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Abstract

Measuring immune correlates of disease acquisition and protection in the context of a clinical 

trial is a prerequisite for improved vaccine design. We analyzed binding and neutralizing 

antibody measurements four weeks post-vaccination as correlates of risk of moderate to severe-

critical COVID-19 through 83 days post-vaccination in the phase III, double-blind placebo-

controlled phase of ENSEMBLE, an international, randomized efficacy trial of a single dose 

of Ad26.COV2.S. We also evaluated correlates of protection in the trial cohort. Of the three 

antibody immune markers we measured, we found most support for 50% inhibitory dilution 

(ID50) neutralizing antibody titer as a correlate of risk and of protection. The outcome hazard 

ratio was 0.49 (95% confidence interval 0.29, 0.81; p=0.006) per 10-fold increase in ID50; vaccine 

efficacy was 60% (43, 72%) at nonquantifiable ID50 (< 2.7 IU50/ml) and increased to 89% 

(78, 96%) at ID50 = 96.3 IU50/ml. Comparison of the vaccine efficacy by ID50 titer curves for 

ENSEMBLE-US, the COVE trial of the mRNA-1273 vaccine, and the COV002-UK trial of the 

AZD1222 vaccine supported that ID50 titer is a correlate of protection across trials and vaccine 

types.

Introduction

The ENSEMBLE trial (NCT04505722, https://clinicaltrials.gov/ct2/show/NCT04505722) 

was carried out in Argentina, Brazil, Chile, Colombia, Mexico, Peru, South Africa and 

the United States to test the efficacy of a single dose of the replication-incompetent 

human adenovirus type 26 (Ad26)-vectored Ad26.COV2.S vaccine vs. placebo to prevent 

moderate to severe-critical COVID-19.1,2 Estimated vaccine efficacy against COVID-19 

with onset at least 28 days post-injection was 66.1% (95% confidence interval (CI): 55.0 

to 74.8) in the primary analysis (median follow-up two months).1 The US Food and 

Drug Administration (FDA) granted an Emergency Use Authorization to the Ad26.COV2.S 

vaccine as a single primary vaccination dose for individuals aged ≥18 years and, more 
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recently, as a single homologous or heterologous booster dose for individuals aged ≥18 

years.3 The Ad26.COV2.S vaccine has also been issued an Emergency Use Listing by the 

World Health Organization,4 authorized by the European Commission,5 and approved or 

authorized in more than 100 countries.6

A validated immune biomarker that correlates with protection7–9 (a “correlate of 

protection,” or CoP) has several applications including providing evidence for approval 

of demonstrated-effective vaccines for populations underrepresented in the phase 3 trials 

(e.g. young children10,11), aiding approval of refined versions of demonstrated-effective 

vaccines (e.g., strain or schedule changes), aiding approval of candidate vaccines to test 

efficacy in phase 3 trials, and providing a study endpoint in early-phase trials for comparison 

and down-selection of candidate next-generation vaccines. A CoP also has population-level 

applications, including estimating the level of immunity of a population using sero-survey 

data.12

For most licensed vaccines against viral diseases where a CoP has been established, the 

CoP is either binding antibodies (bAbs) or neutralizing antibodies (nAbs).8 A growing body 

of evidence supports these immune markers as CoPs for COVID-19 vaccines. First, both 

bAbs13 and nAbs14 acquired through infection have been shown to correlate with protection 

from reinfection, and adoptive transfer of purified convalescent immunoglobulin G (IgG) 

protected rhesus macaques from SARS-CoV-2 challenge.15 Second, nAb titers elicited 

by DNA,16 mRNA,17 and adenovirus vectored18 COVID-19 vaccines all correlated with 

protection of rhesus macaques from SARS-CoV-2 challenge. Third, passive immunization 

with nAbs had protective efficacy in a phase 3 trial of high risk individuals.19 Fourth, bAbs 

and nAbs correlated with vaccine efficacy in meta-analyses of phase 3 randomized, placebo-

controlled clinical trials.20,21 The evidence provided by correlates analyses of randomized 

phase 3 trials carries extra weight in the evaluation of CoPs, and is the gold standard for 

obtaining reliable, unbiased evidence.22

The US Government (USG) COVID-19 Response Team in public-private partnerships with 

the vaccine developers designed and implemented five harmonized phase 3 COVID-19 

vaccine efficacy trials with a major objective being to develop a CoP based on an IgG bAb 

or nAb assay.23 The first correlates analysis in this program evaluated the mRNA-1273 

COVID-19 vaccine in the COVE trial,24 which showed that both IgG bAb and nAb 

markers measured four weeks post second dose were strongly correlated with the level 

of mRNA-1273 vaccine efficacy against symptomatic COVID-19, with nAb titer mediating 

about two-thirds of the vaccine efficacy.25 These findings were consistent with those of 

the phase 3 COV002-UK trial of the AZD12222 (ChAdOx1 nCoV-19) vaccine, where 

vaccine efficacy against symptomatic COVID-19 increased with post-injection bAb and nAb 

markers.26

The ENSEMBLE trial was included in this USG-coordinated effort to identify CoPs. Using 

the same approach as was used for COVE,25 for one dose of the Ad26.COV2.S vaccine 

in ENSEMBLE we assessed IgG bAb and nAb markers measured four weeks post one 

dose of the Ad26.COV2.S vaccine in ENSEMBLE as correlates of risk of COVID-19 and 

as correlates of protection against COVID-19. (We use “correlate of risk” to indicate a 
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post-vaccination immune marker associated with the rate of COVID-19, and “correlate of 

protection” to indicate that a correlate of risk is also predictive of vaccine efficacy against 

COVID-19, which is quantified by estimating a causal parameter that links the marker in 

some fashion to vaccine efficacy (ref.9 and the Statistical Analysis Plan in ref.27) Three 

markers were studied: IgG bAbs against SARS-CoV-2 spike protein (spike IgG), IgG bAbs 

against the spike protein receptor binding domain (RBD IgG), and nAbs measured by a 

pseudovirus neutralization assay (50% inhibitory dilution, ID50). We report spike IgG and 

RBD IgG readouts in WHO international units (IU) and calibrated ID50 titers to a WHO 

international standard, which enables comparing the results to those of the COVE and the 

COV002-UK trials.

RESULTS

Immunogenicity sub-cohort and case-cohort set

The assessment of immune correlates was based on measurement of the antibody markers 

at D29 (hereafter, “D29” denotes the Day 29 study visit, with an allowable visit window of 

+/− three days around 28 days post-injection) in the case-cohort set, comprised of a stratified 

random sample of the study cohort (the “immunogenicity subcohort”) plus all vaccine 

recipients with the COVID-19 primary endpoint after D29 (“breakthrough cases”) (Extended 

Data Fig. 1A). (The sampling design is further detailed in the Statistical Analysis Plan.) 

Extended Data Fig. 1B–1D describe the case-cohort set overall and by the three geographic 

regions Latin America (Argentina, Brazil, Chile, Colombia, Mexico, and Peru), South 

Africa, and United States, with antibody data available from 48, 15, and 29 breakthrough 

cases, respectively, and from 212, 200, and 409 non-cases, respectively. All analyses of D29 

antibody markers restricted to per-protocol, baseline SARS-CoV-2 seronegative participants 

in the case-cohort set (Supplementary Table 1, Extended Data Fig. 2).

Participant demographics

The demographics and clinical characteristics of the immunogenicity subcohort (N=826 in 

the vaccine group, N=90 in the placebo group) are reported in Supplementary Table 2. 

Of all participants in the immunogenicity subcohort, 50.4% were ≥ 60 years old, 51.7% 

were considered at-risk for severe COVID-19 (defined as having one or more comorbidities 

associated with elevated risk of severe COVID-191), and 44.8% had been assigned female 

sex at birth. At U.S. sites 49.3% had minority status (defined as other than White Non-

Hispanic). The immunogenicity subcohort was 26.0% Latin America, 23.9% South Africa, 

and 50.0% United States. Supplementary Tables 3-5 provide demographics and clinical 

characteristics of the immunogenicity subcohort by geographic region.

COVID-19 endpoint

Correlates analyses were performed based on adjudicated moderate to severe-critical 

COVID-19. Onset was required to be ≥ 28 days post-vaccination (the day of vaccination 

defines the D1 study visit) as well as ≥ 1 day post-D29 (the D29 study visit was not 

always 28 days post-vaccination due to allowable study visit windows, as discussed above), 

through to January 22, 2021 (the data cut date of the primary analysis).1 This COVID-19 

endpoint was selected to be as close as possible to the COVID-19 endpoint used in the 
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primary analysis1 (efficacies against the primary1 vs. correlates analysis “moderate to 

severe-critical COVID-19” endpoints were very similar), while also seeking inclusiveness 

of endpoints to aid statistical precision. See Online Methods for details on the analysis 

databases and exact differences between the two endpoints. The last COVID-19 endpoint 

included in the correlates analysis occurred 48 days post-D29 (Extended Data Fig. 1E). 

Of the 92 breakthrough cases with antibody data, 7 were severe-critical (using the same 

definition as in ref.1), precluding correlates analyses restricted to severe-critical endpoints. 

Non-cases were defined as baseline seronegative per-protocol participants sampled into the 

immunogenicity subcohort with no evidence of SARS-CoV-2 infection up to the end of the 

correlates study period, which is up to 54 days post-D29, the last day such that at least 15 

such vaccine recipients were still at risk in the immunogenicity subcohort, but no later than 

the data cut of January 22, 2021.

SARS-CoV-2 lineages causing COVID-19 endpoints

Fig. 1 in ref.2 (which reports the results of the final efficacy analysis) shows the distribution 

of SARS-CoV-2 lineages among COVID-19 endpoint cases for each country in the trial 

over time during the double-blind period of the trial (September 21, 2020 through July 

9, 2021). Data in this figure through January 22, 2021 are relevant for the current work. 

With “reference” referring to the Wuhan-Hu-1 strain harboring the D614G point mutation 

and “other” referring to sequences with substitutions departing from reference not resulting 

in another SARS-CoV-2 lineage or variant, the results show two lineages in the US, at 

approximately equal prevalence (reference, other); almost all lineages beta in South Africa; 

and lineages reference, zeta, and other in Latin America in similar proportions. For the US 

most “other” lineages were close genetically to reference. These data are consistent with the 

preliminary sequencing data provided in ref.1

Lower D29 antibody marker levels in cases vs. non-cases

At D29, 85.3% (95% CI: 82.0%, 88.0%) and 81.2% (77.7%, 84.3%) of vaccine recipient 

non-cases had a detectable spike IgG response (defined by IgG > 10.8424 BAU/ml) or 

detectable RBD IgG response (defined by IgG > 14.0858 BAU/ml), respectively, whereas 

56.4% (52.1%, 60.6%) had quantifiable ID50 nAb titer (Fig. 1, Table 1 ). For each D29 

marker, the response rate was lower in cases than in non-cases; this difference was largest 

for ID50 [response rate difference: −19.5% (95% CI: −29.7%, −8.2%)] (Table 1). For each 

D29 marker, the geometric mean value was also lower in cases than in non-cases, with ID50 

again having the greatest difference [3.22 IU50/ml (95% CI: 2.50, 4.15) in cases vs. 4.95 

(4.42, 5.55) in non-cases, ratio = 0.65 (0.52, 0.81)]. The bAb markers had slightly higher 

case/non-case geometric ratios, with 95% CI upper bounds close to 1. Similar results were 

seen in each ENSEMBLE geographic region (Supplementary Table 6, Extended Data Figs 

3-5), with D29 ID50 nAb titer in United States participants having the greatest response 

rate difference [cases minus non-cases; −26.8% (−41.6%, −6.3%)] and the lowest geometric 

mean ratio [cases/non-cases; 0.55 (0.41, 0.72)] across all markers and geographic regions.

The D29 bAb markers were highly correlated with each other (Spearman rank r = 0.91), 

whereas they were only moderately correlated with ID50 (r = 0.55 for spike IgG and ID50; 

r = 0.54 for RBD IgG and ID50) (Extended Data Fig. 6). For each D29 marker, the reverse 
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cumulative distribution function curve in the context of the overall vaccine efficacy estimate 

is shown in Supplementary Fig. 1.

As expected because the population is baseline seronegative, frequencies of placebo 

recipients with detectable or quantifiable responses at D29 were near zero (e.g., for ID50, 

0.6% and 0% for cases and non-cases, respectively) (Supplementary Fig. 2).

D29 antibody marker levels correlate with risk

The cumulative incidence of COVID-19 for vaccine recipient subgroups defined by D29 

antibody marker tertile (Fig. 2A-C) show that COVID-19 risk decreased with increasing 

tertile. The hazard ratio (High vs. Low tertile) was significantly less than one for ID50, 

estimate 0.41 (95% CI: 0.22, 0.75), and there were weak trends toward inverse correlates 

for the two IgG markers, estimate 0.75 (0.42, 1.32) for spike IgG and 0.61 (0.34, 1.09) for 

RBD IgG. Only ID50 passed the pre-specified family-wise error rate (FWER) multiplicity-

adjusted p-value threshold for testing whether the hazard rate of COVID-19 differed 

across the Low, Medium, and High tertiles (Table 2A; p=0.003, FWER-adjusted p=0.011) 

(multiplicity adjustment was performed over the six categorical and quantitative markers). 

Evidence for the spike and RBD bAb markers as inverse correlates of risk across tertiles was 

weaker, with unadjusted p-values 0.50 and 0.16, respectively (Table 2A).

Similar results were observed for the D29 quantitative markers, with estimated hazard ratio 

per 10-fold increase in antibody marker level clearly indicating an inverse correlate of risk 

for ID50, estimate 0.49 (0.29, 0.81), with estimates less than one for each IgG marker 

yet with 95% CIs including 1.0: estimate 0.69 (95% CI: 0.41, 1.16) for spike IgG and 

0.59 (0.33, 1.06) for RBD IgG (Table 2B). Again, only ID50 passed the multiple testing 

correction (FWER-adjusted p=0.016). (Supplementary Table 7 shows the hazard ratios per 

standard deviation-increase in each D29 marker.) An additional post-hoc analysis was done 

reporting Cox model fits for each antibody marker with a set of demographic factors 

also in the model (Supplementary Table 8). The results are similar, e.g., the estimated 

hazard ratio per 10-fold increase in ID50 is 0.49 (0.30, 0.80). Extended Data Fig. 7 shows 

analogous results across pre-specified subgroups of vaccine recipients for RBD IgG and 

ID50, respectively. The point estimates indicate stronger correlates of risk for participants 

assigned female vs. male sex at birth and for communities of color vs. White Non-Hispanics 

in the U.S., generating potential hypotheses about the role of sex and race/ethnicity on 

vaccine-induced immunity. However, because the 95% confidence intervals overlap, these 

apparent differences could be false positives.

When vaccine recipients were divided into subgroups defined by having an antibody 

marker level above a specific threshold and varying the threshold over the range of values, 

nonparametric regression showed that cumulative incidence of COVID-19 (from 1 to 54 

days post-D29) decreased as the ID50 threshold increased (Fig. 3A). This decrease in risk 

was steepest across increasing thresholds closer to the assay lower limit of quantitation 

(LLOQ = 2.74 IU50/ml) and was more gradual across higher increasing thresholds. The 

risk estimate for COVID-19 was 0.009 (95% CI: 0.007, 0.012) for all vaccine recipients 

and decreased to 0.006 (0.004, 0.009) for vaccine recipients with any quantifiable ID50 

titer, whereas at the highest threshold examined (>185 IU50/ml) the risk estimate was 0.004 
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(95% CI: 0.000, 0.009). The bAb markers also showed decreases in risk (although less 

pronounced) with increasing threshold value (Extended Data Fig. 8A, 8B).

Fig. 3B and Extended Data Fig. 8C, 8D show the Cox modeling results in terms of estimated 

cumulative incidence of COVID-19 (from 1 to 54 days post-D29) across D29 marker levels. 

For each antibody marker, COVID-19 risk decreased as antibody marker level increased. 

Across the full range of D29 ID50 values examined (nonquantifiable ID50 < 2.74 IU50/ml 

to 96.3 IU50/ml, the 97.5th percentile value), estimated risk decreased from 0.016 (0.011, 

0.021) to 0.004 (0.002, 0.008), a 4-fold reduction in risk (Fig. 3B). For D29 RBD IgG, 

estimated risk also decreased across the range of values examined, from 0.016 (0.010, 

0.025) at negative response (7 BAU/ml) to 0.008 (0.004, 0.013) at 173 BAU/ml (the 97.5th 

percentile), a 2-fold reduction in risk (Extended Data Fig. 8D). Results for D29 spike IgG 

were similar (Extended Data Fig. 8C).

Vaccine efficacy increases with D29 antibody marker level

Fig. 3C and Extended Data Fig. 8E, 8F show estimated vaccine efficacy against COVID-19 

(from 1 to 54 days post-D29) across a range of levels of a given D29 antibody marker. 

For each marker, estimated vaccine efficacy rose with increasing marker level. This increase 

was greatest for ID50 titer: At nonquantifiable D29 ID50, estimated vaccine efficacy was 

60% (95% CI 43, 72%); this increased to 78% (69, 86%) at 9.9 IU50/ml and to 89% (78, 

96%) at 96.3 IU50/ml (purple curve, Fig. 4C). Nonparametric estimation of the vaccine 

efficacy-by-D29 ID50 curve suggests that vaccine recipients with nonquantifiable ID50 titer 

had an estimated vaccine efficacy of 60% with a jump in vaccine efficacy just above the 

LLOQ to 79% (blue curve, Fig. 3C).

Two sensitivity analyses (see the SAP for details) were performed to evaluate how strong 

unmeasured confounding would have to be to overturn an inference that D29 antibody 

marker impacted vaccine efficacy. The first sensitivity analysis, based on E-values,28 

assessed the robustness of the inference that vaccine efficacy is greater at High vs. Low 

ID50 tertile. The results indicated some robustness to confounding of this inference for 

ID50 but not for the bAb markers (Supplementary Table 9). The second sensitivity analysis 

“flattened” the estimated vaccine efficacy-by-D29 antibody marker level curve by assuming 

a certain amount of unmeasured confounding. Estimated vaccine efficacy still increased with 

D29 ID50 titer (Extended Data Fig. 9).

Vaccine efficacy rises with D29 ID50 titer in each region

Vaccine efficacy increased with D29 ID50 titer in each geographic region (Fig. 4A). The 

US curve was shifted upwards compared to the South Africa curve, which was in turn 

shifted upwards compared to the Latin America curve. The curves also indicated higher 

vaccine efficacy at nonquantifiable ID50 in the US (69%; 95% CI: 43, 83%) compared 

to in South Africa (60%; 16, 82%) and in Latin America (43%; 5, 64%); however, the 

confidence intervals overlapped. Extended Data Fig. 10 shows similar results for spike 

IgG and for RBD IgG, where vaccine efficacy also increased with D29 bAb marker level 

(with the exception that vaccine efficacy appeared to remain constant in South Africa with 

increasing D29 RBD IgG concentration) and the lowest bAb levels were needed in the US 
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out of the three regions to mark a given level of vaccine efficacy. (Participant demographic 

characteristics of geographic region subgroups of the immunogenicity subcohort are shown 

in Supplementary Tables 3-5; response rates and magnitudes are shown by case/non-case 

status, for each geographic region, in Supplementary Table 6 and Extended Data Figs 3-5; 

and Supplementary Fig. 3 shows the distribution of the number of days from D29 until 

COVID-19 endpoint occurrence or until right-censoring, stratified by case/non-case status 

and by geographic region).

Vaccine efficacy by circulating-matched D29 ID50 titer

In the U.S., the circulating strains during follow-up were Wuhan-like, being genetically 

and antigenically similar to the D614G strain against which neutralizing antibodies were 

measured. In contrast, in South Africa beta predominantly circulated and in Latin America 

several variants circulated, such that for these regions the correlates analyses had a mismatch 

where antibodies were measured to D614G and vaccine efficacy was measured against 

circulating strains different from D614G. One model for a correlate of protection, the 

‘variant-invariant CoP model’, states that the level of ID50 against a circulating strain 

required to achieve a certain vaccine efficacy value against that strain is constant across 

strains. To evaluate this model, we repeated the analysis of Fig. 4A using a new D29 ID50 

marker for each of the three geographic regions, defined as the predicted geometric mean 

ID50 to the strains that circulated during follow-up in the given geographic region, with the 

prediction based on measurement of neutralization titers of Ad26.COV2.S vaccine recipients 

to a panel of variants (see Supplementary Note 2). The vaccine efficacy curves for the U.S. 

and South Africa become closer together when creating this greater match of the ID50 

measurements to circulating strains, providing some support for the model (Fig. 4B). For 

example, for South Africa VE is 81% (57, 98%) at ID50 = 10 IU50/ml averaged to the South 

Africa circulating strains (beta variant), compared to the U.S. where VE is 86% (75, 95%) 

at ID50 = 10 IU50/ml to D614G that circulated in the U.S. In contrast, for Latin America 

the vaccine efficacy curve based on ID50 to circulating strains did not change noticeably 

compared to the curve based on ID50 to D614G. This is explained by the fact that more than 

90% of the placebo arm COVID-19 endpoints in Latin America through January 22, 2021 

were of the ancestral lineage.

Cross-trial cross-platform comparison of ID50 titer as a CoP

We next compared the vaccine efficacy-by-ID50 titer curves for three double-blind, placebo-

controlled COVID-19 vaccine efficacy trials: ENSEMBLE (one dose: D1; VE curve by D29 

ID50 titer), COVE (two doses: D1, D29; VE curve by D57 ID50 titer), and the COV002 

(United Kingdom) trial29 of the AZD1222 (ChAdOx1 nCoV-19) chimpanzee adenoviral-

vectored COVID-19 vaccine (two doses: D0, D28; VE curve by D56 ID50 titer). In this 

comparison for ENSEMBLE we restricted to the US (ENSEMBLE-US) in order to match 

COVE in its restriction to the US.

In each trial, vaccine efficacy rose with increasing ID50 titer (Fig. 4C). Comparison at high 

and at low ID50 titers is hindered by the limited overlap of adenovirus-vectored and mRNA 

vaccine-elicited ID50 titers, with span of values (IU50/ml) from 2.5th to 97.5th percentile 1.4 

to 96.3 in ENSEMBLE (the span in ENSEMBLE-US is 1.4 to 98) vs. 32 to 1308 in COVE. 
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In the intersection of these ID50 titer spans (32 to 96.3 IU50/ml) (the only titer spans where 

vaccine efficacy levels can be directly compared), the point estimates of vaccine efficacy are 

similar and the confidence bands show large overlap. While the confidence intervals of the 

curves in ENSEMBLE-US are wide, the lower overall vaccine efficacy in ENSEMBLE-US 

compared to COVE could be explained by the lower ID50 titers, consistent with results of 

meta-analyses.21,30

DISCUSSION

We report that each D29 antibody marker evaluated was an inverse correlate of risk of 

moderate to severe-critical COVID-19 over 83 days post Ad26.COV2.S vaccination, with 

strongest evidence for ID50 titer, passing the pre-specified multiple testing correction bar. 

We found that vaccine efficacy increased with higher D29 antibody marker levels, with 

results supporting the importance of achieving quantifiable antibodies; negative binding 

antibody response and nonquantifiable neutralization corresponded to moderate vaccine 

efficacy of about 60%. We found that the risk of COVID-19 decreases incrementally with 

D29 neutralization titers (Fig. 3) and that non-zero risk remains at highest titers, and 

estimated vaccine efficacy increases incrementally from 60% at nonquantifiable titers to 

90% at highest titers, which supports a relative, not an absolute, correlate of protection. The 

moderate vaccine efficacy in vaccine recipients with nonquantifiable neutralizing antibodies 

indicates that this marker did not fully mediate vaccine efficacy: other immune responses 

or immune markers at other time points or not quantifiable in serum must have contributed 

to vaccine efficacy. Memory B cells, Fc effector functions, CD4+ and CD8+ T cells (at 

least for severe disease) all likely contribute to protection.31 Overall, our findings are a 

step towards establishing an immune marker surrogate endpoint for adenovirus-vectored 

COVID-19 vaccines, and potentially a surrogate endpoint that might prove useful across 

vaccine platforms.

Strengths of our study include the fact that analyses were pre-specified; the fact that the data 

come from the double-blind follow-up period of a randomized, placebo-controlled phase 3 

vaccine efficacy trial; and the restriction to SARS-CoV-2 naïve individuals, ensuring that 

only vaccine-elicited immune responses are studied as correlates. (The latter restriction 

could also be viewed as a limitation, as a correlate of protection may be altered by prior 

infection and/or vaccination and the global proportion of SARS-CoV-2 naïve individuals is 

declining.32) In the continuing follow-up of ENSEMBLE, participants who experienced the 

COVID-19 endpoint have been receiving vaccinations, and future analyses are planned to 

assess the same antibody markers as immune correlates in these individuals. The degree to 

which each evaluated D29 antibody marker predicts vaccine efficacy against SARS-CoV-2 

strains other than those circulating during the trial period, as well as over longer follow-up 

periods will be important for informing the use of any of these biomarkers as a surrogate 

endpoint in practice.

The estimated relationship of ID50 titer with vaccine efficacy differed between the US, 

Latin America and South Africa, which might be explained by the greater match of the 

vaccine strain to the reference strain (which predominated in the US) compared with the 

different strains that circulated in Latin America and South Africa. In support of this 
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hypothesis, Ad26.COV2.S efficacy against moderate to severe-critical COVID-19 with onset 

≥ 28 days post-vaccination was reported to be higher against the reference strain [58.2% 

(95% CI: 35.0%, 73.7%)] than against non-reference lineages [44.4% (34.6%, 52.8%)], 

particularly against gamma [36.5% (14.1%, 53.3%)], over a median follow-up of 121 days 

post-vaccination.2 Another potential explanation for the apparent difference in the estimated 

relationship of ID50 titer with vaccine efficacy by geographic region is that COVID-19 

cases tended to occur earlier in South Africa than in the other two geographic regions, 

and the longer follow-up in the US. This longer follow-up may have allowed expansion 

of neutralizing antibody breadth, which is associated with improved coverage of SARS-

CoV-2 variants over time.33 An additional potential explanation may be a lower placebo 

arm attack rate in the US (as greater antibody levels may be needed to protect against 

greater exposure8). However, a post-hoc interaction test in a marginalized Cox model for 

whether the association of quantitative D29 ID50 titer with COVID-19 differed across the 

three geographic regions yielded p = 0.83, such that there is not statistical evidence for a 

differential correlate by region.

We found that in ENSEMBLE, the pseudovirus neutralization assay readout (D29 ID50 

titer) had stronger evidence as a correlate than either of the binding antibody assay readouts. 

However, given that the hazard ratio estimates per 10-fold increase of each of the D29 

binding antibody markers were less than 1.0, the binding and pseudovirus neutralization 

assay readouts were substantially correlated, and the fact that both assays were strong 

inverse correlates of risk (of similar strength as ID50 nAb titer) in the COVE25 and 

COV002 (Ad-vectored)26 trials, we believe it likely that both binding antibody markers 

are also correlates (albeit weaker ones) for the Ad26.COV2.S vaccine. However, even 

the two Ad-vectored vaccines (Ad26.COV2.S and AZD1222) differ (one vs. two doses, 

with one implication potentially increased avidity of post dose two antibodies); pre-fusion 

stabilized vs. native-like spike; human vs. chimpanzee adenovirus). Moreover, different 

variants [(B.1.177 and B.1.1.7 (alpha)] were circulating at the sites at which COV002 was 

conducted.26 Future correlates analyses should help clarify whether the binding antibody 

markers are also correlates for Ad26.COV2.S.

In the range of overlapping titers, similar vaccine efficacy by nAb ID50 curves were 

observed in ENSEMBLE-US and COVE. In both trials, the vast majority of circulating 

strains were similar to the reference strain1,2,34 (used in the nAb assay). Thus, the 

most transportable correlate across vaccine platforms may involve assessing nAbs against 

circulating strains, which can be evaluated in the future.

Our study has limitations. First, other Ad26.COV2.S-induced immune responses (e.g. spike-

specific T-cell responses,35 Fc effector antibody functions36) were not assessed. Analyses 

of D29 spike-specific antibody-dependent cellular phagocytosis (ADCP) are underway; 

future work will address how ADCP and other immune markers may work together with 

bAb and/or nAb markers as correlates of protection. A second limitation is the relatively 

short follow-up (slightly over two months post-D29), which prevented assessment of D29 

antibody marker correlates over longer term risk. Measurement of the D29 markers in 

vaccine breakthrough COVID-19 events occurring after the cut-off of the primary analysis 

will enable a future analysis of correlates for COVID-19 through 6–7 months. The primary 
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analysis of ENSEMBLE showed waning of overall vaccine efficacy from 67% at 2–3 

months post-vaccination1 to 53% at 6–7 months post-vaccination, with the waning evidently 

restricted to variants of concern,2 yet antibody levels did not decrease from 2 to 7 months. 

The future analyses may help understand these results by directly assessing D29 antibodies 

as correlates for COVID-19 through 6–7 months. A third limitation is that the study took 

place before emergence of the delta and omicron variants (with analysis pooled over all 

SARS-CoV-2 strains which were mainly reference, beta, zeta, and other1,2) and before 

any boosters were given. Future work is being planned to assess in ENSEMBLE levels 

of post-vaccination nAbs against spike-pseudotyped viruses of each sufficiently-prevalent 

variant of concern as correlates of risk and protection against COVID-19 with the matched 

variant of concern: these include beta in South Africa and gamma, lambda, and mu in Latin 

America. The region-specific differences in circulating strains comprise a fourth limitation, 

in that it is not possible to assess whether strain and/or geographic region has an isolated 

impact on the correlates of risk and protection. A fifth limitation is that the comparison 

of vaccine efficacy by antibody marker curves across efficacy trials did not use a common 

reference covariate distribution in the adjustment for prognostic factors, and the estimates of 

vaccine efficacy by antibody marker can be biased if a confounder of the effect of the marker 

on COVID-19 risk was not accounted for. Additionally, the primary endpoints differed 

among studies (COVE, COV002: symptomatic COVID-19 of any severity vs. ENSEMBLE: 

moderate to severe-critical COVID-19; all 14 days post second dose/vaccination in baseline 

seronegative participants). However, in the ENSEMBLE primary efficacy analysis only 1 

case was mild out of 117 symptomatic COVID-19 events in the vaccine group and only 3 of 

351 in the placebo group1, supporting similarity of the endpoints across the three trials.

Our study evaluated antibody levels measured 4 weeks post-vaccination (Day 29) as 

correlates of COVID-19 occurrence over the subsequent 54 days, whose results can be 

approximately interpreted as outcome-proximal correlates for vaccine recipients’ average 

antibody level during follow-up for 54 days after Day 29. Alternative ‘outcome-proximal’ 

correlates analyses measure antibody levels over time and assess their association with the 

instantaneous hazard of COVID-19 occurrence, which account for the fact that antibody 

levels change over time; these two types of analyses address distinct questions. Antibody 

levels of one-dose Ad26.COV2.S recipients do not decrease from Day 29 to Day 71 

and slightly increase,37 suggesting that antibody dynamics do not play a major role in 

complicating the interpretation of the current results given the short-term follow-up of 54 

days.

Given the interest in assessing correlates against severe COVID-19 and the fact that 

many Ad26.COV2.S-induced antibody responses show increased magnitude and affinity 

maturation over time post-D29,33,38 the study’s scope of a single clinical endpoint (moderate 

to severe-critical COVID-19) and a single antibody measurement timepoint (D29) are 

further limitations. Currently, antibody responses are being assayed in D29 and D71 samples 

from the remaining ~300 vaccine breakthrough COVID-19 events during the entire double-

blinded period. Planning is underway to assess correlates for COVID-19 over longer-term 

follow-up, for severe COVID-19, for asymptomatic SARS-CoV-2 infection, and for viral 

load.
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Another important question is how vaccine efficacy depends on SARS-CoV-2 spike features 

(e.g., amino acid motifs, distances to the vaccine insert, neutralization sensitivity scores), 

and whether/how the immune correlates depend on these spike features. Future work is 

planned to address these questions, with the overarching objective being to build a general 

model for predicting vaccine efficacy across SARS-CoV-2 strains/spike features and time 

since vaccination, based on D29 and possibly also D71 antibody markers. The data from 

the additional vaccine breakthrough cases discussed above will provide an opportunity to 

construct and evaluate such a model. In the meantime, the contribution of the current 

correlates study is to establish that pseudovirus neutralization assay readouts are a correlate 

of risk for COVID-19 for the Ad26.COV2.S vaccine, and to provide proof of concept that 

this marker is likely also a correlate of protection for this vaccine. After the additional 

evidence about this marker as a correlate of protection is gathered as indicated above, it 

should be possible to define whether and how to use this marker as a surrogate endpoint for 

predicting vaccine efficacy.

Online Methods

Trial design, study cohort, COVID primary endpoints, and case/non-case definitions

Enrolment for the ENSEMBLE trial began on September 21, 2020. A total of 44,325 

participants were randomized (1:1 ratio) to receive a single injection of Ad26.COV2.S or 

placebo on Day 1. Serum samples were taken on D1 and on D29 for potential antibody 

measurements. Antibody measurements were evaluated as correlates against the moderate to 

severe-critical COVID-19 endpoint defined in the main text.

While the correlates analysis only included COVID-19 primary endpoints up to Jan 22nd, 

2021 (the cut-off date of the primary analysis1), the correlates analysis was performed 

using the analysis database of the final analysis.2 Compared to the analysis database of the 

primary analysis, the analysis database of the final analysis includes changes to the SAP 

and protocol, as well as information that became available only after the database lock 

date on cases up to Jan 22nd, 2021. Specifically, for the primary analysis, the definition 

of the moderate to severe-critical COVID-19 endpoint was algorithmically programmed 

according to the protocol definition (with only severe-critical being assessed by the Case 

Severity Adjudication Committee). After the primary analysis, the severity was assessed 

by the (blinded) adjudication committee for all case definitions. This also includes central 

confirmation results which were obtained after the primary analysis on COVID-19 primary 

endpoints with an onset prior to Jan 22nd. Other differences between the moderate to severe-

critical COVID-19 endpoint for the correlates analysis vs. that for the primary analysis 

are: (1) both analyses included endpoints that occurred at least 28 days post-vaccination, 

where the correlates analysis additionally required that endpoints occurred after the D29 

visit (which could have occurred +/− 3 days around 28 days post-vaccination, based on the 

allowable study visit windows), when the markers were measured; (2) the correlates analysis 

only required RT-PCR SARS-CoV-2 positivity of a nasal swab at a local laboratory (with 

or without central confirmation), whereas the primary analysis required that participants 

with RT-PCR SARS-CoV-2 positivity of a nasal swab at a local laboratory must also have 
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a respiratory tract sample confirmed to be RT-PCR SARS-CoV-2 positive at a central 

laboratory using the m-2000 SARS-CoV-2 real-time RT-PCR assay (Abbott).1

Correlates analyses were performed in baseline SARS-CoV-2 seronegative participants in 

the per-protocol cohort, with the same definition of “per-protocol” as in Sadoff et al.1 

Within this correlates analysis cohort, cases were COVID-19 primary endpoints in vaccine 

recipients starting both ≥ 1 day post-D29 and ≥ 28 days post-vaccination up to the end of 

the correlates study period, which is up to 54 days post D29, but no later than the data 

cut (January 22, 2021). Participants with any evidence of SARS-CoV-2 infection, such as a 

positive nucleic acid amplification test or rapid antigen test result, up to D29, were excluded. 

Correlates analyses were also done counting endpoints starting seven days after D29 or later 

through the same data cut, under the rationale that the D29 antibody marker measurements 

in participants who are diagnosed with the COVID-19 endpoint between 1–6 days post-D29 

may possibly be influenced by SARS-CoV-2 infection. The point estimates of both analyses 

were similar; we report only the results that start counting COVID-19 endpoints at both ≥ 

1 day post-D29 and ≥ 28 days post-vaccination, given the greater precision (approximately 

35% more vaccine breakthrough cases).

Within the correlates analysis cohort, non-cases/controls were vaccine recipients sampled 

into the immunogenicity subcohort with no evidence of SARS-CoV-2 infection up to the end 

of the correlates study period, which is up to 54 days post D29 but no later than the data cut 

(January 22, 2021).

Solid-phase electrochemiluminescence S-binding IgG immunoassay (ECLIA)

Serum IgG binding antibodies against spike and serum IgG binding antibodies against 

RBD were quantitated using a validated solid-phase electrochemiluminescence S-binding 

IgG immunoassay and MSD Discovery Workbench software (version 4.0) as previously 

described.25 Within an assay run, each human serum test sample was added to the precoated 

wells in duplicates in an 8-point dilution series. Antibodies bound to spike or to RBD 

were detected using an MSD SULFO-TAG anti-human IgG detection antibody (Meso Scale 

Diagnostics, #R32AJ-1, goat polyclonal), diluted to 1X from a 200X vendor-provided stock. 

Conversion of arbitrary units/ml (AU/ml) readouts to bAb units/ml (BAU/ml) based on 

the World Health Organization 20/136 anti SARS-CoV-2 immunoglobulin International 

Standard39 was also as previously described.25 Antibody response was defined by detectable 

IgG concentration above the antigen-specific positivity cut-off (10.8424 BAU/ml for spike, 

14.0858 BAU/ml for RBD).

Pseudovirus neutralization assay

Neutralizing antibody activity was measured at Monogram in a formally validated assay 

(detailed in Huang et al.40) that utilized lentiviral particles pseudotyped with full-length 

SARS-CoV-2 Spike protein. The lentiviral particles also contained a firefly luciferase 

(Luc) reporter gene, enabling quantitative measurement (via relative luminescence units, 

RLU) of infection of HEK 293T cells transiently transfected to express human ACE2 cell 

surface receptor protein and the TMPRSS2 protease. Supplementary Table 10 provides 

the assay limits. Readouts from the Monogram assay (also used in the immune correlates 
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analysis of the COV002 trial of the ChAdOx1 nCoV-19 (AZD1222) vaccine 26) have been 

calibrated to those from the Duke pseudovirus neutralization assay (used in the immune 

correlates analysis of the COVE trial of the mRNA-1273 vaccine25) based on the World 

Health Organization 20/136 anti SARS-CoV-2 immunoglobulin International Standard39 

and conversion to International Units/ml (IU50/ml), enabling direct comparison of vaccine 

efficacy at a given ID50 titer in ENSEMBLE to vaccine efficacy at the same ID50 titer in 

COVE or in COV002. Neutralizing antibody seroresponse was defined by quantifiable ID50 

greater than the lower limit of quantitation (LLOQ), 2.7426 IU50/ml.

Ethics

All experiments were performed in accordance with the relevant guidelines and regulations. 

All participants whose serum samples were assayed in this work provided informed consent.

Statistical methods

All data analyses were performed as pre-specified in the Statistical Analysis Plan (SAP) 

(available as a supplementary file), with one exception. We had originally prespecified to 

include COVID-19 primary endpoints through the last COVID-19 primary endpoint with 

antibody data in the vaccine arm, and to let the time of this COVID-19 primary endpoint set 

the total duration of follow-up for the correlates analyses. However, after learning that the 

marginalized Cox modeling method yielded confidence intervals about the vaccine-efficacy-

by-D29-marker-level curve that were wider than they should be based on statistical theory 

(precipitated by only a few vaccine recipients in the immunogenicity subcohort being at-risk 

for COVID-19 at 66 days, the time of the last COVID-19 primary endpoint with antibody 

data in the vaccine arm), we revised this rule to set follow-up through to the last time point 

at which there were still 15 participants from the immunogenicity subcohort still at risk, 

which corresponded to 54 days post D29. Consequently, two COVID-19 primary endpoints 

and some non-cases beyond 54 days post D29 were excluded from the analysis. The point 

estimates of the vaccine-efficacy-by-D29-marker-level curve were very similar for the two 

choices (follow-up through 54 vs. 66 days post D29).

Case-cohort set included in the correlates analyses—A case-cohort41 sampling 

design was used to randomly sample participants for D1, D29 antibody marker 

measurements. This random sample was stratified by the following baseline covariates: 

randomization arm, baseline SARS-CoV-2 serostatus, and 16 baseline demographic 

covariate strata defined by all combinations of: underrepresented minority (URM) within 

the US vs. non-URM within the US vs. Latin America vs. South Africa participant, age 

18–59 vs. age ≥ 60, and presence vs. absence of comorbidities (see the SAP for details, as 

well as Extended Data Fig. 2 and Supplementary Table 1).

Covariate adjustment—All correlates analyses adjusted for the logit of predicted 

COVID-19 risk score built from machine learning of data from placebo arm participants 

(see Supplementary Note 1 and Supplementary Table 11) and geographic region (US, South 

Africa, Latin America).
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Correlates of risk in vaccine recipients—All correlates of risk and protection 

analyses were performed in per-protocol baseline seronegative participants with no evidence 

of SARS-CoV-2 infection or right-censoring up to D29. For each of the three D29 markers, 

the covariate-adjusted hazard ratio of COVID-19 (either across marker tertiles or per 10-

fold increase in the quantitative marker) was estimated using inverse probability sampling 

weighted Cox regression models with 95% CIs and Wald-based p-values. These Cox model 

fits were also used to estimate marker-conditional cumulative incidence of COVID-19 

through 54 days post-D29 in per-protocol baseline seronegative vaccine recipients, with 

95% CIs computed using the percentile bootstrap. The Cox models were fit using the 

survey package42 for the R language and environment for statistical computing.43 The 

same marker-conditional cumulative incidence of COVID-19 parameter was also estimated 

using nonparametric dose-response regression with influence-function-based Wald-based 

95% CIs.44 Point and 95% CI estimates about marker-threshold-conditional cumulative 

incidence were computed by nonparametric targeted minimum loss-based regression.45

Correlates of protection

Controlled vaccine efficacy: For each marker, vaccine efficacy by marker level was 

estimated by a causal inference approach using both Cox proportional hazards estimation 

and nonparametric monotone dose-response estimation.44 The causal parameter being 

estimated is one minus the probability of COVID-19 by 54 days for the vaccine group 

supposing the D29 marker is set to a given level for all vaccine recipients, divided by this 

probability for the placebo arm; see the Statistical Analysis Plan (Section 12.3.2, 15.1) 

for details. Two sensitivity analyses of the robustness of results to potential unmeasured 

confounders of the impact of antibody markers on COVID-19 risk were also conducted, 

which specified a certain amount of confounding that made it harder to infer a correlate of 

protection (see the SAP for details). One of the sensitivity analyses was based on E-values28 

and assessed the robustness of the inference that vaccine efficacy is greater for the upper 

marker tertile compared to the lower marker tertile. The other sensitivity analysis estimated 

how much vaccine efficacy increases with quantitative D29 antibody marker despite the 

specified unmeasured confounder.

Hypothesis testing—For hypothesis tests for D29 marker correlates of risk, Westfall-

Young multiplicity adjustment46 was applied to obtain false-discovery rate adjusted p-values 

and family-wise error rate (FWER) adjusted p-values. Permutation-based multi-testing 

adjustment was performed over both the quantitative marker and tertilized marker CoR 

analyses. All p-values were two-sided.

Cross-trial comparisons—Calibration of ID50 nAb titers between the Duke 

neutralization assay (COVE trial samples) and the Monogram PhenoSense neutralization 

assay (COV002 and ENSEMBLE trial samples), performed using the WHO Anti-SARS 

CoV-2 Immunoglobulin International Standard (20/136) and Approach 1 of Huang et al.40 

(with arithmetic mean as the calibration factor) is described in the supplementary material of 

Gilbert, Montefiori, McDermott et al.25
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Software and data quality assurance—The analysis was implemented in R version 

4.0.343; code was verified using mock data.

Extended Data

Extended Data Fig. 1: 
Case-cohort set and trial timeline.
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Extended Data Fig. 2: 
Flowchart of study participants.
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Extended Data Fig. 3: 
D29 antibody marker level in participants in Latin America by COVID-19 outcome status.
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Extended Data Fig. 4: 
D29 antibody marker level in participants in South Africa by COVID-19 outcome status.
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Extended Data Fig. 5: 
D29 antibody marker level in participants in the United States by COVID-19 outcome status.

Extended Data Fig. 6: 
Correlations of D29 antibody markers in baseline SARS-CoV-2 seronegative per-protocol 

vaccine recipients in the immunogenicity subcohort.
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Extended Data Fig. 7: 
Covariate-adjusted hazard ratios of COVID-19 per 10-fold increase in each Day 29 antibody 

marker in baseline SARS-CoV-2 seronegative per-protocol vaccine recipients in subgroups.
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Extended Data Fig. 8: 
Analyses of spike IgG and receptor binding domain (RBD) IgG as correlates of risk and as 

correlates of protection.
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Extended Data Fig. 9: 
Vaccine efficacy with sensitivity analysis by D29 (A) anti-spike IgG concentration, (B) anti-

receptor binding domain (RBD) IgG concentration, or (C) pseudovirus (PsV) neutralization 

ID50 titer.
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Extended Data Fig. 10: 
Vaccine efficacy (solid lines) in baseline SARS-CoV-2 seronegative per-protocol vaccine 

recipients by A) D29 spike IgG or B) D29 receptor binding domain (RBD) IgG in 

ENSEMBLE by geographic region (US, United States; Lat Am, Latin America; S Afr, 

South Africa), estimated using the Cox proportional hazards implementation of Gilbert et 

al.44
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. D29 antibody marker level by COVID-19 outcome status.
(A) Anti-spike IgG concentration, (B) anti-receptor binding domain (RBD) IgG 

concentration, and (C) pseudovirus (PsV) neutralization ID50 titer. Data points are from 

baseline SARS-CoV-2 seronegative per-protocol vaccine recipients in the set [(A-C): N=92 

cases, 821 non-cases]. The violin plots contain interior box plots with upper and lower 

horizontal edges the 25th and 75th percentiles of antibody level and middle line the 50th 

percentile, and vertical bars the distance from the 25th (or 75th) percentile of antibody 

level and the minimum (or maximum) antibody level within the 25th (or 75th) percentile of 

antibody level minus (or plus) 1.5 times the interquartile range. At both sides of the box, 

a rotated probability density curve estimated by a kernel density estimator with a default 

Gaussian kernel is plotted. Frequencies of participants with detectable responses were 

computed with inverse probability of sampling weighting. Pos.Cut, Dectectability/Positivity 

cut-off. Detectable response for spike IgG was defined by IgG > 10.8424 BAU/ml and 

for RBD IgG was defined by IgG > 14.0858 BAU/ml. ULoQ, upper limit of quantitation. 

ULoQ = 238.1165 BAU/ml for spike IgG and 172.5755 BAU/ml for RBD IgG. LLoQ, 

lower limit of quantitation. Seroresponse for ID50 was defined by a quantifiable value > 

LLoQ (2.7426 IU50/ml). ULoQ = 619.3052 IU50/ml for ID50. Cases are baseline SARS-

CoV-2 seronegative per-protocol vaccine recipients with the primary COVID-19 endpoint 
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(moderate to severe-critical COVID-19 with onset both ≥ 1 day post D29 and ≥ 28 days 

post-vaccination) up to 54 days post D29 but no later than January 22, 2021.
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Fig. 2. COVID-19 risk by D29 antibody marker level.
The plots show covariate-adjusted cumulative incidence of COVID-19 by Low, Medium, 

High tertile of D29 antibody marker level in baseline SARS-CoV-2 seronegative per-

protocol participants. (A) Anti-spike IgG concentration; (B) anti-receptor binding domain 

(RBD) IgG concentration; (C) pseudovirus (PsV) neutralization ID50 titer. Baseline 

covariates adjusted for were baseline risk score and geographic region.

Fong et al. Page 33

Nat Microbiol. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Analyses of D29 ID50 titer as a correlate of risk and as a correlate of protection.
Analyses were performed in baseline SARS-CoV-2 seronegative per-protocol vaccine 

recipients. (A) Covariate-adjusted cumulative incidence of COVID-19 by 54 days post D29 

by D29 ID50 titer above a threshold. The blue dots are point estimates at each COVID-19 

primary endpoint linearly interpolated by solid black lines; the gray shaded area is pointwise 

95% confidence intervals (CIs). The estimates and CIs were adjusted using the assumption 

that the true threshold-response is nonincreasing. The upper boundary of the green shaded 

area is the estimate of the reverse cumulative distribution function (CDF) of D29 ID50 

titer. The vertical red dashed line is the D29 ID50 threshold above which no COVID-19 

endpoints occurred (in the time frame of 1 to 54 days post D29). (B) Covariate-adjusted 

cumulative incidence of COVID-19 by 54 days post D29 by D29 ID50 titer, estimated using 

(solid purple line) a Cox model or (solid blue line) a nonparametric method. Each point 

on the curve represents the covariate-adjusted cumulative COVID-19 incidence at the given 

D29 ID50 titer value. The dotted black lines indicate bootstrap point-wise 95% CIs. The 

upper and lower horizontal gray lines are the overall cumulative incidence of COVID-19 

from 1 to 54 days post D29 in placebo and vaccine recipients, respectively. (C) Vaccine 

efficacy (solid purple line) by D29 ID50 titer, estimated using a Cox proportional hazards 

implementation of Gilbert et al.44 Each point on the curve represents the vaccine efficacy at 

the given D29 ID50 titer value. The dashed black lines indicate bootstrap point-wise 95% 

Fong et al. Page 34

Nat Microbiol. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CIs. Vaccine efficacy (solid blue line) by Day 29 ID50 titer, estimated using a nonparametric 

implementation of Gilbert et al.44 (described in the SAP). The blue shaded area represents 

the 95% CIs. In (B) and (C), the green histogram is an estimate of the density of Day 29 

ID50 titer and the horizontal gray line is the overall vaccine efficacy from 1 to 54 days 

post D29, with the dotted gray lines indicating the 95% CIs. Baseline covariates adjusted 

for were baseline risk score and geographic region. LLOQ, limit of quantitation. In (B, C), 

curves are plotted over the range from LLOQ/2 to the 97.5th percentile = 96.3 IU50/ml.
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Fig. 4. Vaccine efficacy (solid lines) in baseline SARS-CoV-2 seronegative per-protocol vaccine 
recipients by A) D29 pseudovirus (PsV)-nAb ID50 titer to D614G in ENSEMBLE by geographic 
region (US, United States; Lat Am, Latin America; S Afr, South Africa); B) D29 predicted 
geometric mean PsV-nAb ID50 titer to strains that circulated during follow-up in each 
designated geographic region (see Supplementary Note 2); and C), D57 ID50 titer to D614G 
in COVE, D29 ID50 titer to D614G in ENSEMBLE (US), D56 ID50 titer to D614G in COV002, 
all estimated using the Cox proportional hazards implementation of Gilbert et al.44

The dashed lines indicate bootstrap point-wise 95% CIs. The follow-up periods for the VE 

assessment were: A) ENSEMBLE-US, 1 to 53 days post D29; ENSEMBLE-Lat Am, 1 

to 48 days post D29; ENSEMBLE-S Afr, 1 to 40 days post D29; B) COVE (doses D1, 

D29), 7 to 100 days post D57; ENSEMBLE-US, 1 to 53 days post D29; COV002 (doses 

D0, D28; VE defined as 1-relative risk of whether or not an event occurred = 28 days 

post-D28 till the end of the study period). The histograms are an estimate of the density 

of D29 ID50 titer in ENSEMBLE (including by geographic region in A, B). The blue 
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histograms are an estimate of the density of ID50 titer in baseline SARS-CoV-2 negative 

per-protocol vaccine recipients in COVE. Curves are plotted over the range from 10 IU50/ml 

to 97.5th percentile of marker for COVE and from 2.5th percentile to 97.5th percentile for 

ENSEMBLE. Baseline covariates adjusted for were: ENSEMBLE, baseline risk score and 

geographic region; COVE: baseline risk score, comorbidity status, and Community of color 

status; COV002: baseline risk score.
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