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ABSTRACT OF THE DISSERTATION 
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Human actions are more than mere body movements. In contrast to dynamic events involving 

inanimate objects, human actions have a special status in that they control interactions with the 

world and afford privileged access to the experience of agency and to control interactions with 

the world. Several causal constraints on human actions support the generation and the 

understanding of actions. For example, human actions inherently involve a causal structure: limb 

movements generally cause changes in body position along a path through the environment to 

achieve intentional goals. However, it remains unclear how the system that supports action 

perception communicates with high-level reasoning system to recognize actions, and more 

importantly, to achieve a deeper understanding of observed actions. My dissertation aims to 
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determine whether causality imposes critical motion constraints on action perception and 

understanding, and how causal relations involved in actions impact behavioral judgments. The 

project also investigates the developmental trajectory and neural substrate of action processing, 

and whether a feedforward deep learning model is able to learn causal relations solely from 

visual observations of human actions. Through behavioral experiments, an infant eye movement 

study, a neural study using magnetoencephalography, and model simulations, my dissertation 

yields a number of insights. 1) Humans implicitly and automatically rely on causal expectations 

to explain motion information when perceiving body movements and meaningful social 

interactions; 2) Sensitivity to causal constraints on actions develops early in infants even before 

18 months of age, and shows a clear relation with the development of gross motor functions. 3) 

Congruency to causal relations involved in human actions can be decoded from neural MEG 

signals, with the processing of causal actions eliciting a distributed neural network. The brain 

network involves temporal, parietal, and frontal regions that are important locus for spatial 

relation reasoning, decision making, and intention understanding. 4) Recent stimulus-driven deep 

learning neural networks are unable to learn the causal relations involved in actions, failing to 

create high-level representations for causal actions. Overall, my dissertation reveals the 

importance of causality in bridging action perception and understanding, highlights the key 

missing computational components in deep learning models for complex visual stimuli such as 

human actions, and provides a potential framework to connect seeing and thinking. 
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CHAPTER 1 

Introduction 

 

Recognizing human body movements is considered as one of the most sophisticated 

abilities supported by the human visual system. As suggested by Darwin (1872), “actions speak 

louder than pictures when it comes to understanding what others are doing and feeling”, human 

actions readily communicate information such as goals and intentions. With a glimpse, we can 

extract various information from even highly degraded motions such as point-light displays. 

Since the early work of Gunnar Johansson (1973), point-light displays have been widely used to 

study how people perceive biological motion from only a few moving joints. Human adults have 

been shown to be proficient in perceiving sophisticated social-relevant information from point-

light displays, such as gender (Kozlowski & Cutting 1977; Mather & Murdoch 1994), identity 

(Cutting, & Kozlowski, 1977; Pavlova, 2011), personalities (Brownlow et al. 1997; Montepare & 

Zebrowitz-McArthur 1988; Gunns et al.2002), emotions (Dittrich, Troscianko, Lea, & Morgan, 

1996; Clarke, Bradshaw, Field, Hampson, & Rose, 2005) and intentions (Runeson & Frykholm 

1983). However, the interplay between perception and thinking has been understudied in the 

field, specifically, the connection between action recognition and reasoning about actions 

remains unclear.  

Human actions are more than mere body movements. In contrast to dynamic events 

involving inanimate objects, human actions have a special status in that they afford privileged 

access to the experience of agency and to control interactions with the world. Through 

interventional actions, humans are equipped to discover causal relations in the physical and 

social environment (Abravanel, Levan-Goldschmidt, & Stevenson, 1976; White, 1999). Even 
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without actively manipulating objects through goal-directed interventions, navigating one’s body 

through the environment provides direct experience of cause-effect relations. In his 

Philosophical Investigations, Ludwig Wittgenstein (1953, p. 161) posed a famous question: 

“What is left over if I subtract the fact that my arm goes up from the fact that I raise my arm?” 

This question highlights the special status of the human actions relative to other dynamic events 

in the natural world, that action is a combination of willing plus movement (Jaeger, 1973). In 

other words, human actions are usually initiated by the underlying goals and desires and often 

involve processes that cause willful bodily movements. The human body navigates the 

environment via locomotory movements that leverage gravity and limb biomechanics to propel 

the body in a particular direction. This process creates a causal link between limb movements 

and whole-body translation, resulting in expectations about the relation between the two motion 

cues (i.e., relative limb movements with reference to body-centered coordinates as related to 

body displacements with reference to distal world coordinates). “To step up by lifting one’s leg” 

is properly considered to include the objective content of action: it involves a causal structure in 

which moving one’s limbs in a certain way provides a means to cause position changes of the 

body such that the intentional goal of stepping up is fulfilled. Actions thus afford privileged 

access to experiencing the role of agency and provide a powerful tool to produce interventions 

that in turn help to discover causal relations in the physical and social environment (White, 

1999). 

Critically, causal constraints of human actions support the generation and the 

understanding of actions. For example, the sense of agency facilitates the inference to identify 

the cause of an observed action. We often have a strong sense of causality as actions unfold. For 

example, observing certain limb movements triggers the expectation of changes in body position. 
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In the context of social interaction, one person’s actions may serve as the cause to make a second 

person acts in a certain way. The ability to understand the actions of others is closely related to 

our own internal sensorimotor representations (Decety & Grèzes, 1999), and would also seem to 

involve access to ingrained representations of these inherent causal dynamics. Despite the 

importance of causal action, few studies have looked into how people perceive causal action with 

whole-body movements. Thus, it remains unclear how the human visual system communicates 

with the high-level cognitive system to not only recognize actions, but more importantly, make 

inference about intentions behind observed actions. Understanding how causal actions are 

perceived and inferred will make a bridge between perception and reasoning and will provide 

important insights into the future development of artificial intelligence. 

A few questions remain to be answered: (i) whether humans are sensitive to causal 

relations that are inherent in human actions; (ii) how does causality in human actions influence 

action perception; (iii) how does the ability to perceive and understand causal constraints in 

human actions develop in infants; (iv) what are the neural mechanisms underlying the causal 

understanding in human action perception; and (v) whether the ability of inferring causality from 

human actions can be captured by the state-of-art computational models. To address these 

questions, my dissertation develops a framework to systematically examine the connections 

between action perception and reasoning from behavioral, neural, and computational aspects. 

Chapter 1 provides an overview of research endeavors and a compressive review of the 

literature. Chapter 2 examines if human observers spontaneously use causal relations as a cue 

when perceiving human actions and if the violation of causality influence the perceived 

naturalness of human actions. Chapter 3 studies the top-down influences of causality on the 

perception of body movements when observing human interactions with physical objects and 
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agents. Chapter 4 investigates the developmental trajectory of causality in the form of a motion 

consistency constraint, and how this constraint impacts the perception of human body 

movements in infancy and relates to motor developments. Chapter 5 investigates the neural 

mechanism underlying the perception of causal action using Magnetoencephalography (MEG) 

and provides evidence to unveil the spatiotemporal dynamics of neural activities when observing 

causal versus non-causal human actions. Chapter 6 examines if the state-of-art convolutional 

neural network (CNN) could account for human behavior in the causal perception of human 

actions. 

Taken together, these lines of research aim to advance our understanding of the role of 

causality in human action perception and the potential mechanisms that support the visual 

processes of causal action perception. Specifically, a central goal of this dissertation is to point 

out that causality serves as one of the important motion constraints and modulates human action 

perception constantly and automatically. The close interaction between bottom-up processes of 

motion signals and top-down processes of causal reasoning together support our sophisticated 

processes of action understanding and goal inference. Evidence from the current work calls for 

attention on bringing high-level causal reasoning into the research of human action recognition 

and the development of artificial intelligence. 

The following sections provide motivations and backgrounds for the studies reported in 

the chapters herein. Section 1.1 discusses the role of causality in human perception as found in 

previous studies using mainly physical movements or simple dynamic events, showing that 

causality facilitates the temporal binding and spatial binding of causes and effects. To build on 

this existing knowledge, Chapter 2 and 3 will extend these studies to action perception by 

showing the evidence that causality strongly influences the visual perception and understanding 
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of human actions. The corresponding experiments in Chapter 2 and 3 are the first to study the 

role of causality on human action perception and social cognition. Section 1.2 reviews the 

previous evidence of the emergence of the causal understanding in infancy, showing a tight 

relation between causal perception, action understanding, and motor functions. Chapter 4 tests 

the development of the perception of causal constraints in human body movements for 9- to 18-

month infants and examines if the development of causal perception is tied to the development of 

gross motor functions. Section 1.3 outlines the previous neural evidence underlying perceptual 

causality and Chapter 5 presents the first evidence of the neural representation of the causal 

constraint in human actions using MEG. Section 1.4 provides a brief overview of computational 

modeling works on human action perception and Chapter 6 tests the performance of the state-of-

art two-stream CNN on recognizing causal versus non-causal human actions. Finally, Chapter 7 

summarizes and discusses the findings through chapters 2 to 6 and proposes future directions. 

 

1.1 The Phenomenal Causality in Moving Objects  

We live in a dynamic world with various objects movements, from simple Newtonian 

motion of inanimate objects to complex human motion. Motion provides us information far 

beyond simple physical displacement, but also important high-level information such as the 

causal relation between moving objects. The ability to correctly and efficiently understand the 

causality in motion displays plays an important role in our interaction with others and the distal 

world. Numerous evidence has demonstrated an intimate connection between causation and 

perception (Michotte, 1963; Heider & Simmel, 1944; Scholl & Tremoulet, 2000; White, 2006). 

Dating back to Michotte’s seminar work in 1963, the launching effect demonstrated that the 

collision of two balls led to a strong perception of causality. In the classical visual display of the 
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launching effect, observers view a moving object, referred to as the launcher, that contacts a 

stationary object, referred to as the target. Immediately after the contact, the target object begins 

to move and the launcher stops. Even though many possible interpretations (e.g. the launcher 

was stopped by the target or by friction) can be derived from the visual input, observers 

consistently attribute motion of the target to the launcher, or that the motion of the launcher 

causes the movement of the target. The perception of causality occurs almost automatically and 

is consistent across subjects. Hence, the launching effect opens a window for researchers to 

investigate human’s causal perception given its straightforward motion input and the associated 

robust responses. 

In considering the role of causality in perception, a particularly important theory is the 

temporal priority principle (Hume, 1739/1888) that causes always come before their effects in 

time, even though there may appear to be some circumstances in which cause and effect appear 

perfectly contemporaneous (e.g. pressing a button of a TV remote to turn the volume up). The 

temporal relationships between actions and subsequent outcomes determine how causal relations 

are inferred (Shanks, Pearson, & Dickinson, 1989). For instance, temporally contiguous 

outcomes are more likely to be perceived as generated by our actions (Farrer, Valentin, & Hupé, 

2013, Wegner and Wheatley, 1999, Young, 1995). Causal beliefs have been known to distort 

people’s perception of time, biasing people to perceive causally-related events closer in time than 

unrelated events (Faro, Leclerc, & Hastie, 2005; Buehner & Humphreys, 2009). This distortion is 

consistent with Hume’s (1739/1888) principles of causality that causally-related events are 

spatially and temporally contiguous. Relevant body of prior research showed the effect of 

intentional binding (Haggard, Clark, & Kalogera, 2002), which have shown that the perceived 

time elapse between an intentional action (e.g., a key press) and its subsequent sensory effect 
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(e.g., a tone or flash) is compressed, such that all sensory events following an action appear to 

draw closer in time to that action. Buehner (2012) showed that this type of temporal binding 

effect results from a general causal relation linking actions to their consequences.  

Most previous studies examined the causality in actions using bimodal stimuli with a 

motor act as a cause and visual/auditory stimulus as the effect (Buehner & Humphreys, 2009; 

Faro, Leclerc, & Hastie, 2005; Shanks, Pearson, & Dickinson, 1989; Buehner, 2012; Haggard, 

Clark, & Kalogeras, 2002). Because bimodal stimuli recruit processes of sensorimotor 

integration, temporal asymmetry effects observed with such stimuli may result from other non-

causal mechanisms (Stetson, Cui, Montague, & Eagleman, 2006; Rohde, Scheller, & Ernst, 

2014). Here, I propose to test causality in human actions as unimodal stimuli. When we consider 

the relation of limb movements and body motion, the contiguity constraint is usually satisfied 

given that both movements arise from a single agent. Although previous research has shown that 

action recognition can be influenced by the temporal congruency between limb movements and 

body displacements (e.g., Masselink & Lappe, 2015; Thurman & Lu, 2013, 2016a), no direct 

evidence has established that humans rely on the directionality of the cause-effect relation 

between the two motion cues in perceiving and making inferences about human actions. To 

address this issue, Chapter 2 and 3 present behavioral evidence of the important role of causality 

in guiding the perception of human actions. Specifically, Chapter 2 tested how causality 

influences the perceive naturalness and the understanding of human body motions using 

simplified motion displays. Chapter 3 examined how causality shapes our perception of inter-

human social interaction in natural scenes. 
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1.2 The developmental trajectory of causal perception 

While studies from human adults provide important evidence on the role of causality in 

human action perception and understanding, the origin of causal action perception remains 

unknown. Specifically, it remains unclear how causal action perception emerges in the 

developmental trajectory and what factors influence the development. Unlike adults, whose 

behavior and judgments are based on variance strategies and prior knowledge, behaviors of 

infants provide direct evidence on how certain stimulus features influence visual processes of 

action perception and understanding. In addition, testing infants at different stages of 

developmental trajectory could answer when certain traits emerge and how it interacts with the 

development of other functions such as motor abilities. Hence, developmental studies with 

human infants are necessary to provide answers to when and how causal action perception 

emerges in human beings. 

Learning the causal relations in everyday action sequences is no easy task for infants. 

Infants need to break a continuous action sequence into meaningful subsequences and infer 

which action leads to the outcome (Buchsbaum, Gopnik, Griffiths, & Shafto, 2011). One of the 

central questions is whether causal perception is innate or it develops through learning from life 

experience. Furthermore, even if infants are able to discriminate causal events and non-causal 

events in the typical paradigm of causal perception, it’s debatable that whether it’s based on 

visual spatiotemporal features or on abstract causal representation. To investigate the emergence 

of causal perception, previous studies focused mainly on physical motion sequences such as the 

launching events (Michotte, 1963). It seems that the learning of causality started from a very 

early stage of infancy. Oakes & Cohen (1990) found that starting at roughly 10-month, infants 

start to discriminate launching events on the basis of causality. Other evidence showed that the 
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development of causal perception might origin as early as 6-month (Leslie, & Keeble, 1987) 

even though the causal perception was possibly mainly driven by the spatiotemporal features 

embedded in the perceived dynamic scene (Leslie, 1982). However, it cannot be guaranteed that 

the findings can be generalized to human actions given that human actions are different from 

physical object movements in the ways that human actions involve self-initiated movements and 

are driven by beliefs and goals. For infants, the learning of causality in human actions cannot be 

solely driven by visual spatiotemporal features but require a deeper understanding of the 

causality in actions. Other studies involving older kids have directly tested children’s use of the 

temporal priority principle and evidence suggests that children as young as three years old use 

this principle to guide causal reasoning. For example, 3-year-old children more frequently chose 

the event that happened earlier in time as the cause (Bullock and Gelman, 1979), and 3- to 4-

year-old kids were able to answer causal questions based on the temporal order of actions and 

consequences (Kun, 1978; Rankin & McCormack, 2013). 

The development of causal perception has a close connection to the development of 

action perception and understanding. It has been found that 5-month-old infants showed selective 

attention to the goal of actions when an actor demonstrated grasping toward toys (Woodward, 

1998). By 10- to 11-month, infants showed a novelty preference for disrupted causal action 

sequences (e.g. paused in the midst of an actor reaching for the towel), suggesting an early 

understanding of goal-oriented actions (Baldwin, Baird, Saylor & Clark, 2001). By 12-month-

old, evidence has shown that infants interpret attentional behaviors (e.g. goal-directed points and 

eye gaze) in terms of the objects that they are directed towards (Woodward, 2003; Woodward & 

Guarjardo, 2002), suggesting the ability to predict the goal of observed actions. Taken together, 
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by the end of the first year, infants already have basic knowledge of the goal-directed human 

actions. 

The knowledge of the causal relations between one’s action and the goal also determines 

the producing of actions that can fulfill one’s own desire. Empirical evidence has shown that 

self-produced causal action may be necessary to promote the development of causal perception 

and the impact on the development of causal perception started as early as 4 ½-month-old 

(Rakison & Krogh, 2012). It was proposed that 9 to 12 months of age may mark a transitional 

time in infants’ ability to spontaneously generate goal-directed action sequences (e.g., Bates, 

Carlson-Luden & Bretherton, 1980). By 12 months of age, infants selectively imitate the goal of 

a sequence but often exclude the means of the sequence when they are not necessary for goal 

attainment (Carpenter, Call & Tomasello, 2005). By 18-month, infants were found to be able to 

reproduce other people’s actions based on the ultimate goal even when the observed actions 

failed to reach the goal (Meltzoff, 1995).  

Given the close connection between causal constraints and action understanding, it is 

important to understand the development trajectory of the perception of causality in human 

actions. Through eye tracking experiments, Chapter 4 provides empirical evidence on the 

emergence of the perception of causal constraints in human actions and also on the relation 

between causal action perception and motor development. Results support that the understanding 

of causal constraints may appear as early as 18-month and the causal perception has an important 

connection to gross motor developments. 
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1.3 Neural Bases for Perceptual Causality and Action Recognition 

In addition to using behavioral tests, neuroimaging research offers a complementary 

approach to building a more complete model of how causal constraints in actions are mentally 

represented. Neuroimaging studies provide evidence that cannot be answered by behavioral 

studies, such as the fine time course of the cognitive process even before reaching consciousness, 

a genuine reflection of representations of stimuli without the interference of motor functions, the 

ability to predict human behaviors based on decoding algorithms, and neurological knowledge 

that may benefit treatments of abnormal populations. 

A vast number of studies have looked into the neural mechanism underlying the 

perceptual causality but were mostly focusing on simple causal events such as the “launching” 

effect. For example, in Fugelsang and his colleagues' work (2005), they used functional magnetic 

resonance imaging (fMRI) to examine the neural correlates of perceptual causality while 

participants were viewing alternating blocks of causal launching events and non-causal events 

with either a spatial or a temporal gap between the movements of the two objects. They found 

that causal events elicited significantly greater higher activation in the right middle frontal gyrus 

and in the right inferior parietal lobule than non-causal events, suggesting the important role of 

right hemisphere loci for perceiving causality for launching displays. Blos and his colleague 

(2012) further studied the neural processes involved in causal perception in different contexts: 

physical causality and social causality. Participants judged causal relationships of two objects in 

animated video clips which include either physical context or social context while providing 

matched contexts in terms of temporal and spatial characteristics. In the physical context, the 

blue ball yielded contact with the red ball. After a short delay, the red ball began to move in one 

of the seven directions. In the social context, the red ball was positioned above the center and the 
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blue ball first moved horizontally and then advanced to one of the seven directions once it 

reached the middle, illustrating that the behavior of the blue ball was changed due to the 

presence of the red ball or the blue ball was attracted by the red ball and curved the trajectory. 

Results showed that the tasks in both contexts recruited similar brain areas, but elicited very 

different or even opposite activation patterns. For example, the activation of left insula increased 

for causal trials in physical contexts but not for causal social contexts, suggesting no significant 

activation for causal judged stimuli contrasted to non-causal judged stimuli. This indicates that 

the perception of causality is not a universal cognitive process that is implemented in certain 

brain regions, but, instead, depends on the context of events (i.e. physical or social). Similarly, 

Wood and his colleague (2014) investigated the neural systems involved in the elemental space 

perception, time perception and decision-making in the process of perceiving causality and 

showed that causal perception is not achieved by the activation of certain brain areas. Instead, 

depending on the context of the events and the spatiotemporal relation between objects, different 

brain areas are activated. Hence, a flexible brain network is recruited to process visual 

information in the way of supporting causal perception.  

However, it still largely remains unknown regarding how we understand the goal and 

intentions embedded in human actions. One classic hypothesis “direct-matching hypothesis” 

states that we understand actions by mapping the visual representation of observed actions to our 

motor representation of performing the same action and the process is supported by the “mirror” 

neuron system, first found in monkey at ventral premotor cortex (Gallese, Fadiga, Fogassi,& 

Rizzolatti, 1996). The hypothesis was later supported by evidence of humans (Iacoboni, Woods, 

Brass, Bekkering, Mazziotta, & Rizzolatti, 1999; Nishitani, & Hari, 2000) showing that certain 

brain regions were more activated during the execution of actions on top of action observation, 
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including Broca's area and the parietal lobe. The direct matching hypothesis provides a potential 

explanation for the mechanism behind action understanding. However, specific neural 

mechanisms of how the visual system extract relations between body movements and goals 

remains unclear.  

One important step toward answering the question is to investigate the spatiotemporal 

dynamics of brain activities underlying the processing of causal constraints that support goal-

orientated human actions. Using MEG, Chapter 5 will present neural evidence on the temporal 

dynamics of brain activities when watching human body movements that follow causal 

constraints and that do not follow causal constraints. The evidence fills a blank in the field of the 

neural basis of the visual perception of human actions and provides important insights into the 

high-level cognitive process of action perception. 

 

1.4  Computational Models and Deep Learning Algorithms of Action Recognition 

Given the behavioral and neuroimaging evidence as shown in previous chapters, it is 

clear that causality plays an important role in human action perception. However, the current 

field still lacks a computational model of human action perception that takes causality into 

consideration to address the phenomena as shown in human behavior. A successful 

computational model that has an understanding of causal relations between motion components 

is the foundation of understanding goals underlying human actions. This will greatly facilitate 

the development of artificial intelligence which can understand human behavior, interact with 

humans in a meaningful manner, and predict human action and desires efficiently. 
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To address the question of how people perceive actions, numerous studies have proposed 

computational models on the visual process of actions focusing on different visual constraints in 

actions. One representative model of action perception is by Giese and Poggio (2003), who 

developed a neurophysiologically plausible and quantitative model with two parallel processing 

streams: a ventral pathway and a dorsal pathway. The ventral pathway is specialized for the 

analysis of form in static frames. The dorsal pathway is specialized for optic-flow/motion 

information. Both pathways comprise hierarchies of neural feature detectors that extract form 

information or optic-flow information with increasing complexity as the hierarchy going up.  

 

 

Figure 1.1: The hierarchical neural model of human action perception with two pathways by Giese 

& Poggio (2003). The top row and the bottom row represent the form and motion pathways. The 

middle row shows the size of receptive fields (RF) compared to a human figure. Insets and labels 
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show the different types of neural detectors at different levels of the hierarchy. IT, inferotemporal 

cortex; KO, kinetic occipital cortex; OF, optic flow; STS, superior temporal sulcus; V1, primary 

visual cortex. 

 

Despite the fact that the model can address many neurophysiological findings, it is 

developed based on many experimenter constraints and models a simplified version of the 

complex visual processing of human actions. One of the drawbacks is that the model was built in 

a pure feedforward manner for both pathways, without top-down influence from other brain 

regions beyond visual areas. This makes the model efficient in perceiving motions based on low-

level motion inputs but limits the capability under circumstances that require attention shifts and 

prior knowledge such as physical laws and biological structure of human bodies. Another 

limitation was that the model was not capable of recognizing dynamic events in natural scenes 

but only highly controlled biological motion stimuli.  

In recent years, computer vision has developed a strong interest in hierarchical neural 

network architectures, or in other words “deep learning architectures” or “convolutional neural 

networks” (CNN) (LeCun, Bottou, Bengio, & Haffner, 1998). Such architectures outperformed 

other algorithms and even reached human-level performance on many visual tasks, first for 

image classification (Krizhevsky, Sutskever, & Hinton, 2012), and object recognition (LeCun, 

Bengio, & Hinton, 2015), but later also for many other computer vision problems including 

action classification (Karpathy, Toderici, Shetty, Leung, Sukthankar, & Fei-Fei, 2014, Le, Zou, 

Yeung, & Ng, 2011). It has been shown that deep learning architectures trained with proper 

datasets can develop units in layers whose tuning properties resemble the ones of neurons in 
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areas V4 and IT (inferotemporal cortex) (Yamins, Hong, Cadieu, Solomon, Seibert, & DiCarlo, 

2014; Khaligh-Razavi & Kriegeskorte, 2014; Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016).  

One of the successful models using CNN was done by Simonyan and Zisserman (2014), 

who extended deep convolutional neural networks and developed two-stream CNNs which 

include the spatial and temporal pathways. A spatial CNN processes appearance information and 

a temporal CNN processes the optical flow information. At a later stage, these two information 

sources are integrated so that both appearance and motion information is used to recognize 

actions.  The model performed well on action classification of two challenging datasets: UCF-

101 which includes 13320 videos covering 101 action types (Soomro, Zamir, & Shah, 2012), and 

HMDB-51 which includes 6766 videos covering 51 action types (Kuehne, Jhuang, Garrote, 

Poggio, & Serre, 2011). The two-stream CNNs achieved the accuracy levels in the range of 55% 

to 70% for the HMDB-51 dataset (compared to a chance level of 2%). This performance 

represents a significant improvement over previous action recognition models based on 

deformable templates, or part-based approaches. 

Despite the success of two-stream networks in recognizing actions, they share a common 

nature that the learning is based on a pure stimulus-driven manner and requires a large amount of 

training date, which is greatly different from the development of human minds. It remains 

unknown whether two-stream CNNs trained with natural videos yield representations of actions 

similar to those acquired by the human visual system, and whether CNNs perform similarly to 

humans in recognizing actions in novel displays that require an understanding of motion 

constraints such as causality. Chapter 6 examines the performance of two-stream CNNs on the 

perception of causal and non-causal actions and discusses the limitations and future directions of 

modeling human action perception.  
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CHAPTER 2 

 

Causal Action: A Fundamental Constraint on Perception and Inference about Body 

Movements  

 

2.1 Abstract 

The human body navigates the environment via locomotory movements that leverage 

gravity and limb biomechanics to propel the body in a particular direction. This process creates a 

causal link between limb movements and whole-body translation. However, it is unknown 

whether humans use this causal relation as a constraint in perception and inference with body 

movements. In the present study, participants rated actions of other individuals as more natural 

when limb movements (as a cause) occurred before body displacements (as an effect) than when 

limb movements temporally lagged behind body displacements. This causal expectation for 

human body movements not only affected perceptual impressions regarding the naturalness of 

observed actions but also guided the interpretation of motion cues within a more generalized 

causal context. We interpret these results within a framework of causality as evidence that the 

constraint of causal action plays an important role in perception and inference with body 

movements. 

2.2 Introduction 

Seminal works (Heider & Simmel, 1944; Michotte, 1946/1963), coupled with 

contemporary developments (e.g., Scholl & Tremoulet, 2000; White, 2006), have demonstrated 

an intimate connection between causation and perception. A causal impression can directly arise 

from our perception of the world and can influence further perceptual judgments, such as event 

timing (Bechlivanidis & Lagnado, 2013, 2016). However, previous studies of causal perception 
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have mostly focused on the interactions of inanimate objects in the physical world (e.g., colliding 

balls), which has limited generalization to more complex visual inputs, such as human actions. In 

contrast to dynamic events involving objects, human actions have a special status in that they 

afford privileged access to the experience of agency and enable discovery of causal relations in 

the physical and social environment through purposeful interventions (Abravanel, Levan-

Goldschmidt, & Stevenson, 1976; White, 1999). 

Consider one simple example of human actions. The human body navigates the 

environment via locomotory movements that leverage gravity and limb biomechanics to propel 

the body in a particular direction. This process creates a causal link between limb movements 

and whole-body translation, resulting in expectations about the relation between the two motion 

cues (i.e., limb movements in the body-centered reference frame in relation to body 

displacements in the environmental reference frame). This causal linkage may help explain why 

the “moonwalk” dance move popularized by Michael Jackson is experienced as surprising or 

even thrilling. While the dancer moves his or her legs in a way that appears to simulate walking 

forward, the whole body glides seamlessly backward, creating a dramatic conflict with the 

expected relationship between limb movements and body displacements. 

Recent research has revealed that humans are sensitive to the temporal binding between 

limb movements and body displacements, given that we commonly observe the two types of 

motion occurring in near synchrony. Disrupting the temporal congruency between the two 

sources of motion information curtails the perception of animacy (Thurman & Lu, 2013), the 

detection of social interaction between two agents (Thurman & Lu, 2014a), and the 

discrimination of locomotion style (Masselink & Lappe, 2015; Thurman & Lu, 2016a). 

However, it is unclear whether people show tolerance to some situations in which limb 
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movements and body displacements are temporally misaligned but in a causally consistent way 

(e.g., limb movements may be shifted ahead in time but still precede body displacements in 

locomotion). In other words, is the degree of tolerance constrained by the directionality of the 

causal relation between the motion cues? 

The present study addresses this question by examining how the cause-effect relation 

inherent in body movements affects the perception and inference of actions. We used a key 

manipulation based on a ubiquitous feature of causation: the temporal-priority principle, which 

holds that a cause must precede its effect (Hume, 1739/1888; Price, 1992; White, 2006; 

Bechlivanidis & Lagnado, 2013). In Experiment 1, we systematically manipulated the direction 

and magnitude of temporal offsets between limb movements and whole-body displacements. If 

the causal relation between the two motion cues is important, the temporal-priority principle 

would predict that when body displacements (the effect) temporally lag behind limb movements 

(the cause), observers may show greater tolerance to a deviation from close simultaneity. In this 

situation, the temporal relation between limb movements and body displacements remains 

qualitatively consistent with normal causal directionality. In contrast, when body displacement 

(the effect) is shifted earlier in time to occur before the supposed cause (limb movements), 

observers may show less tolerance because of the strong violation of the causal expectation. 

However, if temporal alignment per se is the critical factor (without consideration of causal 

directionality), then we would expect a symmetric influence of temporal offsets on perceived 

naturalness of actions. In Experiment 2, we varied the cover story associated with identical 

stimuli to examine whether inference judgments shift to conform to the causal context when 

different beliefs are induced. Together with a series of control experiments, results from the 

present study provide evidence against mere associative learning and instead support the 
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hypothesis that causal relations in body movements play an integral role in our perception and 

inference with actions. 

 

2.3 Experiment 1 

Experiment 1 was designed to assess how the directionality of temporal offsets between 

limb movements and body displacements affects the perceived naturalness of human actions. 

2.3.1 Method 

Participants. One hundred nine online participants were recruited through Amazon’s 

Mechanical Turk (MTurk). Each was paid $1 for participating in the online experiment (average 

duration of 8 min). All experimental procedures were approved by the Committee for Protection 

of Human Subjects at the University of California, Los Angeles (UCLA). The sample size was 

determined on the basis of previous research on action recognition using MTurk (Shu, Thurman, 

Chen, Zhu, & Lu, 2016). Data collection for the online experiment stopped on the day when the 

expected sample size was reached. 

Stimuli. Action stimuli were generated from the Carnegie Mellon University Motion Capture 

Database (http://mocap.cs.cmu.edu) and processed using the Biological Motion Toolbox 

developed by van Boxtel and Lu (2013). We selected actions in which a person walked on an 

uneven surface with invisible steps, and both horizontal and vertical body displacements were 

included in the action sequence. The stimuli used in the experiments appear in Videos S1 and S2 

in the Supplemental Material available online; they can also be viewed at 

http://cvl.psych.ucla.edu/causal-action-2016.html. 
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Body displacements were computed as the change in the average position of the two hip 

joints in time, and limb movements were defined as the residual motion after subtracting the 

body-motion component on a frame-by-frame basis. The temporal relationship between limb 

movements and body displacements was manipulated by shifting the sequence of body 

displacements forward or backward in time relative to the sequence of limb movements, as 

illustrated in Figure 2.1a. Body displacements were manipulated to either lead or lag behind the 

posture change resulting from the limb movements. In the lead condition, the temporal sequence 

of body positions was shifted forward in time relative to limb movements (i.e., the effect 

preceded); in the lag condition, the temporal sequence of body positions was shifted backward in 

time (i.e., the cause preceded). 
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Figure 2.1: Illustrations of the stimuli in Experiment 1. The dots in (a) represent point-light walkers 

with different temporal relationships between body displacements and limb movements. The 

ellipses circle the key posture when a person takes an upward step, and the black arrows indicate 

the upward change of body position that is associated with such a step. The point lights in the 

walker changed from light to dark color to denote elapsed time. In the match condition, the posture 

and body displacements were in synchrony. In the lead condition, the body position changed before 

the limbs moved. In the lag condition, the body position changed after the limbs moved. The 

stimulus frames in (b) were taken from a sequence in which a point-light walker moved on an 

uneven surface that had invisible steps. The image slowly rotated in a clockwise direction. Videos 

S1 and S2 in the Supplemental Material show examples of dynamic stimuli. The videos are also 

available at http://cvl.psych.ucla.edu/causal-action-2016.html. 
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Procedure. Participants were presented with the following cover story: “Imagine you are 

viewing a walking sequence on an uneven surface with invisible steps through a slowly rotating 

camera. The rotation of the camera will help you perceive the 3D space. Look at the relative limb 

movements of the walker. Look at how the body position changes over time. Ask yourself if that 

could be a real person’s motion in the environment.” Participants were asked to rate the 

naturalness of the videos on a scale from 1 (unnatural) to 5 (natural). 

On each trial, participants saw a point-light actor walking on a checkerboard surface with 

invisible steps, as shown in Figure 2.1b. The camera rotated in a counter-clockwise direction 

(meaning that the checkerboard and the actor appeared to rotate clockwise) at a speed of 3°/s, 

which was intended to facilitate 3-D perception of the action stimulus in the environment. Each 

video lasted 8.33 s and consisted of 500 frames selected from the original 2,000-frame videos 

based on the 32-s motion-capture data. 

Actions were presented with a randomly selected starting viewpoint (45 from a side 

view) to ensure that any effect did not depend on a specific viewpoint. Six temporal offsets 

between limb movements and body displacements were used: 0, 0.5, 1.0, and 8.33 s 

(corresponding to 0,  30,  60, and 500 frames at a refresh rate of 60 Hz). The conditions with no 

offset and a large offset (i.e., 8.33 s) served as extreme cases to help participants anchor the two 

ends of the rating scale. Positive offsets constituted the lead condition (i.e., the effect of body 

displacements occurred before the causal cue of limb movements); negative offsets constituted 

the lag condition (i.e., the effect of body displacements occurred after the causal cue of limb 

movements). 
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The experimental procedure included two blocks. Each block consisted of 12 

experimental trials (two starting viewpoints for each of six temporal offsets) and one randomly 

placed attention-check trial. The attention-check trial assigned a trivial task; participants were 

presented with either walking or jumping sequence and were asked to identify the presented 

action. The purpose of including these two attention-check trials was to identify outlier 

participants who gave random responses in the online experiment. 

2.3.2 Results 

Fourteen of the 109 online participants were removed from the analysis because they 

failed to satisfy the inclusion criteria. Specifically, 9 participants were excluded because they 

failed to recognize the simple actions in both of the attention-check trials. Data from 5 

participants were excluded because they provided the same ratings for all trials in the 

experiment. 

As expected, naturalness ratings were highest in the zero-offset condition (i.e., perfect 

synchrony between limb movements and body displacements; M = 3.82, SD = 0.79); naturalness 

ratings were lowest in the condition with a temporal offset of 8.3 s (M = 2.29, SD = 1.01). These 

results demonstrate that human observers are generally sensitive to the magnitude of temporal 

offsets between limb movements and body displacements. The two extreme conditions (i.e., 0.0 s 

and 8.3 s) did not include the directional temporal shifts to generate the lead and lag offsets; 

consequently, ratings for these conditions were not included in the following analyses. 

To examine how the directionality of temporal offsets between the two movement cues 

influenced naturalness ratings, we conducted repeated measures analyses of variance (ANOVAs) 

with two within-subjects factors, temporal offset magnitude (0.5, 1.0 s) and offset direction (lead, 
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lag). As shown in Figure 2.2, the results revealed a significant main effect of temporal offset 

direction, F(1,94) = 8.95, p = 0.004, ηp
2 = 0.842. This finding indicates that observers judged 

actions to be more natural when the temporal offset was consistent with the expected causal 

direction (lag condition) than when there was an equal amount of temporal offset in the lead 

condition (i.e., when the temporal offset was opposite the causal direction). As expected, we 

found a significant main effect of offset magnitude, F(1,94) = 28.73, p < 0.001, ηp
2 = 1.0, which 

indicates that people were sensitive to the general degree of temporal alignment between limb 

movements and body displacements when assessing the validity of observed actions, and larger 

offsets resulted in lower naturalness ratings. The two-way interaction between offset magnitude 

and temporal direction was not significant, F(1,94) = 0.10, p = 0.754. Although the rating 

differences in the absolute scale may appear small, it should be emphasized that (as noted 

previously) participants’ ratings did not span the full 5-point scale. These mean ratings indicate 

that participants tended to provide naturalness ratings in the middle range, as long as the 

observed limb movements did not obviously violate biological constraints (which is consistent 

with results from a previous study on action recognition; Thurman & Lu, 2013). 
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Figure 2.2: Results from Experiment 1: mean naturalness rating as a function of temporal offset 

between limb movements and body displacements, presented separately for the lead condition and 

the lag condition. Also shown are the mean naturalness ratings in the conditions with offsets of 0.0 

and 8.3s, which anchored the range of ratings. Error bars represent 1 SEM. Asterisks indicate 

statistically significant differences between conditions (*p < .05). 

 

2.4 Experiment 2a 

In Experiment 2, we aimed to gauge the inferential aspects of causality in action 

perception. We drew on a design typically used in studies of causal inference to explicitly 

separate the causal cue and its effect. We created a reasoning task in which the two movement 

cues were presented by distinct visual entities in the display. This new reasoning task assessed 

whether people used the default causal relation to infer the binding between the two types of 

movements. 
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2.4.1 Method 

Participants. Twenty UCLA undergraduate students (mean age = 20.8 years; 14 female) 

participated in the experiment for course credit. All participants had normal or corrected-to-

normal vision. The sample size was estimated on the basis of sample sizes in previous studies of 

causal perception in a laboratory setup (N = 14 in Scholl & Nakayama, 2002). Data collection for 

this experiment stopped in the week when the expected sample size was reached. 

Stimuli. Four action sequences of a person walking on an uneven surface were displayed from 

two viewing directions with orthogonal projection. The size of the walker was a maximum of 

3.2° wide by 5° high. The walker was displayed as a red stick figure (3.5 cd/m2) on a black 

background (0 cd/m2); the size of the frame was 22° by 12°. The walker appeared to walk on a 

treadmill by maintaining a stationary position for the average location of two hip joints at the 

center fixation point. A gray dot (75.9 cd/m2; diameter = 1), tracking the position change of the 

body over time (as a GPS navigation system shows the location of a vehicle), depicting a GPS 

signal of body location in the space, moved separately according to the trajectory of body 

displacements. Figure 2.3 provides a schematic illustration of an example stimulus. A white 

fixation cross (146.5 cd/m2) was always shown at the center of the screen. Participants used a 

chin rest to maintain a fixed viewing distance of 35 cm. 

On each trial, action stimuli were presented for 6.67 s. The first 100 frames (i.e., 1.67 s) 

presented only the walker to encourage participants to maintain fixation on the walking action. 

The GPS dot then appeared at the center of the screen in the 101st frame and subsequently 

moved according to the assigned trajectory of body displacements. In the experiment, the stimuli 

were shown from one of four viewpoints (45, 135, 225, and 315). The order of conditions was 

randomized. 
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Figure 2.3: Illustrations of the stimuli in Experiments 2a and 2b. The illustration on the left 

shows several possible limb movements for a stick-figure walker resulting from posture changes 

over time. The walker remained in a stationary location (i.e., global body displacement was 

derived from hip movement and was then subtracted from the original walking action); the dot 

depicts the change in body position that results from body displacements. The sticks in the 

walker and the dot changed from light to dark color to denote elapsed time. Three sample frames 

from an experimental trial are shown on the right in to demonstrate how a dot (represented as a 

GPS dot in Experiment 2a and a laser spot in Experiment 2b) moved according to the assigned 

trajectory of body displacements with a particular temporal offset from limb movements. Videos 

S3 and S4 in the Supplemental Material show examples of the dynamic stimuli used in these 

experiments (they are also available at http://cvl.psych.ucla.edu/causal-action-2016.html). 

 

Procedure. Participants were given a cover story: “Imagine that you work for a 

specialized video analysis company and are given two sources of information: (1) A posture-

change video from a motion tracking system, which records a person’s posture change over time 

and keeps the figure always at the center, and (2) A dot-motion video from a GPS system, which 

tracks the location of the person.” Participants were then presented with a few videos 

demonstrating how the posture changes were separated from the change in body position over 
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time, based on the original motion-capture video. They were informed that “It turns out that in 

preparing the combined videos, mistakes are sometimes made. Sometimes the posture-change 

video is correctly linked to the dot-motion video. However, in other cases, the posture-change 

and dot-motion videos were mixed up so that the two videos shown together do not match.” 

Participants were asked to judge whether the posture-change video and dot-motion video 

matched by pressing one of the two response buttons. 

Participants were given two practice blocks with feedback. Each practice block consisted 

of 12 trials,  6 trials of matched stimuli (i.e., temporal offset of zero) and 6 trials of unmatched 

stimuli with obvious temporal misalignment (i.e., body motion was 8.33 s ahead of limb 

movements). Matched and unmatched trials were randomly interleaved. Feedback was provided 

after each practice trial. For correct responses, participants were provided with a beep sound and 

the word “Correct” on the screen. For wrong responses, the screen displayed the word 

“Incorrect” at the end of the practice trial. 

In the subsequent test block, 96 trials were presented to participants. The trials included 

eight levels of temporal offsets (0.02 s, 0.5 s, 1.0 s, and 1.5 s) between body displacements and 

the posture change resulting from limb movements. The experiment included 10 filler trials that 

came from the practice block. The 10 filler trials were randomly inserted into the experiment as 

attention-check trials. The entire experiment lasted for about 20 min. 

2.4.2 Results 

The results of Experiment 2a are shown in Figure 2.4a. A repeated measures ANOVA 

with two within-subjects factors (condition: lead, lag; temporal offset: 0.02 s, 0.5 s, 1.0 s, and 1.5 

s) revealed a significant main effect of offset magnitude, F(3,17) = 21.99, p < 0.001, ηp
2 = 1.0, 
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which indicates that participants were sensitive to the temporal misalignment between the two 

motion cues in this binding task. The interaction of offset magnitude and temporal direction of 

the offset was marginally significant, F(3,17) = 3.14, p = 0.053, ηp
2 = 0.622, which suggests that 

the influence of temporal direction between the two movement cues on the binding judgment 

depended on the magnitude of temporal offsets. We found that with a 1-s offset, there were a 

significantly higher proportion of matched responses in the lag condition (M = 0.50, SD = 0.27) 

than in the lead condition (M = 0.33, SD = 0.27), F(1,19) = 9.34, p = 0.006, ηp
2 = 0.826. The 

difference remained significant after adjusting for multiple comparisons using the Bonferroni 

correction procedure. A causal-asymmetry effect was thus observed within a middle range of the 

temporal window when the two motion cues could be interpreted as originating from a single 

walker but with a noticeable temporal delay between the two motion signals. 

 

Figure 2.4: Results from (a) Experiment 2a and (b) Experiment 2b: mean proportion of “match” 

responses as a function of temporal offset, presented separately for the lead condition and the lag 

condition. In Experiment 2a, the temporal offset was between relative limb movements and body 

displacements. In Experiment 2b, the temporal offset was between relative limb movements 
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(effect) and the motion of the laser dot (cause). Error bars represent 1 SEM. Asterisks indicate 

significant differences between conditions (**p < .01, ***p < .001). 

 

A temporal-asymmetry effect was not observed for the temporal offsets in the extreme 

conditions. When the temporal offset was very small (e.g., 0.02 s), observers might not have 

detected the temporal differences between the lead and lag conditions. However, when the 

temporal offset was very large (e.g., 1.5 s), observers might infer that the two videos were 

generated from different sources; therefore, they judged the two signals to be mismatched, 

regardless of the temporal direction of offset. Two post hoc control experiments were conducted 

to test these predictions. 

In one control experiment, we showed two displays side by side, each with a temporal 

offset of the same magnitude, but one was positive and the other negative. Eight observers were 

asked to judge whether the two displays were the same or different. We found that observers 

judged the two displays with temporal offsets of 0.02 s and –0.02 s to be the same on a high 

proportion (M = .92, SD = .08) of trials. In contrast, for each of the other three magnitudes of 

temporal offsets (0.5, 1.0, and 1.5 s), people judged them to be the same much less often (Ms 

= .22, .13, and .13, respectively). These findings support the hypothesis that people can barely 

detect the difference between temporal offsets of 0.02 s and –0.02 s but are sensitive to the 

difference in temporal direction when the magnitude of temporal offsets was 0.5 s or more. 

In a second control experiment, we showed the same visual stimuli that we used in 

Experiment 2a. In the cover story, we introduced the participants (N = 21) to a one-person 

situation, in which the two sources of motion (i.e., the limb movements and the dot motions) 
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came from the same walker, and a two-person situation, in which the each of the two sources of 

motion came from a different walker. The participants’ task was to make a two-alternative forced 

choice about whether the two sources of motion came from one person or from two people. 

Results showed that the proportion who chose the two-person situation increased with the 

temporal offset (0.02-s offset: M = .22; 0.5-s offset: M = .38; 1.0-s offset: M = .56; and 1.5-s 

offset: M = .63). Only for the longest temporal offset (1.5 s) did the proportion of “two-person” 

choices significantly surpass the chance level of .50 (M = .63, SD = .18, p = .004). This finding 

indicates that when the display shows a longer temporal offset, people are likely to attribute the 

two motion cues to two different sources, which removes the dependence of judgments on 

temporal directionality. 

In summary, Experiment 2a used a binding task to provide evidence that observers are 

sensitive to the directionality of temporal offset between limb movements and body 

displacements in reasoning about the relation between the two motion sources. Specifically, 

starting at around 1 s of temporal offset, the two motion cues were more likely to be judged as 

matched when the causal limb movement preceded the effect of body displacement in a direction 

consistent with the natural causal relation (lag condition). 

 

2.5 Experiment 2b 

If the temporal-asymmetry effect found in previous experiments resulted from observers’ 

understanding of the inherent causal relation between the two motion sources involved in human 

body movements, the effect should be radically altered when the causal relation is changed. In 

Experiment 2b, we changed the cover story to specify that the dot represented a moving laser dot 
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(as a cause) that was being followed by a person (as an effect). In this case, rather than the limb 

movements causing the dot motion, limb movements are inferred to be the effects of dot 

motions, so the direction of causality has been reversed from Experiment 2a. This type of 

manipulation of schematic understanding by a cover story has been used in many previous 

studies to distinguish the impact of causal interpretation from associative learning (e.g., 

Waldmann & Holyoak, 1992). 

2.5.1 Method 

Participants. Nineteen students (mean age = 20.2 years; 14 female) participated in the 

experiment for course credit. All participants had normal or corrected-to-normal vision. None of 

the observers had participated in Experiment 2a. Data collection for this experiment stopped in 

the week when the expected sample size was reached. 

Stimuli and procedure. The stimuli, task, and procedure in Experiment 2b were identical to 

those in Experiment 2a, except for a small wording change in the cover story, which now 

referred to “a dot-motion video with a moving laser-generated spot, which the person is 

following closely.” 

2.5.2 Results 

In this situation, the two components of the stimuli are interpreted to represent two 

distinct entities, such that the moving dot (i.e., the laser dot) would now be the cause that should 

make the agent move in a certain way, and limb movements should be interpreted as the effect. 

Otherwise, stimuli were identical to those in Experiment 2a. The binding task was performed in 

the same manner as in Experiment 2a. Accordingly, any differences in people’s patterns of 

judgments between Experiments 2a and 2b could be attributed only to the influence of the 
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different causal interpretations conveyed by the cover story in each. The results of Experiment 

2b are shown in Figure 2.4b.  

A repeated measures ANOVA revealed a significant main effect of offset magnitude, 

F(3,16) = 18.97, p < 0.001, ηp
2 = 1.0, and a significant interaction of offset magnitude and 

temporal direction of offset, F(3,16) = 16.09, p < 0.001, ηp
2 = 1.0. When the dot motion preceded 

the limb movements, (which was consistent with the causal direction in the person-following-a-

dot cover story), participants gave a high proportion of match responses, regardless of the 

magnitude of temporal offset. However, when dot motion followed limb movements (which was 

opposite the causal direction in the person-following-a-dot cover story), the magnitude of the 

temporal offset had a significant impact on human judgments. The proportion of match responses 

in the lead conditions was significantly greater than the proportion of match responses in the 

corresponding lag conditions for offsets of 0.5 s, 1.0 s, and 1.5 s (all ps < .001), which indicates a 

stronger tolerance for temporal deviations between the two motion sources when the dot motion 

(cause) preceded the limb movements (effect), relative to the corresponding condition in which 

the effect cue preceded the cause. 

We conducted a mixed-model repeated measures ANOVA to examine the difference in 

response patterns in Experiments 2a and 2b (in which the cover story changed but the judgment 

task and stimuli were the same). The dependent variable in this analysis was the temporal-

asymmetry effect, calculated as the difference in the proportion of match responses between the 

lag condition and the corresponding lead condition (i.e., the lead condition with the same offset 

magnitude). Results showed a significant interaction effect between the magnitude of temporal 

offsets and cover story, F(3, 35) = 13.29, p < 0.001, ηp
2 = 1.0. This interaction effect reflects the 

fact that when observers received the laser spot cover story in Experiment 2b, their judgments 
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changed dramatically and effectively reversed their interpretation of the cause-effect relations 

between motion cues.  

Furthermore, this temporal-asymmetry effect was maintained for a larger range of offset 

magnitudes (from 0.5 s to 1.5 s) for Experiment 2b than for Experiment 2a. The strength and 

robustness of the effect in Experiment 2b are probably due to participants’ qualitative 

interpretation of a “following” action. Participants may perceive a causal relation between the 

two motion cues as long as the movement of one entity follows the same trajectory as that of 

another entity, without necessarily being constrained to a specific value of temporal delay 

between the two movements. Whereas the causal relation between limb movements of a person 

and displacement of their body (Experiments 1 and 2a) is theoretically more closely coupled in 

time, the action of an agent that is following a separate object (Experiment 2b) can be much 

more temporally variable, as long as the motion of the agent consistently lags behind that of the 

object. 

In summary, Experiments 2a and 2b used identical visual stimuli but induced different 

causal beliefs about the relation between limb movements and a distinct moving object (the dot). 

The opposite pattern of judgments obtained in Experiment 2a compared with Experiment 2b 

suggests that when considering movements attributed to a single walker, by default observers 

link bodily movements of articulated limbs (causes) to motions of body locations through the 

environment (effects). But when considering the movements of one agent with respect to a 

separate distal object, observers can flexibly assign the effect role to bodily movements of the 

agent, interpreting them as being caused by intent to follow a moving target. The contrast 

between the patterns of results observed in Experiment 2a and Experiment 2b provides strong 

evidence that the temporal-asymmetry effect is based on the observer’s attribution of the causal 
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relation between two movement cues and does not reflect a mere association or low-level 

physical properties of the displays. 

To assess the possibility that the temporal-asymmetry effect might be due to statistical 

learning of temporal regularities (i.e., that limb movements should precede body displacement in 

time, without necessarily assuming limb movements cause the latter motion), we performed a 

further post hoc control experiment that introduced a noncausal association relation between the 

two motion cues. In the cover story, participants were told:  

Imagine that two actors aim to synchronize their body movements and they walk on two 

identical terrains, each with steps. You are given two sources of information: (1) a posture-

change video from a motion tracking system, which records Actor 1’s posture change over time, 

and (2) a dot-motion video from a GPS system, which tracks the location of Actor 2.  

Participants were asked to judge whether the posture-change video of Actor 1 and the 

dot-motion video of Actor 2 matched one another, such that the two actors moved in synchrony. 

All other aspects of the experiment were identical to those of Experiment 2a. Twenty-two UCLA 

students participated in this study. In contrast to the results of Experiment 2a, none of the offset 

conditions revealed a difference in the proportions of “match” responses between the lag and 

lead conditions, including the critical 1.0-s temporal-offset condition (lead: M = .37, SD = .23; 

lag: M = .37, SD = .20), t(21)<0.001, p = 1.0. These findings indicate that mere temporal 

association was not sufficient to elicit a temporal-asymmetry effect in the absence of a direct 

causal link between the motion cues. 

 



37 

 

2.6 An Ideal Observer Model Based on Visual Statistics 

As an additional test of the adequacy of a purely associative account of our findings, we 

developed an ideal observer model solely based on visual statistics of action stimuli. This model 

allowed us to determine whether contingent associations learned from experience could predict 

the temporal asymmetry effect. The observer model is a hypothetical device that makes optimal 

decisions given available information based on natural statistics of the visual environment 

(Geisler, 2011; Kersten, Mamassian, & Yuille, 2004; Lu, & Yuille, 2006). To capture the visual 

statistics in relevant action stimuli, we analyzed 20 walking actions from the CMU motion-

capture database, in which a walker explored an indoor environment on an uneven surface. We 

generated a pool of point-light stimuli from 20 actions each viewed from six different directions 

with orthogonal projections. This stimulus set consisted of 180,000 posture frames (20*1500*6), 

each including the coordinates of the 13 joints involved in the action.  For each posture, body 

displacement (v) was calculated as the position change of averaged hip joints between two 

neighboring frames. To quantify limb movements, we relied on posture analysis, which has been 

shown to be an important computational mechanism in action recognition (Theusner, de 

Lussanet, & Lappe, 2014; Lange & Lappe, 2006; Thurman & Lu, 2014b, 2016b).  A K-mean 

algorithm (Jain, 2010) was used to categorize the posture frames into a finite number of key 

postures involved in walking on the uneven surfaces. We selected 500 posture clusters (C), as 

model performance reached a plateau and did not change with additional clusters. Each of the 

180,000 frames in the stimulus set was assigned to the most similar posture cluster. We then 

computed the histogram of body velocity given each of the posture clusters, 𝑃(𝑣|𝐶,𝑚𝑎𝑡𝑐ℎ𝑒𝑑), 

and fitted the histograms using a 2D Gaussian distribution, as illustrated in the left panel of 

Figure 2.5.   
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To simulate the performance of observers in Experiment 2a, the model needs to estimate the 

probability that the observed two pieces of information provided by stimuli, body velocity 𝑆𝑣 and 

posture 𝑆𝑃, are from matched signals in actions. Assuming equal prior probability for matched 

and mismatched judgments, the posterior probability will be determined by the likelihood 

according to the empirical distribution measured above, 𝑃(𝑣|𝐶,𝑚𝑎𝑡𝑐ℎ𝑒𝑑), weighted by the 

probability that the observed posture is sampled from each of the posture clusters, as described in 

Equation 2.1. 

𝑃(𝑚𝑎𝑡𝑐ℎ𝑒𝑑|𝑆𝑣, 𝑆𝑃) ∝ ∑ 𝑃(𝑣 =𝐶 𝑆𝑣|𝐶,𝑚𝑎𝑡𝑐ℎ𝑒𝑑)𝑃(𝐶|𝑆𝑃)        (2.1) 

Figure 2.5 (right) shows the simulation results. Higher log-likelihood values indicate a 

greater probability of considering the two motion cues as “matched”. The ideal observer model 

consistently predicted slightly more matched responses in the condition in which the GPS dot 

was shifted ahead of the limb movements than when the GPS dot was shifted behind the limb 

movements. This result is opposite to the temporal asymmetry effect observed from human 

judgments recorded in Experiment 2a. This pattern of ideal observer results was obtained for a 

wide range of cluster numbers in the model simulation (from 20 clusters to 1000 clusters). 

Hence, the observer model using statistical associations derived from large numbers of 

observations based on past experience (but lacking any causal understanding of human walking 

actions) failed to account for the pattern of human judgments. This failure of the model based 

solely on statistical association between body displacements and postures in actions resulting 

from limb movements provides converging evidence that causal understanding of body 

movements serves as a critical constraint in action perception and understanding. This finding 

implies that the causal constraint does not arise from statistical associations derived by passively 

viewing bodily movements in the world, where we commonly observe the occurrence of the two 
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types of motion in near synchrony. Rather, the causal constraint may be acquired through active 

interaction as an agent influencing the physical and social world.   

 

Figure 2.5. Results of an ideal observer model based on visual statistics. Left panel, distribution 

of body displacements (right) associated with an example key posture (left), derived from visual 

statistics from action observations. Vx and Vy refer to horizontal velocity and vertical velocity of 

body displacements (negative values indicated moving to the left on x-axis and moving down on 

y-axis). The distribution of body displacements suggests that the posture is more likely 

associated with moving towards the left, with small amount of vertical motion. Right panel, 

model simulation results for offsets used in Experiment 2a. These are opposite from human 

results, implying that the association between limb movements and body displacements learned 

from visual statistics is insufficient to account for human performance.  

 

2.7 General Discussion 

The basic finding in the present study is that participants were more likely to bind human 

actions in a causally consistent way. Although observers commonly observe the occurrence of 

the two types of motion in synchrony, they can tolerate deviation from this normal synchronicity. 
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Our results show that the degree of tolerance is constrained by the directionality of the causal 

relation between motions. 

In fact, such a temporal-asymmetry effect has been observed (albeit not previously noted 

by researchers) even in the classic ball-collision paradigm introduced by Michotte (1946/1963), 

which elicits immediate and irresistible causal impressions that one moving ball causes a second 

ball to move or launch. It is well known that the causal impression is reduced after the 

introduction of a spatial or temporal gap. These two manipulations can be interpreted as temporal 

offsets with different directions in time. In the spatial-gap condition, the effect ball (the one that 

is launched) moves before the causal ball (the launcher) reaches the contact location (i.e., effect 

precedes the cause), analogous to the lead condition in the present article. In the temporal-gap 

condition, motion of the effect ball is delayed after the causal ball arrives at the contact location 

(i.e., cause precedes the effect with an abnormal temporal gap), analogous to our lag condition. 

We examined human data from a recent study using this paradigm (Sanborn, Mansinghka, & 

Griffiths 2013). Given the speeds of the moving balls used in their study, a 1-cm spatial gap 

corresponded to a positive 16-ms temporal offset (i.e., the effect ball moved for 16 ms before the 

causal ball arrived in the contact location), which yielded a causal rating of about .4 in the lead 

condition. In comparison, a 16-ms temporal gap yielded a causal rating of .75 in the lag 

condition. Thus, in conditions that equated the magnitude of temporal offset, people gave much 

higher causal ratings to the lag condition, presumably because it preserved the expected causal 

order of events. 

A temporal-asymmetry effect has now been observed for a range of causal events, 

including object interactions, action-initiated changes in object status (e.g., a button press 

triggering a flashed disk; Desantis & Haggard, 2016; Rohde, Greiner, & Ernst, 2014), and body 



41 

 

movements (as observed in the present study). We expect that similar effects would be observed 

for other causal events involving nonbiological stimuli, such as rotating wheels (as cause) and 

cars moving forward (as effect), as long as people have an understanding of the causal relation 

involved in the physical system. From this perspective, human body movements do not have a 

special status; rather, they serve as one example of causal events that yield the temporal-

asymmetry effect. However, human actions may elicit a temporal-asymmetry effect with 

different timing properties relative to other physical systems that involve inanimate objects. For 

example, in the ball-collision and action-initiated-flash situations, the magnitude of temporal 

offset that yields an asymmetry is very short (< 200 ms), which is consistent with causal 

mechanisms that operate quickly and perhaps spontaneously (Scholl & Tremoulet, 2000). In 

contrast, the asymmetry effect found for body movements in the present study is substantially 

longer (offset of about 1.0 s). This larger temporal window indicates much greater tolerance for 

temporal misalignment between limb movements and body displacements, which may reflect the 

increased complexity of the causal mechanisms involved in perceiving body movements. 

One possible alternative explanation of the temporal-asymmetry effect observed in the 

present study is that people’s judgments are guided by temporal regularities learned in the 

environment and perhaps transferred by analogy to the similar situations described in the cover 

stories used in Experiment 2. For example, people are likely to have a clear expectations of 

temporal order for relations such as “chasing” or “following.” In general, a causal relation 

implies a certain temporal order (cause before effect), but perhaps causality is just one special 

case (albeit an important one) of effects more directly attributable to temporal knowledge per se. 

Although this alternative explanation might account for the findings of Experiment 2, 

which involved cover stories that probably conveyed temporal as well as causal knowledge, it 
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does not offer a compelling explanation of the results of Experiment 1. Experiment 1 did not 

manipulate a cover story; participants simply observed point-light displays of walkers and judged 

their naturalness as a function of temporal offsets. In daily life, people often observe the co-

occurrence of two types of motion at the same time (e.g., planting a foot, extending the legs, and 

moving the body forward co-occur). If learned temporal regularity, rather than causality, was the 

key factor, we would expect to have observed perceived naturalness peaks at zero offset, with a 

symmetric decline as the temporal offset was increased. Instead, we found the asymmetrical 

pattern predicted by a causal interpretation. Hence, the causal relation between limb movements 

and body displacements provides a parsimonious explanation for the findings regarding both 

action perception and inference. However, we note that using solitary actions of a single actor 

makes it difficult to isolate causation from temporal regularity (i.e., to generate conditions 

analogous to Michotte’s temporal-gap experiment). Future studies may be able to further 

distinguish effects of causality versus temporal order per se by investigating patterns of motion 

cues involving interactions between two actors. 

Actions can be interpreted as a willful expression of body movements in the environment, 

caused by intentional patterns of limb movement. Sensitivity to causal dynamics in body 

movements may play a general role in tracking perceptual animacy, which supports the ability to 

visually distinguish living from nonliving entities (Thurman & Lu, 2013, 2014a). In addition, as 

relational binding in general enhances representational power (Lu, Chen, & Holyoak, 2012), the 

perceived causal relation between the two types of movement cues makes it possible for people 

to understand why the body moves the way it does. Causal understanding of actions enables 

explanation of the past as well as prediction of the future (Cheng, 1997), which provides a 

fundamental constraint on perception and inference from human bodily movements. 
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CHAPTER 3: 

Perception of Continuous Movements from Causal Actions 

 

3.1 Abstract 

We see the world as continuous with smooth movements of objects and people, even 

though visual inputs can consist of stationary frames. The perceptual construction of smooth 

movements depends not only on low-level spatiotemporal features but also high-level 

knowledge. Here, we examined the role of causality in guiding perceptual interpolation of 

motion in the observation of human actions. We recorded videos of natural human-object 

interactions. The frame rate was manipulated to yield short and long stimulus-onset-asynchrony 

(SOA) displays for a short clip in which a catcher prepared to receive a ball. The facing direction 

of the catcher was either kept intact to generate a meaningful interaction consistent with 

causality, or it was transformed by a mirror reflection to create a non-causal situation lacking a 

meaningful interaction. Across four experiments, participants were asked to judge whether the 

catcher’s action showed smooth movements or sudden changes. Participants were more likely to 

judge the catcher’s actions to be continuous in the causal condition than in the non-causal 

condition, even with long-SOA displays. Body orientation was manipulated to demonstrate the 

robustness of the causal interpolation effect, which held as long as the temporal contingencies in 

causal actions were maintained. These findings indicate that causality in human actions guides 

interpolation of body movements, thereby completing the history of an observed action despite 

gaps in the sensory information. Hence, causal knowledge not only makes us see the future but 

also fills in information about recent history.   
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3.2 Introduction 

In our daily life, we are constantly incorporating new visual information to form a 

continuous impression of the dynamic world. However, the perceptual construction of smooth 

movements is not a trivial task, since visual inputs are actually discrete frames or disjointed clips 

separated by constant eye movements. Flipbooks, for example, exploit our susceptibility to 

apparent motion (Wertheimer, 1912), where our visual system induces the perception of dynamic 

scenes from the presentation of static images in rapid succession.  

Apparent motion offers an illustrative case of the human visual system’s tendency to 

interpolate the paths of perceptual objects over time, and to produce the perception of smooth 

motion across discrete samples of visual stimuli at different time points. The appearance of 

smooth motion is not exhaustively determined by low-level visual features, such as inter-frame 

spatial displacement and temporal sampling rate (Braddick, 1974; Burr, Ross & Morrone, 1986).  

Previous studies have demonstrated that it is only within certain ranges of displacements and 

stimulus-onset-asynchrony (SOA) between frames that a two-frame stimulus evokes a percept of 

continuous motion, and apparent motion is lost when the spatial and temporal parameters exceed 

those limits (Baker, Curtis, & Braddick, 1985a, 1985b; Bours, Stuur, & Lankheet, 2007; Lappin 

& Bell, 1976; Morgan & Ward, 1980). These behavioral findings are consistent with 

neurophysiological findings that neurons in early visual areas (such as V1 and MT) demonstrate 

similar spatial and temporal limits (Baker & Cynader, 1986; Churchland, Priebe, & 

Lisberger, 2005; Mikami, Newsome, & Wurtz, 1986; Newsome, Mikami, & Wurtz, 1986). 

The perception of smooth motion is also influenced by high-level visual knowledge about 

shapes, objects and events involved in the stimuli (Sigman & Rock, 1974; Braddick, 1980; 

Shiffrar & Freyd, 1990; 1993; Chen & Scholl, 2016). Previous research provided compelling 
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evidence to show that higher-level processing incorporates visual knowledge to influence 

interpolation of motion signals in image sequences. For example, in typical cases of apparent 

motion, an object presented in one frame tend to be perceived as moving with the shortest path to 

its location in the subsequent frame. However, Shiffrar and Freyd (1990; 1993) showed that, 

when two frames of human body postures are presented with long duration between frames, 

people perceive the body movements following a longer path that satisfies biomechanical 

constraints, rather than the shortest path which would imply to move cross the body. Another 

compelling demonstration by Chen & Scholl (2016) further illustrates that high-level knowledge 

can influence motion perception, even introducing illusory motion for static images. In the study, 

observers watched a change from a complete square shape to a truncated form with a missing 

piece and were asked to report whether this change was sudden or gradual. The key manipulation 

was whether the shape of the missing piece was generated by an “intrusion” physical interaction, 

e.g., as when an object pushed into a lump of clay, or whether it was imposed by cutting a piece 

out of clay.  Results showed that observers in the intrusion condition were more likely to 

perceive a gradual shape change, or illusory gradual motion, even when it was actually a sudden 

change than did the observers in the imposed condition. This result suggests that causal 

knowledge probes the visual system to reconstruct motion from static images.  

 The typical view about causal knowledge emphasizes its application to reasoning and 

thinking, as knowledge about the causal structure of the world is useful for making predictions, 

generating explanations, and planning interventions (Cheng, 1997; Woodward, 2003). However, 

there is also ample evidence to show that causal knowledge can influence perception and 

memory. Previous evidence shows that causality between limb movements and body motions in 

human actions influences judgments of naturalness of actions and their inferences about human 
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actions (Peng, Thurman, & Lu, 2017). Causal knowledge has been shown to elicit false 

memories of actions. Strickland and Keil (2011) found that implicit causal connections between 

agents and objects led to false memories of action frames that were never presented. For 

example, adults watched videos in which an actor kicked a ball, but the videos omitted the 

moment in which the actor actually contacted the ball. In a later recall task, participants falsely 

reported seeing the physical contact when the subsequent footage implied a causal relation 

between the actor’s movements and the motion of the ball. Similarly, Bechlivanidis and Lagnado 

(2013, 2016) demonstrated that causal knowledge can induce false memories about the temporal 

order of events. Having a belief that event type A causes event type B made participants more 

likely to misremember sequences of observed events that violated those causal beliefs (i.e., when 

an event of type B temporally preceded an event of type A) than sequences that coincided with 

their causal belief. 

These findings present compelling cases in which causal knowledge plays an influential 

role in consolidating memories about actions and events. In addition, work on causal binding has 

shown that causal knowledge biases the perception of time and space (Humphreys & Buehner, 

2009, 2010; Buehner, 2012). For example, Buehner and Humphreys (2009) demonstrated that 

when one event is represented as causing another, the perceived time lapse between the two 

events appears shorter than when the two events are not causally related. This finding indicates 

that two causally related events are more likely to trigger the perception of spatiotemporal 

contiguity.  

Here, we propose that causal knowledge of observed events not only affects visual 

recognition and memory, but also the visual experience of the observed events. Specifically, we 

examine whether high-level knowledge of the causal relations between agents and objects 
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inherent in human activities influences the extent to which the visual system interpolates body 

motion. To answer this question, we test the hypothesis that higher-level visual processing 

incorporates prior knowledge about causal relations in human activities to fill in missing 

information between static frames, yielding the subjective experience of smooth motion in 

human actions.  

We designed four experiments to examine the role of causal knowledge in guiding 

perceptual interpolation of motion in human actions. We recorded videos of human-object 

interactions in a natural environment (a thrower directing a ball to a catcher). For short clips in 

which the catcher prepared to receive the ball, the frame rate was manipulated to introduce short 

and long inter-frame durations, defined as stimulus-onset-asynchrony (SOA). The duration of 

short SOAs was 33.3 ms/frame; that of long SOAs was 100 ms/frame. For causal actions, the 

facing direction of the catcher was maintained to generate a meaningful interaction consistent 

with a causal interpretation. For non-causal actions, the facing direction of the catcher was 

reversed to disrupt any meaningful interaction and generate an action sequence inconsistent with 

a causal interpretation. Participants were asked to judge whether the catcher’s action showed 

smooth body movements or sudden changes.  

In Experiment 1, only the ball movement and catcher's action were shown, with the 

thrower occluded. We hypothesized that causal knowledge of actions influences the interpolation 

of discrete pieces of motion information, so that observers would be more likely to perceive 

smooth actions when observing causal than non-causal actions. In addition, the predicted effect 

is expected to be stronger for long-SOA displays in which the visual inputs are sparse, with 

fewer image frames. In Experiment 2 and 3, we further tested if the effect could generalize to 

causal human-human interactions involving both the thrower and the catcher. We hypothesized 
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that the causal interaction between two agents would facilitate visual interpolation and induce the 

same effect of smooth motion perception as Experiment 1. In Experiment 4, upright videos were 

compared to inverted videos to test an alternative hypothesis that the effect could be simply 

explained by visual familiarities, such as body orientation, rather than causality.   

 

3.2 Experiment 1 

Experiment 1 was designed to assess how a causal action between an agent and a physical 

object influences interpolation in the perception of smooth human actions. Causal actions were 

generated with an agent interacting with a moving object. Non-causal actions were generated 

with the same agent facing away from the moving object. We hypothesized that in the causal 

action condition, discretized human actions would be more likely to be perceived as smooth 

motion sequences. 

 

3.2.1 Methods 

Participants. Fifty UCLA undergraduate students (mean age = 21.1; 40 female) participated in 

the experiment for course credit. All experimental procedures were approved by the Committee 

for Protection of Human Subjects at University of California, Los Angeles (UCLA). All 

participants had normal or corrected-to-normal vision. 

Stimuli. Action videos were filmed with a camera in the gym with a temporal resolution of 

30 frames/s. Two pairs of actors (one male pair and one female pair) were enrolled and each pair 

performed three throwing-catching actions (i.e. bounce pass, chest pass, and underhand throw), 
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with each actor being the thrower once and catcher once. Seven video clips were selected as 

experimental stimuli. The video stimuli used in the experiments can be viewed at 

https://yujiapeng.com/causal-illusion-real. 

In Experiment 1, only the catcher and the ball appeared in the video; the thrower was not 

shown. For each video, a short critical period was selected during which the catcher’s arms 

showed the largest rising momentum during preparation to catch the ball. Each video lasted for 

567 ms. There were 10 frames before the critical period, and 1 frame after the critical period. The 

critical period began when the catcher's arms started to rise, and it ended right before the actor’s 

hands touched the ball. The duration of the critical period was 200 ms. In the long-SOA 

condition, only the first and the last frame of the catcher’s body movements were presented, all 

the middle frames were omitted. The presentation duration of the first and the last frames were 

lengthened to each cover half of the critical period at 100 ms per frame. In the short-SOA 

condition, all six frames showing body movements of the catcher were displayed, with the frame 

duration at 33.3 ms/frame. Note that the duration of the critical period was the same (200 ms) for 

both long-SOA and short-SOA displays. The movements of the ball were also the same and were 

kept intact in both long-SOA and short-SOA displays (Figure 3.1). 

https://yujiapeng.com/causal-illusion-real


50 

 

 

Figure 3.1. Illustrations of the critical clip in the long-SOA display with two frames (100 ms/frame) 

with a sudden posture change, and in the short-SOA display with six frames (33 ms/frame). 

 

As shown in Figure 3.2, the causal condition showed the catcher facing toward the ball as 

the ball movement causes the catcher to move his or her body in preparation. To generate non-

causal actions, image frames were processed using Matlab and Adobe Photoshop to horizontally 

reverse the facing direction of the catcher. The catcher was flipped horizontally to face away 

from the ball in the entire video, while keeping the background and the ball movement intact.  
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Figure 3.2: Sample frames of a causal action with the catcher facing towards the ball, and a non-

causal action with the catcher facing away from the ball. 

 

Procedure. Participants were seated 35 cm in front of a monitor with a 1024×768 resolution and 

60 Hz refresh rate. All the stimuli were generated by MATLAB Psychtoolbox (Brainard, 1997). 

Participants were instructed, “You will view an actor playing sports (such as passing a 

basketball) with someone else who is occluded by a whiteboard. The task is to judge whether the 

catcher actor shows a smooth action or a non-smooth sudden posture change. For a smooth 

action, the actor smoothly moves from one posture to another. For a non-smooth action, the actor 

suddenly moves from one posture to another.”  

 On each trial, a white fixation cross was presented at the center of the screen. Participants 

were asked to focus on the fixation cross throughout the experiment and to use their peripheral 

vision to see the video without making saccades. The center of the video was presented 13.7 

degrees to the left or to the right of the fixation point with a height of 18 degrees. Showing the 
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video in peripheral vision reduced the possibility that observers would track movements of the 

catcher without paying attention to other parts of the display. Half of the trials presented the 

video on the left of the fixation and the other half on the right. The catcher actor was always 

presented on the side relatively farther away from the fixation point. For example, if the video 

was presented on the right side, the ball flew from left to right and the catcher was located on the 

right side of the ball. After the video display, participants were asked to press one of two buttons 

to judge whether the video demonstrated actions with smooth body movements or sudden 

posture changes. 

 Participants were first presented with two blocks of practice trials to familiarize them 

with the task. In the practice blocks, participants saw “correct” on the screen plus a beep after 

each correct response, and they saw “incorrect” without a beep after each incorrect response. 

Each practice block consisted of eight trials. A separate video was used as the stimulus for the 

practice block; this video was not presented in the test. In the first block of practice, videos were 

slowed down to show the entire video with the frame rate of 66.6 ms/frame and to display the 

critical period for 666 ms. This manipulation was intended to allow participants to become 

familiar with the experimental setting and to understand the difference between smooth motion 

and sudden posture changes in body movements. In the second block of practice trials, videos 

were presented at a frame rate of 33.3 ms/frames, and the duration of the critical period was 200 

ms, as in the test session.  

 The test session followed the practice blocks. Test trials were identical to those in the 

second practice block with two exceptions: participants received no feedback on test trials, and 

test trials employed six new videos that were not used in practice blocks. A total of five test 

blocks were administered, each with 24 trials (causal/non-causal x long-/short SOA x 6 actions). 
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In each block, the presentation order of videos was randomly shuffled. Proportions of responses 

in judging actions as smooth motion were recorded for each condition.  

 

3.2.2 Results   

 We first examined the data in Block 1, as performance on subsequent blocks was likely to 

be affected by increased familiarity with the six videos used in the experiment. We conducted a 2 

(SOA: short- vs. long-SOA) by 2 (causality: causal action vs. non-causal action) repeated-

measures ANOVA on the proportion of responses judging the catcher’s action as smooth motion. 

As shown in Figure 3.3, results revealed a significant main effect of causal action, F(1,49) = 

4.742, p = .034. Especially for the long-SOA display, the proportion of "smooth" responses was 

significantly higher in the causal action condition in which the catcher faced towards the flying 

ball than in the non-causal action condition in which the catcher faced away from the ball (t(49) 

= 2.243, p = .029). The proportion of judging the long-SOA video as a smooth action increased 

43.7% from the non-causal condition to the causal condition, yielding a Cohen's effect size value 

of d = 0.31. Note that the smooth motion signal was much weaker in the long-SOA display, since 

the stimulus included only two static postures with the largest spatial displacements. Given the 

visual input with large uncertainty in the long-SOA condition, the causal relation between the 

ball and the body movements of the catcher enhanced interpolation between the two distinct 

postures, resulting in more misperception of sudden posture changes as smooth body 

movements. These results indicate that the effect of causality on motion interpolation emerged at 

the very beginning of the experiment. Not surprisingly, the main effect of the SOA was 

significant, F(1,49) = 124.803, p < .001, as short-SOA displays provided stronger motion signals 
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with short inter-frame spatial displacements than did long-SOA displays. The two-way 

interaction effect between causality and SOA was not significant, F(1,49) = .662, p = .42.  

 

 

Figure 3.3: Results of Experiment 1. (a) Proportions of responses in block 1 judging the catcher’s 

action as smooth motion. Asterisks indicate statistically significant differences between 

conditions (* p < .05, ** p < .01). (b) The difference between proportions of responses to causal 

and non-causal actions across 5 blocks in long- or short-SOA displays. 

 

To investigate whether the impact of causal actions on motion interpolation was 

maintained across blocks despite increased familiarity with the six videos, we conducted a three-
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way repeated measures ANOVA with blocks as the third factor.  We found a significant main 

effect of causal actions (F(1,49) = 12.419, p = .001), reflecting a larger proportion of "smooth" 

responses in the causal condition than non-causal condition. This result suggests that the 

facilitation effect of causality on the perception of smooth movements was maintained, even with 

increased familiarity with the videos. However, the data also revealed a significant three-way 

interaction (F(4,196) = 2.815, p = .027), reflecting a complex relation between familiarity and 

the influence of causal knowledge on the perceptual task. To interpret this significant three-way 

interaction effect, we found that the block variable had a strong impact on responses in the long-

SOA displays (F(4,196) = 4.572, p = .001), but a relatively weaker impact on short-SOA 

displays, for which the simple main effect of block for short-SOA was not reliable (F(4,196) = 

1.722, p = .15). This pattern was likely the result of close-to-ceiling performance in perceiving 

smooth motion in the short-SOA displays. 

 

3.3 Experiment 2 

In Experiment 1, we found evidence that causal interactions between a catcher and the 

ball facilitated the perception of smooth movements. This effect was especially prominent in the 

long-SOA condition in which motion signals were weak. In Experiment 2, we investigated 

whether the effect could be generalized from human-object interactions to human-human 

interactivity.  
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3.3.1 Methods 

Participants. Forty-eight new UCLA students (mean age = 20.48; 33 female) participated in the 

experiment for course credit. All participants had normal or corrected-to-normal vision.  

Stimuli and procedure. The experiment employed the same basic videos as in Experiment 1, 

showing two actors pass balls. The stimuli included the body movements of the thrower and the 

catcher (Figure 3.4). A white occluder was presented at the center of the video to cover the 

movements of the ball. Depending on the actual duration of action sequences, the stimuli ranged 

from 633 ms to 1233 ms. There were 10 frames before the critical period, and 1 frame after the 

critical period. The duration of the critical period was 200 ms. In the instructions, participants 

were asked to respond to the movements of the catcher while paying attention to the entire video. 

The causal manipulation in Experiment 2 was the same as Experiment 1: the facing direction of 

the catcher was horizontally reversed to generate the non-causal condition. The procedure for 

Experiment 2 was the same as that for Experiment 1. 

  

Figure 3.4: Sample frames of a causal action with the catcher facing towards the thrower, and a 

non-causal action with the catcher facing away from the thrower.  
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3.3.2 Results 

As shown in Figure 3.5, the proportion of smooth responses in Block 1 again revealed a 

significant main effect of causality (F(1,47) = 9.874, p = .003). Despite a longer temporal delay 

between the two actors’ actions, the causal relation between the two actors’ body movements 

impacted the visual experience of the catcher, as perceiving the catcher’s movements elicited the 

perception of more smooth and coherent motion. The proportion of smooth responses was 

significantly greater in the causal action condition compared to the non-causal action condition for 

the long-SOA condition (t(47) = 2.887, p = .006), but not for the short-SOA condition (t(47) = 

1.681, p = .099). The proportion of judging the long-SOA video as a smooth action increased 52.5% 

from the non-causal condition to the causal condition, yielding a Cohen's effect size value of d = 

0.44. No interaction effect was found, F(1,47) = 0.407, p = .527. These results extended the pattern 

of causal effects observed in Experiment 1.  

A three-way repeated measures ANOVA with blocks as the third factor showed a significant 

main effect of causal actions (F(4,47) = 6.508, p = .014), with a greater proportion of "smooth" 

responses in the causal condition than the non-causal condition. There was also a significant main 

effect of block (F(4,188) = 5.904, p < .001). Neither the two-way interaction effects nor the three-

way interaction effect was reliable. In summary, the converging results from the two experiments 

indicate that the influence of causal action on motion interpolation persisted even with increased 

familiarity with the videos.  
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Figure 3.5: Results of Experiment 2. (a) Proportions of responses in block 1 judging the catcher’s 

action as smooth motion (* p < .05, ** p < .01). (b) The difference between proportions of 

responses to causal and non-causal actions across 5 blocks in long- or short-SOA displays. 

 

3.4 Experiment 3 

In Experiment 1 and 2, we found evidence that causal actions between an agent and an 

object, or between two agents induced stronger tendencies of perceiving smooth human body 

movements by interpolating information between frames. In Experiment 3, we aimed to 

investigate if the effect would be altered in a more complex interaction scenario when the actions 

of the thrower and the movements of the ball were both included. This would provide a longer 

causal chain, with the ball being both an effect of the thrower’s action, as well as a cause of the 
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catcher’s movements. We aimed to examine if the complete causal chain would elicit a stronger 

effect of causal interpolation. 

 

3.4.1 Methods 

Participants. 49 students (mean age = 20.31; 39 female) participated in the experiment for 

course credit. All participants had normal or corrected-to-normal vision. None of the participants 

had participated in previous experiments. 

Stimuli and procedure. Same stimuli were used as Experiment 2 except that the movements of 

the ball were not occluded in Experiment 3. In the instructions, participants were asked to 

respond to the movements of the catcher while paying attention to the entire video (Figure 3.6). 

The procedure for Experiment 3 was the same as that for Experiment 2. 

 

 

Figure 3.6: An illustration showing sample frames of an upright and an inverted action in 

Experiment 3. 



60 

 

3.4.2 Results 

A 2 (SOA) by 2 (causality) repeated-measures ANOVA was conducted with the dependent 

variable being the proportion of judging the perceived action as a smooth action for the data in 

Block 1. The general findings from the first two experiments were replicated in Experiment 3. 

Results (Figure 3.7) showed a significant main effect of causality, F(1,48) = 6.345, p = .015, 

suggesting that the causal condition yielded a significantly higher proportion of judging actions as 

smooth actions compared to the non-causal condition. The main effect of SOA was again highly 

significant, F(1,48) = 227.289, p < .001. The interaction effect was not significant, F(1,51) = .155, 

p = .696. However, Experiment 3 showed that the proportion of rating a video as smooth was not 

significantly greater in the causal condition compared to the non-causal condition for the long-

SOA videos (t(48) = 1.336, p = .188), but was significant for the short-SOA videos (t(48) = 2.085, 

p = .042). This result pattern was different from findings in Experiment 1 and 2 in which the 

differences showed in the long-SOA condition, not in the short-SOA condition. In Experiment 3 

when the chain of causal actions was presented, as the thrower’s action caused the ball to move, 

and then the flying ball caused the catcher to move his/her body, the significant influence of causal 

relations was revealed in the short-SOA condition. This was probably due to a difference in the 

task difficulty between experiments. In Experiment 3, action sequences generated from the entire 

causal chain revealed more visual information than previous two experiments, yielding increased 

task difficulty. We found that Experiment 3 showed significantly longer response time in 

judgments averaging across all conditions (M = 914.38 ms, SD = 470.02) compared to Experiment 

2 (M = 678.14 ms, SD = 222.78) (t(95) = -3.173, p = .002). The increased difficulty of Experiment 

3’s task may have been great enough to elicit the causal effect on motion interpolation at an 

intermediate performance level with a short SOA display, but it may have been too great to elicit 
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the effect at the long-SOA condition, with performance approaching a floor level.   

A three-way repeated measures ANOVA with blocks as the third factor showed a significant 

main effect of causal actions (F(1,48) = 20.869, p < .001), with a greater proportion of "smooth" 

responses in the causal condition than the non-causal condition. The main effect of block was not 

significant (F(4,45) = .657, p = .625). Neither the two-way interactions nor the three-way 

interaction was reliable. In summary, the converging results from the three experiments indicate 

that the influence of causal action on motion interpolation persisted even with increased familiarity 

with the videos.  

  

 

Figure 3.7: Results of Experiment 3. (a) Proportions of videos in block 1 judged as smooth 

actions (* p < .05, ** p < .01). (b) The difference between proportions of responses to causal and 

non-causal actions across 5 blocks in long- or short-SOA displays. 
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3.5 Experiment 4 

Experiment 4 aimed to investigate whether the influence of causal actions on motion 

interpolation depends on other visual cues.  

Body orientation is a well-known cue for action recognition (Pavlova & Sokolov, 2000), as 

observers show worse recognition performance when actions are presented upside-down. If the 

interpolation effect revealed in the previous three experiments was induced by high-level causal 

knowledge, then inverting the video would not yield a significant difference between upright 

versus upside-down actions, since both cases preserve the temporal contingency and the causal 

relation between humans and objects. However, if the effect was merely due to visual familiarity 

to action interactivity, we would expect that familiar actions with upright body orientation may 

elicit a similar effect in comparison with unfamiliar actions with inverted body orientation. 

 

3.5.1 Methods 

Participants. Fifty-two new UCLA undergraduate students (mean age = 20.0; 43 female) 

participated in the experiment for course credit. All participants had normal or corrected-to-

normal vision. 

Stimuli and procedure. Experiment 4 used the same stimuli as the causal condition in 

Experiment 1. On half of the trials, the stimuli used inverted videos, and the other half used 

intact videos (Figure 3.8). The task and procedure of Experiment 4 were otherwise the same as in 

Experiment 1. 
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Figure 3.8: An illustration showing sample frames of an upright and an inverted action in 

Experiment 4. 

 

3.5.2 Results 

We first conducted a 2 (SOA: short- vs. long-SOA) by 2 (orientation: upright vs. inverted) 

repeated-measures ANOVA on the proportion of responses in Block 1 judging the catcher’s action 

to be smooth motion. As shown in Figure 3.9, the main effect of orientation was not significant 

(F(1,51) = 2.509, p = .119). The interaction between body orientation and SOA was not significant 

either (F(1,51) = 1.525, p = .222). The lack of difference between upright and inverted actions 

suggest that as long as the causal relation and the temporal contingency is maintained in observed 

activities, body orientation does not affect the misperception of seeing smooth movements, even 

when the motion signals were weak (in the long-SOA displays).  

To investigate whether the impact of body orientation on motion interpolation changed 

across blocks with increased familiarity with the six videos, we further conducted a three-way 
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repeated measures ANOVA with blocks as the third factor. This analysis revealed a significant 

main effect of orientation (F(1,51) = 5.554, p = .022). This main effect was largely driven by a 

significant difference between the upright and inverted conditions in later blocks. For example, in 

the final block (Block 5), a greater proportion of "smooth" responses was made in the upright 

conditions than the inverted conditions for the long-SOA condition (t(51) = 2.139, p = .037). This 

pattern suggests that the impact of body orientation on visual analysis of actions increased with 

familiarity of the experimental videos.  

 

 

 

Figure 3.9: Results of Experiment 4. (a) Proportions of responses in block 1 judging the catcher’s 

action as smooth motion (* p < .05, ** p < .01). (b) The difference between proportions of 

responses to causal and non-causal actions across 5 blocks in long- or short-SOA displays. 
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3.6 General Discussion 

The present paper reported converging evidence that causal relations between an agent and 

a physical object, or between agents increased the likelihood that people would perceive smooth 

actions even when the stimuli showed a sudden change between two frames. This result suggests 

that causality acts as a temporal “glue” to fill in observers’ visual experience by interpolating 

discrete image frames to produce the perception of smooth, continuous motion. The reported 

pattern of results can be broadly explained by invoking higher-level visual processing within 

Braddick’s (1980) two-process theory of apparent motion. Here, prior knowledge of causal 

relations involved in human actions is incorporated in higher-level visual processing, so that the 

recognition of events as causally connected facilitates the production of smooth motion from 

discrete visual inputs. The top-down influence of causality may be stronger in situations where 

uncertainty about the visual input is high, as we found the relatively large effect size in Block 1 

of the experiment. We expect that this effect would be prominent when dynamic stimuli are 

presented in peripheral vision or embedded in noise. The effect may be weakened after repetitive 

exposures to the stimuli, as perceptual learning may enhance performance for visual tasks.  

The main findings in the present paper are consistent with previous evidence that a causal 

understanding of observed human actions helps to fill in important visual information left out 

from a sequence of events and to form a continuous perception (Strickland & Keil, 2011). The 

current result is also consistent with previous findings of the impact of causality on the 

perception of shapes. The representation of an object’s implicit causal history has been shown to 

induce a transformational apparent motion (Tse, Cavanagh, & Nakayama, 1998) of simple 

objects (Chen & Scholl, 2016), akin to the “causal filling in” effect reported by Strickland and 
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Keil (2011). The inference of implicit causal history of objects not only changes the motion 

perception but also essentially has an impact on the visual shape representation (Spröte, Schmidt, 

& Fleming, 2016).  

The impact of causality on continuous movements is potentially related to the temporal 

binding and spatial binding. Temporal binding is a well-documented phenomenon where the 

time between two events appears shorter as a function of some relation between those two events 

(Buehner & Humphreys, 2009; Engbert & Wohlschläger, 2007; Engbert, Wohlschläger, Thomas, 

& Haggard, 2007; Humphreys & Buehner, 2009, 2010; Moore & Haggard, 2007; Wohlschläger, 

Haggard, Gesierich, & Prinz, 2003). Haggard, Clark, and Kalogeras (2002) were the first to 

demonstrate this phenomenon, and they interpreted this phenomenon by appealing to a coupling 

between the visual system and the motor system where the temporal binding of actions and 

effects heightens their association in order to facilitate action-outcome learning (Haggard, 

Aschersleben, Gerke, & Prinz, 2002). Later, Buehner and Humphreys demonstrated that the 

crucial relation between the two events is causal: When one event is represented as causing 

another event, the time between the two events appears shorter than when the two events are not 

causally related. Similarly, spatial binding is where two objects appear closer in space when they 

are causally linked than when they are not (Buehner & Humphreys, 2010). Buehner and 

Humphreys (2009, 2010) explain both of these phenomena by invoking their theory of Bayesian 

ambiguity reduction. Appealing to Bayes Theorem, Buehner and Humphreys reason that two 

causally related events are more likely to instantiate spatiotemporal contiguity. They argue that 

the perceptual system uses prior knowledge of causal relations to help resolve ambiguities faced 

with taking noisy perceptual input to produce the subjective experience of visual motion. As 

result, event kinds in causal relationships are more likely to appear bound in time and space. 
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Causal knowledge about human body movements may not only help to connect discrete 

events in the perceptual process, but it may also facilitate the process of making inferences and 

predictions about actions. A causal framework may help the visual system to infer the past. For 

example, human observers get a vivid feeling of seeing the immediate past of objects or human 

postures presented in static frames (Kourtzi, 2004). This phenomenon suggests that causal 

knowledge aids the visual system in inferring and reconstructing the causal history of objects and 

human actions. In addition, causality in human actions may also help the visual system to predict 

the future. Su and Lu (2017) used skeletal biological motion displays and found a flash-lag 

effect, such that when a briefly-flashed dot was presented physically in perfect alignment with a 

continuously-moving limb, the flashed dot was perceived to lag behind the position of the 

moving joint. This finding suggests that the representation of human actions is anticipatory, due 

to a potential top-down action prediction mechanism. It has also been found that infants as young 

as five months are able to gaze toward the future direction implied by the static posture of a 

runner (Shirai & Imura, 2014, 2016), suggesting the early emergence in infancy of an ability to 

predict dynamic human actions from still pictures. A “causal filling in” mechanism could have 

benefitted from evolutionary selection pressure by aiding the continuous perception of animal 

motions despite occlusion by trees or other obstacles.  

Recognition of causal connections in human interactions also helps the process of visual 

reconstruction in a top-down manner. Previous research has shown that the presence of one agent 

that is demonstrating communicative actions increased the likelihood of detecting a second 

agent’s movements embedded in noise, or the “second-agent effect” (Neri, Luu, & Levi, 2006); 

Manera, Del Giudice, Bara, Verfaillie, & Becchio, 2011). The improvement can be explained in 

a framework of causal actions, where the perception of others’ action is constructed not only 
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from the visual input, but also from the intrinsic predictive activities. The presence of one agent 

in a causal interaction impacts the prior expectation of seeing the second agent. When the 

expectation derived from predictive coding is strong enough, it elicits the illusory perception of a 

second agent even without the valid bottom-up visual input, called “Bayesian ghost” by Manera 

et al., (2011). 

The current study provides evidence of the important role played by causal knowledge in 

the perception of smooth motion. Causal relations involving human actions, and their 

interactions with objects and other agents, have a strong influence on motion perception for body 

movements. Recognition of causal relations involved in actions facilitates visual interpolation of 

discrete dynamic events to provide a continuous perception of human-involved activities, where 

the influence of causality in higher-level visual processing interacts with low-level visual 

processing in action perception. Hence, causal knowledge serves as a basis for the visual 

system’s anticipation of future events, as well as its retrospection of recent past events. 
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CHAPTER 4 

A motion consistency constraint on infant perception of body movements 

 

4.1 Abstract 

The displacement of our body is constrained by how we move our limbs. This motion 

consistency between displacements of body position and limb movements plays an important 

role in human action perception. To examine the development of the motion consistency 

constraint in the perception of body movements, we recorded looking time to action stimuli in 

infants between 9 and 18 months of age. We compared looking time to normal actions with 

matched body translation to “moonwalk” actions with reversed body translation. On the first 

trial, infants showed a novelty preference for moonwalk actions. Longer looking times to 

moonwalk actions correlated strongly with walking-related motor development. These findings 

suggest that by 18 months, infants are sensitive to the motion consistency constraint that governs 

human actions, and that 9 to 18 months may be a period of substantial development during which 

motor functions and action perception emerge in parallel. 

 

4.2 Introduction 

In their life activities, humans perform complex movements with immense variations; 

nonetheless, fundamental constraints govern how people move their bodies. Physical constraints 

(e.g., gravity, friction) and biological constraints (e.g., limb structure) collectively determine the 

plausibility of observed body movements (Thurman & Lu, 2013; Shiffrar & Freyd, 1990). 

Functional and social goals further modulate the efficacy of body motion for interacting with the 
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physical and social world (Pavlova, 2012). These sets of constraints work collectively to guide 

human body movements. Consider walking as an example. Due to biological and functional 

constraints, swinging the arms in an opposing direction with respect to the legs helps to reduce 

the angular momentum of the body motion, thereby keeping the body balanced. Due to physical 

constraints, only appropriate leg movements that make contact with the ground can propel the 

human body to walk in particular directions. Thus we expect to observe consistency between two 

motion signals: relative movements of limbs within an object-centered reference frame, and body 

displacement (i.e., translation of the body) within an environmental reference frame. Finally, due 

to a functional/social constraint, interaction with another person or object typically requires that 

one’s body be moved to a nearby location.  

Numerous studies have documented that the mature visual system of adults is sensitive to 

the violation of fundamental constraints governing human body movements. For example, when 

actions are presented in an inverted orientation, physical constraints based on gravity are 

violated. As a result, people show poorer recognition performance for inverted actions (Sumi, 

1984; Pavlova & Sokolov, 2000). When the body structure constraint is infringed by spatial 

scrambling, so that each moving joint is placed at a random location but maintains the same 

motion trajectory, recognition performance decreases (Troje & Westhoff, 2006), and perception 

of animacy and of social interactivity are significantly weakened (Chang & Troje, 2008; 

Thurman & Lu, 2014a).  

Given the importance of these constraints for the recognition (as well as performance) of 

human actions, it is essential to understand the developmental trajectory of how these constraints 

are incorporated into action processing. Research suggests that some constraints on visual 

processing of actions may be present at birth. Two-day-old newborns exhibit a visual preference 
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for an upright hen depicted by a point-light display over a hen shown in an inverted orientation 

(Simion, Regolin, & Bulf, 2008). Newborns also show greater sensitivity to biological than non-

biological motion (Bidet-Ildei, Kitromilides, Orliaguet, Pavlova, & Gentaz, 2013). However, the 

impact of other constraints on action processing may develop after experience. Two-day-old 

infants do not exhibit spontaneous preference for a point-light display showing biological 

movement as compared to a spatially scrambled display (Bardi, Regolin, & Simion, 2011). But 

by 3-5 months, infants are able to discriminate between a point-light walker and a spatially 

scrambled display (Bertenthal, Proffitt, & Kramer, 1987), suggesting a sensitivity to the 

constraint of body structure. Hence, the impact of the body structure constraint on action 

recognition is acquired and strengthened over the course of development.  

The present paper aims to examine the development of the motion consistency constraint 

in action perception. This constraint is based on the fact that people move their limbs in an 

appropriate way so as to cause the body to be displaced in the environment. When an action 

violates the motion consistency constraint, perception and inference of actions can be disrupted. 

One classic example in which this causal link is violated is the “moonwalk” dance move 

popularized by the dancer Michael Jackson. While the limb movements of the dancer appear to 

simulate walking forward, the whole body glides seamlessly backward, creating a dramatic 

conflict with the expected relations between limb movements and body displacement.  

Adults show sensitivity to motion consistency between displacements of body position 

and limb movements (Masselink & Lappe, 2015; Peng, Thurman & Lu, 2017). The sensitivity to 

body translational displacement may constitute a critical first step in the development of visual 

perception of human actions. Three-day-old infants demonstrate a preference for a point-light 

walker showing translational displacement of the body over a point-light actor walking in place 
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(e.g., on a treadmill; Bidet-Ildei. et. al., 2013). This finding highlights the apparent role that body 

translational displacement may play in an innate visual competency for action perception. 

However, it remains unclear whether infants show this visual preference as long as some sort of 

body translation occurs, or whether they are sensitive to consistency between body displacement 

and appropriate limb movements—that is, the motion consistency constraint—and if so, whether 

such sensitivity interacts with the infants’ own motor development.  

The current study addresses the question of whether infants discriminate human actions 

that satisfy versus violate the motion consistency constraint. To keep all relevant factors matched 

in our stimuli, both versions of actions included the same kinematic cues for the same actor and 

showed body translation. However, the normal action condition showed the correct binding 

between limb movements and body translational displacement, whereas the “moonwalk” actions 

reversed the horizontal motion of body translations to violate the expected walking direction. In 

addition, we examined whether sensitivity to the motion consistency constraint in action 

perception correlates with the development of gross motor functions. We included actions that 

are within (e.g. walking) and beyond (e.g. long jumping) the range of gross motor capabilities of 

infants. Thus, the experiment investigated whether, by 18 months of age, infants show a visual 

sensitivity for human actions with matched body displacement and whether such sensitivity 

correlates with the development of motor function. 

 

4.3 Method 

Participants. A sample of 34 healthy infants (20 male) between 8.8 and 18.4 months (Mage = 

12.80 months, SDage = 3.06 months) completed the study. Parents and caregivers were contacted 
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by telephone from lists of birth records provided by Los Angeles County. Parents were given a 

small gift (a toy or a t-shirt) for their participation.  

Stimuli and Apparatus. Action stimuli were generated from the Carnegie Mellon University 

Motion Capture Database (http://mocap.cs.cmu.edu) and processed using the Biological Motion 

Toolbox (van Boxtel & Lu, 2013). We selected four actions with whole-body movements. Two 

of these actions could not be performed by 18-month-old infants (non-performable actions) and 

two actions are typically within the capacity of the gross motor function of 18-month-olds 

(performable actions). Non-performable actions were “long jump” and “side-walk.” Performable 

actions were “walk and turn” and “walk and turn-in-place.” Each action lasted 16 seconds. 

Skeletal displays were generated by connecting 13 main joints of the body, including the head, 

shoulders, elbows, wrists, hips, knees and ankles. The size of image frames was 17.1˚ by 21.3˚ 

visual angles. The lower half of image frames included a checkerboard floor (see Figure 4.1). 

The height of skeletal actors was normalized for all actions as 9.5˚ visual angle. The vertical 

locations of the hip points were placed at the vertical center in the first frame of the video. The 

average horizontal locations of the hip points in each video were kept at the horizontal center.  

Body displacements were computed as the change in the average position of the two hip joints in 

time, and limb movements were defined as the residual motion after subtracting body 

displacements on a frame-by-frame basis (Peng et al., 2017). For each of the four actions, a 

moonwalk action was generated by reversing the horizontal direction of body displacements (see 

an illustration in Figure 4.1, left panel). Speeds of actors were controlled to be the same across 

normal action and moonwalk conditions. The stimuli used in the experiments can be viewed at 

https://yujiapeng.com/infant-moonwalk. 



74 

 

To measure the gross motor functions of infants, a questionnaire was developed by 

selecting a subset of 10 questions from the Early Motor Questionnaire (EMQ) (Libertus & 

Landa, 2013). The 10 questions measure infants’ gross motor abilities in sitting, standing, 

walking, running, and jumping (see Appendix A). The measurements are based on reports from 

caregivers on a scale from -2 to 2, with -2 referring to “Sure that child does NOT show behavior” 

and 2 referring to “Sure that child shows this behavior and remember a particular instance.” 

Procedure. Before the experiment, a caregiver provided informed consent and completed the 

gross motor questionnaire. During testing, each infant sat on a caregiver’s lap approximately 55 

cm from a 61.5-cm monitor. Parents were instructed to hold their infant on their lap and allow 

their child to look freely during the session. They were also asked not to talk to their infant, point 

to the screen, or otherwise influence their infant’s looking pattern. Prior to testing, each infant’s 

gaze was calibrated using the standard calibration routine for the eye tracker.  

On each trial, one normal action with matched body translation and one moonwalk action 

with reversed translation were shown side-by-side for 16 seconds (see Figure 4.1, right panel). 

The facing directions of the actors in the two videos were the same. The experiment included 16 

trials. Each action pair (normal vs. moonwalk) repeated four times, including two trials with 

leftward facing direction, and two trials with rightward facing direction. The action display order 

was randomized into 8-trial blocks, so that all four action pairs were presented twice in the first 

half and twice in the second half. Half of the trials showed the normal action with matched 

translation on the left side and the other half showed the moonwalk action on the left side. An 

attention-getter was shown at the beginning of each trial to orient the infant’s gaze to the center 

of the screen. The experimenter controlled the progression of between-trial breaks, moving on to 
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the next trial only once the child had fixated on the attention-getter.  Looking time and eye 

movements were recorded by an EyeLink 1000 eye-tracker (SR Research, Ltd).  

 

     

Figure 4.1. Stimulus illustration. (Left) An illustration of a normal action with matched body 

translations and a moonwalk action with reversed body translations. Limb movements were the 

same in two conditions except that in the moonwalk condition, body translations were reversed 

in the horizontal direction. (Right) Sample screen frames in the experiment. Lighter to darker 

represents frames from earlier in time to later in time. In each frame, a normal action with 

matched body translations and a moonwalk action with reversed body translations were 

presented side-by-side. Human actions were displayed in the skeletal form on a checkerboard 

background representing the floor. 

 

4.3 Results 

Total looking time for each action was recorded. We also examined looking proportions, 

calculated as the amount of time spent attending to one action divided by overall looking time to 

the screen for that trial. Looking time and proportion data yielded similar results; here we report 

findings using looking time as the dependent measure.  
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The mean duration of the experiment was 4.8 minutes to complete all 16 trials. The 

infants’ looking time to the screen revealed a strong dependency on trial number. A repeated-

measures ANOVA for total looking time (i.e., the total looking time with eye movement 

trajectories on the screen in each trial) showed that the average looking time decreased 

significantly across trials, reflected in a significant main effect of trial number (F15, 19 = 7.185, p 

< .001, 𝜂𝑝
2 = 1.0). Similarly, the number of infants who looked at the screen for more than half of 

the stimulus duration (8 s out of 16 s) on a trial dropped quickly after the first half of the 

experiment (Figure 4.2, left), suggesting a fatigue effect or lack of attention in the later 

experimental trials. In addition, exposure to skeleton displays appeared to lead to fast learning, 

which interacted with the visual preference to familiar versus novel stimuli. We examined the 

first three trials, in which most infants (>80%) looked at the display screen more than half of the 

trial duration. A repeated-measures ANOVA with trial number (1 to 3) and action type (i.e., 

normal vs. moonwalk actions) as within-subject variables yielded a significant interaction effect 

(F2, 31 = 3.711, p = .036, 𝜂𝑝
2 = 0.627) (see Figure 4.2, right). Infants’ looking time showed a 

novelty preference (longer time to moonwalk) on the first trial, then started to show a preference 

to familiar displays (longer looking time to normal actions). This pattern suggests that sensitivity 

to the motion consistency constraint interacted with learning experience, producing a fluctuation 

of the preference to novel and familiar displays. In order to focus solely on the impact of the 

motion consistency constraint in actions, prior to any opportunity for learning or habituation, in 

the following analyses we focus on looking time in the first trial of the experiment.  
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Figure 4.2. Looking time as a function of trial number. (Left)The number of infants looking 

longer than 50% of stimulus duration on each trial. (Right) Looking time on the first 3 trials. The 

preference for normal actions versus novel actions (moonwalk) varied across trials. 

 

Effect of motion consistency and performability on first-trial looking time. A mixed 

ANOVA was applied to looking time on the first trial with action type (actions with matched 

body translation vs. actions with reversed body translation) as a within-subject variable and 

performability as a between-subject variable (Figure. 4.3). On the first trial, fifteen infants 

viewed one of the two walking videos as performable actions, and the other 19 infants viewed 

either long-jump or side-walk as non-performable actions. On the first trial, infants looked 

considerably longer at moonwalk actions (M = 7036 ms, SD = 2505) than at normal actions with 

matched translation (M = 5705 ms, SD = 2496), as revealed by a significant main effect of action 

type (F1, 32 = 4.298, p = .046, 𝜂𝑝
2 = .520). The longer looking time to novel stimuli of moonwalk 

actions indicated that infants were sensitive to violation of the motion consistency constraint. 
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The main effect of performability was not significant (F1, 32 = 0.080, p = .779).  The interaction 

between action type and performability was not significant but marginal (F1, 32 = 2.872, p = .10, 

𝜂𝑝
2 = .376). For performable actions, infants exhibited a preference for looking longer at 

moonwalk actions with reversed translation (M = 7635 ms, SD = 2822) than normal actions with 

matched translation (M = 4958 ms, SD = 2462), t(14) = 2.30, p = .037. However, for non-

performable actions, infants did not show a differential preference for either normal or 

moonwalk actions, t(14) = 0.31, p = .76.  

 

Figure 4.3. Pattern of looking time on the first trial. Infants looked longer at moonwalk actions 

for performable actions but not for non-performable actions. Error bars indicate standard error of 

looking time. 

 

The relation between gross motor functions and looking times. A composite score of gross 

motor skills was calculated for each infant by summing the standardized scores of the 10 
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questions on the motor questionnaire. In our sample, boys were younger than girls, t(32) = 2.12, 

p = .041, (boys, Mage = 11.91 months, SDage = 2.63 months; girls, Mage = 14.06 months, SDage = 

3.27 months), but the two gender groups did not statistically differ on motor skills (t(30) = 1.538, 

p = .134).  

Gross motor scores did not correlate with looking time to normal actions (r = -.051, p 

= .782). However, the score of gross motor functions showed a marginal positive correlation 

with looking time to moonwalk actions (r = 0.309, p = .085), suggesting that infants with better 

gross motor skills were likely to show longer looking time to moonwalk actions with reversed 

body translation. Next, we further refined the motor assessment by focusing on the walking-

related questions, because the experimental stimuli were largely related to walking actions and 

walking is the milestone of motor development in the age range of the infants in our study. We 

narrowed the analysis to the three questions highly relevant to assessing the development of 

walking skills: Question 4 (“when placed into a standing position, your child will stand alone for 

a few seconds without helping”), Question 7 (“when walking down a hallway or small room, 

your child will walk in a straight line with arms lowered and swinging freely”), and Question 8 

(“during free play or pretend play, you notice your child is able to walk backwards for several (5 

or more) steps”). We calculated the walking-related scores by summing the standardized scores 

for these three questions. We found that these walking-related scores were highly correlated with 

looking time to moonwalk actions (r = 0.422, p = .016), suggesting a strong association between 

the development of walking ability with the novelty preference to moonwalk actions.  

As expected, age was positively correlated with gross motor skills (r = .582, p < .001) 

and walking-related motor skills (r = .675, p < .001), indicating that gross motor skill increased 

with age. Age produced a marginally significant correlation with looking time to moonwalk 
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actions (r = .345, p = .053). A stepwise multiple regression was conducted to evaluate whether 

both age and walking-related motor scores were necessary to predict infants’ looking time to 

moonwalk actions. At step 1 of the regression analysis, walking-related motor scores were 

selected as showing a significant relation to looking time to moonwalk actions (F(1,30) = 6.488, 

p = .016). We found that 42.2% of the variance of the looking time could be accounted for by 

more developed walking motor skills. Age did not enter into the regression equation at step 2 of 

the analysis (t = .492, p =.626). These regression results indicate that walking-related motor skill 

was the primary predictor variable of looking time to moonwalk actions.  

Impact of spatial locations of the body structure on looking time on the first trial. To 

analyze whether infants paid more attention to some body regions than others, we defined two 

regions of interests (ROIs) for each action: the upper half of the screen, containing upper limb 

movements of the human motion, and the lower half of the screen, containing leg movements of 

the actions. The two hip points were aligned with the vertical center of the video at the beginning 

of each trial. However, hip points might travel across the upper half and the lower half of the 

video as the action was performed. A mixed ANOVA was conducted, with action type (normal 

actions with matched translation vs. moonwalk actions with reversed translation) and ROIs 

(upper vs. lower regions of display) as within-subject variables, performability as a between-

subject variable, and looking time on the first trial as the dependent variable. The main effect of 

ROIs was significant (F1, 32 = 9.514, p = .004, 𝜂𝑝
2 = .849), with longer looking time at the upper 

half of the body (M = 3883, SD = 1653) than the lower half (M = 2470, SD = 1404).  The longer 

looking time at the upper body may reflect an analysis of body translations, since the torso and 

the head are relatively rigid parts, serving as good indicators of body positions in the 

environment. The main effect of action type (i.e., the motion consistency constraint) remained 
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significant (F1, 32 = 4.310, p = .046, 𝜂𝑝
2 = .521), as infants looked longer to moonwalk actions 

(i.e., reversed body translation). The main effect of performability was not significant (F1, 32 = 

0.042, p = .839), nor were any interaction effects. 

 We further examined if the preference to the upper half of the body was related to age. 

Since there was no interaction between action type and the spatial location, we merged the 

looking times of actions with matched and reversed body translations to obtain the average 

looking time for the upper half and the lower half of the video. We calculated the scaled 

difference between looking time for the upper half versus the lower half (i.e.  
(Upper−Lower)

(Upper+Lower)
) to 

assess visual preference for spatial locations. Age was marginally positively correlated to relative 

looking times for the upper and lower half of the body (r = 0.321, p = .064), suggesting that with 

age infants showed a stronger preference for the upper half. Walking-related motor scores did 

not show a significant correlation with relative looking time for the upper versus lower half (r = 

0.238, p = .189). 

 

4.4 Discussion 

The key finding of the study is that by 18 months, infants can discriminate actions based 

on consistency between motion cues. Infants were likely to show a novelty preference in 

response to stimuli similar to Michael Jackson’s moonwalk dance. Furthermore, the ability to 

detect the violation of the motion consistency constraint was related to the development of gross 

motor functions, especially walking-related motor skills in the age range of 9 to 18 months. This 

relation implies that infants with better-developed gross motor functions are likely to show a 

stronger tendency to visually explore novel actions when viewing novel stimuli (in particular, the 
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first exposure to skeleton displays of human body movements). Our results suggest that infants’ 

visual sensitivity to subtle characteristics of human actions is intertwined with the development 

of gross motor skills. Within the age range of 9 to 18 months, gross motor functions develop 

quickly in infants. This motor experience may enable rapid developments in multiple cognitive 

domains (Piaget, 1953), including 3D object recognition (Soska, Adolph, & Johnson, 2010), 

holistic face processing (Cashon et al., 2013), and language development (Walle and Campos, 

2014; He, Walle, & Campos, 2015). The present study provides converging evidence in support 

of the connection between visual ability in action perception and motor skills in whole body 

movements. Such connections may serve as a building block for the development of mirror 

neurons (Rizzolatti,  Fogassi, & Gallese, 2001) to link observed actions with internally generated 

actions (e.g., Rizzolatti & Arbib, 1998; Rizzolatti & Fadiga, 1998).  

Another intriguing finding is that infants showed a preference for the upper half of the 

moving body relative to the lower half. This result seems inconsistent with previous findings 

with adults showing that movements of feet carry the most important information for the 

perception of walking direction (Troje & Westhoff, 2006), and with a previous report that infants 

display far greater interest in lower and middle regions versus the top region in point-light 

displays depicting human biological motion (Tsang, Ogren, Peng, Nguyen, Johnson, & Johnson, 

2018). However, previous studies focused on action recognition, such as recognizing walking 

directions or gender, based on displays showing walkers moving in place without body 

translation. When the body moves in the environment, the upper part of a moving body provides 

important information about the spatial location of the agent in the environment. The attention to 

the upper body observed in the present study implies that infants have a basic understanding of 

where to look to reliably extract the location of a moving agent. This preference exhibited in the 
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9-18-month olds may also result from greater experience in moving the upper body. With most 

infants developing the ability to crawl around 7 to 10 months and walk around 9 to 12 months, in 

the early infancy, interaction is dominated by upper-body movements such as reaching for 

parents and grasping objects. This experience with upper-body movements may drive selective 

attention to the upper half of displays of bodies in motion. 

The motion consistency constraint results from a physical causal relation: limb 

movements cause body displacements in the environment. Sensitivity to this constraint in infants 

is consistent with previous infant studies using physical motion of objects (Leslie, 1982; Leslie 

& Keeble, 1987; Oakes & Cohen, 1990; Woodward & Sommerville, 2000). Previous research 

has shown that near the end of the first year, infants are sensitive to spatiotemporal features of 

movements of physical objects—cues related to the emergence of causal perception. Typical 

motion stimuli have been launching events (Michotte, 1963), in which one moving object makes 

contact with a static object and “launches” it. Oakes and Cohen (1990) found that starting at 

roughly 10 months, infants start to discriminate launching events on the basis of causality. Other 

evidence indicates that the development of causal perception may originate as early as 6 months 

(Leslie & Keeble, 1987), perhaps driven by spatiotemporal features of perceived dynamic scenes 

(Leslie, 1982). 

Although the current study demonstrates that infants show discrimination for actions in 

accord with the motion consistency constraint, the results cannot differentiate between two 

hypotheses regarding the origin of the effect. Perhaps infants possess a general understanding of 

the physical laws and causality involved in human actions, or perhaps the effect is driven by 

specific spatiotemporal features that signal congruency in human body movements. In future 

studies, causal perception of human actions in infants can be examined to gain a deeper 
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understanding of the developmental trajectory connecting causal perception with action 

perception.  
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CHAPTER 5   

Revealing the Neural Mechanism of Causal Action Perception Using MEG 

 

5.1 Abstract 

 Humans can effortlessly extract various information from impoverished motion stimuli 

such as point-light displays depicting human actions, including the basic motion information but 

more importantly, an understanding of goals and intentions of actions. This requires an 

understanding of the causal relation between limb movements and the corresponding body 

motion, that limb movements propel body motion to achieve certain goals. However, the neural 

mechanism underlying the causal reasoning in action perception remains unknown. Here, we 

used magnetoencephalography (MEG) decoding to investigate the spatiotemporal dynamics of 

neural activities associated with causal reasoning in action perception. In task 1, we decoded 

MEG channels that are sensitive to different action categories and we further used the selected 

channels in task 1 to decode causality in task 2. We found that action categories in task 1 can be 

decoded as early as after 200 ms regardless of specific action categories. The decoding of 

causality in task 2 happened later in time and heavily relied on the temporal dynamics of 

different actions. Source localization showed that while attention and visual related regions, 

including the primary visual cortex, lateral occipitotemporal cortex (LOTC), and superior 

temporal sulcus (STS) were strongly associated with the action classification task, a more 

distributed network was activated for the causal judgment task, involving orbitofrontal cortex 

(OFC), inferior parietal lobule (IPL), premotor cortex, dorsolateral prefrontal cortex (DLPFC), 

and inferior temporal gyrus (ITG). 
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5.2 Introduction 

Recognizing human body movements is considered as one of the most sophisticated 

abilities supported by the human visual system. In addition to extracting basic motion 

information from action stimuli (e.g. speeds, moving directions), humans have been shown to be 

able to efficiently extract many high-level information embedded in actions, such as inferring 

goals of actions and social interactions even for infants who are just a few months old 

(Woodward, 1998; Woodward & Guarjardo, 2002). Critically, making inferences of goals of 

actions requires the implicit knowledge of causal constraints that human actions support the 

generation and the understanding of actions. For example, observing certain limb movements 

triggers the expectation of changes in body position. Evidence has shown that humans are 

sensitive to the congruency relation between limb movements and body translations. Violating 

the motion congruency constraint causes a significant decrease in the perception of animacy 

(Thurman and Lu, 2013) and social interactions (Thurman & Lu, 2014a). In addition, the 

congruency relation between motion cues has a causal direction with a specific temporal order, 

as evident in Chapter 2 (Peng, Thurman, & Lu, 2017), suggesting an important role of causal 

perception in the relation between limb movements and body translation. Despite the importance 

of this causal constraint in action perception and understanding, the neural mechanism behind the 

process remains unknown. 

Previous studies investigating the neural mechanism of causality mostly focused on 

physical events such as the “launching” effect. For example, Fugelsang et al. (2005) used 

functional magnetic resonance imaging (fMRI) to examine the neural correlates of perceptual 

causality while participants were viewing alternating blocks of causal launching events and non-
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causal events with either a spatial or a temporal gap between the movements of the two objects. 

They found that causal events elicited significantly greater higher activation in the right middle 

frontal gyrus and in the right IPL than non-causal events, suggesting the important role of right 

hemisphere loci for perceiving causality for launching displays. Similarly, Wood and his 

colleague (2014) investigated the neural systems involved in the processing causality while 

different perceptual cues were involved in the launching effect. In the experiment, spatial 

linearity was manipulated by changing either the relative angle between two balls and temporal 

contiguity was varied by introducing a different temporal gap between the contact of the first ball 

and the onset of the second ball’s movement. Results showed a dissociation between brain areas 

involved in processing different perceptual cues for causal perception. When using spatial 

information, the neural activation was increased in frontal and parietal regions including inferior 

frontal gyrus (IFG), right superior parietal lobule (SPL) and IPL. In contrast, when participants 

judged causality based on temporal information, cerebellar vermis and right hippocampus were 

activated. Hence, a flexible brain network is recruited to process visual information in the way of 

supporting causal perception. 

Blos and his colleague (2012) further studied the neural processes underpinning causal 

perception in different contexts: physical causality and social causality. In the physical context, a 

classic launching event happened between a blue ball and a red ball. In the social context, the red 

ball was positioned above the center and the blue ball first moved horizontally and then 

advanced to one of the seven directions once it reached the middle. This animation was usually 

perceived as a social event that the behavior of the blue ball was changed due to the presence of 

the red ball and curved the trajectory. Results showed that the tasks in both contexts recruited 

similar brain areas, but elicited very different or even opposite activation patterns. For example, 
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the activation of left insula increased for causal trials in physical contexts but not for causal 

social contexts. Interestingly, the neural activation for causal physical context correlated more to 

the activation for non-causal trials in social contexts. Furthermore, if the activation of the two 

contexts is mixed together, the data showed no main effect (i.e. causal physical and social 

contexts versus non-causal physical and social contexts) of causality, suggesting that no 

significant activation for causal judged stimuli contrasted to non-causal judged stimuli. This 

indicates that the perception of causality may not be a universal cognitive process that is 

implemented in certain brain regions, but, instead, depends on the context of events (i.e. physical 

or social).  

The other line of research studies relevant to causal actions are about neural mechanisms 

underpinning action perception. Previous neuroimaging studies on human action recognition 

have provided important evidence on both the spatial locations of brain regions and the temporal 

dynamic of neural activities associated to processing human actions. Regarding spatial locations 

of brain regions, numerous studies have found body-selective neural mechanisms in the visual 

cortex either using single-cell recordings in primates, or through methods not limited to event-

related potential (ERP), fMRI, transcranial magnetic stimulation (TMS) in human studies (for a 

review, see Peelen, & Downing, 2007). The results showed some consistent brain regions in 

visual cortex that selectively respond to body images, such as bilateral extrastriate body area 

(EBA) (Downing, Jiang, Shuman, & Kanwisher, 2001; Spiridon, Fischl, & Kanwisher, 2005), 

fusiform body area (FBA) (Peelen, & Downing, 2005; Peelen, Wiggett, & Downing, 2006; 

Schwarzlose, Baker, & Kanwisher, 2005), the inferior temporal cortex (IT) (Desimone, Albright, 

Gross, & Bruce, 1984; Gross, Bender, & Rocha-Miranda, 1969), and superior temporal sulcus 

(STS) (Tsao, Freiwald, Knutsen, Mandeville, & Tootell, 2003; Pinsk, DeSimone, Moore, Gross, 
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& Kastner, 2005). Other studies revealed brain regions that are activated when viewing human 

actions as dynamic displays, including posterior STS (Allison, Puce, & McCarthy, 2000; 

Grossman, & Blake, 2002), parietal cortex (Bonda, Petrides, Ostry, & Evans, 1996) and the 

ventrolateral premotor cortex (vPMC) (Buccino et al. 2004), as well as the EBA (Urgesi, 

Candidi, Ionta, & Aglioti, 2007). Specifically, posterior STS (pSTS) was shown to respond to a 

change of intentions beyond physical properties such as motion energy and saliency (Gao, 

Scholl, & MyCarthy, 2012). 

As for the temporal dynamics of neural activates of action perception, many previous 

studies used EEG and MEG to reveal the time course of the visual processing of body 

movements with biological motions. For example, a recent study by Isik, Tacchetti, & Poggio 

(2018) used MEG to investigate how early it is to be able to decode actions that are invariant to 

viewpoints and forms of displays. They found that as early as 250ms, action categories can be 

decoded from MEG signals invariant to viewpoints of the motion stimuli. The results are 

consistent with the findings by Tucciarelli et al., (2015) showing that MEG decoding could 

classify action categories after 200 ms and LOTC has the earliest access to abstract action 

representation. Other studies used EEG to investigate the neural activities when observing 

biological motions and found that a negative peak at around 200 ms (N200) is associated to 

biological motion and the peaks were significantly larger in the biological motion condition 

compared to the scrambled motion condition (Hirai, Fukushima, & Hiraki, 2003) and form and 

motion information are therefore integrated by approximately 200 ms (White, Fawcett & 

Newman, 2014). Similar findings were also reported for upright vs. inverted walkers and the 

source was traced back to right fusiform gyrus and the right superior temporal gyrus for the 
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second component (Jokisch, Daum, Suchan, & Troje, 2005; Virji-Babul, Cheung, Weeks, Kerns 

& Shiffrar, 2007).  

However, few studies so far have looked beyond action classification and further into the 

visual processing of motion constraints that guide our understanding and predictions of actions. 

Here, we use MEG decoding and source localization to reveal the neural mechanism underlying 

causal perceptions in action, specifically the mechanisms supporting the causal constraints 

between limb movements and body translations in human action perception. We generated 

“moonwalk” actions that violate the causal expectation between limb movements and body 

translations. Using two tasks, we aim to compare the neural mechanism of action classification 

and causal perception in actions, including the time courses of causal judgment and the spatial 

distribution of brain activations. We hypothesize that the processing of causal perception in 

actions happens later in time than the time course for the action classification process, which is 

likely due to the need of processing time for integration of multiple motion cues. We predict that 

the causal process in action perception may involve more brain regions out of visual cortex, as 

the temporal, parietal, and frontal cortex are associated with the judgment of spatiotemporal 

contingency in causal actions. 

 

5.2 Methods 

5.2.1 Participants 

 The research was approved by the Committee for Protecting Human & Animal Subjects, 

School of Psychological and Cognitive Sciences at Peking University, Beijing. MEG and 

behavioral data were collected from 6 participants (2 females, mean age (SD) = 20.33 (1.36)) 
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with normal or corrected to normal vision. Participants who completed the study received 160 

yuan for monetary compensation. All of the participants finished an MRI scan only after the 

MEG session or one week before. Potential subjects were screened via a questionnaire to make 

sure they were eligible for MEG recording and subsequent MRI structural scans and had no 

history of mental illness or use of psychoactive medication. 

 

5.2.2 Stimuli 

 Action stimuli were generated from the Carnegie Mellon University Motion Capture 

Database (http://mocap.cs.cmu.edu). We selected three action categories with clear body 

displacements over time: jumping, running and walking. Each action category contains 5 

exemplar actions. Point-light videos were generated using the Biological Motion Toolbox (van 

Boxtel & Lu, 2013) with 13 main joints of the body, including the head, shoulders, elbows, 

wrists, hips, knees and ankles. The lower half of image frames included a checkerboard floor 

(see Figure 5.1). The height of skeletal actors was normalized for all actions as 8˚ visual angle. 

The average horizontal locations of the hip points in each video were kept at the horizontal 

center.  Body displacements were computed as the change in the average position of the two hip 

joints in time, and limb movements were defined as the residual motion after subtracting body 

displacements on a frame-by-frame basis (Peng et al., 2017). For each of the four actions, a non-

causal action was generated by reversing the horizontal direction of body displacements (see an 

illustration in Figure 1). The stimuli used in the experiments can be viewed at 

https://yujiapeng.com/megdemo. 

 

http://mocap.cs.cmu.edu/
https://yujiapeng.com/megdemo
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Figure 5.1. Sample frames of three types of actions. From left to right, the figures show static 

frames of jumping, running, and walking actions respectively. 

 

5.2.3 Procedure 

Task design. The experiment contains two phases with two distinct tasks. In phase 1, 

participants were told that there would be three action categories and their task was to judge the 

action category by pressing 1, 2, or 3 on the response box for jumping, running, and walking 

respectively. Participants were asked to fixate on the central cross and remain still as much as 

possible throughout the whole experiment. Phase 1 contains 5 blocks, each with 60 trials (i.e. 20 

jumping trials, 20 running trials, and 20 walking trials), yielding a total of 300 trials. Videos 

were 3 s long in each trial, followed by a jittered blank post-stimulus period of 1, 1.5 or 2 s. 

Participants were asked to respond after the 3 s video presentation. 

In phase 2, participants were instructed that there would be natural and unnatural actions 

displayed in this phase. Natural actions correspond to typical actions that we observe in our daily 

life. Unnatural actions are those that appear to violate physical laws. For example, the point-light 

actor may seem to be moving forward but the body is dragged by some external forces to an 

inconsistent direction. The task was to judge if the action in each trial looks natural or unnatural 
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by pressing 1 or 2 correspondingly. Part 2 contains 8 blocks, each with 60 trials (i.e. 

natural/unnatural  jump/run/walk  5 exemplars  2), yielding a total of 480 trials. The entire 

experiment takes about an hour. No practice trials were conducted and no feedback was provided 

throughout the entire experiment. 

Separate from the MEG experiment, a behavioral pilot experiment was conducted to 

collect the reaction time information with a different group of subjects. In the MEG experiment, 

participants were asked to respond after viewing the entire 3s to avoid contaminating MEG 

signal with motor signals, the reaction time cannot reflect the real speed of the judgments. To 

acquire more accurate response-time measures of how fast participants can respond to the two 

tasks, we further conducted a behavioral experiment with 20 UCLA students (mean age = 20.7, 

18 females). Same stimuli were used as in the MEG experiment and the same procedure was 

conducted except that participants were asked to respond as fast as possible after the onset of 

video stimuli. Accuracy and reaction time were recorded for each trial. 

 

MEG acquisition. MEG recordings were obtained with a 306-channel Neuromag Vectorview 

whole-head system (Elekta Neuromag, Stockholm, Sweden) with 204 planar gradiometers and 

102 magnetometers enclosed in a magnetically shielded room (Vacuumschmelze, VAC) with a 

shielding factor of more than 1,000,000 at 1 Hz, with additional active shielding a shielding 

factor of more than 5,000,000. Data were sampled at 1,000 Hz. Before the beginning of the 

recording session, four head position indicator (HPI) electrodes were affixed to monitor head 

position in the dewar, with two attached asymmetrically to each participant’s forehead and two 

attached to the mastoid processes behind ears. Digitizer data were collected for each participant’s 

head on a Polhemus FastTrack 3D system within a head coordinate frame defined by anatomical 
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landmarks (left preauricular area (LPA), right preauricular area (RPA) and the nasion). HPI 

positions were marked within this frame, and 100–200 points on the scalp and the face were 

saved for use in co-registering with a multi-echo structural MRI of the subject. Eye movements 

and blinks were monitored via two electrooculography (EOG) electrodes: one vertical electrode 

on the left eye, placed just above the eyebrow, and the other on the upper cheekbone just below 

the right eye. One electrode was placed on hand as the ground. Recordings were stored for 

offline analysis. 

 

5.2.4 Data analysis 

Data pre-processing and averaging. The MEG signals were first filtered using temporal Signal 

Space Separation (SSS) with Elekta Neuromag software MaxFilter, which aims to separate 

magnetic signals coming from within the brain from those coming from outside the brain in a 

mathematical way. Pre-processing and averaging of all recordings were performed with the 

minimum-norm estimate (MNE) analysis package (Gramfort et al., 2014), MNE-Python 

(Gramfort et al., 2013), Neural Decoding Toolbox (Meyers, 2013) and custom scripts in Python 

and Matlab. For all the following analysis, a low-pass filter of 60 Hz was applied, and recordings 

were epoched from 200 ms before stimulus onset to 3000 ms post-stimulus. 

Decoding was conducted for task 1 and task 2 separately. In the decoding procedure, a 

pattern classifier was trained to associate the patterns of MEG data with the identity of action 

category (i.e., jumping, walking and running) in task 1, and with the identity signaling the 

absence/presence of motion congruency in the actions in task 2. The decoder with the MEG 

signal was evaluated by testing the accuracy of the classifier on a separate set of test data. This 

procedure was conducted separately for each subject and multiple re-splits of the data into 
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training and test data were utilized. The 306 channels (including both the magnetometers and 

gradiometers) were used as classifier features, each containing a time series data measured over 

time. We averaged the data in each channel into 100-ms overlapping bins with a 10-ms step size 

and performed decoding independently at each time point. Decoding analysis was performed 

using cross-validation, where the data set was randomly divided into 5 cross-validation splits. 

The classifier was then trained on data from four splits (80% of the data) and tested on the fifth, 

held-out split (20% of the data) to assess the classifier’s decoding accuracy. The whole cross-

validation procedure was repeated 10 times for each subject.  

 

Decoding: feature preprocessing. To improve the signal-to-noise ratio, we averaged trials of 

the same action category together. In each cross-validation split, every 4 different trials were 

randomly chosen from each action category for each subject and were averaged together. For 

example, in task 1, each action category got 100 trials. Among the 100 trials, every 4 trials were 

averaged, yielding 25 data points per action category. In task 2, each action category got 80 trials 

under both the causal and the non-causal condition. Again, every 4 trials were averaged together 

in a random selection manner, yielding 20 trials per action per causal condition. We next Z-score 

normalized that data by calculating the mean and variance for each sensor using only the training 

data. We then performed sensor selection using only the training data in task 1. The selected 

sensors are carried on to task 2 for decoding. Two ways of sensor selection were conducted. In 

method 1, we applied a three-way ANOVA to each sensor’s training data to test whether the 

sensor was sensitive to the different action categories. We use sensors that were selective for 

action category identity, i.e., showed a significantly greater variation across class than within 

class, with p < 0.05 significance based on an F-test (if no sensors were deemed significant, the 
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one with the lowest P value is selected). The selected channels were then fixed for each time 

point and were used for testing. In method 2, we conducted PCA on each timepoint with all 306 

channels. The 20 top principle components (PCs) were selected and the transformation from raw 

channel to PCs was carried on to the decoding of task 2. To avoid circularity in our feature 

preprocessing, the test data was never used for the Z-scoring or feature selection. 

 

Decoding: classification.  The preprocessed MEG data were then fed into the classifier. 

Decoding analyses were performed using a maximum correlation coefficient classifier, which 

computed the correlation between each test vector and a mean training vector that is created from 

taking the mean of the training data from a given class. Prior work has also shown empirically 

that results with a correlation coefficient classifier are very similar to standard linear classifiers 

like support vector machines or regularized least squares (Isik et al. 2014). Each test point was 

assigned the label of the class of the training data with which it was maximally correlated. When 

we refer to classifier “training” this could alternatively be thought of as learning to discriminate 

patterns of electrode activity between the different classes in the training data, rather than a more 

involved training procedure with a more complex classifier. We repeated the above decoding 

procedure at each time bin to assess the decoding accuracy vs. time. We reran the above 

procedure 10 times for each subject. We measured decoding accuracy as the average percent 

correct of the test set data across all decoding runs and reported decoding results for the average 

of 6 subjects in each experiment. 

 

Significance testing.  All statistics computed using non-parametric cluster-level one sample t-

tests. The procedure determines significance through 5000 permutations with a critical α-value of 
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0.05, following Maris and Oostenveld (2007). Cluster mass was determined by summing 

statistical values of adjacent suprathreshold timepoints within a cluster. The null distribution was 

built by permuting data and storing the largest cluster mass observed in the permuted data. For 

each experiment and decoding condition, t-statistics were computed at each time point. The 

supra-threshold time courses of t-statistics were grouped into clusters and were compared to a 

null distribution formed in permutation. Permuted data were generated by randomly flipping the 

sign of data. The largest cluster from the permuted time course was entered into the null 

distribution and the procedure was repeated for 5000 times. A cluster was deemed significant if 

the proportion of cluster masses from the null distribution that exceeded the observed cluster 

mass was smaller than the critical alpha-level (i.e. 0.05, two-tailed). We define the decoding 

“onset time” as the onset of the earliest significant cluster. This provided a measure of when 

significant decodable information was first present in the MEG signals and is a standard metric 

to compare latencies between different conditions (Isik et al. 2018; Cichy et al. 2016). 

 

Source localization.  Individual participants’ anatomical brain images for source localization of 

MEG activity were obtained with multi-band structural MRIs on a 3 T Siemens Prisma system. 

Brain images were reconstructed and triangulated brain surfaces generated via the watershed 

algorithm with the Freesurfer analysis package (Fischl et al., 2004). A decimated dipole grid was 

fitted to the inflated white matter surface in the shape of an icosahedron recursively divided five 

times to generate a 5124-point grid. One surface source space of the whole cortical surface was 

created for each participant based on the dipole grid described above. A forward solution was 

then calculated using the geometry-dependent solution calculated from the single-compartment 

boundary-element model. Sources closer than 5 mm to the inner skull surface were omitted from 
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the forward solution in all cases. The MRI-head coordinate transformation for each subject was 

supplied to the forward model by aligning the digitizer data obtained in the original recording 

session (see MEG acquisition) with a high-resolution head surface tessellation constructed from 

the MRI data. The inverse operator was prepared with a loose orientation constraint parameter of 

0.2 in order to improve localization accuracy (Lin, Belliveau, Dale & Hämäläinen, 2006). A 

depth-weighting coefficient of 0.8 was also set for the inverse operator to lessen the tendency of 

MNEs to be localized to superficial currents in place of deep sources. MEG data were source 

localized onto the entirety of each source space using a λ2 regularization parameter based on 

Signal-to-Noise Ratio (SNR, set to 3) equal to 1/(SNR2). Evoked cortical activation was 

quantified spatiotemporally by taking only the radial component from a three-orientation source 

(x y z) at each vertex of the triangulated source space in the form of dynamic statistical 

parametric maps (dSPMs) based on an inverse solution regularized with an SNR of 3. DSPMs 

are a statistical representation of significant activity from each source per time point calculated 

by noise normalization on the estimated current amplitude (MNE) of a given source according to 

noise covariance between sensors calculated during a baseline period of 200 ms pre-stimulus 

(Dale et al., 2000). The noise covariance estimation model was selected automatically according 

to the rank for each participant (Engemann and Gramfort, 2015).  

Five out of six participants were included in the source localization analysis. One subject 

had to be removed due to that a boundary-element model could not be computed for a signal 

dropout in the bottom slices of the T1 MRI potentially due to missing data of the MRI data. For 

both task 1 and task 2, the time courses of source estimates were computed for each individual 

actions. Specifically, for task 1, the averaged source estimate was computed by averaging across 

three action categories to reveal brain regions that are activated by observing actions in general. 
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For task 2, a contrast of source estimates was computed by subtracting non-causal condition 

from the causal condition in the source space for the three actions separately and then averaged 

across actions. The averaged source estimates of individual subjects were then morphed to a 

common reference source space.  

 

5.3 Results 

5.3.1 Behavioral results 

 From the behavioral pilot experiment, reaction time (RT) of correct trials and accuracy 

were computed for each participant for task 1 and 2 respectively. Task 1 yielded an accuracy of 

0.96 (SD = 0.05). Task 2 yielded an accuracy of 0.92 (SD = 0.09). The average RT was 1.29s 

(SD = 0.23s) for task 1 and 1.58s (SD = 0.33s) for task 2. Reaction time was also calculated for 

the three actions separately for task 1 and 2. As shown in Figure 5.2, three actions yielded 

different reaction times in both tasks. A repeated measure ANOVA was conducted with two 

within-subject variables: task with 2 levels (i.e. task 1 vs. task 2), and action categories with 3 

levels (i.e. jumping, running, walking). We found a main effect of tasks (F(1,19) = 32.38, p < 

0.001), with task 2 getting significantly longer reaction time than task 1. The main effect of 

action category was also significant (F(2,18) = 291.86, p < 0.001), with jumping yielding 

significantly longer reaction time than the other two action categories (p < 0.001). The 

interaction effect between tasks and actions was also significant (F(2,18) = 26.18, p < 0.001). 

The results show that the task of causal judgment in task 2 took longer time in general 

compared to the action classification judgment in task 1. Also, the reaction time of judgment 

depends on the type of action, due to the difference between temporal dynamics of actions.  
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Figure 5.2. Averaged reaction times of trials with correct responses in task 1 and task 2 for the 

three action types respectively in the behavioral experiment. 

 

5.3.2 MEG results 

All statistics were computed using nonparametric cluster-level permutation tests based on 

3000 permutations with a critical α-value of 0.05, following and Oostenveld (2007). Cluster 

mass was determined by summing statistical values of adjacent suprathreshold time points within 

a cluster rather than counting the number of adjacent suprathreshold time points (or any other 

cluster-weighting method). The null distribution was built by permuting data and storing the 

largest cluster mass observed in the permuted data. 

 

Event-related field.  The averaged event-related field (ERF) was calculated by averaging the 

preprocessed MEG signal for each condition for task 1 and task 2 respectively. Results of task 1 
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and task 2 were shown in figure 5.3a and the averaged ERFs of actions separately in task 2 were 

shown in figure 5.3b. No significant difference was found between action categories in task 1 in 

any of the four brain regions. No significant difference was found between causal and non-causal 

conditions in task 2 in any of the four brain regions either, even though the ERF started to show a 

difference between two conditions at about 300 ms in the frontal region. This difference was 

primarily driven by the running action. 

 

 
 

Figure 5.3. (a) Event-related field (ERF) of task 1 and task 2 for the four brain regions. (b) ERF 

of task 2 for the three actions separately for the four brain regions. 
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Feature selection.  We first investigated the number of channels being selected for each task. 

Here, only the number of selected channels from the ANOVA feature selection method is 

reported. To investigate the spatial distribution of the selected channels, the 306 sensor channels 

are divided into eight brain regions: frontal lobes (left and right), temporal lobes (left and right), 

parietal lobes (left and right), and occipital lobes (left and right) (for an illustration, see Fig 1 in 

Hu, Yin, Zhang, & Wang, 2018), corresponding to the standard brain regions provided by Elekta 

Neuromag MEG. At each time point, channels that are selected from the ANOVA feature 

selection procedure were classified into one of the 8 brain regions. As shown in Figure 5.4, task 

1 yielded a peak of number of selected channels very early, at around 200 ms. The averaged 

number of selected channels were significantly greater within the 200 – 600 ms window for the 

occipital region than the frontal region (t(5) = 4.33, p = 0.008). The comparison between 

occipital and temporal (t(5) = 1.94, p = 0.110), and occipital and parietal (t(5) = 2.18, p = 0.082) 

were not significant, but showed a trending significant difference. This suggests that occipital 

region played a relatively dominant role compared to parietal, temporal and occipital regions. 

The number of selected sensors were slightly more in the right hemisphere than the left 

hemisphere but the difference did not reach a statistical significance. In contrast, task 2 reached a 

peak of number of selected channels later in time, starting to increase rapidly after 1s. Here, the 

occipital region no longer has significantly greater number of selected channels compared to 

other cortices early in time as in task 1 (p > 0.2). However, the occipital region yielded 

significantly more selected channels between 1200 ms to 1700 ms (occipital vs. frontal, p = 

0.066; occipital vs. parietal, p = 0.038; occipital vs. temporal, p = 0.016). This suggests that the 

occipital area may still greatly contribute to the causal judgment task, but the process happens 
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later in time. Again, no difference was found between left and right hemisphere. As shown in 

figure 5.5, the number of channels being selected separately for three actions showed different 

patterns of distributions. While walking reached a peak before 500 ms, running reached a peak 

after 1s, and jumping reached a peak after 1.5 s. The results indicate a difference between time 

windows of successful decoding for three actions, probably driven by differences in the temporal 

dynamics of three actions. For example, the causal congruency between motion cues in walking 

actions may be able to be revealed early in time based on low-level visual information, while 

running and jumping require a longer time for cumulating visual information. The process of 

causal judgment may also happen early for walking driven by familiarity due to repeated 

exposures in daily life. 
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Figure 5.4. Channels being selected from ANOVA feature selection were grouped into one of the 

eight cortical regions. Here shows the distribution of numbers of selected channels at different 

time points averaging across all the subjects. (a) The distribution of numbers of selected channels 

from the four cortical regions, merging across left and right hemisphere. (b) The distribution of 

numbers of selected channels from the left and right hemisphere. 
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Figure 5.5. Channels being selected from ANOVA feature selection for task 2 with three actions 

being decoded separately. From top to bottom, it shows the distribution of jumping actions, 

running actions, and walking actions. 

 

Decoding performance.  Decoding results based on two methods of features selections were 

shown in Figure 5.6. The ANOVA feature selection method and the PCA feature selection 

method yielded similar decoding performance, but PCA showed slightly smoother and higher 

decoding accuracy. Thus, the following reports were mainly based on the PCA feature selection 

method. For task 1, we were able to decode action categories (i.e. jumping, running, or walking) 
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as early as 50 ms, and the first significant chunk of time with above-chance accuracy lasted from 

50ms to 810 ms, yielding an average accuracy of 0.47 within this time range, which is 

significantly above the 0.33 chance level. The performance reached a peak at 420 ms with an 

accuracy of 0.55. When the results of three actions were shown separately, they all showed a 

rapid increase of decoding accuracy right after 200 ms (i.e. decoding latencies were 350 ms for 

jumping, 240 ms for running, no significant chunk of time was found for walking but the peak 

was at 410 ms). The decoding curves showed two significant chunks of decoding accuracy in the 

jumping action condition, one before 1 s and one after 1s. This was probably due to a difference 

in the temporal dynamics of jumping actions compared to running and walking. While running 

and walking show signature movements continuously across the entire videos, the signature 

movements of jumping appear in the middle of the 3s video (i.e., around 1.5 s), after a short 

period of preparation for jumping movement. 

Compared to the relative performance in task 1 (i.e. accuracy relative to the chance 

level), task 2 yielded slightly lower accuracy in general, with a peak accuracy of 0.60, indicating 

that decoding causality is a more difficult task than decoding action categories. Also, the first 

significant peak happened slightly later in time, at around 300 ms for the ANOVA feature 

selection method and after 1.5 s for the PCA feature selection method. In contrast to decoding 

performance in task 1, the decoding of the three actions separately in task 2 reached peak 

performance at dramatically different time points. Jumping yielded a decoding latency of 1580 

ms, and a peak accuracy of 0.70 at 1700 ms, probably because the difference between causal and 

non-causal jumping actions was hard to be revealed before the signature movements of jumping. 

Running yielded a decoding latency at 1050 ms, with a peak accuracy of 0.65 at 1140 ms. 

Walking got a decoding latency of 230 ms and reached a maximum accuracy of 0.70 at 630 ms. 
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This suggests that the processing of causality in human actions happens after action recognition 

and strongly depends on the temporal dynamics of actions. 

 

 

Figure 5.6. Decoding accuracy of task 1 and task 2 under two feature selection methods. The left 

half presents the decoding accuracy of the ANOVA feature selection method. The right half 

presents the decoding accuracy of the PCA feature selection method. Here, task 2 was decoded 

from channels that were selected entirely based on task 1. Stars indicate statistical significance 

calculated from a permutation one-sample t-test compared to the chance level. 
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Source localization. Snapshots of the spatiotemporal activity estimates of task 1 were shown in 

Figure 5.7 (left). Four different latencies were picked based on the decoding results in Figure 5.6. 

In task 1, a clear activation of the primary visual cortex was observed at 200 ms for both left and 

right hemisphere. The MT region and pSTS regions were activated at around 300 ms with a right 

hemisphere dominance. At 1000ms, activations were observed at the orbitofrontal cortex (OFC), 

indicating a potential decision-making process. As shown in Figure 5.7 (right), the three actions 

showed highly consistent spatiotemporal activity patterns. 

 

 

Figure 5.7. (left) Snapshots of the spatiotemporal activity estimates of task 1averaged across all 

action categories at four different latencies. (right) Snapshots of the spatiotemporal activity 

estimates of task 1of three action categories separately at two different latencies. From top to 

bottom the four rows correspond to left hemisphere lateral view, left hemisphere medial view, 

right hemisphere lateral view, and right hemisphere medial view. 
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As shown in Figure 5.8, a more spread pattern of activation was observed for task 2. In 

contrast to task 1, the primary visual cortex did not show many activations when contrasting 

causal from non-causal actions. The middle temporal gyrus (MTG) and ITG showed a negative 

contrast and the OFC showed positive contrast at 300 ms. At 1658 ms, IPL and pSTS showed 

negative contrasts. Due to the difference between temporal dynamics of three action categories, 

figure 5 (right) showed the activity estimates for three actions separately at different latencies. 

Jumping showed stronger activation at the middle frontal gyrus, dorsolateral prefrontal cortex 

(DLPFC), OFC as well as the primary visual cortex. Running showed stronger activation at IPL 

and superior temporal regions at 1083 ms. Walking showed strong activation early in time at 

around 540 ms at the premotor cortex, IPL, ITG, inferior cingulate, and superior frontal gyrus.  

 

  

Figure 5.8. (Left) Snapshots of the spatiotemporal activity estimates of task 2 at three different 

latencies. (Right) Snapshots of the spatiotemporal activity estimates of three actions separately 
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for task 2. From top to bottom the four rows correspond to left hemisphere lateral and medial 

views, right hemisphere lateral and medial views. The color indicates the contrast between causal 

and non-causal conditions, with yellow being positive and blue being negative. 

 

5.4 Discussions 

 In the current study, we used MEG to investigate the spatiotemporal dynamics of the 

neural representation of causal human actions and found that causality of human action can be 

decoded from MEG signals as early as 300 ms following the video onset, which is considerably 

less than the 3-s video stimuli. Substantially, the decoding was achieved by selecting channels 

that are sensitive to action categories in a different task, ruling out the possibility of the double-

dipping. Interestingly, the causal judgment task showed dramatically different temporal 

dynamics of the decoding performance as well as spatial distributions of selected channels and 

source estimates compared to the action recognition task.  

 In the time domain, the two tasks reached significant decoding performance at different 

time points. The action classification task (i.e. task 1) got the maximum number of channels that 

are sensitive to action categories early in time as well as a peak in decoding performance starting 

at 200 ms. This is consistent with previous EEG and MEG evidence that actions can be decoded 

after 200 ms to 250 ms after the video onset (Hirai, Fukushima, & Hiraki, 2003; Isik et al., 2018; 

Tucciarelli et al., 2015). The significant decoding performance lasted form 200 ms to 700 ms, 

suggesting that the processing of biological motions may extend across several stages. Similar 

ideas were also suggested by previous EEG studies that while an early 200 ms component may 

be triggered by attentional effects associated with stimulus onset, a later component happens 

after 300 ms with specific processing of patterns of motions (Jokisch, Daum, Suchan, & Troje, 
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2005). In contrast, the causal judgment task reached the maximum number of channels that could 

differentiate causal from non-causal actions at a much later time close to 1 second after the video 

onset. The decoding latency of task 2 was also later in time and showed a distribution that was 

more evenly distributed over time and highly depended on the temporal dynamics of actions. The 

results suggest that the causal judgment is not temporally restricted within a time window but is a 

continuous process which happens along with the integration of motion cues in actions. 

 The two tasks also revealed highly different source estimates. The source estimates of the action 

classification task showed a strong activation at the primary visual cortex, precuneus, STS, as 

well as LOTC. The activation pattern emerged as early as 200 ms and the activation gradually 

spread to more anterior regions, suggesting a gradually deeper representation of motion 

information over time. The results are consistent with previous evidence by Tucciarelli et al., 

(2015) that LOTC has the earliest access to abstract action representations, between 200 ms to 

300 ms. OFC was activated later in time at around 1 second, potential indicating a decision-

making stage or an inhibition of motor responses (Decety, & Grèzes, 1999). In comparison, the 

causal judgment task showed a more spread pattern of activation both spatially and temporally. 

The primary visual cortex no longer shows a dominant role. Instead, MTG, ITG, IPL, DLPFC, 

and OFC showed activations for the contrast between causal and non-causal actions. At 300 ms, 

MTG and ITG showed a negative activation and the OFC showed positive activation. At 1658 

ms, the IPL, inferior cingulate, and the superior temporal regions showed negative contrasts.  

 The results are consistent with previous evidence from fMRI on the perceptual causality 

in launching effects showing that right superior and IPL might contribute to causality given of 

their role in spatial attention (e.g., Singh-Curry and Husain, 2009; Woods et al., 2014) and 

spatial relational processing (Ackerman and Courtney, 2012). Left IPL activity might integrate 



112 

 

spatial and temporal information as shown in a collision judgment paradigm (Assmus et al., 

2003). IFG and DLPFC may play an important role in perceptual decision-making, category 

selection, and response inhibition (e.g. Heekeren, Marrett, & Ungerleider., 2008). It has also 

been found that bilateral IFG, bilateral IPL, and right SPL (Woods et al., 2014) were activated 

when participants were instructed to explicitly use spatial information to make causality 

judgments. In addition, the activation at premotor cortex region is consistent with previous 

evidence that specific causal properties such as spatiotemporal contingencies were found to be 

processed in monkey premotor area F5 (Caggiano et al., 2016). Sack (2009) proposed that 

premotor cortex may integrate sensory information and relay the information to medial-dorsal 

parietal cortex in a top-down manner to facilitate the spatial cognition. Meanwhile, neural inputs 

from premotor cortex are also sent to bilateral prefrontal cortex and occipito-temporal cortex. 

 Together, the current study for the first time revealed the spatiotemporal neural activities 

underlying the visual processing of causal constraints in biological motion. Our findings suggest 

a distributed neural network across frontal, parietal, temporal and occipital cortex which may be 

responsible for processing and integrating spatial and temporal elements over time in the 

dynamic causal events (Straube, & Chatterjee, 2010). However, with the current evidence, we 

cannot rule out the possibility that the causal judgment is based on the detection of incongruency 

between motion cues without referring to a high-level reasoning process. Future studies could be 

done with more controlled spatial or temporal elements as well as controlling for eye 

movements. In addition, it will be worth investigating the neural representation of causal human 

actions in a more natural and complex scenario such as goal-oriented action demonstrated by 

human-object interactions. 
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CHAPTER 6   

Causal Action Perception in Deep Neural Networks 

6.1 Abstract 

 Perceiving and understanding human actions are sophisticated processes achieved by the 

human visual system. In recent years, computer vision has developed powerful deep 

convolutional neural networks (CNN) that can reach human-level performance on many visual 

tasks, including action recognition and pose prediction (e.g. Simonyan and Zisserman, 2014; 

Martinez, Black, & Romero, 2017). However, it remains unknown if such neural networks 

acquire similar action representations as humans, and learn to achieve a deeper understanding of 

causal relations prevalent in human actions. Here, through a series of simulations, we 

systematically tested the performance of deep neural networks on the generalization of action 

perception and causal action understanding. 

We adopted a two-stream CNN with a spatial pathway specialized in processing 

appearance information and a temporal pathway specialized in processing motion information. In 

simulation 1, we tested whether the two-stream CNN could generalize across different types of 

body movement displays to demonstrate the flexibility as human observers. We trained the 

model with actions displayed in the skeletal form and tested its performance with point-light 

(PL) displays. We found that only the motion stream can recognize PL actions with above 

chance-level performance, while the appearance pathway failed the recognition task. In 

simulation 2, we tested the model performance for moonwalk actions which include inconsistent 

limb movements and body displacements. We found that the two-stream CNN was not able to 

distinguish moonwalk actions from normal actions, suggesting a lack of understanding to 

connect certain limb movements with expected body displacements. In simulation 3, a long 
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short-term memory (LSTM) recurrent neural network was included in model architecture to 

examine if the representation of the global motion pattern is the key to reach a causal 

understanding of human body movements. Results showed that while the added LSTM module 

enabled the model to perceive global body displacements, the model failed to identify whether or 

not the walking action is consistent with causal relations between limb movements and body 

displacements. Together, we conclude that the current neural networks lack the representation for 

causal actions and future improvements are needed. 

 

6.2 Introduction 

Recognizing human body movements is viewed as one of the most sophisticated abilities 

supported by the human visual system. In daily life, we can readily recognize actions despite 

changes in body forms, appearance (e.g, different clothing), viewpoints, scales, and occlusions. 

Even for highly impoverished and rarely observed displays such as point-light displays 

(Johansson, 1973), in which a few disconnected dots depict joint movements, the human visual 

system can recognize actions with high accuracy despite visual noise (Lu, 2010), and perceive 

social interactions (Thurman & Lu, 2014a) and causal intention (Peng, Thurman & Lu, 2017). 

In contrast to the remarkable human ability to recognize actions from body movements, 

developing computer algorithms to recognize action has been challenging. One representative 

model of action perception is by Giese and Poggio (2003), who developed a 

neurophysiologically plausible and quantitative model with two parallel processing streams: a 

ventral pathway and a dorsal pathway. The ventral pathway is specialized for the analysis of 

form in static frames. The dorsal pathway is specialized for optic-flow/motion information. Both 

pathways comprise hierarchies of neural feature detectors that extract form information or optic-
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flow information with increasing complexity as the hierarchy going up. Despite the fact that the 

model can address many neurophysiological and psychological findings, it is developed based on 

some assumptions that are hard to experimentally verify, and shows restricted capacity in 

modeling a limited set of human actions. One of the drawbacks is that the model only includes 

feedforward connections for both pathways, without top-down influence from other brain regions 

beyond visual areas. This architecture makes the model efficient in perceiving motions based on 

low-level motion inputs, but limits its capability under circumstances that require attention shifts 

and prior knowledge such as physical laws and biological structure of human bodies. Another 

limitation was that the model was not capable of recognizing actions from natural videos in 

dynamic scenes but only focusing on highly controlled biological motion stimuli, e.g, point-light 

display.  

In recent years, with the rise of convolutional neural networks (CNNs), video recognition 

research has been advancing. For example, Simonyan and Zisserman (2014) extended deep 

convolutional neural networks (ConvNets) (LeCun, Bottou, Bengio, & Haffner, 1998; 

Krizhevsky, Sutskever, & Hinton, 2012), and developed two-stream CNNs which include the 

spatial and temporal pathways. A spatial CNN processes appearance information and a temporal 

CNN processes the optical flow information. At a later stage, the feature derived from the two 

information sources are integrated, so that both appearance and motion information is used to 

recognize actions.  The model performed well on action classification of two challenging 

datasets: UCF-101 which includes 13320 videos covering 101 action types (Soomro, Zamir, & 

Shah, 2012), and HMDB-51 which includes 6766 videos covering 51 action types (Kuehne, 

Jhuang, Garrote, Poggio, & Serre, 2011). The two-stream CNNs achieved the accuracy levels in 

the range of 55% to 70% for the HMDB-51 dataset (compared to a chance level of 2%). This 
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performance represents a significant improvement over previous action recognition models based 

on deformable templates, or part-based approaches.  

Despite the success of deep neural networks in recognizing actions, it remains unknown 

whether neural networks trained with natural videos yield representations of actions similar to 

those acquired by the human visual system. In addition, whether the action representations 

learned in deep neural networks encompass deeper understanding about actions still remains 

unknown. Here, we aim to answer a few questions: (1) whether CNNs are as robust as humans in 

recognizing actions in novel displays, such as point-light stimuli. In simulation 1, we aim to 

examine the generalization of two-stream CNNs across action displays. If the network can 

generalize its performance to recognize human actions in the impoverished formats commonly 

displayed in psychophysical studies, we can also assess the contributions made by the separate 

pathways processing appearance and motion information, as well as contributions made by the 

integration of the two processes; (2) whether deep neural networks possess an understanding of 

the implicit causal structure embedded in human actions. In simulation 2 and 3, we used novel 

actions such as moonwalk action, backward action, or in-place actions, to systematically test the 

performance of the standard two-stream CNN, and an extended version of CNNs on causal 

action understanding.  

 

6.3 Simulation 1 

Skeletal and point-light displays are rarely observed in natural environments but 

commonly used in psychophysical research. Human adults showed a strong ability to recognize 

point-light displays without previous exposure. In simulation 1, we aim to address the two 
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following questions: (1) Could a two-stream CNN reach the human-level performance of 

recognizing skeletal displays after training with videos showing skeletal displays of human 

actions from different viewpoints (2) Could the two-stream CNN model trained with skeletal 

displays of human actions generalize its performance to recognize actions in point-light displays. 

We hypothesize that if the two-stream CNN model emulated human action processing, it would 

be able to recognize point-light displays after training with natural and skeletal displays. 

6.3.1 Model structure 

The two-stream CNN relies on processing two types of information to classify a video 

clip into action categories. One source of information is the appearance in static image frames, 

and the other is motion (usually represented by optical flow fields, i.e., the spatial displacement 

of each pixel between adjacent frames; Horn & Schunck, 1981). This two-stream architecture is 

consistent with neurophysiological evidence that action processing involves both ventral and 

dorsal pathways in the brain, and integrates the information at action sensitive regions in the 

temporal lobe (e.g., Giese & Poggio, 2003). 

For each of the streams in the model, we adopted the architecture of CNNs such as 

VGG16 (Simonyan & Zisserman, 2015) shown in Figure 6.1. The appearance stream, termed as 

spatial CNN, uses the input of the three channels of an RGB image; and the motion stream, 

termed as temporal CNN, uses a stack of optical flow vector fields spanned over a temporal 

window with some consecutive frames. We use 10 frames for all simulations for this temporal 

window. In each of the CNNs, five convolutional layers for feature extraction are applied to the 

input, which are followed by three fully-connected (FC) layers. If we have a total of K action 

categories, then the final layer (i.e. a softmax layer) will yield a vector of length K, in which the 

k-th element is the probability of the k-th action category being activated by the input (i.e., 
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confidence). In the present paper, we use these two streams of CNNs to model the spatial 

pathway and the temporal pathway respectively. 

 

 

Figure 6.1: The architectures of the spatial CNN of appearance (top) and the temporal CNN of 

motion (bottom) using the VGG16 networks. Each pathway contains five convolutional layers 

and three fully-connected layers.  

 

If we separately train the spatial CNN with the static images in action sequences and the 

temporal CNN with optical flow fields extracted from action videos, they will each yield 

independent recognition decisions, based solely on appearance or motion information 

respectively. To yield overall recognition of the action category given a video clip, the network 

architecture is further extended to achieve fusion of the multimodal information. The basic 

approach is to take the outputs of one layer in the spatial CNN and the outputs of one layer in the 

temporal CNN and treat them as the joint inputs to an additional network (usually a few FC 

layers) that perform holistic action recognition. While any layers may be selected for the 

information fusion, empirical studies conducted by Feichtenhofer, Pinz, & Zisserman (2016) 

suggest that the fusion of the outputs of the final convolutional layers (i.e., “conv5”) of both 

streams consistently yields the highest recognition accuracy across different datasets (see Figure 
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6.2). Accordingly, we adopted this fusion architecture for our two-stream CNNs model in 

simulations reported in the present paper.  

More specifically, the two-stream CNN model uses the fusion layer to first stack the 

outputs from the “conv5” layers (each one is a 7 × 7 × 512 tensor) resulting in a 7 × 7 × 1024 

tensor, followed by passing this stacked tensor to a convolutional layer consisted of 512 filters 

with a size of 1 × 1. The resulting output is still a 7 × 7 × 512 tensor. We follow a two-phase 

protocol to train the network: We first train the single stream networks shown in Figure 6.1 

(spatial CNN and temporal CNN independently); We then integrate the convolutional layers of 

these two CNNs into the two-stream CNN (Figure 6.2) by fixing the parameters of the 

convolutional layers and only training the parameters of the FC layers. 

 

 

Figure 6.2: The architecture of the two-stream CNN. After training the spatial and temporal 

CNNs independently, the convolutional 5 layers of the two CNNs were fed into the fusion 

pathway which has 3 fully connected layers. 

 

6.3.2 Stimuli and Procedure 

Human motion capture data were selected from Human 3.6M dataset (Ionescu, Li, & 

Sminchisescu, 2011; Ionescu, Papava, Olaru, & Sminchisescu, 2014). The Human 3.6M dataset 
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includes 47772 videos recorded in a lab setting through a motion capture system, with the same 

background and fixed camera locations. This dataset provides both raw videos with natural 

images (i.e. RGB videos) and also whole-body joint coordinates to generate skeletal and point-

light displays of the actions from different viewpoints. A total of 15 categories of actions were 

included: giving directions, discussing something with someone, eating, greeting someone, 

phoning, posing, purchasing (i.e. hauling up), sitting, sitting down, smoking, taking photos, 

waiting, walking, walking dog, and walking together. Each action was performed by 7 actors. 

Each actor performed the same action twice, resulting in two recordings for each action. 

RGB video training instances were generated by selecting 5s video clips with a non-

overlapping 5s sliding window from the beginning of each recording to the end. Each video clip 

contains 150 frames with a 30 fps sampling rate. For each video clip, 5 additional versions were 

generated to increase the flexibility of the training data: (1) a zoom-in version with 200 pixels 

being cut-off from all the four boundaries; (2-5) spatially shifted versions with the human figure 

being shifted toward the top-left, top-right, bottom-left, and bottom-right corners which was 

achieved by cutting off 200 pixels from the corresponding boundaries. A total of 47772 video 

clips were generated in the end.  

Because the Human 3.6M dataset provides motion capture data, in addition to the raw 

recorded RGB videos, we generated the skeletal and point-light displays using the tracked joint 

positions in actions. Skeletal and point-light videos were generated using the Matlab BioMotion 

toolbox (van Boxtel & Lu, 2013).  Similarly, 5s video clips were selected from the long action 

recording sequences for all 15 categories. For skeletal displays, 7 different viewpoints were 

selected for each video clip, ranging from 30° counter-clockwise from the central viewpoint to 

30° clockwise from the central viewpoint with a step size of 10°. A total of 13769 skeletal 
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training instances were generated. Point-light videos were generated for the testing purpose. 

Only the central viewpoint was selected and a total of 1967 testing instances were generated. 

Sample frames of videos are shown in figure 6.3. 

The training stage contains two steps. First, the model was trained with RGB videos 

separately for the spatial and temporal pathways, during which 90% of RGB training instances 

were used for training and the rest 10% were used as validation to test the model performance. 

After reaching a saturated accuracy, the trained weights of two pathways are saved. Second, a 

transfer learning was conducted by using the trained weights of RGB videos as initial values and 

retraining the entire CNN model with skeletal videos. Again, 90% of RGB training instances 

were used for training and the rest 10% were used as validation. In the testing stage, point-light 

displays were tested and the accuracy and confusion matrices were calculated. 

 

Figure 6.3: Sample training data in the RGB display and the skeletal display and testing data in 

the point-light display. Videos were generated from motion capture data of the Human 3.6M. 
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6.3.3 Results and Discussion 

Training and testing accuracy is shown in Table 6.1. Transfer learning of skeletal 

displays reached a high accuracy in both pathways. For testing, the temporal pathway of motion 

yielded higher than chance-level accuracy (i.e. 0.56 with a chance level of 0.07) for action 

classification with point-light displays. In contrast, the spatial pathway of appearance showed 

poor generalization performance, yielding close to chance-level recognition accuracy (i.e. 0.16). 

These results support a crucial role for the motion processing pathway in action recognition for 

point-light displays. As demonstrated by confusion matrices as shown in Fig. 4, the spatial 

pathway for appearance was highly biased to certain action categories (e.g. discussing, making 

phone calls, and waiting) and did not show an ability to discriminate among other actions, 

whereas the temporal pathway classified all 15 actions with much better discrimination. The 

recognition errors made in the spatial pathway was likely due to the appearance similarities 

between static image frames of certain action categories. For example, sitting down was 

frequently judged as purchasing (i.e. hauling up) probably due to the similarity between body 

postures of these two action categories, with a signature of the posture of squat.  

Even though the model was intensively trained on skeletal displays, the spatial CNN and 

the fusion network were not able to generalize from skeletal action stimuli to point-light action 

stimuli. The failure of the spatial CNN may not be surprising since actions in point-light displays 

reveal limited and sparse information about human forms. Interestingly, the test performance 

from the fusion layer (i.e. 0.27) was even lower than the average of two CNN pathways. From 

the confusion matrix (Figure 6.4, right), the fusion network showed similar results as the spatial 

CNN, suggesting that the fusion network gave much higher weights to the spatial CNN from the 

training with skeletal displays and failed to utilize the useful information passed on from the 
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temporal CNN to perform well with the point-light actions. In other words, the fusion module 

was trained to integrate both appearance and motion information from the skeletal display, but 

did not establish optimal weighting between the two pathways for recognition of actions in the 

point-light displays. 

 

Table 6.1. Training and testing accuracy in simulation1.  

 RGB  training 
Skeletal transfer 

learning 
Point-light testing 

Appearance (spatial) 0.95 0.97 0.16 

Motion (temporal) 0.79 0.99 0.59 

Fusion (spatial + temporal)  0.99 0.27 

 

 

Figure 6.4. Confusion matrices of recognizing Human 3.6M point-light videos. From left to 

right, the matrices correspond to appearance pathway, motion pathway, and fusion respectively. 

Colors represent the proportion of videos being classified as certain categories. Proportions 

increase from blue to red. 
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6.4 Simulation 2 

Results in simulation 1 showed that the two-stream CNN is able to differentiate actions 

after training with skeletal displays. In simulation 2, we further examined the performance of the 

two-stream CNN model on perceiving human actions with a violated causal relation between 

limb movements and body motions. The model is trained with intact actions with consistent 

facing and walking directions, and was tested with other action categories with inconsistent 

facing and moving directions, including moonwalk actions, backward actions, and in-place 

actions. If the CNN model is able to form a basic understanding of the implicit causal structure, 

the inconsistency between motion cues in three testing action conditions should introduce some 

confusion when judging the directions. 

 

6.4.1 Stimuli and Procedure 

 Ninety-eight typical walking actions were selected from the CMU motion capture 

database. Skeletal walkers were presented in either a left profile view or a right profile view, 

yielding 98 instances facing left and 98 facing right. Four conditions of actions were generated: 

(1) intact action, (2) moonwalk action, (3) backward action, and (4) in-place walking action. 

First, intact actions are the typical walking actions with consistent limb movements and body 

motions, and also consistent facing direction and walking direction. Second, moonwalk actions 

were generated by reversing the horizontal moving direction of the global body translation while 

keeping the limb movements sequence intact. In other words, when a walker moves limbs in a 

way to naturally propel her body moving left, the body, however, moves to the right in the 
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moonwalk actions. This is analogues to the well-known example of Michael Jackson’s 

moonwalk dance movement. Third, backward walking actions were generated by reversing the 

entire motion sequence, so limb movements and body motions still share a consistent causal 

relation but the walking direction is opposite to the facing direction. Finally, in-place actions 

were generated by removing the global body translation component but only keeping the limb 

movements, so the walker looks like walking on a treadmill. Categories of all videos were 

defined based on the “facing direction”, meaning if the face is facing left or right regardless of 

limb or body movements. As shown in figure 6.5, in the causal condition, a “facing right” 

instance would show a walker facing right and walking towards the right. In the moonwalk 

condition, a “facing right” instance would show a walker facing right with limb movements 

indicating walking towards right but body translation moving towards left. 

Intact actions were used as training stimuli in the transfer learning while the other three 

conditions were used as testing stimuli. All the training and testing motion stimuli were 

presented in the skeletal form. Transfer learning was conducted based on the trained weights of 

Human 3.6M skeletal videos. The original dense layer with a softmax activation with 15 

categories was replaced by a new softmax dense layer with 2 categories (facing left vs. facing 

right walking). Only the last layer of the model was retrained with a goal of distinguishing the 

walking directions with weights of all previous layers being fixed. The retrained model was then 

tested on the other three conditions. Accuracy and confusion matrices were calculated for each 

condition. 
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Figure 6.5. Illustrations of the four walking action categories: intact action, moonwalk action, 

backward action, and in-place action. Here, illustrations of all conditions show instances of the 

“facing right” category. Each plot shows several possible limb movements for a stick-figure 

resulting from posture changes over time. The sticks in the walker change from light to dark 

color to denote elapsed time. Arrows below all the stick-figures, except the in-place action, 

indicate the global body translation direction. In the in-place condition, the walker remained in a 

stationary location. 

 

6.4.2 Results and Discussion 

Transfer learning of intact actions reached high accuracy (i.e. 100%) for both the spatial 

and temporal pathways. Testing results are shown in table 6.2. The model trained with intact 

action judged other categories consistently based on the facing direction while ignoring the body 
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translation component. For example, the model reached an accuracy of 0.95 for the moonwalk 

condition in the spatial pathway, meaning that for 95% of all moonwalk instances, the video 

“correctly” classified videos based on the facing direction, even though the body translation is 

totally inconsistent with facing direction. This suggests that the spatial pathway of appearance 

was highly biased by body posture information and the global body translation is not determining 

the classification results. Results are similar for the backward condition (i.e. 100%). 

Interestingly, for in-place actions, the results (i.e. 84%) were not as decisive as moonwalk or 

backward conditions. This is probably due to an appearance difference between causal and in-

place actions. For example, the spatial location of the walker in a causal condition varies across 

time, but the walker in the in-place condition is always at the center. This mismatch of 

appearance may have confused the model trained with intact actions. The results are not 

surprising since the spatial pathway does not have the temporal information of motions, so the 

judgment can only be based on static posture appearance. 

The temporal pathway showed slightly different results compared to the spatial pathway. 

Moonwalk instances were judged inconsistently based on either facing direction or the body 

translation direction, yielding a low score of 0.69. This result suggests that the temporal pathway 

of motion may take into consideration of both the body translation component and the limb 

posture component when classifying actions. However, the overall judgment is heavily biased 

toward the facing direction compared to the body translation component. The results of 

backward actions were similar to moonwalks, again suggesting that both motion components 

were considered when the model was making judgments. Even though moonwalk actions and 

backward actions are different in terms of the causal relation between limb movements and body 

translation, the current model was not able to reflect that difference in terms of classification 
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accuracy. The accuracy score drops from 0.84 in the spatial pathway to 0.79 in the temporal 

pathway for the in-place actions. This may be due to that the temporal pathway gives higher 

weights to the body translation motion cues when making decisions but in-place actions lack an 

informative indicator of body translation direction, which hinders making correct judgments of 

the facing direction. 

The performance of fusion fell between the two pathways, indicating a compromised 

decision based on inputs from two pathways. The current result may be caused by a missing 

representation of the global temporal pattern of videos since the entire video clip was cut into 

chunks of 10 frames (0.33s) during the training. This may significantly limit the representation of 

how the body moves across space in a longer range of time. Thus, it may not be surprising that 

higher weights were given to the static body posture instead of body translations.  
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Table 6.2. Training and testing accuracy with confusion matrices in simulation 2. From top to 

bottom, the rows show results of the spatial pathway, temporal pathway, and fusion. Confusion 

matrices show the proportion of model predictions. The first and second row indicate videos with 

a ground truth of facing left and facing right respectively. The first and second column indicate 

videos being judged as facing left and facing right respectively. 

 

Intact action 

transfer 

learning 

Moonwalk 

action testing 

Backward 

action testing 
In-place action 

testing 

Spatial 

(Appearance) 

score: 1.0  

[1 0 

 0 1] 

score: 0.95 

 [0.96 0.04 

 0.06 0.94 ] 

score: 1.0 

[1 0 

 0 1] 

score: 0.84 

 [0.71  0.29 

 0.02 0.98] 

Temporal (Motion) 

score: 1.0  

[1 0 

 0 1] 

score: 0.69  

[0.77  0.23 

 0.38  0.62 ] 

score: 0.68 

[0.70  0.30 

 0.34 0.66] 

score: 0.79 

 [0.93  0.07 

 0.36 0.64] 

Fusion 

score: 0.975 

[0.99  0.01 

 0.04 0.96 ] 

score: 0.866 

[0.94  0.06 

 [0.21 0.79 ] 

score: 0.90 

[0.95 0.05 

 0.16 0.84] 

score: 0.78 

[0.78 0.23 

 0.22 0.78] 

 

6.5 Simulation 3 

Simulation 2 showed that the two-stream CNN model was not able to dintinguish 

moonwalk from backward actions, although the former violates the causal relation between limb 

movements and body motion and the latter has the causal congruency. This failure may be 

caused by a missing of the global temporal structure of videos.  

Besides CNNs, another type of deep neural network is the recurrent neural network 

(RNN), which is widely used for processing sequential input data, such as handwriting 
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recognition (e.g. Graves et al., 2009; Sutskever, Martens, & Hinton, 2011) and speech 

recognition (e.g. Graves, Mohamed, & Hinton, 2013). Different from feedforward CNNs which 

only consider the current input, RNNs maps input sequences to a sequence of hidden states, and 

then provide outputs based on the sequential data. Each hidden states considers not only the 

current input but also integrates information from previous states. This enables the learning of 

complex temporal dynamics. In action recognition, The combination of CNN and RNN enables 

us to not only use the CNN’s power to learn compact representations of image data, but also 

employ the RNN’s power to learn temporal patterns of the entire video which is necessary for 

human pose prediction.  

Specifically, long short-term memory (LSTM) (Hochreiter, & Schmidhuber, 1997) is a 

type of RNN architecture which was proposed as a solution for the vanishing gradient problems 

of RNNs, referring to the problem that when a model has many layers, the gradient decreases 

exponentially as it propagates down to the initial layers and prevents efficient training 

procedures. LSTM module contains many recurrently connected memory blocks, enabling 

integrating and forgetting information over time. This mechanism mirrors the mechanism of 

working memory in human brains, that dopamine is released to enable forgetting and the 

formation of new memories with plasticity (Berry, Cervantes-Sandoval, Nicholas, & Davis, 

2012). Many recent works have witnessed the success of LSTM in action recognition (Liu, 

Shahroudy, Xu, & Wang, 2016; Donahue et al., 2015) and pose prediction (Fragkiadaki, Levine, 

Felsen, & Malik, 2015; Martinez, Black, & Romero, 2017). 

In simulation 3, we added an LSTM model on top of the two-stream CNN. We aim to test 

if the added LSTM module will enable the model to have a representation of the global temporal 
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pattern of actions, and if the model is able to represent moonwalk and backward actions 

differently.  

6.5.1 Model structure 

As shown in figure 6.6, an LSTM component was added to the FC2 layer of CNN and 

replaced the original softmax layer. Each time point corresponds to one hidden state of LSTM 

and all the hidden states were connected across time. The LSTM module takes features extracted 

from the FC2 layer as inputs. For the image pathway, every 10 static frames were treated as a 

unit and features of only the middle frame were extract to enter the LSTM module. For the flow 

pathway, every 10 consecutive frames of optical-flow images were grouped as a unit and one set 

of FC2 feature was extracted based on the entire 10 frames. In the end, each 5s video (i.e. 150 

frames in the raw video) yield 15 time steps of FC 2 features. Each time step enters the LSTM 

module consecutively and the LSTM module provides one output at the end of actions. 
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Figure 6.6. An illustration of the model structure after combining CNN and LSTM modules. One 

LSTM cell is connected to the feature outputs of FC2 at each time step. LSTM cells are 

responsible for keeping track of the dependencies between the elements in the input sequence. 

Each LSTM cell contains an input gate, an output gate, and a forget gate. The input gate controls 

the extent to which a new value flows into the cell. The forget gate controls the extent to which a 

value remains in the cell and the output gate controls the extent to which the value in the cell is 

used to compute the output activation of the LSTM unit.  

 

6.5.2 Stimuli and Procedure 

Same video stimuli were used in simulation3 as in simulation 2. To train the new model 

with an additional LSTM module, skeletal display of Human 3.6M dataset were used as training 
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instances. Weights of the CNN model were fixed and only the weights associated to the LSTM 

module were updated. After reaching a saturated accuracy, the model weights were saved for the 

purpose of transfer learning. Again, intact action video clips were used as training instances to 

retrain the last softmax FC layer connected to LSTM, with the goal of differentiating left facing 

actions from right facing actions. Then, the other three action conditions were used as testing 

instances to calculate the accuracy and confusion matrices. 

To test if the model can differentiate intact actions from moonwalk actions, a transfer 

learning was further conducted to retrain the softmax FC layer to distinguish intact actions from 

moonwalk actions, regardless of the facing direction. Accuracy and confusion matrices were 

calculated. The same procedure was also conducted for the transfer learning of distinguishing 

causal from backward actions. To compare the representation of videos, features were extracted 

from the LSTM layer for each video. The output contains the LSTM representation of the entire 

video, containing 3000 nodes. Thus, each video gets a 1 × 3000 vector LSTM representation. 

Representational dissimilarity matrix (RDM) was calculated based on the cosine distances 

between feature vectors of pairs of videos. 

 

6.5.3 Results and Discussion 

The accuracy of transfer learning and testing are shown in table 6.3. After adding the 

LSTM component, the testing classification score of facing directions of walkers dropped to 

close to zero for both moonwalk actions and backward actions, as the model discriminate 

walking directions in accordance to the global body displacement which is opposite to the facing 

direction. This suggests that adding LSTM in addition to CNN enabled the learning of temporal 
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patterns of the entire video, which made the direction of body translation an important motion 

cue in the classification of facing directions. However, this trade-off between weighting limb 

postures and body translations also seems to happen in a winner-take-all manner. In contrast to 

human observers who would consider both how limbs move and how the body translates and the 

relation between the two motions, the current model with LSTM module seems to be highly 

biased by the direction of body translation. This is further supported by the performance of in-

place actions (i.e. 61% for the spatial CNN and 60% for the temporal CNN), which is close to 

the chance level, suggesting that when the body translation information is not available, the 

model fails to distinguish facing directions of in-place actions. 

To examine if the model can distinguish causal from moonwalk actions, a transfer 

learning was conducted to retrain the softmax layer to distinguish the two categories (i.e. actions 

with causally congruent motion cues or actions with incongruent motion cues). Results are 

shown in table 6.4. The appearance pathway yields an accuracy of 0.59, which is not greatly 

different from the chance level 50%. This suggests that only for 59% of time, the model was able 

to distinguish causal from moonwalk actions. This failure of transfer learning suggests that the 

model was not able to learn the relation between limb movements and body translation, 

regardless of being able to capture the global temporal pattern of the videos. The motion pathway 

did better on the transfer learning, yielding an accuracy of 83%, suggesting that with optical flow 

information of limb movements combined with global temporal patterns, the model could better 

distinguish causal from moonwalk actions with an accuracy of 83%. However, this is still much 

lower compared to the previous transfer learning results on discriminating left vs. right facing 

directions, indicating that the task of discriminating causal vs. moonwalk is more difficult to the 

model compared to a task of discriminating facing directions.  
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The transfer learning between intact actions vs. backward actions yielded slightly better 

performance in the spatial pathway (i.e. a score of 0.87) than the previous transfer learning 

between causal and moonwalk actions (i.e. a score of 0.59). This increased performance may be 

due to a difference in the similarity to intact actions, since moonwalk actions share the same limb 

movement posture sequences as intact actions across time, while backward actions share entirely 

opposite limb movement sequences compared to intact actions. The temporal pathway of the two 

transfer learning yielded similar results (i.e. 0.83 for moonwalk actions and 0.85 for backward 

actions), indicating that the model was not able to distinguish the causal congruent or causal 

incongruent relations between limb movements and body motions. 

To rule out the possibility that the low performance in the previous transfer learning is 

due to lack of learning in the temporal integration module of LSTM, we further retrained the 

LSTM layer in addition to the softmax FC layer on the task of discriminating causal vs. 

moonwalk actions, as well as causal vs. backward actions. With more adjustments on parameters 

via training, the new transfer learning yield higher performances (e.g. > 90% for all the 

pathways). To compare the representations of different video categories, RDMs were calculated 

by getting cosine distances among LSTM representations between all pairs of videos from the 

four categories. For the visualization purpose, the cosine distance values were averaged within 

the comparison of one category to another (e.g. causal facing left vs. moonwalk facing left). 

Representations of the transfer learning of intact walking vs. backward walking yielded highly 

similar RDMs as intact walking vs. moonwalk so only results of the latter were shown in Fig 7. 

Both appearance and spatial pathways showed no clear distinction between intact walking, 

moonwalk, or backward walking actions. Only the in-place actions yielded a clear distinction 

from all the three other action categories. This result suggests that even after a transfer learning 
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with clear goals of distinguishing causal from moonwalk actions, the representations still didn’t 

reveal a clear distinction. 

 

Table 6.3. Training and testing accuracy with confusion matrices in simulation 3. From top to 

bottom, the rows show results of the spatial pathway and the temporal pathway, which served as 

inputs to the LSTM module. Confusion matrices show the proportion of model predictions. The 

first and second row indicate videos with a ground truth of facing left and facing right 

respectively. The first and second column indicate videos being judged as facing left and facing 

right respectively. 

 
Intact action 

transfer learning 

Moonwalk action 

testing 

Backward action 

testing 

In-place action 

testing 

Appearance 

(spatial) 

score: 1.0  

[1 0 

 0 1] 

score: 0.03 

[0.04 0.96 

 0.99  0.01] 

score: 0.02 

[0.04 0.96  

 1  0] 

score: 0.61  

[0.91 0.09 

 0.69  0.31] 

Motion 

(temporal) 

score: 0.99  

[1 0  

0.02 0.98] 

score: 0.19 

[0.38 0.62 

 1 0] 

score: 0.07  

[0.08 0.92 

 0.94 0.06] 

score: 0.60 

 [0.41 0.59 

 0.21 0.79] 
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Table 6.4. Transfer learning performance and confusion matrices of distinguishing intact action 

from moonwalk or backward actions. The first two columns show the results of only retraining 

the softmax FC layer. The second two columns show the results of retraining both the LSTM 

module and the softmax FC layer. 

 

Transfer learning on the softmax layer 
Transfer learning on the LSTM + 

softmax layer 

Causal vs. 

Moonwalk 

Causal vs. 

Backward 

Causal vs. 

Moonwalk 

Causal vs. 

Backward 

Appearance 

(spatial) 

score: 0.59  

[0.51 0.49 

 0.32 0.68] 

score: 0.87  

[0.89  0.11 

 0.15 0.85] 

score: 0.99 

[0.99 0.01 

 0.01 0.99] 

score: 0.94  

[0.95  0.05 

 0.07 0.93] 

Motion 

(temporal) 

score: 0.83 

[0.82 0.19 

 0.15 0.85] 

score: 0.85  

[0.83  0.17 

 0.13 0.87] 

score: 0.99 

[0.98  0.02 

 0.01 0.99] 

score: 0.92  

[0.89 0.11 

 0.06 0.94] 

 

 

Figure 6.7. Representational dissimilarity matrices (RDMs) of the four action categories 

calculated from the LSTM features extracted after transfer learning of intact actions and 



138 

 

moonwalk actions. The two plots show the RDM of the appearance pathway and the spatial 

pathway respectively. 

 

6.6 General Discussion 

Through three simulations, we assessed whether a two-stream CNN for action recognition 

can be generalized across display forms and if the CNN has an understanding of the causal 

relation between motion cues. Simulation 1 showed that despite the high accuracy after training 

on skeletal displays, the model performed poorly when being tested on the novel point-light 

displays. The two-stream CNN model trained with natural videos were based largely on 

appearance similarities between static image frames, such as colors, textures, scales of objects, 

and background scenes.  The model appears to heavily rely on statistic regularities in the 

appearance and optical flow fields of videos, rather than forming robust representations of 

human body movements per se. Hence, two-stream CNNs proved susceptible to a mismatch 

between training and testing datasets, reflecting less robust representations of human body 

movements. 

Previous work has provided mounting evidence that convolutional neural networks employ 

different representations of objects than does the human visual system. Studies based on 

“adversarial examples” (Szegedy et al., 2014) or “fooling examples” (Nguyen, Yosinski, & 

Clune, 2015) clearly showed that CNNs can be easily fooled by images altered with minimally 

perturbations that are imperceptible to human observers. Furthermore, Geirhos et al., (2017) 

compared CNNs with human observers on a series of object recognition tasks and concluded that 

the human visual system is much more robust to a range of image manipulations such as contrast 
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reduction, adding noise or novel eidolon-type distortions than CNNs. Similar results were 

reported by Dodge & Karam (2017). Using highly distorted images, these researchers found that 

humans greatly outperformed neural networks trained on clean images even when the images 

were presented for only 100 ms. Although CNNs can match or even outperform humans on some 

recognition tasks, there are marked differences in how humans and CNNs process visual 

information.  

Simulation 2 showed that the two-stream CNN was not able to discriminate the difference 

between actions based on the consistency between motion cues in actions. In moonwalk actions, 

even though the limb movements show great inconsistency with body translation, the two-stream 

CNN model was not sensitive to this violation of motions. This was likely due to a lack of 

representation of the global temporal pattern of the video, which made the model fail to 

recognize global body translations as an important motion cue. In simulation 3, an LSTM 

module was added on top of CNN to enable the representation of global body displacement 

patterns of videos. Results showed that LSTM indeed showed sensitivity to global body 

translations. However, this did not help the model to fully understand the causal relation between 

limb movements and body translations. 

Across simulations, the temporal pathway of motion yielded better performance than did the 

spatial pathway when testing actions presented in skeleton displays or point-light displays. This 

result suggests that the representation based on motion information is more robust and less 

susceptible to changes in the videos, such as scales and body structures. In addition to increasing 

the model depth or expanding the training dataset, we suspect that future advances based on 

CNNs will require robust weighting strategies for the integration of the two pathways. In 

addition, using controlled stimuli commonly used in psychophysics provides a useful test set to 
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assess the generalization ability of CNNs, and to gauge the underlying representational 

commonalities and differences relative to the human visual system. 

Together, the evidence shows a lack of causal representation of human actions as in the 

current form of deep neural networks. While neural networks are efficient in learning the 

statistical regularities in stimuli, they lack explicit representations of the high-level meaning and 

relations that cannot be directly perceived from visual stimuli. The totally stimulus-driven 

approach also leads to the requirement of large numbers of training instances regardless of the 

task, which is highly distinct from the way of human learning new items or concepts through 

very few exemplars, even demonstrated by young babies (Carey & Bartlett, 1978; Landau, 

Smith, & Jones, 1988). Achieving human-like ability in action perception may require a system 

with not only stimulus-driven training procedures, but also a mentalizing system, or “theory of 

mind” (ToM) (Van Overwalle, & Baetens, 2009) with potential hierarchy structure to infer the 

cause and effect at different stages of observations. Similar ideas have been demonstrated in one-

shot learning of written digits and image classification (Lake, Salakhutdinov, & Tenenbaum, 

2015; Ren et al., 2018) but future studies should be done in the field of human action recognition 

since the understanding of the causality between motion cues is the foundation of the 

understanding of goal-oriented human actions. 
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CHAPTER 7 

General Discussions and Conclusions 

 In summary, my dissertation has investigated (1) the role of causal constraints in human 

action perception, (2) the emergence of causal action perception in infants, (3) the neural 

mechanism underlying causal perception of actions, and (4) the performance of computational 

models on the recognition of causal actions.  

 Chapter 2 presented a behavioral study that shows that the causal constraint of human 

actions plays an important role in the process of perception and making inferences with body 

movements. Human observers judged actions with motion cues that follow a causal relation to be 

more natural. In addition, the causal expectation for human body movements not only affects 

perceptual impressions regarding the naturalness of observed actions but also guided the 

interpretation of motion cues within a more generalized causal context. Importantly, this work 

pinpointed the role of causality using manipulations based on the temporal-priority principle and 

helps to dissolve the ambiguity between a truly causal relation and an inconsistency between 

motion cues. Chapter 3 further presented behavioral evidence of a top-down role of causality in 

facilitating a continuous perception of human actions. When there is a causal connection between 

motions of agents and physical objects, actions are more likely to be perceived as continuous. 

Both chapters showed that causality serves as a bridge that connects action perception and action 

understanding. On the one hand, the perceptual process integrates low-level motion information 

and forms a causal representation, which enables the understanding of goals of actions. On the 

other hand, the prior knowledge and expectations of an understanding of action influence action 

perception in a top-down manner and facilitate the formation of a robust and meaningful 

perception.  
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 Chapter 4 presented developmental evidence showing that by 18 months, infants are 

sensitive to the motion consistency constraint that governs human actions. In addition, the 

development of causal action perception may be in parallel with the development of motor 

functions. The results show a close connection between action perception, action understanding, 

and even action performance. The early emergence of causal understanding may root from 

observing co-occurrence of motion cues in the environment and also from knowledge gained 

from experiencing outcomes of actions through infants’ interactions with others and the 

environment. Reciprocally, the knowledge of causal connections between actions and outcomes 

further reshapes the perceptual process and guides the development of gross motor skills. 

 Chapter 5 presented a MEG study which revealed the spatiotemporal neural activities 

underlying the visual processing of causal constraints in biological motion. This work extended 

previous works with simple physical causal events to human actions. By contrasting the neural 

activities of action perception and causal reasoning, the results showed that the causal 

representation occurs after the action recognition processing in time and involves a more 

distributed neural network including brain areas in the parietal, temporal, and frontal lobes that 

are responsible for spatial relation reasoning, decision making, and intention understanding. The 

findings highlight a distributed neural network that supports human action understanding and 

causal reasoning, involving cortical regions beyond visual areas that process low-level motion 

signals. 

 Finally, Chapter 6 presented computational simulation results of a two-stream CNN 

model with added LSTM module and showed the limitations of the state-of-art deep neural 

networks in accounting for causal perception in human actions. While the current neural 

networks emulate human visual pathways and performed well on tasks based on low-level visual 
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information, they lack a representation of high-level reasoning processes that build the 

foundation of intention understanding and goal inference. The findings advocate for putting more 

attention in the communication between the development of computational models from an 

engineering aspect and the investigation of mechanisms of the human cognitive system. Even 

though the CNN models nowadays achieve human-like performance on some visual tasks, it will 

need to incorporate representations that cannot be directly extracted from low-level visual 

information (e.g. causality, intentions, semantic relations) to support reasoning and 

understanding of visual inputs in a more robust and adaptive manner. 

  Overall, the findings from behavioral, developmental, and neuroimaging studies showed 

converging evidence that human action processes go far beyond pattern recognition of motion 

signals. In addition, action understanding is supported by reasoning with relations between 

motion cues. The development of causal understanding is achieved not only through visual 

observations but also through causally interacting with the world. In contrast to findings from 

human experiments, simulations of deep neural networks revealed the limitations of the current 

modeling approach to account for human action processing. Most current neural networks are 

built in a pure stimulus-driven manner that excels in extracting statistic regularities from visual 

stimuli and recognizing patterns based on these learned statistic regularities. This modeling 

architecture is analogous to a human brain with only the bottom-up connections of visual areas 

located in the occipital cortical region, while missing critical modules from parietal, temporal 

and frontal cortical regions that process abstract relational properties and make decisions. The 

lack of learning mechanisms for high-level knowledge greatly limits the efficiency and 

generalizations of deep learning models. To build artificial intelligence that can achieve action 

understanding and meaningful social interaction, it would require a generative model that has a 
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basic understanding of hierarchical structures of human body motions and causal relations 

between motion components. 

 In conclusion, the research in the thesis highlights that causality is a key factor in human 

action perception and it serves as a bridge between action perception and goal understanding. 

Although this work provides candidate answers to some of the important questions in the field of 

action perception, many questions remain to be answered. Future research might explore the 

links between causal perception and understanding from several aspects. 

 

7.1 How Does Causality Binds Actions and Outcomes? 

 In previous chapters, it has been shown that causality is the cement of action perception 

and understanding. However, the mechanism that supports this function of causality in actions 

remains unknown. One hypothesis roots from the idea of temporal contiguity, which suggests 

that causality gives rise to the sense of agency by the consistent cause-effect pairings in the daily 

life (Wegner, 2004; Young, Rogers, & Beckmann, 2005). In other words, causality connects 

perception and understanding through time. The co-occurrence of having a conscious thought 

prior to an action, the actual action performance, and the action outcome, gives us the sense of 

agency, or conscious experience of the authorship to the performed action. For example, the 

perceived time elapse between an intentional action (e.g., a key press) and its subsequent sensory 

outcome (e.g., a tone or flash) is compressed, such that all sensory events following an action 

appear to draw closer in time to that action. This idea has been tested in the context of physical 

events, and causality has been shown to yield a temporal binding effect of causally connected 

events. For example, Haggard, Clark, Kalogeras, (2002) showed that voluntary actions and their 
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consequences are shifted towards each other in subjective time. Several other studies found that 

factors that influence the perceived causality between the voluntary action and its consequence, 

such as temporal contingency and contiguity, also modulate the temporal binding between them 

(Shanks, Pearson, & Dickinson, 1989; Moore and Haggard, 2008; Moore et al. 2009). Buehner 

and Humphreys (2009) have shown that the causal relation between action and consequence is 

more important than intentionality for the phenomenon to occur. Cravo, Claessens, & Baldo 

(2009) further dissociated causality from voluntary actions and showed that causality and 

voluntary actions together determine the temporal binding effects in launching events. 

 However, studies so far have been limited to relatively simple physical events and remain 

to be generalized to natural scenarios with human actions. Future studies could investigate the 

impact of causality on the time perception of human actions. The perceived time duration of 

video clips that entail causal or non-causal human actions could be measured. Thus, if causality 

glues causes and effects in time, we would expect that the two causal video clips would be 

perceived to have a shorter duration and the non-causal video clip pairs would be perceived to 

have a longer duration. 

 

7.2 How Does Infants Learn Causal Constraints in Human Actions? 

 As shown in previous literature and the developmental work in this thesis, the ability to 

perceive causality from dynamic events seem to emerge early in infancy (Leslie and Keeble, 

1987; Cohen and Amsel, 1998, Desrochers, 1999). This ability may be the key to determine the 

success of social interactions and to generate predictions based on observed actions. For 

example, infants need to first have an understanding that people’s actions are usually goal-
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oriented. Then, they can observe the actions of others and consider the intention to generate a 

prediction about future actions and prepare to respond accordingly in an appropriate way 

(Southgate, & Vernetti, 2014). Even though this work has shown an early emergence of adopting 

the causal constraints in the perception of human actions, it still remains unclear what important 

factors enables the learning of causal constraints at the early stage of life. Potential candidates 

include but not limited to (1) visual information such as actions of parents which provide the 

repeated exposure to the spatiotemporal congruent cause-effect binding, as well as gestures and 

facial expressions from other people’s action; (2) motor experience such as the consistent action-

outcome pairing; (3) the development of language, which may facilitate the abstract 

representation of causality; and (4) emotions and rewards, which may consolidate the learning 

process based on reinforcements. Future studies could investigate how these factors influence the 

development of causal perception and action understanding based on individual differences. For 

example, recent years have witnessed an increasing use of head-mounted video cameras as a 

method to study the visual environments of infants and young children (e.g. Smith, Yu, Yoshida, 

& Fausey, 2015). This enables researchers to capture the “child’s view” and have a better 

understanding of the relation between visual inputs and behavior outcomes. 

 In addition, it would be important to examine the development of causal understanding in 

abnormal populations such as children with autism spectrum disorders (ASD). In children with 

ASD, difficulties in understanding and predicting others’ actions, as well as difficulties in theory 

of mind and social-cognitive skills, are frequently documented (e.g. Cattaneo et al., 2007; Zalla, 

Labruyère, Clément, & Georgieff, 2010). With the advancement of research on ASD, symptoms 

in the areas of intentional communication, motor development and social and emotional 

development can be detected as early as in the period of 12 – 24 months in infants (e.g. Nadel, & 
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Poss, 2007). Given the importance of causality in action understanding, it may worth 

investigating the development of causal perception in children who are diagnosed with early 

symptoms of ASD. One previous study showed that children with ASD were also able to show 

an adaptation aftereffects for perceptual causality as the control group (Karaminis et al., 2015). 

However, the effect remains to be tested in the context of human actions and social interactions. 

 

7.3 Can Causal Binding be Revealed by Neural Oscillation? 

 The MEG study in the thesis provides evidence on the temporal and spatial 

representations in brain to support causal perception in human actions. However, the neural 

mechanism of how causality facilitates the binding of motion cues remains unclear. One possible 

neural mechanism of binding problems is stimulus-locked neural oscillation. The hypothesis is 

that neural oscillations can code role bindings by having pools of neurons respectively 

representing a role and an object fire in synchrony if they are bound together and out of 

synchrony if not (von der Malsburg & Buhmann, 1992). Empirical evidence from EEG studies 

also suggests that phase synchrony within the frontoparietal network can bind object properties 

together in working memory (Phillips, Takeda & Singh, 2012). In addition, several 

computational models of relational reasoning and cognitive control have employed neural 

oscillations as a basic mechanism enabling working memory to code the bindings of objects into 

relational roles (Doumas, Hummel & Sandhofer, 2008; Hummel & Holyoak, 1997, 2003; Shastri 

& Ajjanagadde, 1993). Recent years have witnessed the use of behavioral oscillation paradigm 

as a method to tap into oscillatory phenomena based on psychophysical measurements of 

response time and accuracy (for a review see VanRullen & Dubois, 2011). For example, Lu, 

Morrison, Hummel and Holyoak (2006) showed that visual information presented as temporal 
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flicker in the gamma band can modulate the perception of spatial relations between multiple 

objects in a subsequent display. Also, Peng, Javangula, Lu and Holyoak (2018) showed that 

theta- and alpha-band oscillations in reaction time were evoked by a task that required relational 

role binding. In addition, the authors also found a phase-shift was observed between the two 

semantic roles. 

 Based on previous findings, it may worth investigating if the representation of different 

motion components in human actions that form causal relations is achieved by synchronous 

activation patterns of neurons. The behavioral oscillation paradigm as well as brain stimulation 

methods, such as transcranial alternating current stimulation (tACS), can open a window for us 

to examine how causality is encoded in the brain and how different components in a causal 

relation are bound in time.  
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APPENDICES 

 

APPENDIX A: MOTOR QUESTIONNAIRE USED IN CHAPTER 4 

Gross motor skills 

 

In the following please think about your child’s gross motor skills and motor control. These 

skills relate to how easily your child is able to control his or her own movements, orient, 

obtain toys, or move around the room. 

 

Sure that child 

does NOT show 

behavior 

(e.g., you have 

seen your child 

fail when 

attempting this 

or a similar 

behavior) 

Child probably 

does NOT show 

behavior yet 

Unsure whether 

child could do 

this or not 

(please try to use 

this 

category seldom) 

Child probably 

shows this 

behavior 

Sure that child 

shows 

this behavior 

and remember a 

particular 

instance 

-2 -1 0 1 2 

 

When rating a behavior your child used to do but that is not developmentally appropriate 

anymore (e.g., crawling when the child is already walking alone) please rate this behavior 

as +2. 

 

1. When sitting on your lap with back support provided by 

you, your child will hold his/her head up and steady 

when looking around the room? 

-2 -1 0 1 2 

2. When placed into a crawling position resting on hands 

and knees, your child will crawl forward for a few steps 

(3-5)? 

-2 -1 0 1 2 

3. When placed into a sitting position on the floor, your 

child is able to hold on to some furniture and pull into a 

standing position 

-2 -1 0 1 2 

4. When placed into a standing position, your child will 

stand alone for a few seconds without help 

-2 -1 0 1 2 

5. When moving around freely, your child will run short 

distances around the room 

-2 -1 0 1 2 

6. jump down from boxes, small steps, or similar without 

falling 

-2 -1 0 1 2 

7. When walking down a hallway or small room, your child 

will walk in a straight line with arms lowered and 

swinging freely 

-2 -1 0 1 2 

8. During free play or pretend play, you notice your child is 

able to walk backwards for several (5 or more) steps? 

-2 -1 0 1 2 
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9. During free play or pretend play, you notice your child is 

able to jump forward over small obstacles such as a curb 

or box? 

-2 -1 0 1 2 

10. When placed in front of a flight of stairs, your child is 

able to walk up stairs without aid? (4 or more steps) 

-2 -1 0 1 2 
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