Title
Neurotoxicological effects induced by up-regulation of miR-137 following triclosan exposure to zebrafish (Danio rerio).

Permalink
https://escholarship.org/uc/item/4ch8p3f5

Authors
Liu, Jinfeng
Xiang, Chenyan
Huang, Wenhao
et al.

Publication Date
2019

DOI
10.1016/j.aquatox.2018.11.017

Peer reviewed
Neurotoxicological effects induced by up-regulation of miR-137 following triclosan exposure to zebrafish (*Danio rerio*)

Jinfeng Liua, Chenyan Xiangb,1, Wenhao Huanga, Jingyi Meib, Limei Suna, Yuhang Linga, Caihong Wanga, Xuedong Wangb, Randy A. Dahlgrenc, Huili Wanga,⁎

a Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
b National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
c Department of Land, Air and Water Resources, University of California, Davis, CA95616, USA

ARTICLE INFO

Keywords:
Triclosan
Up-regulation miR-137
Regulatory target genes
Agomir and antagonim
Neurotoxic effect
Behavioral endpoint
Environmental toxicology

ABSTRACT

Triclosan (TCS) is a prevalent anthropogenic contaminant in aquatic environments and its chronic exposure can lead to a series of neurotoxic effects in zebrafish. Both qRT-PCR and W-ISH identified that TCS exposure resulted in significant up-regulation of miR-137, but downregulation of its regulatory genes (*bcl11aa*, *MAPK6* and *Runx1*). These target genes are mainly associated with neurodevelopment and the MAPK signaling pathway, and showed especially high expression in the brain. After overexpression or knockdown treatments by manual intervention of miR-137, a series of abnormalities were induced, such as ventricular abnormality, bent spine, yolk cyst, closure of swim sac and venous sinus hemorrhage. The most sensitive larval toxicological endpoint from intervened miR-137 expression was impairment of the central nervous system (CNS), ventricular abnormalities and notochord curvature. Microinjection of microRNA mimics or inhibitors of miR-137 both caused zebrafish malformations. The posterior lateral line neuromasts became obscured and decreased in number in intervened miR-137 groups and TCS-exposure groups. Up-regulation of miR-137 led to more severe neurotoxic effects than its down-regulation. Behavioral observations demonstrated that both TCS exposure and miR-137 over-expression led to inhibited hearing or vision sensitivity. HE staining indicated that hearing and vision abnormalities induced by long-term TCS exposure originated from CNS injury, such as reduced glial cells and loose and hollow fiber structures. The findings of this study enhance our mechanistic understanding of neurotoxicity in aquatic animals in response to TCS exposure. These observations provide theoretical guidance for development of early intervention treatments for nervous system diseases.

1. Introduction

Triclosan (5-chloro-[2,4-dichlorophenoxy] phenol, TCS) is a lipid-soluble, broad-spectrum antibacterial agent that is commonly added to a variety of personal care and industrial products, including hand soap, shampoo, toothpaste, and textile goods (Ying and Kookana, 2007). Due to its widespread use over the past 40 years, TCS has become a prevalent anthropogenic contaminant in aquatic environments worldwide. In recent years, TCS is frequently detected in the environment at ng/L to μg/L levels, leading to accumulation in aquatic biota and humans (Wang and Tian, 2015; Meador et al., 2018). Wastewater treatment plant influent concentrations of TCS have been reported to reach levels as high as 86.2 μg/L (Kumar et al., 2010). For example, raw influent TCS concentrations ranged from 3000 to 14,000 ng/L, whereas effluent concentrations ranged from 161 to 462 ng/L in Red River basin wastewater/sewage treatment plants (Weilin et al., 2007). The presence of antimicrobial agents in the environment, even at low concentrations, may be hazardous because of its potential for bioaccumulation within the aquatic food web. Accumulation of TCS in aquatic organisms, such as shellfish, fish and marine mammals, is well-established (Ruszkiewicz et al., 2017).

In zebrafish (*Danio rerio*) embryos, TCS exposure delayed development of secondary motor neurons at concentrations from 550 to 1600 μg/L (Muth-Köhne et al., 2012). Further, TCS-induced edema reduced blood circulation and produced malformations of the head, heart and tail in embryos (Muth-Köhne et al., 2012). It was reported that TCS induced apoptosis in mice neuronal cells and pro-apoptotic effects in rat neural stem cells.

⁎ Corresponding author.
E-mail addresses: 964781955@qq.com (C. Xiang), whuili@163.com (H. Wang).
1 Co-first author.

https://doi.org/10.1016/j.aquatox.2018.11.017
Received 13 August 2018; Received in revised form 18 November 2018; Accepted 19 November 2018
Available online 22 November 2018
0166-445X/ © 2018 Elsevier B.V. All rights reserved.
Previous literature indicated that prenatal TCS exposure was associated with reduced head circumference at birth in human boys (Lassen et al., 2016; Philippat et al., 2014). This discovery raises concerns over the role of TCS in neurodevelopment, since reduced head circumference at birth has been linked to impaired cognitive performance later in life (Veena et al., 2010). TCS can impair excitation-reduced head circumference at birth has been linked to impaired cognitive discovery raises concerns over the role of TCS in neurodevelopment, since at birth in human boys (Lassen et al., 2016; Philippat et al., 2014). This that prenatal TCS exposure was associated with reduced head circumference (Szychowski et al., 2016; Kyung et al., 2016). Previous literature indicated that prenatal TCS exposure was associated with reduced head circumference (Szychowski et al., 2016; Kyung et al., 2016). Previous literature indicated that prenatal TCS exposure was associated with reduced head circumference (Szychowski et al., 2016; Kyung et al., 2016). Previous literature indicated that prenatal TCS exposure was associated with reduced head circumference (Szychowski et al., 2016; Kyung et al., 2016).

2. Material and methods

2.1. Ethics statement

The Institutional Animal Care and Use Committee (IACUC) at Wenzhou Medical University approved our study plan for ethical use of zebrafish (Danio rerio). All studies were carried out in strict accordance with IACUC guidelines. All zebrafish surgery was performed on ice to decrease suffering.

2.2. Chemicals

TCS (5-chloro-2-[2,4-dichlorophenoxyl]phenol) was purchased from Sigma-Aldrich (St. Louis, USA; CAS No. 3380-34-5, 99.9% purity). Acetone was obtained from Sinopharm Chemical Reagent Co. (Shanghai, China). Formamide (CAS No. 75-12-7, purity ≥ 99%) was acquired from Aladdin (Shanghai, China).

2.3. Zebrafish maintenance and exposure protocols

Wild-type (AB strain) zebrafish were raised in dechlorinated and filtered water at 28°C with a 14-h light:10-h dark cycle photoperiod (light on at 8 a.m.). Zebrafish maintenance followed Westerfield (2000). A series of TCS-exposure concentrations was chosen according to its LC50 and EC50 values (Zhang et al., 2018; Oliveira et al., 2009), environmentally relevant concentrations, and preliminary experimental results. The data of death/malformation recorded/collection rates and malformed zebrafish information were reported in our previous study, and the LC50 and EC50 values of TCS for 120-hpf zebrafish were 510 and 360 μg/L (Zhang et al., 2018). In Oliveira’s study, TCS showed acute toxicity for embryos and larvae with a 96 hpf LC50 of 420 μg/L (Oliveira et al., 2009). Embryos were exposed to a series of TCS concentrations (0, 62.5, 125 and 250 μg/L (equivalent to 0, 0.22, 0.43 and 0.86 μmol/L, respectively). Low-dose TCS concentrations (0, 40, 80 and 160 μg/L (equivalent to 0, 0.14, 0.27 and 0.56 μmol/L, respectively) were chosen for zebrafish continuous exposure studies from the embryo (6 hpf, hours post-fertilization) to adult (90 dpf, days post-fertilization) growth stages. Control embryos were treated with 0.0025% acetone (as referenced to the highest 250 μg/L TCS-exposure treatment). These TCS-exposure concentrations simulate real-world environmental levels in human-impacted aquatic ecosystems. Prior to locomotor behavioral test, larvae were evaluated using a microscope and any dead or malformed individuals were excluded. The TCS-exposure solutions were renewed daily to maintain stable water quality and TCS concentration.

2.4. Target genes prediction and expression analyses of miR-137 using qRT-PCR and WISH

Two miRNA target databases were used to predict the target genes of miR-137: TargetScan (http://www.targetscan.org/) and Diana Tools (http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=microT_CDS/index). For functional annotation of the genes targeted by the miRNAs, Kyoto Encyclopedia of Genes and Genomes (KEGG) functional classification (http://www.genome.jp/kegg/) was performed using the web-based tool, Database for Annotation, Visualization and Integrated Discovery (DAVID, http://david.abcc.ncifcrf.gov/) (Huang et al., 2009). Sequence homology comparison among different species was conducted using the rVista 2.0 database (https://rvista.dcode.org/), and Diana miPath V3 software (http://sfn-515788.vm.okeanos.gmeta.gr/) was used to produce heatmaps of miR-137 expression.

To determine miR-137 expression at the transcriptional level in vivo, qRT-PCR and WISH were performed. We used the All-in-One™ miRNA qRT detection system (Genecopoeia; Rockville, USA) followed by SYBR Green PCR analysis (Bio-Rad; Hercules, USA) to confirm and measure significant differentially expressed miRNAs. Total RNA from 96 homogenized larval zebrafish for each replicate of TCS-exposure treatments (0, 62.5, 125 and 250 μg/L) from 6 to 120 hpf was isolated using TRIzol regent with U6 as the endogenous reference (Table S2). Primers were designed and synthesized by Sangon Biotech (Shanghai, China). The cDNA probes for miR-137 were synthesized by Sangon Biotech (Shanghai, China) and labeled with digoxigenin (DIG). Embryos in each treatment groups were treated with 0.5% N-
phenylthiourea (PTU; Aladdin, Shanghai, China) and collected in 1.5 mL RNase-free EP tubes, each tube containing 15 embryos. Whole-mount ISH was performed following Thisse and Thisse (2008).

2.5. Microinjection and phenotype observation

Adult zebrafish were mated and spawned for 10~15 min, and the fertilized eggs were quickly collected for microinjection. MicroRNA mimics and inhibitors for miR-137 were synthesized by GenePharma (Shanghai, China) and used as received. The concentration of mimic or inhibitor solutions was adjusted to 200 μg/mL; aliquots (2 nL) of the solution were injected into each egg (Pli-100 A, Warner Instruments, Hamden, USA), and any dead embryos were removed after 12 h.

Thirty embryos or larvae in each treatment were randomly selected and anesthetized with 0.03% tricaine (buffered MS-222; Sigma, St. Louis, USA) for 30 s, then carefully observed and photographed using an optical microscope (DM2700 M, Leica, Heidelberg, Germany).

2.6. Live larvae staining using FM 1-43 dye

Experimental zebrafish were washed three times in EM solution for 5 min before staining. Live larvae were exposed to a solution of 2 IM FM* 1-43 Dye (N-(3-triethyl-ammonium propyl)-4-(4-(dibutylamino) styryl) pyridinium dibromide (GeneBio; Shanghai, China), which was diluted in EM solution for 2 min in the dark. Larvae were then rinsed in EM solution three times for 30 s in each wash and then anesthetized in MS-222. Samples were immediately imaged using a SZX16 Olympus microscope (Tokyo, Japan).

2.7. Behavioral assessment

To examine larval responses to external stimuli and autonomous movement (without any stimuli), 120-hpf larvae in control and treatment groups were transferred to 96-square-well plates. We used one larva for each well and each plate included one control and two treatment groups; there were 24 larvae for each group and three replications for each plates giving a total of 72 larvae used as biological replicates for each treatment. Plates were placed in a DanioVision Observation Chamber (Noldus IT, Wageningen, Netherlands) for a 5-min adaption before initiating a tapping or light stimulation (Tapping intensity level = 4; Light = 100%). Video was collected and analyzed to compute the mean swim speed in the 5 min following stimulation using EthoVision XT software (Noldus IT, Wageningen, Netherlands).

2.8. Histopathological observations

To explore whether TCS exposure induced histopathological injury to the CNS, 90-dpf FO-zebrafish brain and spinal cord were observed by means of haematoxylin and eosin (H&E) staining. Staining was conducted following manufacturer’s instructions for the Hematoxylin-Eosin/HE* Staining Kit (Solarbio, China). Each experiment included 3 biological replicates and 3 technical replicates for each biological replicate. The tissue structure was observed by optical microscopy (DM2700 M, Leica Germany).

2.9. Statistical analysis

Experimental data were reported as mean ± SD (standard deviation; the biological and technical replicates for each test are listed in Table S3). When homogeneity of variance assumptions were satisfied, one-way analysis of variance (ANOVA) was used to assess TCS-exposure effects, followed by post-hoc Tukey tests for multiple mean comparisons among different experimental groups. All statistical analyses were conducted with SPSS 18.0 (SPSS, Chicago, USA) using significance levels of p < 0.05 (*), p < 0.01(**) or p < 0.001(***).
a positive TCS concentration-dependent relationship, i.e., increasing expression with an increase in TCS-exposure concentration (Fig. 2A). A comparable trend was also observed for miR-137 expression by qRT-PCR, especially in the 125 and 250μg/L treatments (Fig. S1). Overall, the W-ISH and qRT-PCR results examining changes in miR-137 expression were in general agreement (Fig. 1B).

3.3. W-ISH analysis of miR-137 target gene expression following TCS exposure

Based on bioinformatics analysis, miR-137 was mainly associated with the ERbB signaling pathway in humans and MAPK signaling pathway in mice, but there is a lack of information concerning the dre-miR-137 signaling pathway in zebrafish. To further explore the neuro-related regulatory mechanisms and functions of miR-137, expression sites and changing patterns for the two neurodevelopment-related target genes (bcl11aa and Runx1) and MAPK signaling pathway-related gene (MAPK6) were determined by W-ISH. In the control group, both bcl11aa and MAPK6 showed high expression in the CNS. bcl11aa is closely related to lymphocyte development, proliferation, differentiation and tumorigenesis (He et al., 2014; Eberle et al., 2011). bcl11aa was mainly distributed in the brain, including forebrain, midbrain and hindbrain, and gill of 72-hpf larval zebrafish and displayed a significant decrease in TCS treatments compared to the control group (p < 0.01 or p < 0.001). At high TCS concentrations (125 and 250μg/L), bcl11aa was negligibly expressed in gill and slightly expressed in the brain (forebrain, midbrain and hindbrain).

MAPK6 encodes the Ser/Thr protein kinase family member MAPK6, which is closely related to mitogen-activated protein kinases (Hoeflich et al., 2006). It was mainly expressed in the brain (forebrain and midbrain) of 72-hpf larval zebrafish with a significant decrease in TCS treatments compared to the control group (p < 0.01 or p < 0.001). At high TCS concentrations (125 and 250μg/L), MAPK6 expression was significantly decreased after TCS exposure (p < 0.001), with low levels in the forebrain and negligible expression in the midbrain (Fig. 2C and B-c). Runx1 may positively regulate the ErbB/HER2 signaling pathway, which was the only target gene-concerned pathway of hsa-miR-137. It has been reported to modulate SOS1 expression in gastric cancer cells (Mitsuda et al., 2012).
et al., 2018) and may promote proliferation and neuronal differentiation in adult mouse neurosphere cultures (Logan et al., 2015). Runx1 hybridization signals were not observed in the 72-hpf and 120-hpf zebrafish, but they displayed prominent changes in the brain (forebrain, midbrain and hindbrain) and swimming sac.

bcl11aa, MAPK6 and Runx1 were down-regulated with increasing TCS concentrations (Fig. 2C and B). As described above, qRT-PCR and W-ISH analyses demonstrated that miR-137 expression showed a positive TCS concentration-dependence, but expression of its three target genes (bcl11aa, MAPK6 and Runx1) displayed a negative TCS concentration-dependence. Thus, an inverse expression pattern was observed between miR-137 and its regulatory genes.

3.4. Effect of intervened miR-137 expression on development of larval zebrafish

Our previous study demonstrated that TCS and its derivatives could reduce blood circulation and produce a series of malformation symptoms in the head, heart and tail (Zhang et al., 2018). In this study, expressions of miR-137 target genes were affected by TCS exposure. Therefore, we characterized the regulatory role of miR-137 in the nervous system using qRT-PCR analysis. Lateral-line neuromast staining, behavioral analysis and W-ISH were also conducted in zebrafish larvae by means of injecting miR-137 agomir for over-expression and antagomir for suppression.

The sequences of agomir and antagomir for miR-137 were synthesized and injected into zebrafish cell embryos (2 nL of 200 ng/μL for each embryo). Obvious toxicological effects or phenotypic malformation occurred in the intervened miR-137 groups compared to the control group. At different developmental stages after intervention (24–72 ipf), the intervened miR-137 led to a series of abnormalities, such as ventricular abnormality, bent spine, yolk cyst, closure of swim sac and venous sinus hemorrhage (Fig. 3A). The most sensitive larval toxicological endpoint of intervened miR-137 expression was impairment of the CNS, leading to ventricular abnormalities and curvature of the notochord. The miR-137 mimic group displayed more linear ventricle, bent spine and coexistence of multiple malformations compared to the inhibitor group. As a result, we conclude that up-regulation of miR-137 led to more severe neurotoxic effects than down-regulation (Fig. 3C).

3.5. Effects of TCS and intervened miR-137 expression on lateral-line neuromast

The zebrafish lateral line system is an important sensory organ derived from the skin and contributes to feeling functions of water flow, water pressure, water temperature and hearing via converting external acoustic signals into neural electrical stimulation in the brain. Therefore, it plays an important role in training, predation and direction discrimination Damblychaudière et al. (2003). The neuromast is the basic unit of the lateral-line system, which is distributed in the head, trunk and tail (Fig. 4A) and has a fixed pattern in its development (Hamilton et al., 2014). Thus, it is an excellent model to study the development, regeneration and apoptosis of hair cells. Through FM™1–43 dye staining, the neuromasts in the control group were observed to be orderly arranged in the lateral line. Up-regulation of miR-137 led to similar pathological changes as induced by TCS exposure (Fig. 4B–D). In the negative control group, neuromasts were clearly visible and distributed throughout the trunk in an orderly pattern. In contrast, the posterior lateral line neuromasts in the miR-137 mimic group became obscured and decreased in number (p < 0.05). The trunk and terminal neuromasts changed in quantity and distribution following exposure to high TCS concentrations (250 μg/L) or agomir-
In the miR-137 inhibitor group, lateral line neuromasts became obscured, but were less severely impacted compared to the mimic group (Fig. 4C and D). These results demonstrated that zebrafish lateral-line neuromast development was very sensitive to TCS-exposure concentration and miR-137 expression.

3.6. Effects of miR-137 abnormal expression on zebrafish behavior

Stress responses of zebrafish larvae to an external acoustic or optical stimulus are often used as evaluation criteria for normal/abnormal development of hearing and vision. The average swim speed after stimulation was adopted as a response metric. After continuous TCS exposure to 120-hpf larval zebrafish, no significant difference in spontaneous swim speed was observed in the 62.5 μg/L treatment, but swim speed significantly decreased in the 125 and 250 μg/L treatments (p < 0.001), suggesting that high TCS-exposure concentrations decreased locomotor activity (Fig. 5A). The intervened miR-137 also led to a significantly decreased swim speed for the 120-hpf zebrafish larvae (p < 0.01 or p < 0.001), especially for the miR-137 over-expression group (p < 0.001; Fig. 5D). Larval light-stimulation tests showed a quick response (within 1 min) in the control group, but a delayed, startled response for 120-hpf larvae exposed to TCS. A relatively high swimming speed appeared after 4–6 min of light stimulation in the 62.5, 125 and 250 μg/L treatments compared to 3 min in the control group. These observations suggest that zebrafish sensitivity to light stimulation was inhibited by TCS exposure (Fig. 5B). In the over-expression miR-137 group, a weak startled response was observed (Fig. 5E) and locomotor activity was relatively low in the light stimulation tests. In the tapping stimulation tests, an intense and quick response was observed in the control group. After TCS exposure to 120-hpf larvae, intensity of the startled response decreased in the 62.5 μg/L treatment. In comparison, the startled response was delayed and displayed a decreased intensity in the 125 and 250 μg/L treatments (Fig. 5E), showing an insensitive response to sound stimulation (Fig. 5E). In the miR-137 mimic group, a relatively high locomotor speed appeared in 5 min, which was delayed approximately 2 min compared to the control group. These observations demonstrate that TCS exposure and miR-137 over-expression led to impaired hearing or vision sensitivity, showing an impeded response to acoustic or optical stimulation.

3.7. W-ISH analysis for target gene expression of miR-137 after microinjection

qRT-PCR results showed that agomir significantly increased miR-137 expression by ca. 3.5-fold (p < 0.05; Fig. 6A). In contrast, antagomir slightly decreased miR-137 expression compared with the control group. These findings demonstrate that miR-137 agomir causes over-expression of mature miR-137 (Fig. 6A).

In the control group, bcl11aa, MAPK6 and Runx1 showed high expression in the brain. bcl11aa was mainly expressed in the brain and gill of 72-hpf larvae; however, it showed a significant decrease in the miR-137 over-expression group. A contrasting trend was observed in the miR-137 knock-down group, especially in the hindbrain. MAPK6 was mainly expressed in the forebrain and midbrain of 72-hpf larvae; however, its expression was observed at a lower level in the miR-137 mimic group than in the control group. Through the integral optical density (IOD) analysis of miR-137 target and regulatory genes, Runx1 expression was observed to be prominently changed in the brain and swimming sac, showing a similar gene expression trends as other genes (bcl11aa, MAPK6). All three genes were down-regulated after over-expression of miR-137 (Fig. 6B and C). These results showed that TCS exposure led to up-regulation of miR-137 causing abnormal expression of its target genes and a series of neurotoxic effects.

3.8. Histopathological observations of brain and spinal cord tissues following TCS exposure

HE staining was conducted to investigate chronic CNS injury induced by long-term exposure to low-doses of TCS. HE staining of adult...
from TCS exposure that led to decreased expression of its target genes. qRT-PCR demonstrated up-regulation of miR-137 and further affected its target genes as verified by both qRT-PCR and W-ISH. Neurotoxic effects were induced by miR-137 up-regulation and the expression of target genes was confirmed by both qRT-PCR and W-ISH. By interfering with miR-137 knockdown and overexpression, suppressed neurodevelopmental related target genes and metabolic pathways.

Recent studies have posited that miR-137 was mainly associated with nervous system treatments (Li et al., 2013; Sabio and Davis, 2014). When miR-137 was over-expressed, neuronal abnormal apoptosis phenomenon in the periglomerular gray zone (PGz). After HE staining of the adult zebrafish spinal cord, compact fiber structure and clear nucleus were observed in the control group. In contrast, TCS-exposure groups displayed a decreased number of glial cells and fiber structures became loose and hollow (Fig. 7B).

4. Discussion

Previous studies posited that miR-137 was mainly associated with neurocyte proliferation and differentiation, neurodevelopment and nervous system diseases (Li et al., 2013; Yin et al., 2014; Siegert et al., 2015). Our study demonstrated that neurotoxicity induced by TCS exposure in zebrafish resulted from upregulating miR-137 expression that suppressed neurodevelopmental related target genes and metabolic pathways. By interfering with miR-137 knockdown and overexpression, the expression of target genes was confirmed by both qRT-PCR and W-ISH. Neurotoxic effects were induced by miR-137 up-regulation and affected phenotypic malformation, neurornast development and behavioral analysis. Based on bioinformatics analysis of miRNA expression in the CNS, miR-137 was identified one of the most abundant miRNAs, but few data are available on its functions in zebrafish, although a few studies ascribe its key roles in neurocellular proliferation and differentiation in humans and mice (Li et al., 2013; He et al., 2017). Further, miR-137 is one of the most robustly implicated genes in schizophrenia (Guan et al., 2014). It has also been linked to spinal cord injury and nervous system diseases, such as schizophrenia, post-stroke depression, Parkinson and Alzheimer (Gao et al., 2017; Zhao et al., 2013).

In this investigation, TCS exposure led to abnormal expression of miR-137 and further affected its target genes as verified by both qRT-PCR and W-ISH results. qRT-PCR demonstrated up-regulation of miR-137 from TCS exposure that led to decreased expression of its target genes, consistent with W-ISH results. These findings disclosed that TCS induced abnormal expression of miR-137 thereby affecting the normal expression of target genes. Histopathological observations revealed that miR-137 over-expression produced higher malformation rates, especially higher CNS malformations (e.g., abnormal ventricle and bent spine) in zebrafish embryos. These results implied that the most sensitive embryonic toxicological endpoint of miR-137 expression was impairment of the CNS. These malformations might be caused by the knock-down of miR-137 target genes.

This study confirmed for the first time that TCS-induced abnormal expression of miR-137 in zebrafish causes neurotoxic effects. W-ISH analysis indicated that the expression patterns of miR-137 and its target genes were mainly associated with the CNS. Given the paucity of information regarding neurotoxicity of miR-137 in zebrafish, this study provides important new information to assess various regulatory mechanisms. Runx1, as a target gene of miR-137, can affect cell proliferation and neuronal differentiation in adult mice neurosphere cultures (Logan et al., 2015). Bcl11aa, as a member of the bcl family, plays an important role in cell proliferation and anti-apoptosis aspects (Chen et al., 2009). Neuronal apoptosis is a vital mechanism responsible for nervous system damage. The decreased neuromasts in stained hair cells of TCS treatments may result from hair cell apoptosis. In HE staining of adult zebrafish brain, glial cell proliferation in the 125 and 250 μg/L treatments might result from decreased expression of the runx1 or bcl11aa genes, which further inhibit normal cell apoptosis. MAPKs are involved in directing cellular responses to a diverse array of stimuli, such as mitogens, osmotic stress, heat shock and pro-inflammatory cytokines. Further, MAPKs regulate cell functions including proliferation, gene expression, differentiation, mitosis, cell survival, and apoptosis (Hoeflich et al., 2006). mmu-miR-137 is mainly associated with the MAPK signaling pathway in mice, and the MAPK signaling pathway has been reported to play an important role in pathogenesis of neurodegenerative diseases, such as Alzheimer and Parkinson (Taylor et al., 2013; Sabio and Davis, 2014). When miR-137 was over-expressed,
MAPK6 expression decreased, which affected the MAPK signaling pathway, further resulting in neurotoxicity in zebrafish.

Informed by the above results, we rigorously studied the regulation and interaction of miR-137 expression with respect to TCS exposure in zebrafish. In 120∼144-hpf zebrafish, the development of hair cells in the lateral-line neuromast was most intense. During the period when the lateral-line development-related genes or interfering factors were regulated, the development and differentiation of hair cells in the lateral-line neuromast might be most strongly affected. Hair cells in lateral-line neuromast are similar to human inner ear hair cells in structure and function, and thus they can be used to evaluate the ototoxicity of drugs. Based on neuromast staining, the number of neuromasts in the pLL decreased in the 250 μg/L TCS treatments suggesting that high-level TCS exposure can lead to ototoxicity in zebrafish. Ear function in zebrafish was mainly revealed by behavioral analysis; zebrafish took longer to respond to sound stimulation after high-level TCS exposure. For 120-hpf zebrafish in the over-expressed miR-137 group, the number of neuromasts in the pLL was also decreased, demonstrating that TCS affected the development of hair cells by up-regulating miR-137 expression.

Locomotive behavior in vertebrates, such as swimming, relies on neural networks in the brain and spinal cord. Drugs can affect the vitality of motor functions by impacting the nervous system, and thus locomotor activity is an important index for detecting nerve injury. As compared to the control group, the 250 μg/L TCS-exposure group led to lower locomotor activity comparable to the miR-137 over-expression group. Light stimulation tests indicated that TCS might up-regulate miR-137 through disturbing target gene expression, further resulting in impairment of sensory and motor conduction functions. These findings provide guidance for understanding the neurotoxic effect of chronic TCS exposure by inducing abnormal expression of miR-137 and its related target genes. Overall, the results of this study highlight the application of zebrafish as a vertebrate model organism for investigating the relationship between pharmaceutical exposure (and other environmental toxicants) and nervous system diseases, such as Parkinson and schizophrenia.

5. Conclusions

This study identified an important neurotoxic target, miR-137, which was highly responsive to TCS exposure. Significant miR-137 upregulation following TCS exposure induced zebrafish neurotoxicity, abnormal development of sensory organs, and visual and auditory disorders. miR-137 was demonstrated to affect the CNS through disturbing target gene expression pattern with that of miR-137 upon TCS exposure. The most sensitive larval toxicological endpoint identified by intervened miR-137 abnormal expression was impairment of the CNS. The most notable impairments were ventricular abnormalities and curvature of the notochord. Behavioral observations demonstrated that

Fig. 6. The differential expression of miR-137 and miR-137 target and regulatory genes after microinjection as determined by qRT-PCR and W-ISH. (A) Differential expression of miR-137 after microinjection of miR-137 by qRT-PCR; (B) W-ISH of miR-137 target and regulatory genes after microinjection in 72 or 120-hpf larvae; (C) The IOD analysis of miR-137 target and regulatory genes. IOD analysis on whole zebrafish; Fig. 6B shows the expression of hybridization signals by lateral and dorsal view in control and treatment groups; Abbreviations in Fig. 6B: B, brain; E, eye; G, gills; SS, swimming sac; "*", and "***" indicate significance at p < 0.05 and p < 0.001.
both TCS exposure and miR-137 over-expression led to a similar decrease in hearing and vision sensitivity due to impairment of the CNS. This study provides important mechanistic information concerning TCS-induced toxicological impacts on zebrafish. These observations provide theoretical guidance for development of early intervention treatments for nervous system diseases.

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (31770552), the Natural Science Foundation of Zhejiang Province (LY17H26004), and the Jiangsu Provincial College Students’ Innovation and Pioneering Training Project (201810332016).

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.aquatox.2018.11.017.

References

Li, K.W., Yang, L., Pang, C.S., Chan, K.Y., Zhou, L., Mao, Y., Wang, Y., Lau, K.M., Poon, W.S., Shi, Z., 2013. MIR-137 Suppresses growth and invasion is downregulated in triculomegaly; “barrow” in Fig. 7A shows glial scar; “c arrow” in Fig. 7B shows bulb-like degeneration of nerve fiber.”.
oligodendroglial tumors and targets CSE1L Brain Pathol. 23, 426–439.