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The scattering of high-power probe laser pulses by tightly focused ultrastrong laser pulses has been 
investigated through a semiclassical approach using a perturbative method based on the Born approximation. 
Under a 4π -spherically-focused ultrastrong light field, the electric permittivity and magnetic permeability tensors 
for vacuum are calculated from the Euler-Heisenberg Lagrangian to show the nonlinear birefringent property 
of vacuum. And, from permittivity and permeability tensors, the scattering potential is derived for the Born 
approximation. The first-order solution of the Born approximation is taken as an electric field scattered from 
the 4π -spherically-focused laser pulse when a probe laser pulse propagates through the focused laser field. The 
differential cross section of the nonlinear birefringent vacuum is derived, and the number of photons scattered 
from the nonlinear birefringent vacuum is analyzed in the laser power range of 10–1000 PW.

I. INTRODUCTION

The advance in femtosecond (fs) high-power lasers [1–4]
enables one to study laser-plasma interaction in relativistic
(>1018 W/cm2) and ultrarelativistic (>1024 W/cm2) regimes
[5,6]. And, as the laser intensity approaches the Schwinger
limit (ISch ≈ 2.3 × 1029 W/cm2) which is even higher than
the ultrarelativistic intensity, quantum electrodynamic (QED)
features of vacuum come into play and the vacuum behaves
like a nonlinear medium, exhibiting vacuum birefringence and
electron-positron (e+e−) pair production via the Schwinger
mechanism [7–10]. These phenomena cannot be treated by
classical electrodynamics in which the Lagrangian contains
only the E2-B2 term. In 1936, Euler and Heisenberg derived a
new Lagrangian, known as the Euler-Heisenberg Lagrangian
(EH Lagrangian), to describe QED features under high but
constant field strength conditions [11]. The EH Lagrangian in
the weak field limit where the fields are much less than the
Schwinger field can be Taylor-series expanded, successively
yielding higher order terms where the first term in the expan-
sion represents light-light scattering [12].

The cross section for light-light scattering was first cal-
culated by Karplus and Neuman using the electrodynamic
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scattering matrix formalism in QED [13,14], and later De
Tollis calculated the light-light scattering through a disper-
sive approach [15]. Due to the strong attention paid to the
nonlinearity of vacuum, much international effort [16–19]
has been initiated to detect vacuum birefringence and light-
light scattering. However, all these efforts require an ultra-
strong field strength to induce vacuum birefringence and to
detect light-light scattering. One approach for detecting the
light-light scattering is to use high energy photons in the
x-ray or γ -ray range [20–22]. These high energy photons
can be generated from either conventional accelerators [23]
or plasma media interacting with high-power laser pulses
[24–26]. When considering the plasma medium, one of the
promising ways to obtain such high energy photons is to use
a frequency-upshifted laser pulse reflected from a relativis-
tic mirror [27,28]. Thanks to advances in laser technology,
other approaches utilizing colliding high-power laser pulses
[22,29,30] have been also proposed for light-light scattering.

The ultrastrong field formed by a fs high-power laser pulse
might be directly used to investigate the light-light scattering
as well. The ultrastrong field strength can be achieved by
tightly or spherically focusing fs high-power laser pulses
[31–37]. Under the 4π -spherical-focusing scheme, the elec-
tric field after a focusing optic reaches the focal spot from
almost every direction (i.e., from 4π solid angle) to form a fo-
cus. Thus, the 4π -spherical-focusing scheme can be regarded
as an extreme case of either multiple laser beam focusing or
the tight focusing scheme. According to recent research, the
formation of a focused intensity of ∼1027 W/cm2, yielding
the field strength of ∼1.5 × 1015 V/cm corresponding to 12%
of the Schwinger field, is possible at the focus by spherically
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focusing a 100 PW laser pulse with a wavelength of 0.2 μm
[37]. As mentioned earlier, such a tightly focused fs high-
power laser pulse turns the vacuum into a nonlinear medium
with birefringent properties. However, due to the wavelike
nature of light, the focused fs high-power laser pulse has a spa-
tiotemporal distribution, so the induced nonlinear birefringent
effect of the vacuum becomes dependent on time and space.
Therefore, with a fs high-power laser system, the questions,
such as how strongly the vacuum nonlinearity is induced by
a given laser pulse and how to calculate the scattered E field
from the space- and time-dependent nonlinear vacuum, have
arisen.

Under the tight focusing condition, Monden and Kodama
calculated the number of scattered photons by directly solv-
ing Maxwell’s equations for a single [38] and two coun-
terpropagating high-power laser pulses [39], in which the
QED correction term was introduced through the polarization
and magnetization vectors. Since the 4π -spherical-focusing
scheme provides the highest attainable laser intensity at a
given laser power, other light-light scattering setups using the
4π -spherical-focusing scheme can be considered to maximize
scattered photons at a given laser power. In this case, the
4π -spherically-focused laser pulse induces the nonlinearity of
vacuum, and an additional probe laser pulse is scattered from
the nonlinearity. Under the 4π -spherical-focusing scheme, the
vacuum under the ultrastrong field can be treated as a nonlin-

ear birefringent medium of which nonlinearity is induced by
a focused laser intensity, and then, instead of directly solving
Maxwell’s equations, a perturbation method can be applied to
solve the light-light scattering problem.

In this paper we investigate the light scattering by an
ultrastrong light field obtained by the 4π -spherical-focusing
scheme. In order to introduce the nonlinear birefringent be-
havior to the vacuum, the intensity-dependent electric per-
mittivity and magnetic permeability tensors for vacuum are
calculated, through the EH Lagrangian, with the mathemat-
ical expressions for the spatiotemporal distribution of an
ultrastrong light field which is obtained by 4π -spherically-
focusing cylindrical vector (CV) beams [40,41]. A probe laser
pulse propagating through a nonlinear birefringent vacuum
(NBV) is scattered by a scattering potential expressing the
NBV. The scattered field is calculated by a perturbation
method using the Born approximation [42]. The scattering
properties of the probe laser pulse, such as the differential
cross section for scattering and the number of scattered pho-
tons, are investigated based on a semiclassical approach.

II. NONLINEAR VACUUM INDUCED BY ULTRASTRONG
ELECTROMAGNETIC FIELD

The EH Lagrangian which can describe the light-light
scattering is written as [11]

LEH = − 1

8π2

∫ ∞

0

ds

s3
e−sm2

[
(es)2 Re cosh(es

√
2(F + iG ))

Im cosh(es
√

2(F + iG ))
G − 2

3
(es)2F − 1

]
. (1)

Here m is the electron mass and e is the electron charge. The
Poincaré invariants F and G are defined by (c2 �B2 − �E2)/2 and
−c �B · �E , respectively. Although the EH Lagrangian is valid
for a constant field, its validity can be extended for a slowly
varying field under the locally constant field approximation
(LCFA) [43,44], which assumes that the wavelength of the
EM wave is much greater than the pair-production length
lc = mc2/|eE |. Since λ (laser wavelength) � lc, the LCFA
is valid for this study. In the strong-field QED (SF-QED),
the validity of the LCFA can be checked by the quantum
nonlinearity parameter [45] χ [

√
|(Fμν pν )2|/mcFcr], where

Fμν is the amplitude of the background field, Fcr is the
Schwinger field, and pν is the initial four momentum of an
electron. In this case, the LCFA is valid when a3/χ � 1
[46]. Here a is the normalized vector potential (|eE |/mωc).
Further discussion on the validity of the LCFA in SF-QEDs
can be found in [46–50]. The Lagrangian describing the
electromagnetic field in vacuum is a sum, L = LM + LEH, of
the classical electrodynamics Lagrangian LM = −ε0F , and of
the Euler-Heisenberg Lagrangian LEH. In the weak field limit,
the Lagrangian in SI units is expanded as

L ≈ ε0

2
( �E2 − δ �H2) + ε0κ

2
[( �E2 − δ �H2)2 + 7δ( �E · �H )2],

(2)
with the definitions of κ = 2α2h̄3ε0/45m4c5 and δ = μ0/ε0.
The physical constants ε0 and μ0 are known as the electric
permittivity and magnetic permeability of vacuum. The first

term on the right-hand side (RHS) of Eq. (2) describes the
Maxwell’s wave equation in vacuum and the second term is
responsible for the nonlinear birefringent property of vacuum
related to the four-photon interaction.

The general expressions for the electric permittivity ε and
magnetic permeability μ can be obtained using the definitions
of the electric displacement vector �D = ε

↔ �E and magnetic
field vector �B = μ

↔ �H :

Di = ∂L

∂Ei
and Bi = − ∂L

∂Hi
. (3)

Here i refers to x, y, and z. By inserting Eq. (2) into Eq. (3),
the permittivity and permeability tensors for vacuum are
explicitly expressed as

εi j = ε0δi j + ε0κ[2( �E2 − δ �H2)δi j + 7δHiHj] (4)

and

μi j = μ0δi j + μ0κ[2( �E2 − δ �H2)δi j − 7EiEj]. (5)

Here δi j is the Kronecker delta given by 1 when i = j and
0 when i 	= j. Since κ ≈ 9 × 10−37 
 1, Eq. (4) states that
an electric field strength of ∼1017 V/m induces a change in
the permittivity by approximately 1.8%. From the perspective
of a high-power laser, such an ultrastrong field strength can
be achieved by 4π -spherically-focusing a CV (radially or
azimuthally polarized) 100 PW or higher-power laser pulse
within a FWHM focal volume of λ3/20 [37].



FIG. 1. Schematics for light scattering by a 4π -spherically-
focused ultrastrong laser pulse. A cylindrical vector femtosecond
high-power laser pulse is 4π -spherically-focused by the parabolic
mirror from the right to form a nonlinear birefringent vacuum. A
probe laser pulse is focused from the left and propagates through the
nonlinear birefringent vacuum.

In order to have explicit forms for the permittivity and
permeability tensors of the vacuum with an ultrastrong field,
let us assume that a high-power CV laser pulse is spherically
focused onto vacuum and another high-power probe laser
pulse propagates through the vacuum region (see Fig. 1).
There are two modes generated at the focus when focusing
CV beams: TM mode by the radially polarized case and TE
mode by the azimuthally polarized case.

A. Nonlinear birefringent vacuum induced by the transverse
magnetic mode field

First, let us consider an NBV induced by the TM mode
case. The electric and magnetic field distributions for the TM
mode EM wave are described by [37]

�ETM = iθ̂Epeak exp[i(krVFS − ωt )]a(r′, θ ′) (6a)

and

�HTM = −φ̂Hpeak exp[i(krVFS − ωt )]b(r′, θ ′). (6b)

Here Epeak (or Hpeak) is the peak field strength defined by
πkrVFSEVFS/2 (or Epeak/μ0c) and k is the wave number of
the EM wave. The EVFS is the field strength on a virtual
focusing sphere (VFS) which can be directly calculated from
the incident field strength or laser power. The rVFS is the
distance between the VFS and the focus. The constant phase
factor exp(ikrVFS) can be dropped without loss of generality,
and a(r′, θ ′) and b(r′, θ ′) are spatial distribution functions for
the E and B fields given by

a(r′, θ ′) = j0(kr′) + 5
23 j2(kr′)P2(cos θ ′)

− 9
26 j4(kr′)P4(cos θ ′) + · · · (7)

and

b(r′, θ ′) = 4

π
j1(kr′) sin θ ′. (8)

Here jn(x) and Pn(x) are the nth order spherical Bessel
function and Legendre function, respectively. As shown in
Eqs. (6)–(8), a standing wave is formed near the focus when
4π -spherically-focusing the EM wave.

Since the change in the field strength occurs over a much
longer time than the Compton time, it is assumed that the
field strength instantaneously changes the permittivity and
permeability of vacuum. The permittivity and permeability
tensors in spherical coordinates can be written by

ε
↔

TM =
⎡
⎣εO 0 0

0 εO 0
0 0 εE

⎤
⎦ and μ

↔
TM =

⎡
⎣μO 0 0

0 μE 0
0 0 μO

⎤
⎦,

(9)

with expressions of the E and B fields in matrix form in
spherical coordinates as

�ETM =
⎡
⎣ 0

ETM

0

⎤
⎦ and �HTM =

⎡
⎣ 0

0
HTM

⎤
⎦. (10)

Here ETM = Epeaka(r′, θ ′) sin(ωt ) and HTM =
−(Epeak/μ0c)b(r′, θ ′) cos(ωt ) from Eq. (6). The subscripts
O and E in Eq. (9) mean the ordinary and extraordinary
tensor elements, respectively. The ordinary and extraordinary
elements are explicitly expressed as follows:

εO = ε0 + 2ε0κ
(
E2

TM − δH2
TM

)
, (11a)

εE = ε0 + ε0κ
(
2E2

TM + 5δH2
TM

)
, (11b)

μO = μ0 + 2μ0κ
(
E2

TM − δH2
TM

)
, (11c)

and

μE = μ0 − μ0κ
(
5E2

TM + 2δH2
TM

)
. (11d)

Therefore, from Eq. (9), a general expression of the refrac-
tive index tensor for vacuum can be obtained as

n↔2
TM = ε

↔
TMμ

↔
TM =

⎡
⎣εOμO 0 0

0 εOμE 0
0 0 εEμO

⎤
⎦. (12)

Since κ �E2
TM � κ2 �E4

TM, tensor elements in Eq. (12) are ap-
proximated as

εOμO ≈ ε0μ0 + 4ε0μ0κ
(
E2

TM − δH2
TM

)
, (13a)

εOμE ≈ ε0μ0 − ε0μ0κ
(
3E2

TM + 4δH2
TM

)
, (13b)

and

εEμO ≈ ε0μ0 + ε0μ0κ
(
4E2

TM + 3δH2
TM

)
. (13c)

Equation (13) shows the nonlinear birefringent property of
the vacuum. For the case of a pure magnetic field (ETM =
0), one obtains εOμO = εOμE ≈ ε0μ0 − 4ε0μ0κδH2

TM and
εEμO ≈ ε0μ0 + 3ε0μ0κδH2

TM. This expression is the same
as that for the refractive index under the purely magnetic
constant field with a perpendicular polarization as shown in
[51]. In this case, an EM wave passing through the εOμO −
εEμO or εOμE − εEμO plane will experience a nonlinear
birefringence due to the strong magnetic field. The ongoing
PVLAS experiment [17] which uses a sensitive polarimeter
based on a high finesse Fabry-Perot cavity pursues to experi-
mentally demonstrate the vacuum magnetic birefringence and
to assess dispersive QED strong field effects under a constant
and strong magnetic field. For the case of a pure electric field
(HTM = 0), one obtains εOμO = εEμO ≈ ε0μ0 + 4ε0μ0κE2

TM



and εOμE ≈ ε0μ0 − 3ε0μ0κE2
TM. An EM wave propagating

in this vacuum will experience a similar nonlinear birefringent
property as well. The refractive index for vacuum under an
ultrastrong laser intensity can be expressed by the well-known
Kerr nonlinearity as n = 1 + n2,vacI [5]. By using the relation-
ship of I = cε0E2/2, the nonlinear refractive index n2,vac is
given by

n2,vac = 4
κ

cε0
or n2,vac = −3

κ

cε0
, (14)

depending on the propagation direction. The calculation
shows that the nonlinear refractive index of vacuum (n2,vac =
1.36 × 10−29 cm2/W for n2,vac = 4κ/cε0) is 3 × 1010 times
lower than that of air (n2,air = 4 × 10−19 cm2/W) at 800 nm
wavelength [52] and 1019 times lower than that of water [53].

B. Nonlinear birefringent vacuum induced by the transverse
electric mode field

The NBV induced by the TE mode EM wave can be
derived in the same way. In this case, the electric and magnetic
fields for the TE mode EM wave are written by

�ETE = −φ̂Epeak exp[i(krVFS − ωt )]b(r′, θ ′) (15a)

and

�HTE = iθ̂Hpeak exp[i(krVFS − ωt )]a(r′, θ ′). (15b)

The E and B fields in matrix form in spherical coordinates
are written as

�ETE =
⎡
⎣ 0

0
ETE

⎤
⎦ and �HTE =

⎡
⎣ 0

HTE

0

⎤
⎦, (16)

with ETE = −Epeakb(r′, θ ′) cos(ωt ) and HTE = (Epeak/

μ0c)a(r′, θ ′) sin(ωt ). Then the permittivity and permeability
tensors for the TE mode EM wave case is explicitly
given by

ε
↔

TE =
⎡
⎣εO 0 0

0 εE 0
0 0 εO

⎤
⎦ and μ

↔
TE =

⎡
⎣μO 0 0

0 μO 0
0 0 μE

⎤
⎦,

(17)

and the general expression of the refractive index for vacuum
can be obtained as

n↔2
TE = ε

↔
TEμ

↔
TE =

⎡
⎣εOμO 0 0

0 εEμO 0
0 0 εOμE

⎤
⎦, (18)

with the definitions of the ordinary and extraordinary
elements of the tensors as εO = ε0 + 2ε0κ (E2

TE − δH2
TE), εE =

ε0 + ε0κ (2E2
TE + 5δH2

TE), μO = μ0 + 2μ0κ (E2
TE − δH2

TE),
and μE = μ0 − μ0κ (5E2

TE + 2δH2
TE). Again, since

κ �E2
TE � κ2 �E4

TE, tensor elements in Eq. (18) are approximated
as

εOμO ≈ ε0μ0 + 4ε0μ0κ
(
E2

TE − δH2
TE

)
, (19a)

εEμO ≈ ε0μ0 + ε0μ0κ
(
4E2

TE + 3δH2
TE

)
, (19b)

and

εOμE ≈ ε0μ0 − ε0μ0κ
(
3E2

TE + 4δH2
TE

)
. (19c)

Equations (18) and (19) also show the birefringent property
of the vacuum. Finally, considering the time-dependent elec-
tric field in Eqs. (6) and (15), the tensor elements in Eqs. (12)
and (18) can be expressed as

[εOμO]TM ≈ ε0μ0 + 4ε0μ0κ
[
E2

peaka2(r′, θ ′) sin2 ωt

− δH2
peakb2(r′, θ ′) cos2 ωt

]
, (20a)

[εOμE ]TM ≈ ε0μ0 − ε0μ0κ
[
3E2

peaka2(r′, θ ′) sin2 ωt

+ 4δH2
peakb2(r′, θ ′) cos2 ωt

]
, (20b)

[εEμO]TM ≈ ε0μ0 + ε0μ0κ
[
4E2

peaka2(r′, θ ′) sin2 ωt

+ 3δH2
peakb2(r′, θ ′) cos2 ωt

]
, (20c)

[εOμO]TE ≈ ε0μ0 + 4ε0μ0κ
[
E2

peakb2(r′, θ ′) cos2 ωt

− δH2
peaka2(r′, θ ′) sin2 ωt

]
, (20d)

[εEμO]TE ≈ ε0μ0 + ε0μ0κ
[
4E2

peakb2(r′, θ ′) cos2 ωt

+ 3δH2
peaka2(r′, θ ′) sin2 ωt

]
, (20e)

and

[εOμE ]TE ≈ ε0μ0 − ε0μ0κ
[
3E2

peakb2(r′, θ ′) cos2 ωt

+ 4δH2
peaka2(r′, θ ′) sin2 ωt

]
. (20f)

Equation (20) clearly shows how the refractive index of
vacuum can be a function of space-time-dependent ultrastrong
electromagnetic fields.

III. SCATTERED ELECTROMAGNETIC WAVE BY AN
ULTRASTRONG ELECTROMAGNETIC FIELD

A. Probe electromagnetic wave propagating NBV

In order to calculate an electric field scattered from an
NBV, let us consider the E field of a probe laser pulse �Ep

passing through the vacuum expressed by Eqs. (12), (18), and
(20). The time-dependent Maxwell’s equations for the E and
B fields of the probe laser pulse are written as

∇ × �B = μ �J + ε
↔

μ
↔∂ �E

∂t
and ∇ × �E = −∂ �B

∂t
. (21)

By assuming no source for the electric charge and current and
applying the curl to the electric field in Eq. (21), one obtains
the following wave equation:

∇2 �E ≈ ε
↔

μ
↔ ∂2

∂t2
�E . (22)

Let us assume that the probe pulse is x polarized, the pulse
duration is �tp, and the time delay between the probe pulse
and the 4π -spherically-focused laser pulse is td . Then, the
electric field for the probe pulse can be expressed by

�Ep = x̂Ep0e
− (t−td )2

2(�tp)2 ei(kpz−ωγ t+δp). (23)

Here δp is the relative phase shift between the probe pulse and
the 4π -spherically-focused laser pulse, and ωγ is the angular



frequency of the probe pulse given by kpc (kp wave number).
Since ωγ � 1/�t for the typical fs high-power laser pulse,
the second time derivative in Eq. (22) can be approximated as

∂2

∂t2
�Ep ≈ −x̂ω2

γ Ep0e
− (t−td )2

2(�tp)2 ei(kpz−ωγ t+δp). (24)

By inserting Eq. (24) into Eq. (22), the wave equation for
the probe pulse propagating through the NBV induced by an
ultrastrong laser field becomes

∇2 �Ep + ω2
γ ε

↔
μ
↔ �Ep = 0. (25)

Since the refractive index tensor ε
↔

μ
↔ is expressed in spher-

ical coordinates, it is convenient to express this tensor in the
Cartesian coordinate system. The tensor transformation from
the spherical coordinate system to the Cartesian coordinate
system can be obtained using the relationship of

[ε↔μ
↔]Cart = Q[ε↔μ

↔]sphQT , (26)

with

Q =
⎡
⎣sin θ cos φ cos θ cos φ − sin φ

sin θ sin φ cos θ sin φ cos φ

cos θ − sin θ 0

⎤
⎦

and

QT =

⎡
⎢⎣

sin θ cos φ sin θ sin φ cos θ

cos θ cos φ cos θ sin φ − sin θ

− sin φ cos φ 0

⎤
⎥⎦.

Here the angles θ and φ are the polar and azimuthal angles in
spherical coordinates, respectively. After the transformation,
the refractive index tensor in the Cartesian coordinate system
[ε↔μ

↔]Cart is written as

[ε↔μ
↔]Cart =

⎡
⎢⎣

εμxx εμxy εμxz

εμyx εμyy εμyz

εμzx εμzy εμzz

⎤
⎥⎦, (27)

with all tensor elements given by

εμxx = ε0μ0 + 4ε0μ0κE2
peak

× [a2(r′, θ ′) sin2 ωt − b2(r′, θ ′) cos2 ωt]

− 7ε0μ0κE2
peak[a2(r′, θ ′) cos2 θ cos2 φ sin2 ωt

− b2(r′, θ ′) sin2 φ cos2 ωt], (28a)

εμxy = εμyx = −7ε0μ0κE2
peak[a2(r′, θ ′) cos2 θ sin2 ωt

+ b2(r′, θ ′) cos2 ωt] sin φ cos φ, (28b)

εμxz = εμzx = 7ε0μ0κE2
peak

× a2(r′, θ ′) sin φ cos φ sin2 ωt, (28c)

εμyy = ε0μ0 + 4ε0μ0κE2
peak

× [a2(r′, θ ′) sin2 ωt − b2(r′, θ ′) cos2 ωt]

− 7ε0μ0κE2
peak[a2(r′, θ ′) cos2 θ sin2 φ sin2 ωt

− b2(r′, θ ′) cos2 φ cos2 ωt], (28d)

εμyz = εμzy = 7ε0μ0κE2
peak

× a2(r′, θ ′) sin θ cos θ sin φ sin2 ωt, (28e)

and

εμzz = ε0μ0 + 4ε0μ0κE2
peak

× [a2(r′, θ ′) sin2 ωt − b2(r′, θ ′) cos2 ωt]

− 7ε0μ0κE2
peaka2(r′, θ ′) sin2 θ sin2 ωt . (28f)

In the above equations, the relationship of E2
peak = δH2

peak is
used.

Now, Eq. (25) is rewritten as

∇2 �Ep + ω2
γ ε0μ0δi j �Ep = −ω2

γ (ε↔μ
↔ − ε0μ0δi j ) �Ep (29)

by separating the product of constant permittivity and per-
meability from the refractive index tensor. Here δi j is the
Kronecker delta and i refers to x, y, and z again. By applying
the Born approximation, the general solution of Eq. (29) is
given by

�Ep = �Einc + �ES, (30)

where �Einc and �ES mean the incident and scattered waves,
respectively. The incident wave satisfies the wave equation
∇2 �Einc + ω2

γ ε0μ0δi j �Einc = 0 and is assumed to simply prop-
agate in the vacuum without scattering. The incident wave
is considered as the incoming probe laser pulse �Ep. The �ES

describes the electric field scattered from the NBV and can be
calculated with the Green’s function as

�ES = −ω2
γ

∫
G(�r − �r′)(ε↔μ

↔ − ε0μ0δi j ) �Epei�kp·�r′
d3r′. (31)

Considering the polarization of the probe pulse ( �Ep = Epx̂)
and its propagation along the z axis near the vicinity of focus,
the scattered waves for the x- and y-polarization components
can be written as[

ESx

ESy

]
= Ep

∫
G(�r − �r′)

[
Vx(�r′)

Vy(�r′)

]
ei�kp·�r′

d3r′, (32)

with the explicit expressions of the scattering potential func-
tions as

Vx(r′, θ ′, φ′; t )

= −ω2
γ (εμxx − ε0μ0)

= −4κk2
pE2

peak[a2(r′, θ ′) sin2 ωt − b2(r′, θ ′) cos2 ωt]

+ 7κk2
pE2

peak[a2(r′, θ ′) cos2 θ cos2 φ sin2 ωt

− b2(r′, θ ′) sin2 φ cos2 ωt] (33a)

and

Vy(r′, θ ′, φ′; t ) = −ω2
γ εμyx

= 7κk2
pE2

peak[a2(r′, θ ′) cos2 θ sin2 ωt

+ b2(r′, θ ′) cos2 ωt] sin φ cos φ. (33b)

The phenomenon of multiple scattering is not considered
due to the weak light-light scattering characteristics. Then,
the first-order solution for the scattered probe pulse can be



written as

ESx,Sy(r; t )

=−Ep0e
− (t−td )2

2(�tp )2
ei(kpz−ωγ t+δp)

4πr

∫
e−i �q·�r′

Vx,y(�r′; t )d3r′. (34)

Here the vector �q, known as the scattering vector, is defined
by �k − �k0, which describes the momentum transfer from the
focused ultrastrong laser pulse to the probe pulse. Since
the elastic scattering of the probe pulse is considered, the

magnitude of the scattering vector q is given by 2kp sin(θ/2)
(see Fig. 2). In the following sections the first-order solution
for the specific scattering potential function given by the 4π -
spherically-focused light field is presented.

B. Electromagnetic field scattered by the nonlinear
birefringent vacuum

Let us first calculate the x-polarized scattered E field.
Hereafter, this is referred to as the x-pol/x-pol scattering case.
By putting Eq. (33a) into Eq. (34), the x-polarized scattered E
field ESx is explicitly expressed as

ESx = 4κk2
pE2

peakEp0e
− (t−td )2

2�t2
p

ei(kpz−ωγ t+δp)

4πr

∫
d3r′e−i �q·�r′

[a2(r′, θ ′) sin2 ωt − b2(r′, θ ′) cos2 ωt]

− 7κk2
pE2

peakEp0e
− (t−td )2

2�t2
p

ei(kpz−ωγ t+δp)

4πr

∫
d3r′e−i �q·�r′

[a2(r′, θ ′) cos2 θ cos2 φ sin2 ωt − b2(r′, θ ′) sin2 φ cos2 ωt]. (35)

Equation (35) consists of two integrals: I1 = ∫
e−i �q·�r′

a2(r′, θ ′)d3r′ (contribution by the E field) and I2 = ∫
e−i �q·�r′

b2(r′, θ ′)d3r′

(contribution by the H field). For convenience, (�tp)2 is replaced by �t2
p . The phase term e−i �q·�r′

in Eq. (35) is expanded by using
the plane wave expansion, in terms of spherical Bessel functions jl (x) and associated Legendre polynomials Pm

l (x) as follows:

exp
(−iqr′ cos γ

) =
∞∑

l=0

(2l + 1)(−i)l jl (qr′)
l∑

ν=−l

�(l − ν + 1)

�(l + ν + 1)
Pν

l (cos ζ )Pν
l (cos θ ′) exp[iν(φ − φ′)]. (36)

The angle γ between the �q and �r′ vectors is given by ζ − θ ′
with ζ = (π + θ )/2 [see Fig. 2(b)]. The field distribution term
a2(r′, θ ′) in I1 can be expressed as

a2(r′, θ ′) =
2∑

n=0

2∑
m=0

[
αnm

4n + 1

23n

4m + 1

23m
j2n(kr′) j2m(kr′)

× P2n(cos θ ′)P2m(cos θ ′)
]

+ HO, (37)

where HO means the higher-order terms. The coefficient αnm

is given by 1 when n = m, and 2 when n 	= m. The expression
4n+1
23n

4m+1
23m is valid only when n and m are less than 2. The

exact expression for the higher-order terms can be found in
[37]. Similarly, the field distribution term b2(r′, θ ′) in I2 can
be expressed as

b2(r′, θ ′) = 42

π2
j2
1 (kr′) sin2 θ ′. (38)

Since the contribution by higher-order terms is negligible, the
lowest-order term (l = n = m = 0) will be taken into account
in the calculation. This consideration simplifies integrals I1

and I2 as

I1 =
∫

e−i �q·�r′
a2(r′, θ ′)d3r′ = 4π

∫
dr′ j0(qr′) j2

0 (kr′)r′2

(39a)

and

I2 =
∫

e−i �q·�r′
b2(r′, θ ′)d3r′

= 8π

3

(
42

π2

) ∫
dr′ j0(qr′) j2

1 (kr′)r′2. (39b)

FIG. 2. (a) The probe laser pulse is scattered from the nonlinear
birefringent vacuum induced by the 4π -spherical-focused femtosec-
ond high-power laser pulse. (b) The probe laser pulse initially prop-
agates through the z axis and the scattered probe pulse is scattered
with a propagation vector �k. The magnitude of the scattering vector
�q = �k − �k0 is given by 2kp sin(θ/2) when the scattered probe pulse
is elastic.



The integrals of the product of the three spherical Bessel
functions are given by∫ ∞

0
j0(qr′) j2

0 (kr′)r′2dr′ = π

4k2q
(40a)

and ∫ ∞

0
j0(qr′) j2

1 (kr′)r′2dr′ = π

4k2q
P1(cos θ ), (40b)

with the help of the following integral identity [54]:∫ ∞

0
r1−μJμ(qr)Jν (kr)Jν (kr)dr

= 1√
2π

q−μ(k2)μ−1(sin a)μ− 1
2 P

1
2 −μ

ν− 1
2

(cos a), (41)

with the definition of cos a = (2k2 − q2)/2k2. After summa-
rizing the above results, the following result is obtained for
the x-polarized scattered E field:

ESx = πκE2
peakEp0e

− (t−td )2

2�t2
p

ei(kpz−ωγ t+δp)

r

1

q

×
[

sin2 ωt − 2

3

(
4

π

)2

P1(cos θ ) cos2 ωt

]

−7π

4
κE2

peakEp0e
− (t−td )2

2�t2
p

ei(kpz−ωγ t+δp)

r

1

q

×
[

cos2 θ cos2 φ sin2 ωt

−2

3

(
4

π

)2

P1(cos θ ) sin2 φ cos2 ωt

]
. (42)

The difference in coefficients [1 and (2/3)·(4/π )2] between
the first and the second terms in the parentheses is 8%,
originating from taking only the lowest-order term during the
integral calculation of Eq. (39a). Considering that the electric
field energy should be the same as the magnetic field energy,
Eq. (42) should be rewritten as

ESx = fxx(θ, φ, t )Ep0e
− (t−td )2

2�t2
p

ei(kpz−ωγ t+δp)

r
, (43)

with the definition of the scattering amplitude fxx(θ, φ, t ) for
the NBV as

fxx(θ, φ, t )

= 8κE2
peak

3πq
[4(sin2 ωt − cos θ cos2 ωt )

− 7 cos θ (cos θ cos2 φ sin2 ωt − sin2 φ cos2 ωt )]. (44)

By inserting Eq. (33b) into Eq. (34), the scattered E field for
the y polarization (hereafter x-pol/y-pol scattering case) ESy

is given by

ESy = −7κE2
peakEp0e

− (t−td )2

2�t2
p

ei(kpz−ωγ t+δp)

4πr

∫
d3r′e−i �q·�r′

× [a2(r′, θ ′) cos2 θ sin2 ωt + b2(r′, θ ′) cos2 ωt]. (45)

Again, by taking similar mathematical steps with the integrals
of I1 and I2, one obtains the scattered E field for y polarization
ESy as

ESy = fxy(θ, φ, t )Ep0e
− (t−td )2

2�t2
p

ei(kpz−ωγ t+δp)

r
, (46)

with a different definition of the scattering amplitude
fxy(θ, φ, t ) for the NBV as

fxy(θ, φ, t ) = 8κE2
peak

3πq
7(cos2 θ sin2 ωt

+ cos θ cos2 ωt ) sin φ cos φ. (47)

The peak field strength Epeak can be calculated from the laser
power PL as (k/4)

√
3πPL/cε0. Equations (43) and (46) show

the instantaneously scattered E field at a certain scattering
angle of θ and φ. This expression provides information on
the angular distribution of the electric fields scattered from a
spherically-focused ultrastrong laser pulse. For comparison,
other expressions for photons scattered under static field con-
ditions can be found in [55,56]. By replacing κ by α/90πE2

Sch
with the Schwinger field of ESch = m2

ec3/eh̄ and the fine
structure constant of α = e2/4πε0 h̄c ≈ 1/137, the scattering
amplitudes for the x-pol/x-pol and x-pol/y-pol scattering
cases convert to

fxx(θ, φ, t )

= 4α

135π2

(
Epeak

ESch

)2 1

q
[4(sin2 ωt − cos θ cos2 ωt )

− 7 cos θ (cos θ cos2 φ sin2 ωt − sin2 φ cos2 ωt )] (48)

and

fxy(θ, φ, t ) = 4α

135π2

(
Epeak

ESch

)2 1

q
7(cos2 θ sin2 ωt

+ cos θ cos2 ωt ) sin φ cos φ. (49)

C. Estimation of the number of scattered photons

Since the scattering amplitude is proportional to
(Epeak/ESch)2, the scattered probe pulse by the NBV is
in general too weak to be detected. Therefore, it is convenient
to calculate the number of photons scattered from the NBV.
In order to calculate the number of scattered photons, let us
first calculate the scattered EM energy. The energy of the
scattered probe pulse ES is calculated by taking the volume
integral of Eqs. (43) and (46) as

ES = 1

2
cε0

∫
E2

S r2drd�, (50)

where d� is the infinitesimal solid angle defined as
sin θdθdφ. Using the relationship of ES = NSh̄ωγ , the number
of scattered photons per solid angle dNS

d�
is given by

dNS

d�
= ε0E2

p0

2h̄ωγ

∫
dr

dσ

d�
e
− (t−td )2

�t2
p cos2(ωγ t − δp), (51)

with the definition of the differential cross section as
dσ (θ, φ, t )/d� = | f (θ, φ, t )|2. In Eq. (51), the integration
in the r direction can be regarded as the integration in time,



i.e., dr = cdt . The probe laser pulse is assumed to be focused
within a radius of λp for an efficient scattering event. With a
flat-top uniform beam profile, the radius wp is given by the
first minimum value of the Airy function as 1.22 × f λp/D.
Here f is the focal length of a focusing optic and D is the
beam diameter, respectively. This radius of λp can be achieved
with a focusing condition of f number ( f /D) of ∼0.82. The
total number of incident photons of the probe laser pulse can
be estimated from

Np = cε0E2
p0

2h̄ωγ

∫ ∞

0
dte

− (t−td )2

�t2
p 2π

∫ ∞

0
ρdρe

− ρ2

λ2
p . (52)

Thus, the relation between the photon number and the field
strength is obtained as

E2
p0 ≈ 4Nph̄ωγ√

πε0c�tpπλ2
p

. (53)

After inserting Eq. (53) into Eq. (51) and converting the
integral in the r direction into the integral in time, the number
of scattered photons per solid angle is expressed as

dNS

d�
= 2Np√

π�tpπλ2
p

∫
dt

dσ

d�
e
− (t−td )2

�t2
p cos2(ωγ t − δp). (54)

Now, let us calculate the number of photons scattered
from the 4π -spherically-focused ultra-strong laser pulse with
a pulse duration of �t . Two cases, such as x-pol/x-pol and
x-pol/y-pol scatterings, are considered in the following cal-
culations. For the x-pol/x-pol scattering case, the differential
cross section is expressed as

dσxx(θ, φ, t )

d�

= C2

q2
e− 2t2

�t2 [4(sin2 ωt − cos θ cos2 ωt )

− 7 cos θ (cos θ cos2 φ sin2 ωt − sin2 φ cos2 ωt )]2, (55)

where (4α/135π2)(Epeak/ESch)2 is replaced by C in Eq. (55).
Considering Eqs. (54) and (55), it is evident that the strongest
scattered E field is obtained with no time delay between the
probe pulse and the focused pulse, i.e., td = 0. After some
straightforward mathematical steps, Eq. (54) can be presented
in the form of

dNS,xx

d�
= 2Np√

π�tpπλ2
p

C2

q2
[(4 − 7 cos2 θ cos2 φ)2Isin

+ cos2 θ (4 − 7 sin2 φ)2Icos − 2 cos θ

× (4 − 7 cos2 θ cos2 φ)(4 − 7 sin2 φ)Isin cos].

(56)

Here the integrals Isin, Icos, and Isin cos are defined as follows:

Isin =
∫ ∞

0
dte

− 2t2

�t2 − t2

�t2
p sin4 ωt cos2(ωγ t − δp), (57a)

Icos =
∫ ∞

0
dte

− 2t2

�t2 − t2

�t2
p cos4 ωt cos2(ωγ t − δp), (57b)

and

Isin cos =
∫ ∞

0
dte

− 2t2

�t2 − t2

�t2
p sin2 ωt cos2 ωt cos2(ωγ t − δp).

(57c)

Reducing the power of trigonometric functions in Eq. (57)
generates the sin and cos terms containing ωγ , ω ± ωγ , and
2ω ± ωγ , and those integrals can be analytically calculated
using the integral identities of [54]∫ ∞

0
dte−at2

cos ωtdt = 1

2

√
π

a
exp

(
−ω2

4a

)
(58a)

and∫ ∞

0
dte−at2

sin ωtdt = ω

2a
exp

(
−ω2

4a

)
1F1

(
1

2
;

3

2
;
ω2

4a

)
.

(58b)

Here 1F1(·) is the confluent hypergeometric (CH) function of
the first kind. Due to the properties of the exponent function
and of the product of the exponent on the confluent hypergeo-
metric function, the terms containing ω− = ω − ωγ or ω2− =
2ω − ωγ become more dominant than the ω+ = ω + ωγ and
ω2+ = 2ω + ωγ terms. Thus, the final results of Eq. (57) can
be approximated as

Isin ≈
√

π

32

�tp√
1 + 2

(
�t2

p/�t2
)

×
[

3 − 2 cos 2δp exp

(
− ω2

−�t2
p

1 + 2
(
�t2

p/�t2
)
)

+ 1

2
cos 2δp exp

(
− 2ω2

2−�t2
p

1 + 2
(
�t2

p/�t2
)
)]

, (59a)

Icos ≈
√

π

32

�tp√
1 + 2

(
�t2

p/�t2
)

×
[

3 + 2 cos 2δp exp

(
− ω2

−�t2
p

1 + 2
(
�t2

p/�t2
)
)

+ 1

2
cos 2δp exp

(
− 2ω2

2−�t2
p

1 + 2
(
�t2

p/�t2
)
)]

, (59b)

and

Isin cos ≈
√

π

32

�tp√
1 + 2

(
�t2

p/�t2
)

×
[

1 − 1

2
cos 2δp exp

(
− 2ω2

2−�t2
p

1 + 2
(
�t2

p/�t2
)
)]

.

(59c)

The exponential terms in Eq. (59) can be ignored when
ω−, ω2− 	= 0. In this case, the integrals become

Isin = Icos ≈ 3
√

π

32

�tp√
1 + 2

(
�t2

p/�t2
) (60a)



and

Isin cos ≈
√

π

32

�tp√
1 + 2

(
�t2

p/�t2
) , (60b)

and for the x-pol/x-pol scattering case the number of scattered
photons per solid angle is given by

dNS,xx

d�
= Np

24 · 1352 · π7

α2(Ipeak/ISch)2√
1 + 2

(
�t2

p/�t2
)�xx(θ, φ), (61)

with the definition of the angular distribution function
�xx(θ, φ) as

�xx(θ, φ) = 1

sin2(θ/2)
{[4(1 − cos θ )

− 7 cos θ (cos θ cos2 φ − sin2 φ)]2

+ 2[(4 − 7 cos2 θ cos2 φ)2

+ cos2 θ (4 − 7 sin2 φ)2]}. (62)

When ω− = 0, the integrals in Eq. (59) are approximated as

Isin ≈
√

π

32

�tp√
1 + 2

(
�t2

p/�t2
) (3 − 2 cos 2δp), (63a)

Icos ≈
√

π

32

�tp√
1 + 2

(
�t2

p/�t2
) (3 + 2 cos 2δp), (63b)

and

Isin cos ≈
√

π

32

�tp√
1 + 2

(
�t2

p/�t2
) , (63c)

and the scattering event starts to experience the effect of
phase delay δp. In this case, the angular distribution function
�ω−

xx (θ, φ) is given as a function of phase delay by

�ω−
xx (θ, φ, δp) = 1

sin2(θ/2)
{[4(1 − cos θ )

− 7 cos θ (cos θ cos2 φ − sin2 φ)]2

+ 4 sin2 δp(4 − 7 cos2 θ cos2 φ)2

+ 4 cos2 δp cos2 θ (4 − 7 sin2 φ)2}. (64)

Similarly, the angular distribution function for the case of
ω2− = 0 is given by

�2ω−
xx (θ, φ, δp) = 1

sin2(θ/2)

{
5

2
[4(1 − cos θ )

− 7 cos θ (cos θ cos2 φ − sin2 φ)]2

+ 2 cos θ (4 − 7 cos2 θ cos2 φ)(4 − 7 sin2 φ)

+ cos2 δp[(4 − 7 cos2 θ cos2 φ)

+ cos2 θ (4 − 7 sin2 φ)]2

}
. (65)

Next, let us calculate the number of scattered photons
per solid angle for the x-pol/y-pol scattering case. Following
similar mathematical procedures with Eqs. (49) and (54), the
number of scattered photons per solid angle is explicitly given
by

dNS,xy

d�
= Np

24 · 1352 · π7

α2(Ipeak/ISch)2√
1 + 2

(
�t2

p/�t2
)�xy(θ, φ), (66)

where the angular distribution function is defined as

�xy(θ, φ) = cos2 θ sin2 φ cos2 φ

sin2(θ/2)
72(3 cos2 θ + 2 cos θ + 3) (for ω−, ω2− 	= 0), (67a)

�ω−
xy (θ, φ, δp) = cos2 θ sin2 φ cos2 φ

sin2(θ/2)
72(3 cos2 θ + 2 cos θ + 3 + 2 cos 2δp sin2 θ ) (for ω− = 0), (67b)

and

�2ω−
xy (θ, φ, δp) = cos2 θ sin2 φ cos2 φ

sin2(θ/2)
72

(
3 cos2 θ + 2 cos θ + 3 + 2 cos 2δp sin4 θ

2

)
(for ω2− = 0). (67c)

The expressions of Eqs. (61) and (66) provide information on
the number of photons scattered from a spherically-focused
ultrastrong laser pulse with its angular distribution.

In order to estimate the number of photons scattered from
the NBV, the use of fs high-power laser pulses is assumed
to induce NBV as shown in Fig. 1. The peak powers for
a 4π -spherically-focused laser pulse are assumed to be 10,
100, and 1000 PW. A 30 fs, 10 PW, or 100 PW probe laser
pulse propagates through the NBV and is scattered by it.
Although these probe pulse powers are high, they are focused
conventionally by a parabolic mirror so that the changes to the
effects on the NBV by them are much smaller than the 4π -
spherically-focused pulse and can be ignored. The parameters
for the focused and probe laser pulses used in the following

calculations are summarized in Table I. The differential pho-
ton number 1

Np

dNS
d�

, normalized to the incident probe photon
number Np, is calculated to estimate the scattered photons
with these laser beam parameters.

Figure 3 shows the differential photon number for different
combinations of laser peak power and wavelength. The peak
powers Ppeak and Pp in the figure mean the peak powers of
the 4π -spherically-focused laser and the probe laser pulses,
respectively, and the angular frequencies ω and ωγ are the
angular frequencies for the focused laser and the probe laser,
respectively. In the calculations, the phase delay (δp) between
the two laser pulses is assumed to be zero. Figures 3(a) and
3(c) show the differential photon number calculated for three
different laser power combinations: 10 (the peak power for



TABLE I. The parameters of laser pulses. In the table, Ti:S and Nd:glass mean the Ti:sapphire and Nd:glass high power laser systems,
respectively.

Peak power (PW) Center wavelength (μm) Pulse duration (fs) Laser system

4π -spherically-focused laser pulse 10 0.8 or 1.05 30 or 150 Ti:S or Nd:glass
100 0.8 or 1.05 30 or 150 Ti:S or Nd:glass
1000 0.8 30 Ti:S

Probe laser pulse 10 0.8 or 0.4 30 Ti:S
100 0.8 or 0.4 30 Ti:S

the focused laser)–10 PW (the peak power for the probe laser)
(shortly, 10–10 PW case hereafter) for the blue line, 100–100
PW case for the red line, and 1000–100 PW case for the
green line. The peak intensities of the 4π -spherically-focused
laser pulse with a wavelength of 0.8 μm become 1.82 × 1025,
1.82 × 1026, and 1.82 × 1027 W/cm2 for 10, 100, and 1000
PW laser pulses, respectively. In case of the probe beam, the
peak intensities reach ∼5 × 1024 and ∼5 × 1025 W/cm2 for
10 and 100 PW laser pulses, respectively. When considering
the divergence of the probe pulse after focus, the photons
scattered within an angle of ±θprobe (≈±π/7.2 ≈ ±26◦) prop-
agate with the probe pulse, so the detector for measuring the
scattered photons should be located in a geometrical shadow

to remove the huge background intensity of the probe beam.
The geometrical shadow is determined by the f number of the
OAP for the probe beam and, in our case using an f number
of 1, it is formed at an angle of θ > +26◦ or θ < −26◦, so the
detector should be located at an angle θdet wider than θ =∼26◦

(for example, θdet = +30◦ or θdet = −30◦). The differential
photon numbers at θ = 30◦ and φ = 0◦ are calculated to be
2.28 × 10−19 (blue line), 2.28 × 10−17 (red line), and 2.28 ×
10−15 (green line) for the x-pol/x-pol scattering case, and
to be 2.24 × 10−19 (blue line), 2.24 × 10−17 (red line), and
2.24 × 10−15 (green line) for the x-pol/y-pol scattering case,
respectively. This result means that considering the incident
photon number (∼1 × 1021 for 10 PW, ∼1 × 1022 for 100 PW

FIG. 3. The differential photon number scattered from a nonlinear birefringent vacuum induced by an ultrastrong laser pulse. Ppeak and 
Pp mean laser peak powers of the 4π -spherically-focused laser pulse and the probe laser pulse, respectively. ω and ωγ means central angular 
frequencies of the 4π -spherically-focused laser pulse and the probe laser pulse, respectively. (a) The differential photon number for the 
x-pol/x-pol scattering case at different laser power combinations. (b) The differential photon number for the x-pol/x-pol scattering case 
depending on the wavelength combination. (c) The differential photon number for the x-pol/y-pol scattering case at different laser power 
combinations. (d) The differential photon number for the x-pol/y-pol scattering case depending on the wavelength combination.



FIG. 4. The angular dependence of the differential photon number for the x-pol/x-pol scattering case at two different phase delays. The
phase delay between the 4π -spherically-focused laser pulse and the probe laser pulse is zero for (a) and (c), and π/2 for (b) and (d).

for the probe pulse), the expected number of scattered photons
at the unit solid angle is approximately 240 for the 10–10 PW
case, 2.4 × 105 for the 100–100 PW case, and 2.4 × 107 for
the 1000–100 PW case. In these cases, the center wavelengths
of the laser pulses are assumed to be 0.8 μm, which is the
typical wavelength of the Ti:sapphire laser.

The dependence of the differential photon number on the
wavelength combination is shown in Figs. 3(b) and 3(d). In
the calculations, the use of 100 PW power is assumed for both
the focused and probe laser pulses. Three different wavelength
combinations, such as 1 μm wavelength (the focused laser)
and 0.8 μm wavelength (the probe laser) (shortly, 1–0.8 μm
case hereafter) for the blue line, 0.8–0.8 μm case for the red
line, and 0.8–0.4 μm case for the green line, are investigated at
a polar angle of θ = 30◦. For the x-pol/x-pol scattering case,
the normalized photon number increases from 1.10 × 10−17

for the 1–0.8 μm scattering case to 2.28 × 10−17 for the
0.8–0.8 μm scattering case. And, for the x-pol/y-pol scatter-
ing case, the 0.8–0.8 μm scattering case shows the greatest
differential photon number of 2.24 × 10−17.

Figures 4 and 5 show the dependence of the differential
photon number on the azimuthal angle φ and the phase
delay δp. Two different conditions (δp = 0 and δp = π/2) for
the phase delay are shown in the figures. The 0.8–0.8 μm
scattering case is considered for the 100–100 PW scattering
case. The greatest differential photon number of 3.50 × 10−17

can be obtained for the x-pol/x-pol scattering under condi-
tions of φ = π/2 and δp = π/2 at θ = π/6. This differential

photon number increases to 3.50 × 10−15 for the 1000–100
PW scattering case.

This result means that for the 1000–100 PW laser pulse
scattering case the maximum number (dNS/d�) of scattered
photons of 3.52 × 107 is expected for the unit solid angle.
Given a detector size of 1 cm by 1 cm located 1 m away
from the interaction point (focus), a total number of about
154 photons can be expected on the detector. A single photon
counting technique can be used to detect the scattered pho-
tons. The expected number of scattered photons calculated
with this approach seems much higher than that calculated
with the photon-photon scattering approach based on QED
[57]. For example, in our calculation, the number (dNxx/d�)
of scattered photons at a specific solid angle is expected to be
more than 6000 [Fig. 3(a)] when two 100 PW laser pulses are
used for the focused and the probe pulses, yielding the inci-
dent number (Np) of the probe photon number as ∼1 × 1022.
Under the same condition, the number of scattering events
is expected to be ∼1 × 10−12 for the conventional approach
[56,57] based on the QED calculation. Comparing Eqs. (61)
and (66) to Eq. (3) in [56], the major difference between the
two expressions comes from the number of probe photons Np

in Eqs. (61) and (66). According to [58], the different number
of scattered photons between the two calculations is related
to the calculation of the luminosity for the coherent photons.
In their explanation, for fermion, the luminosity can be cal-
culated by N2/πr2 (Eq. (5.1) in [58]), where N is the total
fermion number contained in the bunch and r is the radius



FIG. 5. The angular dependence of the differential photon number for the x-pol/y-pol scattering case at two different phase delays. The
phase delay between the 4π -spherically-focused laser pulse and the probe laser pulse is zero for (a) and (c), and π/2 for (b) and (d).

of the bunch. However, for coherent photons, the number of
scattered photons based on the luminosity calculation should
be proportional to N3, assuming the same number N of the
probe beam as the focused beam, and the required number of
probe photons for a single photon scattered is ∼1021. When
two coherent photon beams have different photon numbers
(i.e., N and Nprobe), the proportionality of the scattered photon
number can be modified as N2Nprobe. In our case, the photons
are in coherent states because the mathematical expression
describing the temporal distribution of a femtosecond laser
pulse in Eq. (23),

e
− (t−td )2

2�t2
p e−iωt , (68)

follows the general expression for the wave function of a
squeezed coherent state. And their estimation agrees well with
our calculation results. Another approach [22,57,59] based
on the four-wave interaction of intense radiation using three
incoming photon beams also shows the same dependency
(N3) on the number N of photons in each photon beam
as our results. Thus, careful examination for understanding
the discrepancy and agreement on the number of scattered
photons between different approaches is needed and a more
comprehensive explanation should be addressed in other pub-
lications.

In summary, the calculation shows that a detectable number
of photons can be scattered from the NBV induced by an
exawatt (EW, 1000 PW) power laser facility, which will be
available in the near future. All the results can be used to de-

tect the scattered photons from the NBV induced by ultrashort
ultrastrong laser pulses. In the experimental measurement of
photons scattered from the vacuum, there will be other pho-
tons emitted/scattered from particles (atoms or gas molecules
even under a high vacuum condition) within the interaction
region. Thus, the suppression of photons emitted/scattered
from particles will be a big challenge in purely detecting
photons scattered from the nonlinear vacuum.

IV. CONCLUSION

The light scattering from the NBV induced by a 4π -
spherically-focused fs high-power laser pulse has been in-
vestigated through the Lagrangian formalism and the pertur-
bation method using the Born approximation. The electric
permittivity and magnetic permeability tensors are explicitly
expressed for the NBV when the fs high-power laser pulse is
4π -spherically-focused. The NBV is modeled as a scattering
potential for calculating the scattered electric fields through
the Born approximation. The mathematical expressions of
the differential scattering cross sections for x-pol/x-pol and
x-pol/y-pol scatterings are derived. The number of photons
scattered by the NBV has been calculated in the laser power
range of 10 to 1000 PW, which will be available in the near
future. The calculation shows that a total number of >150
photons can be measured on a detector with a size of 1 cm
by 1 cm located 1 m away from the focus of an EW laser
pulse.
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