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Single gene analysis in yeast suggests
nonequilibrium regulatory dynamics
for transcription

Robert Shelansky1, Sara Abrahamsson2, Christopher R. Brown1,3, Michael Doody1,
Tineke L. Lenstra 4, Daniel R. Larson 5 & Hinrich Boeger 1

Fluctuations in the initiation rate of transcription, the first step in gene
expression, ensue from the stochastic behavior of the molecular process that
controls transcription. In steady state, the regulatory process is often assumed
to operate reversibly, i.e., in equilibrium. However, reversibility imposes fun-
damental limits to information processing. For instance, the assumption of
equilibrium is difficult to square with the precision with which the regulatory
process executes its task in eukaryotes. Here we provide evidence — from
microscopic analyses of the transcription dynamics at a single gene copy of
yeast — that the regulatory process for transcription is cyclic and irreversible
(out of equilibrium). The necessary coupling to reservoirs of free energy
occurs via sequence-specific transcriptional activators and the recruitment, in
part, of ATP-dependent chromatin remodelers. Our findings may help explain
how eukaryotic cells reconcile the dual but opposing requirements for fast
regulatory kinetics and high regulatory specificity.

Eukaryotic transcriptional activators promote the transcription of
specific genes by virtue of their ability to bind gene-specific DNA
sequences (enhancers) and recruit a host of proteins that either per-
tain to the transcription machinery or facilitate its assembly at the
transcription start site, including ATP-dependent chromatin
remodelers1,2. It is generally assumed that the transcriptional output of
a gene is determined by the equilibrium occupancy of its enhancers by
activators3–5.

Activators find their target sequences by trial and error and thus
bindDNA alsonon-specifically. For eukaryotic activators, the energetic
differences between specific and non-specific sequence binding are
surprisingly small6–8, small enough to be easily erased by the abun-
dance of non-specific activators. How the eukaryotic cell solves this
specificity problem is unknown.

Specific binding events differ from non-specific ones by a statis-
tically longer residence time of the activator on the DNA8. A potential
solution to the specificity problem, therefore, is to respond to

activator residence time rather than occupancy, a feat that might be
accomplished by kinetically proofreading activator identity9,10. The
kinetic proofreadingmechanism increases specificity by exploiting the
kinetic difference between specific and non-specific DNA binding
twice, before and after activator-dependent removal of a transcrip-
tional repressor which delays advance to the transcriptionally active
state10. Repressor removal requires energy, which is provided not by
the surrounding heat bath but by an external work reservoir, avoiding
the entropic cost of converting heat into work10–12. The expended free
energy is eventually dissipated into the heat bath as the gene returns to
its thermodynamically preferred repressed state, closing an irrever-
sible reaction cycle where all microscopic paths in the same direction
of rotation, say clockwise, aremore probable than their time-reversed,
anticlockwise counterparts (cf. Figure 1a). The gene, thus, is driven in
and out of states that support transcription. As a consequence, antic-
lockwise paths, i.e., paths that bypass the proofreading delay step, are
discouraged.
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The thermodynamics of activator-DNA binding imposes an upper
bound to the specificity of transcriptional regulation. In equilibrium,
the regulatory process approaches this bound as the activator con-
centration tends to zero; the time between transcription events, then,
tends to infinity; the regulatory process becomes slowand increasingly
erratic10. Away from equilibrium, kinetic proofreading permits reg-
ulatory specificities close to the upper bound of specificity, including
values above that bound, at activator concentrations that afford fast
regulatory kinetics and low transcription noise10.

The nucleosomeappears to be ideally suited to assume the taskof
repressor in the kinetic proofreading scheme (nucleosomal proof-
reading hypothesis)10. The nucleosome is a ubiquitous repressor of
nuclear gene transcription13. Promoter nucleosomes evidently partake
in the random dynamics of the regulatory mechanism for transcrip-
tion, for genes assume alternative promoter nucleosome configura-
tions in activating conditions, including the nucleosome-free and fully
nucleosomal promoter14. Gene regulation entails the unwinding of
promoter nucleosomes15. Nucleosome unwinding, for most DNA
sequences, requires a significant amount of work, ΔG°

0
≈44 kBT per

nucleosome on the assumption that nucleosomes were
unwound reversibly16. Thermodynamics, therefore, favors nucleosome
formation over a wide range of histone concentrations. In this event,
nucleosome unwinding elevates the system’s free energy, while
rewinding dissipates this energy into the surrounding heat bath10,11.
There is little doubt that nucleosomes are unwoundbyATP-dependent
chromatin remodelers that are recruited to promoters by
activators17–20.

It is unknown, however, whether the nucleosome dynamics of
transcriptionally induced promoters are driven away from equilibrium

in this or any other way. Both the wrapping and unwrapping of
nucleosomes are catalyzed by ATP-dependent chromatin
remodelers21. ATPmay be expended to overcome high energy barriers
and thus accelerate the approach to equilibrium rather thanmaintain a
non-equilibrium steady-state3.

Most data appear to conform to the expectations of a regulatory
process in equilibrium3. It is possible, however, that this conformity is
the result of inevitable, and often also deliberate, coarse-graining.
Most microstates of a system remain indistinguishable to the observer
who therefore lumps them together into observable mesostates.
Observational coarse-graining may easily generate a false impression
of reversibility22. For instance, an irreversible (nonequilibrium) steady-
state process requires that its reaction network (graph) is cyclic; when
coarse-graining reduces the cyclic to an acyclic graph, the steady-state
process becomes reversible11,23. (Thus, by virtue of its non-cyclic tran-
sition graph, the standard two-state random-telegraph model of gene
regulation24 implies equilibrium dynamics.) Furthermore, predicted
differences between reversible and irreversible processes are often
subtle or otherwise difficult to measure5.

Here we provide evidence that the regulatory process of PHO5
transcription in yeast, a classic paradigm for the analysis of tran-
scriptional regulation by chromatin structure25, breaches a barrier
imposed by the detailed balance conditions for equilibrium.

Results
The biological model
Transcriptional activation of PHO5 requires binding of the basic helix-
loop-helix factor Pho4 to its enhancer UASp126. Pho4 binding increases
the probability of promoter states with fewer nucleosomes14,

Fig. 1 | In steady state, periods of transcriptional activity (ON) are interrupted
by periods of inactivity (OFF). a Graph for the kinetic proofreading of activator
identity10. The promoter is depicted as a box, the bound transcriptional activator by
a black triangle, a repressor (e.g., nucleosome) whose removal (delay step) is
required for transcription by a gray dot. Arrows (directed edges) indicate allowed
transitions between microstates. Different arrow lengths indicate that clockwise
transitions are statistically preferred over counterclockwise transitions due to the
transfer of free energy to the system in the transition from repressed to dere-
pressed promoter in the presence (but not absence) of the activator and its dis-
sipation upon return to the repressed state. b Scheme of the modified PHO5 gene
(top) and chromophore gene (bottom). PHO5 contained a tetradecamer of the

binding sequence for the PP7 coat protein (PCP). PCP was expressed as a fusion
with a green fluorescent protein (GFP) with nuclear localization signal (NLS) under
the control of the RPS2 promoter (bottom). The cartoon of budding cells (in gray)
shows that nuclear GFP is concentrated at the site of PHO5 transcription. c Left
panel column: Examples of single-cell fluorescence time series for wild type, isw2Δ,
chd1Δ, and pho4Δ[75–90]. Right panel column: Each box contains 100 binary time
series obtained from change point detection analysis of fluorescent time series and
ordered in the sequence of increasing time between the beginning of the obser-
vational time window and the onset of the first ON period. Horizontal black lines
indicate the length of ON periods, white lines the length of OFF periods, which
often spanned the entire width of the observational time window.

Article https://doi.org/10.1038/s41467-024-50419-5

Nature Communications |         (2024) 15:6226 2



presumably by recruitment of ATP-dependent chromatin remodelers
via its activation domain17. Loss of promoter nucleosomes allows Pho4
to access UASp2, a second, previously occluded enhancer27,28. At high
media concentrations of orthophosphate, Pho4 is maintained in the
cytoplasm; its target genes, therefore, remain inactive. However, in low
phosphate or the absence of Pho80, a repressor of the phosphate
signaling pathway, Pho4 accumulates in the nucleus, and PHO5 is
expressed29. All strains analyzed for this study were pho80Δ.

Experimental setup
To observe transcription at single PHO5 copies in vivo at the high
temporal resolution, we built a multifocus fluorescence microscope
(MFM), which allowed us to simultaneously acquire images at multiple
focal planes, removing the spatiotemporal uncertainties associated
with successive sampling of z-stacks30. PHO5 transcripts were labeled
by the insertion of 14 binding sequences for the RNA-binding coat
protein of the PP7 phage into the 5’-untranslated region of PHO5
(Fig. 1b)31. The coat protein was expressed as a fusion with the green
fluorescent protein under control of the RPS2 promoter (Fig. 1b). We
acquired focal stacks — seven images spaced 500nm apart along the
optical axis — every 2:5s over a total period of 1250s (Fig. 1c).

To delineate periods of transcriptional activity (ON) and inactivity
(OFF), we employed change point detection analysis (Fig. 1b, c)32. This
delineation is part of the observational coarse-graining. We call peri-
ods whose length is known because they began and ended within the
observational time window internal, and periods of unknown length
because they either began or ended or began and ended outside the
windowof observation external. The lengthT ofON andOFFperiods is
a random variable. We record the statistical distribution of T in terms

of its survival curve, which indicates the fraction (probability) of per-
iods that are still alive at time t, PðT > tÞ, and the corresponding
(probability) density of T , i.e., the time-derivative
of PðT ≤ tÞ= 1� PðT > tÞ.

Dwell-time denisty functions are peaked
On the assumption that the observed dynamics can be modeled as a
memory-free stochastic process (Markov process) that transitions
between twomicrostates, ON andOFF (random telegraphmodel)24, it
is expected that survival curves fit an exponential decay function (cf.
SI, Corollary 1). However, we found that the survival curve for ON
periods was sigmoidal rather than exponential (Fig. 2a). Although the
observed dynamics were non-Markovian (i.e., endowed with mem-
ory), the survival curve was well fit by a biexponential function,
suggesting that the observed dynamics may bemodeled by a coarse-
grained hidden Markov process with three microstates: two ON
microstates, which are not distinguishedby the observer and thus are
combined into a single ONmesostate, and oneOFFmicrostate (cf. SI,
Theorem 1). (The limitation to one OFF microstate does not limit the
generality of our conclusions, for the internal microstructure of the
OFF state is irrelevant for the calculation of the ON dwell-time dis-
tribution, cf. SI). A biexponential survival curve implies a biexpo-
nential density function, f ðtÞ= c1e λ1t + c2e

λ2t , where λ1,λ2<0 and c1,c2
are constants — three of which (λ1, λ2 and c1) may be independently
chosen for fitting to the data (cf. “Methods”). Notably, the best
biexponential fit suggested f ð0Þ= c1 + c2 = 0 (cf. Fig. 2a). The density
function, thus, must exhibit a local maximum, i.e., the density is non-
monotonic or peaked (cf. Fig. 2a, insert). For f ð0Þ=0, we say the
density is maximally peaked.

Fig. 2 | Dwell-time densities are peaked — the observed process, therefore, is
non-Markovian. Survival curves of internal ON periods for a wild type, b chd1Δ,
c isw2Δ, and d pho4. Measurements are indicated by blue dots and biexponential
fits by blue curves. Inserts show the corresponding density function; μ is the mean
period length (the average of 300 bootstrap replicates ± bootstrap standard
deviation). The median of the distribution is highlighted by stippled red lines.
Arrows point at the intercept of the density function with the ordinate for chd1Δ

and isw2Δ. The average density at t =0:01 across 300 bootstrap replicates (cf.
“Methods”) was �0:001 ±0:003 (wild type), +0:002±0:0024 (chd1Δ),
+ 0:0024±0:0025 (isw2Δ), and +0:01±0:004 (pho4), ± the standard deviation
across bootstrap replicas. Period lengths were obtained by CPD analysis (see
“Methods”) from 218 (wild type), 205 (chd1Δ), 291 (isw2Δ), and 158 (pho4Δ[75–90])
sample paths (cells), observed over a time period of 1250 s.
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The observed process is irreversible
Thefindingof a peakeddwell-timedensity has far-reaching topological
and thermodynamics implications. First, dwell-time densities for pro-
cesses on graphs with three states that are strongly connected — i.e.,
every state is connected to anyother by a stringofdirected edges— are
alwaysmonotonic (i.e., c1,c2 ≥0), unless the reaction graph is cyclic (cf.
SI, Theorem 2). The observed dynamics, therefore, must be modeled
on a cyclic graph (cf. Fig. 3a). Second, dwell-time densities are always
monotonic unless theprocess is irreversible— this is Tu’s theorem33 (cf.
SI, Theorem 4). The observed process, therefore, was irreversible.
Consistently, theonly 3-statemodel that allows for amaximally peaked
ON dwell-time density is the random clock model of Fig. 3a with α =0
(cf. SI, Theorem3): the process strictly enters theON state via one of its
microstates and exits from the other; the reverse sequence is exclu-
ded. (This boundary case can be approached only asymptotically, for
the definitive exclusion of reverse transitions violates the principle of
microscopic reversibility and would require infinite entropy produc-
tion, cf. Figure 3b.)

That a strongly peaked dwell-time density is indicative of a
strongly irreversible process may be understood intuitively: The
statistical preference for leaving the (observed) ON state via micro-
state 2 (cf. Fig. 3a) and not 1 (the microstate of entry into ON) delays
exit from theON state and thus reduces the probability of shorterON
periods.

In our 3-state clock model, a gradual decrease in the entropy
production per cycle (increasing α in Fig. 3b), and thus a decrease in
the statistical imbalance between forward and reverse paths, shifts the
density at t =0 fromzero to larger values until it reaches amaximum in
equilibrium (Fig. 3c). Thedensity, thus, is gradually transformed froma
maximally peaked function ( f ð0Þ ≤ f ðtÞ for all t >0) to a monotonic,
non-peaked, function ( f ð0Þ> f ðtÞ for all t >0; Fig. 3c). In equilibrium,
when no entropy is produced, and forward and reverse direction of
any stochastic path are equally probable34, the dwell-time density is
strictly monotonic, in accordance with Tu’s theorem (Fig. 3b, c). The
monotonicity of the dwell-time density constitutes a Hopfield barrier,

a bound that may be breached only at the expense of free energy, i.e.,
away from equilibrium35.

The distinction between sigmoidal and non-sigmoidal survival
curves was subtle (cf. Supplementary Fig. 1). However, our conclusion
of a peaked dwell-time density remained robust under perturbation: c1
remained negative for all densities generated by bootstrapping (ran-
dom sampling with replacement); only a small number of densities
(< 2%) had peaks close enough to t =0 such that the density appeared
monotonic; the remaining densities (> 98%) were manifestly peaked
(Supplementary Fig. 2a).

With f ð0Þ=0, the best-fit biexponential density for the internal
OFF period length was likewise maximally peaked (Supplementary
Fig. 3), suggesting thatboth entry into andexit from theOFF statewere
strongly irreversible — as implied by our analysis of ON lengths — and
therefore represented not forward and reverse path of the same
reaction but the forward paths of two different reactions. This con-
clusion, evidently, depends on the ability to decompose ON or OFF
into multiple microstates. The existence of two rather than one
microstate was less evident for the OFF than the ON state: although c1
was negative for 98% of bootstrap densities, nearly 50% of biexpo-
nential fits peaked close to t =0 and thus were difficult to distinguish
from the exponential function.

The regulatory process dissipates free energy
The observed process is a complicated convolution of multiple pro-
cesses: the regulatory process for transcription, subordinatemolecular
processes, such as polymerization and nuclear export of the RNA, the
RNA-binding dynamics of the fluorescent protein, and the physical
processes within the instruments of observation — the microscope,
CCD camera, laser, etc. It may be asked, therefore, whether the irre-
versibility of the observed process was due to energy-consuming
processes other than the regulatory process mechanism for
transcription.

To test this latter hypothesis, we deleted parts of the activation
domain of Pho4, the central, gene-specific component of the

Fig. 3 | Peaked dwell-time densities are indicative of entropy production.
aGraphof the randomprocessmodel for internalON (or OFF) periods.Microstates
are represented by circles. A blue rectangle indicates a mesostate due to coarse-
graining. Labels on transition arrows are rate constants. b Steady-state entropy
production per clockwise cycle, Δcð+ Þs, and clockwise probability current, J + ,
as a function of α, ranging from α =0, maximally irreversible process, to
αeq = w32w21w13=w12

� �1=2, equilibrium process (which satisfies the cycle condition
for detailed balance, w32w21w13 =α

2w12). The rate of entropy production (increase
in total entropy per unit time) is given by the Schnakenberg equation56, which for a

cyclic steady-state process reduces to σ = J +Δcð+ Þs
11 with Δcð + Þs = 2kBln αeq=α

� �
and

J + =w13p3 �w31p1, where pi is the steady state probability of state i= 1,3. Colored
dots mark α-values for which dwell-time densities inmesostate A are plotted in the
panel below: c Steady-state dwell-time densities in mesostate A for selected
α-values. d Transition graph including states for both internal OFF periods (short-
lived) and external OFF periods (long-lived). Labels on directed edges indicate the
dependence of transitions on activator (Pho4) and/or remodelers (Isw2 and Chd1).
The red arrow indicates the orientation of the net probability current in both the
upper and lower cycles of the graph.
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regulatory mechanism. The deletion reduced PHO5 expression by
about 80% and markedly increased promoter nucleosome occupancy
relative to wild type (cf. Supplementary Fig. 4)14,36. According to the
nucleosomal proofreading hypothesis, the activatormutation disrupts
the energy supply line for the regulatory process by weakening the
activator’s ability to recruit ATP-dependent chromatin remodelers to
the promoter; the process relaxes, therefore, into a new steady state
closer to equilibrium, where nucleosome removal consumes, and
reformation dissipates, less free energy per cycle, on average. We
found that the activator mutation transformed the maximally peaked
into a non-peaked distribution (Fig. 2d), as expected for the transfor-
mation of a strongly irreversible into a weakly irreversible regulatory
process (cf. Fig. 3c and b). Alternative explanations must invoke
unexpected pleiotropic effects — e.g., that pho4 mutations somehow
affect the energetics of RNA polymerization.

The ON dwell-time densities for the activator mutant and wild
type were clearly distinct: While the densities of 90% of bootstrap
replicates for the mutant were monotonic or weakly peaked, only 1.3%
of bootstrap densities for the wild type were monotonic, the remain-
der were strongly or maximally peaked (Supplementary Fig. 2a, b).

Atp-Dependent nucleosome removal drives the regulatory
process away from equilibrium
Loss of the ATP-dependent chromatin remodelers Chd1 and Isw2
reduced Pho5 activity by about 30% and 50%, respectively, as shown
by phosphatase activitymeasurements. Electronmicroscopy analysis
of PHO5 molecules isolated from chd1Δ cells showed a concomitant
increase in promoter nucleosome occupancy relative to wild type
(Supplementary Fig. 4). For both remodeler mutants, the density for
the internal ON period length was again peaked. Fewer than 1% of
bootstrap densities were apparently monotonic. However, for both
remodeler mutants, we found f ð0Þ= c1 + c2 >0 (for the best-

biexponential fit) and not c1 + c2 =0; the densities were strongly but
not maximally peaked, corresponding to a process that dissipated
less free energy (produced less entropy) per cycle than the wild type
(cf. Fig. 3c and d). That nucleosome occupancy increased with
decreasing entropy production was as expected if nucleosome
removal, and not reformation, drives the regulatory process away
from equilibrium, i.e., the probability current flowed in the correct
direction for proofreading (clockwise in Fig. 1a). We note however
that values for c1 + c2 varied widely among bootstrap replicates (cf.
legend to Fig. 2).

Activator and chromatin remodelers control the length of
external but not internal off periods
All mutations analyzed had little effect on the average length of
internal ON periods and, surprisingly, also internal OFF periods (cf.
Figs. 2, 4, and Supplementary Fig. 3): ON periods became shorter and
OFF periods longer by about 15% in all mutants compared to wild type.
Themain effect of activator and remodeler mutations became evident
upon analysis of external OFF periods. The length of external OFF
periods, T , was exponentially distributed (Fig. 4). T could bemodeled,
therefore, as a sojourn of the process in a single, additional microstate
(Fig. 3d). Although T could not be known for individual periods, the
lack-of-memory property of the exponential distribution nevertheless
allowed us to determine mean period lengths37. On average, external
OFF periods were significantly longer than internal OFF periods; the
process either left the ON state for a short-lived OFF state or a long-
lived OFF state (Fig. 3d). Since the lifetime of long-lived OFF states was
also long relative to the length of the observational time window, the
process seldom returned to the ON state within the observational time
window after leaving the ON state for the long-lived OFF state. Exit
from the long-lived OFF microstate was promoted by both activator
and chromatin remodelers, for external OFF periods markedly

Fig. 4 | The length of external OFF periods is controlled by both the Pho4
activator and chromatin remodelers. a Survival curves of external OFF periods
for wild type, b chd1Δ, c isw2Δ, and d pho4. Measurements were fit by a single
exponential, i.e., PðT>tÞ= e�λt (blue curves). The corresponding densities,

f ðtÞ= λe�λt (not shown), are strictly monotone (non-peaked). The median of the
distribution is highlighted by stippled red lines; μ is the mean period length (the
average of 300 bootstrap replicates).
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increased in length in all three mutants compared to the wild type in
order of decreasing PHO5 expression (cf. Fig. 4).

The regulatory mechanism controls both frequency and length
of burst runs
Individual ON periods, in all likelihood, corresponded to bursts of
transcription with multiple nascent transcripts. Genes with fewer than
three transcripts may not have been observable (Supplementary
Fig. 5). Except for the activator mutant, ON periods were more prob-
ably succeeded by short-lived rather than long-lived OFF periods.
Transcription events, thus, were two-fold clustered: into bursts (ON
periods) and bursts of bursts (burst runs). The sequence-specific
activator and chromatin remodelers controlled the frequency of burst
runs alone, not the frequency of bursting within runs, the frequency of
transcription initiation within bursts, or the rate of transcription itself.
Furthermore, the probability that an (internal)ONperiodwas followed
by a long-lived and not short-lived OFF period increased nearly two-
fold in the pho4mutant, from 0.39 (wild type) to 0.65, indicating that
the activator controlled the length of burst runs. The activator, thus,
exerted control over the rate of transcription initiation in more than
one way. In contrast, the loss of Chd1 and Isw2 had little effect on the
length of burst runs. The finding that chromatin remodelers affected a
subset of steps affected by the activator and not others is in keeping
with the notion that activators recruit chromatin remodelers to
genes18,19, but also control subsequent steps toward transcription by
recruitment of additional factors, e.g., Mediator38,39. Both assumptions
are critical for the theory of nucleosomal proofreading of activator
identity10.

Discussion
The main finding of our analysis is that the regulatory process of
transcription initiation operates away from equilibrium. Our analysis
detected a telltale of irreversibility: peaked dwell-time densities for
observational states33. Peaked dwell-timedensities have been reported
earlier40,41; however, the topological and thermodynamic implications
went unnoticed, and the question of whether the regulatory process
was irreversible was, therefore, not addressed.

A mutation in the central component of the regulatory mechan-
ism for transcription transformed the observed process from a
strongly irreversible into a weakly irreversible process, suggesting that
the observed process was irreversible not because RNA synthesis and
the instruments of observation dissipate free energy (which they do)
but because the regulatory process was irreversible.

TheobservedON-OFFdynamics are the result of extensive coarse-
graining, which may easily transform an irreversible into a reversible
process (cf. Introduction). It may be asked, therefore, whether the
reverse is possible too, i.e., whether coarse-graining may convert a
reversible into an irreversible process? The answer, arguably, is no, for
it can be proved that the entropy production of any coarse-grained
version of a stochastic process provides a lower bound on the true
entropy production (cf. SI, Theorem 5)22,42.

When fit to the data, the hiddenMarkov process provides amodel
for the observed dynamics, not the underlying molecular dynamics.
Additional microstates were invoked to imbed the observed non-
Markovian process into a Markov process. The identification of model
states with particular microstates of the underlying molecular process
is, therefore, entirely speculative. The OFF state evidently encom-
passes numerous microstates, and so does the ON state — e.g., PHO5
transcription may be driven by alternative activator-enhancer config-
urations. It is not evident how to interpret (in this way) the finding that
the process when out of equilibrium, visits ON microstates in a
defined order.

Our analysis was undertaken to test a critical prediction of the
kinetic proofreading hypothesis for activator identity: that the reg-
ulatory process for transcription initiation is irreversible. The

hypothesis passed its test. The alternative conclusion — that the reg-
ulatory process is reversible — would have falsified the proofreading
hypothesis in any form. Instead, our findings (if accepted) refute the
equilibrium assumption and suggest that the regulatory process is
driven away from equilibrium. The driving, it appears, is at least par-
tially due to ATP-dependent chromatin remodelers, as posited by the
nucleosomal proofreading hypothesis.

Our results have no direct bearing on the question of whether the
regulatory dissipation of free energy improves the specificity of tran-
scriptional regulation. Other problems of information processing may
be solved away from equilibrium3,35,43. Also, the possibility of free
energy expenditure for no physiological purpose whatsoever is not
excluded. However, if the nucleosome dynamics of transcriptionally
induced, but not uninduced, promoters are out of equilibrium, as
suggested by our analysis, the conclusion that the structural dynamics
of promoter chromatin improve activator specificity follows with little
effort7,10.

The problemof regulatory specificitymaynot be equally acute for
all genes. Housekeeping genes, genes that are active at all times, may
rely on promiscuous activator control or, perhaps, no activators at all.
Such genes have no need for activator proofreading. Their promoters
may be, therefore, almost always nucleosome-free. Whether such
promoters exist is currently unknown. Constitutive lack of promoter
nucleosomes was implicitly invoked as part of an explanation for sub-
Poissonian transcription noise43, i.e., noise below the expectation for a
random birth-and-death (Poisson) process35. (In contrast, the noise of
PHO5 transcription markedly exceeded the expectation of a Poisson
process.) We note that sub-Poissonian RNA noise also requires free
energy expenditure— arguably to drive promoter state transitions and
thus narrow the distribution of interarrival times between transcrip-
tion events43.

Methods
Strains
All strains for live cell fluorescent microscopy were derived from
yM8.14, which contains sequence insertions upstream and down-
stream of the PHO5 gene for enzymatic release of the PHO5 gene from
its chromosomal locus and lacks the PHO80 gene, which was replaced
with HIS3. We inserted the PP7 binding sequence clusters into the
PHO5 locus via homologous recombination. To this end, the cluster,
along with a selection marker (KanMX) flanked by loxP recombination
sequences, was PCR amplified from plasmid pTL31 using primers
p446 (5’-CTTCATCTCTCATGAGAATAAGAACAACAACAAATAGAGCAA
GCAAATTCGAGATTACCAcaaagtgggagcgaggagatcc-3’) and p447 (5’-
AATGGTACCTGCATTGGCCAAAGAAGCGGCT AAAATTGAATAAACAA-
CAGATTTAAACATgcataggccactagtggatctg-3’) whose 5’-ends are
homologous to the PHO5 5’UTR. This insertion yielded strain yM249.1.
Subsequent removal of the KanMX marker was accomplished by
transformation with pSH47, which bears the P recombinase gene, and
induction of recombinaseexpression. This gave strain yM255.3. Finally,
we inserted the gene for the PCP (PP7 coat protein)-GFP fusion toge-
ther with the URA3 gene of Candida albicans into the ura3 locus of
yM255.3. To this end, we transformed yM255.3 with pTL205 (a deri-
vative of pSIVURA344) digested with PacI and selected for uracil pro-
totrophy. The strain thus generated, yRS102, is called here wild type
for its possession of wild type copies of CHD1, ISW2, and PHO4. Strains
yRS99 (chd1Δ : KanMX) and yRS118 (isw2Δ : KanMX)were obtained by
transformation of yM255.3 with pCM123 digested with XbaI and KpnI
and pCM122 digested with XbaI and KpnI, respectively, and sub-
sequent insertion of the PCP-GFP fusion gene into the ura3 locus, as
described above. The activator mutant strain, yRS120, was derived
from yM255.3 by first replacing PHO4 with URA3 via homologous
recombination using pCM4.5 digested with BamHI and SalI. The
resulting strain, yRS103, was transformed with pCM64.2 cut with
BamHI and SalI to replace URA3 with pho4Δ[75–90]. This yielded
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yRS113 upon selection for resistance to 5-fluoroorotic acid (5-FOA).We
finally inserted the gene for the PCP-GFP fusion into the ura3 locus of
yRS113, as described above. Cells were transformed using the lithium
acetate method45.

Live-cell imaging
Yeast Cells were grown in 50 ml of liquid culture to 3-5 × 107 cells/ml.
Cells were then concentrated and spotted onto an agar patch on a #1.5
coverslip, as described elsewhere46. For coverslip preparation we used
the mold described by ref. 47. Prior to imaging, cells were then incu-
bated at 30°C for 30minutes. A stage top incubator (OkoLab)was used
to maintain a constant temperature of 30°C during imaging. MFM
images were recorded with on an EMCCD camera (Andor Ixon Ultra).
Images were taken every 2:5 second over 20minutes with an exposure
time of 250ms and a laser power of 30% (Lambda XL). Excitation and
emission paths were filtered using a Semrock GFP-30LP-B Brightline
filter set. The MFM was assembled as described30,48 and appended to
the light path of an existing inverted widefield microscopy chassis
(Nikon Eclipse TI), whichmaintained a 60× objective (plano Apo 60X/
1.4 oil immersion).

MFM raw data were analyzed in four steps: ðiÞ Identification of
transcription sites. ðiiÞ Assignment of transcription sites to nuclei. ðiiiÞ
Tracking of each transcription site over time. ðivÞ Quantification of
signal intensity at transcription site.

To identify transcription sites, we first calculated a maximum
projection of the z-stack for each time point; the maximum projection
minimizes fluctuations in puncta intensity due to RNA movement in
the z-direction (i.e., along the optical axis) during imaging. We then
applied a band-pass filter to maximum projections with bandwidth to
match the width of the point spread function of the microscope
(approximately 1:5 pixels); the band-pass filter reduces the rate of false
positives due to background nuclear fluorescence caused by cyto-
plasmic RNA and unbound coat protein49,50. To find local maxima (i.e.,
candidate transcription sites), we applied a search window of 4 pixels
and a threshold of five standard deviations above the mean filtered
image signal. We assigned transcription sites to nuclei, using the
background nuclear fluorescence to determine nuclear boundaries.
We always identified the brightest sitewithin a nuclear boundary as the
site of transcription. Time series were generated by following indivi-
dual transcription sites over time. When no candidate transcription
site could be detected within a nucleus at a given time point, the
location of the previously identified transcription site was used
instead. In the case of no previous transcription site, we used the
location of the brightest nuclear pixel instead. Finally, to quantify the
signal intensity of transcription sites, we used a Gaussian mask
algorithm49,50.

We corrected for photobleaching by detrending time series; a
trendwas inferred by regression analysis of the average time series49,51.
Variation in nuclear intensity creates variations in background inten-
sity. To correct for offsets of time series against each other along the y-
axis (signal intensity), we subtracted from each timepoint themode of
the estimated probability function (kernel density estimate) of signal
intensity of each time series. Themodewas used because, unlikemean
and median, it correctly reflects the background on the assumption
that the most likely number of nascent transcripts is zero — an
assumption borne out by our observations.

We assumed that sample paths (i.e., fluorescence signal traces)
were step functions subject to Gaussian noise. Steps, time intervals of
signal that appeared to be drawn from the sameGaussian distribution,
were determined by change point detection (CPD) analysis32,49; we
used a window-based search method together with a Gaussian cost
function in the ruptures python package31. We observed essentially
two types of steps: low-noise steps at lower signal (OFF steps) andhigh-
noise steps at higher signal (ON steps). CPD hyperparameters (e.g.,
window size) were selected to reduce the number of sequential low-

noise steps on the assumption that the background signal, the signal
during OFF periods, is step-free. In contradistinction, the transcription
signal, the signal during ON periods, may encompass multiple steps
corresponding to different numbers of the nascent transcript. For wild
type we analyzed 218 sample paths (cells); for chd1Δ, 205 cells; for
isw2Δ, 291 cells, and for pho4Δ[75–90], 158 cells.

Model fitting
The survival-function model, P T > tð Þ= � ae�λ1t + ð1 +aÞe�λ2t , was fit
to the experimental data using the FindFit function in Mathematica
(Wolfram) with search parameters a,λ1,λ2, and variable t49. The cor-
responding density function is given by f ðtÞ= c1e�λ1t + c2e

�λ2t with
c1 = � aλ1 and c2 = ð1 +aÞλ2. The search algorithm was left uncon-
strained, which allowed for negative densities. When FindFit was
constrained by �aλ1 + ð1 +aÞλ2 ≥ 0 to densities 0 ≥ at t =0, the
parameters satisfied c1 + c2 =0 exactly for internal ON periods in the
wild type. The constrained and unconstrained fits were essentially
identical except for t =0 and time points very close to it. Boot-
strapping analyses were performed with an unconstrained Mathe-
matica FindFit function49. For some bootstrap replicas, we found
λ1 >> λ2. The corresponding density functions, therefore, assumed
either large negative or large positive values at t =0. In these cases,
the density function was virtually discontinuous at t =0 and indis-
tinguishable from the exponential density, f ðtÞ= λ2e�λ2t .

Single-molecule fish
Yeast cells were grown in liquid culture (50ml) to mid-log-phase,
crosslinked with formaldehyde, lysed with lyticase, and adhered to
poly-L-lysine coated coverslips, as previously described52,53. Coverslips
were hybridized for 5 hours at 37 °C, with 2:5nM of fluorescently
labeled antisense-DNA probe against PCP binding sequences. Probes
were labeled with Quasar 570 and Quasar 670 (Biosearch Technolo-
gies). For microscopy, coverslips were mounted onto glass slides with
mounting media containing DAPI (4’, 6-diamidino-2-phenylindole;
ProLong Gold, Life Technologies). Cytoplasmic and nascent RNA were
identified by using background fluorescence and DAPI staining to
estimate cellular and nuclear boundaries, respectively. The number of
nascent RNAs was calculated by normalizing the transcription site
intensity (nuclear punctum) with the average intensity of cytoplasmic
transcripts. All analysis was accomplished using previously published
code54.

Pho5 Isolation and Em analysis
Gene isolation and psoralen-EM analysis were performed as previously
described55. Molecules were analyzed with custom-made programs
written in Python. At least 200 PHO5molecules were analyzed for each
strain14.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MFM data of this study are available at https://datadryad.org/
stash/share/p-nEcqmpD7aj4RUSfzuVmR2kZ_iBEvh1pwf80qBeO1Y.

Code availability
All computer codes used are available at https://doi.org/10.5281/
zenodo.12208276.
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