relative to the linear TCRE line. This unrealized commitment from past CO2 emissions has 

recently been quantified across Earth system models39,40,56, and is likely an important contributor 

to uncertainty in the remaining carbon budget.   

Finally, the climate response to non-CO2 forcing changes is an important additional source of 

geophysical uncertainty affecting carbon budget estimates that is distinct from the contributions 
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to TCRE uncertainty discussed above (see “non-CO2 forcing and climate response” bar below 

Figure 1a; Ref.9). Given the prominence of aerosol forcing uncertainty in affecting the overall 

non-CO2 forcing uncertainty, this speaks to the importance of improved estimates of the climate 

response to present-day aerosol forcing in order to improve our ability to constrain estimates of 

the remaining carbon budget.   

Socioeconomic uncertainties affecting the remaining carbon budget 

Remaining carbon budget estimates are also strongly affected by socioeconomic uncertainties 

related to our ability to predict the dynamics of socio-political systems and the technological 

changes that determine the evolution of emissions in future scenarios. Given that the TCRE is 

relatively robust to variation in CO2 emission scenarios15,43,50, the relationship between the 

TCRE and the remaining carbon budget is only weakly affected by socioeconomic uncertainty. 

However, the effect of socioeconomic uncertainty is considerably more pronounced for estimates 

of future non-CO2 warming (see spread of total warming as a function of cumulative emissions 

across scenarios in Figure 1b, red dots). This relates to the shorter atmospheric lifetimes of many 

non-CO2 emissions, such that rapid decreases in emissions of short-lived positive climate forcers 

(such as methane, black carbon and ozone precursors) would effectively limit near-term warming 

caused by non-CO2 emissions57. Conversely, however, rapid decreases in aerosol emissions that 

produce a negative forcing would amplify non-CO2 warming16, a scenario that is likely to occur 

as a result of decarbonization efforts45,46,58. 

Although both geophysical and socioeconomic uncertainties can be reduced by further research, 

socioeconomic uncertainties are also sensitive to human decisions and choices regarding 

technological development and mitigation actions16. This means that policy decisions about 

where to focus mitigation efforts have the potential to influence the size of the remaining carbon 

budget by affecting the amount of warming that is caused by CO2 vs. other anthropogenic 

climate drivers6. The balance of effective mitigation of positive short-lived forcers and the 

potential aerosol warming commitment may be one of the most important determinants of the 

size of the remaining carbon budget. 
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Methodological choices and assumptions affecting remaining carbon budget estimates 

Using a consistent and transparent set of assumptions to calculate the remaining carbon budget is 

crucial in order to provide clear guidelines for climate policy. Yet, inconsistent choices are often 

used among different studies that report remaining carbon budget estimates, which unnecessarily 

inflates the spread of estimates1,2. Here, we provide guidelines and recommendations to estimate 

carbon budgets in a transparent and policy-relevant way, given the many choices and 

assumptions typically required (Table 1).  

First, we recommend estimating carbon budgets for anthropogenic warming only, independent of 

natural variability (e.g. as estimated by Ref.59); while this may seem like an obvious statement, it 

is nevertheless the case that climate policy temperature goals have not been consistently 

interpreted across different studies60. The ultimate objective of the United Nations Framework 

Convention on Climate Change (UNFCCC) is to prevent “dangerous anthropogenic interference 

in the climate system” (Article 2). This framing provides a clear rationale for limiting warming 

caused by all anthropogenic drivers, rather than that caused by the combined effect of 

anthropogenic warming and natural variability60.  

Second, we recommend that carbon budgets be defined in relation to a particular policy-relevant 

climate target. The Paris Agreement61 aims to keep global temperatures to “well below 2 °C” and 

to “pursue efforts to limit warming to 1.5 °C above pre-industrial temperatures”. Consequently, 

carbon budgets associated with a range of temperature increases between 1.5 °C and “well below 

2 °C” are those with direct relevance for the Paris Agreement goal. Budgets for 2°C or higher 

can be used to gauge the amount of effort needed to stay below higher warming levels, but are 

outside the current policy framing of the Paris Agreement.  

Third, choices about the desired level of risk avoidance must be defined when estimating carbon 

budgets. Carbon budgets have typically been reported as corresponding to a 50% or 67% percent 

probability of staying below a given temperature target when the carbon budget is fully emitted, 

given known and quantified uncertainties35.  

Fourth, the proxy for the pre-industrial reference period that has been used in recent IPCC 

reports9,62 is the 1850-1900 average, which we recommend adopting for consistency with these 

analyses. We recognize that temperatures during this period may have already increased relative 

to the previous century59,63,64, though adopting an earlier baseline period is currently difficult 
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owing to limited observational data on both temperature and cumulative CO2 emissions prior to 

1850.  

Fifth, it is important to be explicit about the choice of temperature change metric. The relative 

merits of using a blended air-water temperature that is masked according to observational 

coverage (Global Mean Surface Temperature, GMST), a full-coverage global surface air 

temperature (GSAT), or a combination of the two, to represent observed historical warming have 

been discussed extensively elsewhere1,2,65; we do not offer a specific recommendation here other 

than that the choice of metric be clear and justified, both for historical warming and TCRE.  

Sixth, we recommend adopting our carbon budget definition of total emissions up to the point in 

time that CO2 emissions reach net-zero (see Box 1), which is likely to correspond closely to the 

timing of peak temperature change9. This choice also avoids the need for assumptions regarding 

the potential feasibility of net negative CO2 emissions to reverse temperature overshoots. For 

model simulations, this requires using emissions scenarios that contain internally-consistent CO2 

and non-CO2 emissions, which are also broadly consistent with a desired peak temperature 

target, rather than scenarios where temperatures exceed the target indefinitely or exceed (over-

shoot) and return to the target in question.  

For the other methodological choices listed in Table 1, our key recommendation is for each 

choice to be documented to clarify the assumptions embedded in analyses, and to discuss 

(quantitatively if possible) how choices may affect the results. Lack of clarity with respect to 

these assumptions and choices can result in widely varying carbon budget estimates that risk 

being applied inappropriately to policy questions. For example, carbon budget estimates that are 

based on the assumption that non-CO2 forcing will follow a high-emission scenario should not be 

applied uncritically to the case of ambitious mitigation scenarios with decreasing non-CO2 

emissions. Similarly, budget estimates using the GMST temperature metric are not well suited to 

estimate the requirements for avoiding climate impacts that have been calculated using GSAT 

change. Consistent and clear methodological choices are therefore critical to minimize the risk of 

misuse of carbon budget estimates in policy applications. 
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Table 1: Choices and assumptions that are typically required when estimating total or remaining 
carbon budgets for global temperature targets. Where appropriate, recommended choices are 
marked with an asterisk (*). 
 

Choice Options Issues to consider 

Definition of global 
warming 

(*) Anthropogenic warming only Relevant to international climate targets aimed at limiting global 
temperature increase60; requires a method to isolate the anthropogenic 
contribution to observed or model-simulated temperature change24,59. 

Anthropogenic warming + natural climate 
variability 

Directly observable and simulated by global climate models; however, 
natural climate variability, whether externally forced (by volcanoes or 
solar activity) or unforced (i.e. internal variability of the climate system), 
causes inter-annual to decadal-scale warming or cooling trends that are not 
relevant to international climate goals60,66,67. 

Target temperature (*) 1.5 °C Most ambitious target level in the Paris Agreement. 

(*) “well below 2 °C” Primary Paris Agreement target, but not precisely defined. 

2 °C or higher Warming levels that exceed the Paris Agreement target range. 

Probability of not 
exceeding the target 

50%, 67%, 90% … Remaining carbon budgets are typically estimated to be in line with a 
50%, 67% or sometimes 90% probability of successfully limiting warming 
to the temperature threshold of interest. The choice of which budget to 
adopt as a global target depends on societal risk avoidance preferences. 

Pre-industrial 
reference period 

(*) 1850-1900 average 
 

Current proxy for pre-industrial climate62, corresponding with the 
beginning of available instrumental temperature records. 

1860-1880 average 
 

Period representing the first 20 years available in the HadCRUT 
temperature dataset68, at times used because no major volcanic eruption 
took place during these years.  

1720-1800 average 
 

Suggested by Ref.63 as a better estimate of climate conditions prior to 
human influence, but direct observations of global temperature are not 
available, and emissions uncertainty prior to 1850 is very large, posing 
difficulty for consistent estimates of historical cumulative emissions from 
earlier time periods. 

Temperature change 
metric 

Observed (blended air-water and/or 
masked) temperature (global mean 
surface temperature, or GMST) 
 

Directly observable; calculated as a combination of surface air 
temperatures over land and sea ice, with surface water temperature over 
ocean; incomplete spatial coverage69 unless infilling technique used to 
extrapolate to areas with no observations70; spatial definition changes over 
time as sea ice cover changes2.  

Global surface air temperature (GSAT). 
 

Average of surface air temperature with complete global coverage; typical 
output of global models, but not currently available from observational 
estimates of global temperature change; historical GSAT warming has 
been estimated to be about 0.1°C higher than that based on GMST71,72, 
though recent improvements to spatial infilling techniques in GMST 
products have decreased this difference. 

Nature of 
temperature change 

(*) Peak temperature The timing of peak temperature should match closely the timing of net-
zero CO2 emissions9 which avoids the need for assumptions related to the 
reversibility of temperature overshoots. 

Temperature at some level of cumulative 
emissions 

No strict limit on maximum temperature change: temperature may exceed 
the target after the point at which cumulative emissions are calculated. 

Temperature at some year (e.g. 2100) No strict limit on maximum temperature change: temperature may exceed 
target either before (overshoot and return scenarios) or after selected year. 

Non-CO2 scenario 
choice 

(*) Non-CO2 scenario consistent with 
CO2 emissions that decline to net-zero 

Requires an internally-consistent CO2 and non-CO2 emission scenario that 
is also consistent with the desired target, and/or an embedded economic 
model that generates consistent CO2 and non-CO2 emissions9,73. 
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Non-CO2 forcing consistent with high-
emissions (or other arbitrary) emission 
scenario 

Non-CO2 forcing is not consistent with mitigation efforts to limit warming 
to the target, potentially leading to either an under- or overestimate of the 
remaining carbon budget10,11,41. 

Treatment of aerosol 
forcing uncertainty 

Single model run for time-series of 
historical and future aerosol forcing  

Results are contingent on the model and/or forcing scenario used and do 
not include uncertainty associated with aerosol forcing or the climate 
response to decreased future aerosol emissions10. 

Assumed range of forcing Requires many model simulations or other methods to sample 
uncertainty9,22. 

Treatment of land-
use CO2 emissions 

Prescribed or treated as interchangeable 
with fossil fuel emissions 

Cumulative emissions from land-use are known, but biophysical and 
indirect carbon cycle effects of land-use change are not accounted for. 

Simulated by model from prescribed 
land-use change scenario 

Biophysical and other effects of land-use change accounted for, but 
cumulative emissions from land-use are complex to diagnose, often 
requiring additional simulations74–76. In the absence of diagnosed land-use 
emission information, some studies have assumed the same land-use 
change emissions in all model simulations36–38. 

Treatment of CO2 
zero emission 
commitment (ZEC) 

Assumed to be zero or negligible This is the approach taken by Ref. 9, but results in unquantified 
uncertainty associated with the ZEC. 

Assumed to have a positive or negative 
value 

When combined with a method that uses TCRE directly, a positive ZEC 
would reduce the remaining carbon budget to account for unrealized 
warming after CO2 emissions are halted1,56. Similarly, a negative ZEC 
would increase the remaining budget, but only if its timescale is shorter 
than the pace of emission reductions to net-zero CO2. 

Simulated by model using scenarios 
where CO2 emissions decrease to net-zero 

The effect of the CO2 ZEC is accounted for in simulations of ambitious 
mitigation scenarios, as any unrealized warming or cooling from past 
emissions would typically be realized during the time that emissions fall 
to zero.  

Treatment of 
overshoot scenarios / 
reversibility 

Climate response to carbon dioxide 
removal assumed to be the same as 
response to emissions 

Many recent studies are based on this assumption (see Ref. 1 for a 
summary of different studies). This assumption is not supported if the CO2 
warming commitment (ZEC) is non-zero77. 

Overshoot scenario simulated explicitly Resulting budget is specific to overshoot scenarios41,55. 

Overshoot scenarios excluded Resulting budget may not apply to overshoot scenarios42. 

Treatment of 
permafrost feedback 

Included in model simulation, or using 
TCRE from models that include this 
feedback 

Resulting budget does not need to be adjusted for this feedback41, but 
timescale is important as permafrost feedbacks have a long time 
constant78,79. 

Not included in model or using TCRE 
range from CMIP5 models 

Budget should be adjusted to account for the effect of this feedback, and 
timescale needs to be stated given the feedback’s time dependency9. 

Treatment of other 
under- or 
unrepresented 
feedbacks 

Clarity about which feedbacks are 
included and which are not 

Representation and strength of feedbacks vary among models, which is 
part of the explanation for the existing TCRE range. In general, any new 
positive (amplifying) feedback would increase the TCRE (and decrease 
the budget), and a new negative (attenuating) feedback would decrease the 
TCRE (and increase the budget)1. 
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Application of remaining carbon budgets to international and national climate policy 

Carbon budgets are a powerful guide for international policy, providing a way to gauge the 

consistency of national emission targets with global temperature goals. To do so, the total 

quantity of remaining CO2 emissions must first be distributed over time so as to align with the 

target years of national emission pledges. Figure 2 illustrates one such time distribution, in 

which a scenario of linearly decreasing CO2 emissions to zero at 2040 (for a 1.5 °C carbon 

budget) or 2060 (for “well below 2 °C” budget) is discretized into 5-year budgets that are 

compatible with the remaining carbon budget. Such subdivided budgets could be tracked and 

used to inform the 5-year global stocktake process as part of the implementation of the Paris 

Agreement, whose mandate is to assess the consistency of emissions targets with the long-term 

temperature goal. Currently, emissions from national pledges are expected to exceed the near-

term budget allowances shown in Figure 280,81. This raises important questions of 

intergenerational equity as we are either accruing an emissions debt to future generations by 

borrowing allowable emissions from the future allowance, tasking future generations with the 

challenge of removing anthropogenic CO2 from the atmosphere, or we are committing these 

future generations to climate change in excess of our stated climate target.  

To be useful as a benchmark for national climate policy, the global remaining carbon budget 

must be further subdivided among nations. There are many choices involved in the distribution 

of the remaining global carbon budget to individual nations; such decisions often reflect different 

ways of accounting for unequal national circumstances3,4,82–85 (see Box 3). Given the contentious 

and highly context-specific nature of such distributions, the UNFCCC has chosen not to develop 

rules or instruct nations as to how to set their own emissions targets. National carbon budgets are 

therefore currently unilateral choices that can help nations to organize their mitigation efforts, 

but may not bear any real resemblance to or consistency with the overall global budget. 

Currently, many nations have designed their NDCs using the most generous of available 

allocation principles for their country83. This suggests a need for international mechanisms to 

promote the evaluation and iterative reassessment of national budget allowances to ensure 

consistency with the global budget (Box 3).  

Despite the challenges associated with fairly allocating the global budget to nations, the idea of a 

finite national carbon budget nevertheless has enormous conceptual importance for national 
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policy decisions. For example, short-term carbon budgets could be adopted and reported on in a 

manner similar to fiscal budgets86; the simple act of doing so has the potential to embed national 

climate targets in a much more tangible way across government decision-making processes. The 

recent adoption of national carbon budgets in the United Kingdom and the EU, including 

commitments to net-zero emissions by 2050, are good examples of such an approach. The 

adoption of finite national budgets would also lend new weight to discussions surrounding new 

infrastructure construction, and particularly new fossil fuel energy infrastructure. Two recent 

analyses suggest that global “committed emissions” associated with existing infrastructure (i.e. 

the future emissions that are expected to occur over the typical operating lifetime of existing 

infrastructure) are close to or exceed the remaining carbon budgets for our most ambitious 

climate targets87,88. The committed emissions associated with new infrastructure projects could 

therefore be weighed against a country’s remaining carbon budget to determine whether the 

infrastructure in question is consistent with our climate targets. Furthermore, should a given 

nation’s emissions exceed their share of the global budget, the resulting emission debts4,89 could 

be used as a metric to inform decision-making related to international climate finance.  
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Figure 2. Illustrative example of distributing the remaining carbon budget over time into 5-year discrete time 

intervals. The years of net-zero CO2 emissions shown here are approximately consistent with the estimates of the 

67th percentile remaining budgets from SR1.59 for 1.5 °C (420 GtCO2 after 2017; area under the blue line) and for 

an illustrative “well below 2 °C” interpretation, here taken to be 1.75 °C (800 GtCO2 after 2017; area under the 

yellow line). The red shaded regions indicate projected amounts over budget, reflecting estimates of global CO2 

emissions between now and 2030 following current national emission pledges (Nationally-Determined 

Contributions, or NDCs)81. We note that the linearly decreasing trajectories illustrated here are clearly an idealized 

scenario and do not incorporate aspects of cost-effectiveness; however, the small size of remaining carbon budgets 

for the Paris Agreement goal clearly requires stronger reductions in global CO2 emissions in the next decades than 

are captured by current NDCs81.   
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Box 3: Issues of fairness and equity when allocating the remaining carbon budget to countries 

Estimates of the remaining carbon budget provide a global envelope within which future societies have to operate 

if we intend to limit global warming to a specific level. However, translating this global budget to national 

allocations that define what would be an appropriate or fair share of this budget for a single country is an exercise 

fraught with value judgments which have little relation to the geophysical underpinnings of carbon budgets. Here, 

science can at best inform and quantify the implications of what are largely subjective choices by individual 

countries or systems to distribute quotas among countries. 

Over time, many so-called fairness or equity principles have been suggested and explored to try to understand 

what would be a fair allocation of the remaining carbon budget. These principles are largely based on concepts of 

responsibility, equality and capability across nations90 (Figure Box 3). Responsibility addresses the fact that 

countries have contributed differently to the warming we are currently experiencing, and have also had access to 

varying levels of understanding over time about the impact of greenhouse gas emissions on the climate. Equality 

reflects the idea of the human right to development, and that each individual is entitled to equal access to the 

means of development. This principle can be used to imply an equal entitlement to the production of greenhouse 

gas emissions, though it is also the case that development can be achieved via low-emission technologies and 

activities. Capability reflects the fact that different countries can be in quite different positions regarding their 

capacity to address the challenge of climate change mitigation, be it in terms of financial resources, technical 

expertise or institutional context. Historically, this capability has been closely related to a country’s degree of 

industrialization, and its associated greenhouse gas emissions. These various principles are well established in the 

United Nationals Framework Convention on Climate Change which states that countries should participate in 

responding to climate change “in accordance with their common but differentiated responsibilities and respective 

capabilities and their social and economic conditions”. 

A wide variety of ways exist to translate these equity principles by means of quantitative proxies into a 

distribution method to allocate the global remaining carbon budget to particular countries83. The resulting 

allocations can be positive or negative; that is, they can represent either an emissions allowance or an emissions 

debt. Allocation methods also vary considerably in their degree of fairness, and some are generally considered to 

be explicitly unfair. For example, an equal-shares – or grandfathering – allocation approach is often used to claim 

future emissions rights based on the current distribution of emissions among countries. This allocation method 

does not account for differing historical responsibility or the history of colonial relationships among countries, 

and instead rewards historical polluters for their current high share of global emissions.  

Translating the global remaining carbon budget to country allocations is thus not a scientific-driven choice but 

one that represents an interplay and continuous discussion between ethics, justice, society and geophysics91,92 

(Figure Box 3). Currently, when either implicitly or explicitly selecting a fairness principle, countries almost 
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exclusively choose an approach that provides them with a disproportionately large share of the remaining carbon 

budget when seen from the perspective of another country93. This suggests an ongoing need for international 

cooperation and oversight to achieve consistency between national emissions budgets and international climate 

targets. 

 

Figure Box 3. Allocating the global remaining carbon budget to individual nations. Any such allocation 

requires subjective choices and application of fairness principles related to a country’s responsibility for climate 

changes, its capability to achieve mitigation goals, and the importance of equality among countries. Coherence 

between the sum of national allocations and the global allowable budget is unlikely to emerge from this 

allocation process, though could be achieved with additional evaluation and iterative reassessment of national 

allocations. 
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Policy implications of a finite remaining carbon budget 

The most important policy implication of a finite carbon budget is the need to achieve net-zero 

CO2 emissions in order to stabilize global temperature. This framing has been used to inform 

ongoing and ambitious mitigation efforts in 71 countries and over 100 cities, as well as over 500 

businesses that have set net-zero emission targets for a specified year81. The concept of a carbon 

budget has therefore been an effective communication tool in mobilizing individual countries or 

regions to set net-zero emission reduction targets. However, it is important to reiterate that in 

order to be consistent with Paris temperature goals, a net-zero CO2 emission target must also be 

accompanied by aggressive mitigation of non-CO2 emissions such as methane, nitrous oxide and 

black carbon. Both net-zero CO2 emissions and decreasing non-CO2 forcing are likely required 

to achieve stable global temperatures73. 

Another important policy implication is that the size of the remaining carbon budget is sensitive 

to societal choices for mitigating non-CO2 emissions, as well as the effect of CO2 mitigation 

efforts on co-emitted non-CO2 species10,11,94. However, while the remaining carbon budget is 

sensitive to non-CO2 emission scenarios, it does not dictate a particular CO2 mitigation pathway 

over time. This, in turn, highlights the important question of whether CO2 emissions exceeding 

the budget can be reversed via carbon dioxide removal (CDR) technologies. While the climate 

response to positive and negative CO2 emissions has been shown to be approximately 

symmetrical55,77, CDR technologies are expensive and challenging to deploy at scale95,96, and 

will also need to remove CO2 that oceans and lands will release again in response to declining 

atmospheric CO2
97–99. Furthermore, the technologies used to produce and remove CO2 emissions 

will likely not produce (or remove) the same types or quantities of co-emitted non-CO2 

emissions. Current scientific understanding therefore suggests that it will neither be easy nor 

necessarily possible to achieve the level of CDR required to swiftly reverse the effect of 

substantial emissions in excess of the available budget99,100, particularly with respect to long-

timescale responses such as sea level99 or other changes in the marine environment101,102. 

Finally, there remain substantial challenges associated with how to equitably share the remaining 

carbon budget among nations83,93. Issues of fairness are have been interpreted differently across 

nations, with the result that the sum of all current national targets would produce emissions that  

exceed the global budget for limiting warming to 1.5 °C or “well below 2 °C” 83,93. This in turn 
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suggests means that many of the countries who have presented their current targets as “fair and 

ambitious”61 have in fact adopted targets that are neither. To achieve a coherent set of national 

allocations that reflect principles of fairness and are also consistent with the global budget, it will 

be essential to empower and strengthen international cooperation to achieve an iterative process 

of evaluating and strengthening national carbon budgets. 

Carbon budgets are a powerful conceptual tool with clear potential to inform climate policy.  

Estimates of the remaining carbon budget can be used as a benchmark for international targets, 

and as a rationale for setting and monitoring progress towards net-zero national CO2 emissions 

targets. The latest estimates of the remaining carbon budget suggest that while the global budget 

is small and rapidly decreasing, there is nevertheless a reasonable chance that the Paris 

Agreement goals remain within reach. However, this window of opportunity is closing with each 

passing year of tentative and insufficient action. Halting climate change at acceptable levels will 

require large and rapid increases in effort on the part of both international and national players in 

the climate mitigation challenge. 
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