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Abstract.—Divergence time estimation is crucial to provide temporal signals for dating biologically important events
from species divergence to viral transmissions in space and time. With the advent of high‑throughput sequencing, recent
Bayesian phylogenetic studies have analyzed hundreds to thousands of sequences. Such large‑scale analyses challenge
divergence time reconstruction by requiring inference on highly correlated internal node heights that often become com‑
putationally infeasible. To overcome this limitation, we explore a ratio transformation that maps the original 𝑁𝑁 𝑁𝑁 internal
node heights into a space of one height parameter and 𝑁𝑁 𝑁 𝑁 ratio parameters. To make the analyses scalable, we develop
a collection of linear‑time algorithms to compute the gradient and Jacobian‑associated terms of the log‑likelihood with
respect to these ratios. We then apply Hamiltonian Monte Carlo sampling with the ratio transform in a Bayesian frame‑
work to learn the divergence times in 4 pathogenic viruses (West Nile virus, rabies virus, Lassa virus, and Ebola virus)
and the coralline red algae. Our method both resolves a mixing issue in the West Nile virus example and improves in‑
ference efficiency by at least 5‑fold for the Lassa and rabies virus examples as well as for the algae example. Our method
now also makes it computationally feasible to incorporate mixed‑effects molecular clock models for the Ebola virus exam‑
ple, confirms the findings from the original study, and reveals clearer multimodal distributions of the divergence times of
some clades of interest. [Bayesian inference; divergence time estimation; effective sample size; Hamiltonian Monte Carlo;
pathogens; phylogenetics; ratio transformation.]

Since Zuckerkandl and Pauling (1962) proposed the first
molecular clock model, the development of more reli‑
able divergence time estimation techniques has thrived.
Because evolutionary rate and time are confounded in
stochastic models for molecular sequence data, one may
improve divergence time inference either via advances
in treatment of rates or treatment of times. However,
the majority of the effort has centered upon improving
the model aspects that describe either how evolutionary
rates change across the tree or how divergence events
happen on the tree resulting as the positions of internal
nodes (e.g., coalescent events and/or birth–death events)
while improvement of the estimation machinery has
received less attention.

This imbalance is partly due to the constraints on the
node heights imposed by the tree structure. Assuming a
rooted tree with the root node on the top and tip nodes

at the bottom, an internal node must be higher than
its descendant nodes but lower than its parent node.
These constraints pose great challenge for inferring in‑
ternal node heights jointly, so one typically samples or
optimizes the height of one node at a time.

Despite this inference difficulty, divergence time es‑
timation is crucial to provide temporal signals for dat‑
ing biologically important events, from species diver‑
gence to viral transmissions in space and time (Erwin
et al. 2011; Meredith et al. 2011; Düx et al. 2020; Lemey
et al. 2020). Repeated breakthroughs in sequencing tech‑
nologies have led to molecular data accumulating at an
ever‑increasing pace. This often results in data sets that
contain so many sequences that the desired divergence
time analyses become computationally infeasible. When
faced with such obstacles, investigators resort to analyz‑
ing only a small proportion of the available data and/or
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sacrificing statistical rigor and biological plausibility
by adopting procedures and models that are flawed
but computationally convenient (see, e.g., Simion et al.
(2020)). There is, therefore, substantial value in reducing
the amount of computation necessary for statistically
sound divergence time inference.

In Kishino et al. (2001), the authors transform the in‑
ternal node heights of a phylogeny with contemporane‑
ous data (sampled at the same time) into a collection of
ratios that sum to 1. With a Dirichlet prior distribution,
Kishino et al. were then able to jointly sample all pro‑
portions at one time. Inspired by their pioneering work,
we explore a more general ratio transformation, similar
to that used in Fourment and Darling (2019), for the in‑
ternal node heights that one can apply to both serially
sampled or contemporaneous data. The ratio transfor‑
mation serves as a reparameterization that works with
any existing phylogenetic models without the need for
any specific prior. In fact, the proposed ratio transfor‑
mation preserves the topology‑imposed constraints by
its construction, allowing the ratios to be independent
so that they are easy to sample from or optimize on.

We here show that one can calculate the transforma‑
tion and the determinant of the Jacobian matrix of the
transformation in linear‑time with respect to the num‑
ber of tips (𝑁𝑁). With the determinant of the Jacobian ma‑
trix, one can set up the phylogenetic model with respect
to the untransformed node heights, but sample from the
transformed ratio space. To make use of an advanced
linear‑time gradient of the log‑likelihood algorithm
(Ji et al. 2020), we show that one can transform the gra‑
dient with respect to the untransformed node heights
to the gradient with respect to the transformed ratio
space with 𝒪𝒪(𝑁𝑁𝑁 calculations. The linear‑time gradi‑
ent transformation enables the application of gradient‑
based Monte Carlo samplers such as the Hamiltonian
Monte Carlo (HMC) method (Neal 2011) in the Bayesian
framework. HMC shows great potential for improv‑
ing computational efficiency in many phylogenetic ap‑
plications (Dinh et al. 2017; Ji et al. 2020; Baele et al.
2020).

We apply the ratio transformation to simultaneously
learn the branch‑specific evolutionary rates and the in‑
ternal node heights of 4 viral examples with serially
sampled data and an algae example with contempora‑
neous samples and fossil‑informed calibration priors.
Our method significantly improves inference efficiency
with a 5‑ to 8‑fold computational performance increase
for our Lassa and rabies virus examples and an 11‑fold
increase for the algae example. More interestingly, the
West Nile virus example shows that our sampler better
approximates the posterior density than do classic uni‑
variable samplers that suffer from Markov chain Monte
Carlo (MCMC) mixing issues. For an Ebola virus ex‑
ample, we show that our method makes it computa‑
tionally feasible to employ a mixed‑effects relaxed clock
model (Bletsa et al. 2019) to account for both clade‑ and
branch‑specific effects that reveal clearer multi‑modal
distribution of divergence times for clades of interest.

MATERIALS AND METHODS

New Approach
In this section, we define necessary notation and de‑

rive the ratio transformation and its related linear‑time
algorithms.

Notation.—Assume the root node is on the top of a
rooted phylogeny with 𝑁𝑁 tips and 𝑁𝑁 𝑁 1 internal nodes.
We use numbers 1, 2, … , 𝑁𝑁 to denote the tip nodes and
numbers 𝑁𝑁 𝑁 1, 𝑁𝑁 𝑁 2, … , 2𝑁𝑁 𝑁 1 for the internal nodes
where the root node is always 2𝑁𝑁 𝑁 1. We use nota‑
tion pa(𝑖𝑖𝑁 to denote the parent node of node 𝑖𝑖. We de‑
note a branch on the tree by the number of the child
node it ends at (i.e., branch 𝑖𝑖 connects node pa(𝑖𝑖𝑁 to
𝑖𝑖). We denote the height (i.e., time) of node 𝑖𝑖 with 𝑡𝑡𝑖𝑖.
When 𝑖𝑖 is a tip node (i.e., 𝑖𝑖 𝑖 𝑖1, 2, … , 𝑁𝑁𝑖), its height
is the sampling time. In divergence time estimation,
one is interested in estimating the heights of internal
nodes.

Without loss of generality, we derive the ratio trans‑
form where the tip nodes can be associated with serially
sampled data and where the transformation with con‑
temporaneous data is then a special case where all tip
node times are identical. We first define epochs such that
any internal node belongs to one and only one epoch.
We then define a ratio parameter ascribed to each of the
internal nodes except for the root.

Epoch construction and the ratio transformation.—For an
internal node, we refer to its earliest (i.e., highest)
descendant tip node as its anchor node. Therefore, the
anchor node of an internal node is its closest descen‑
dant tip node. To make the anchor nodes consistent
and unique, we assign an arbitrary ordering among
tip nodes to distinguish those with the same sampling
times. For example, we pick the tip node with the small‑
est node number as the anchor node from all closest tip
nodes sampled at the same time. We group all internal
nodes with the same anchor node into an epoch. We re‑
fer to an epoch by the number of its anchor node. An
epoch is constructed to have a chain structure from its
anchor node up to the highest node in the epoch (see
Fig. 1a). Except for the epoch to which the root node be‑
longs, we refer to the parent node of the highest node
in an epoch as its connecting node such that the connect‑
ing node of an epoch belongs to another epoch. We treat
the root node as the connecting node for epochs of its
immediate descendant nodes.

Let 𝑡𝑡𝑖𝑖 denote the height of node 𝑖𝑖 and ℰ(𝑖𝑖𝑁 be the epoch
to which node 𝑖𝑖 belongs. We refer to the epoch to which
the root node belongs as the starting epoch and assign it
as ℰ(2𝑁𝑁 𝑁 1𝑁. We abuse notation by referring to the 𝑗𝑗th
node of epoch 𝑘𝑘 as 𝑘𝑘𝑗𝑗. For epoch 𝑘𝑘 that contains 𝑚𝑚𝑘𝑘 inter‑
nal nodes with strictly positive branch lengths, we have
𝑖𝑡𝑡𝑘𝑘1

, 𝑡𝑡𝑘𝑘2
, ..., 𝑡𝑡𝑘𝑘𝑚𝑚𝑘𝑘

∶ 𝑡𝑡𝑘𝑘1
> 𝑡𝑡𝑘𝑘2

> ... > 𝑡𝑡𝑘𝑘𝑚𝑚𝑘𝑘
> 𝑡𝑡𝑘𝑘𝑖. We refer

to the connecting node of an epoch as the 0th node of
an epoch (i.e., 𝑘𝑘0 = pa(𝑘𝑘1)). We define 𝐿𝐿𝑘𝑘 = 𝑡𝑡𝑘𝑘0

𝑁 𝑡𝑡𝑘𝑘 as
the length of epoch 𝑘𝑘 (see Fig. 1b). For the 𝑖𝑖th internal
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FIGURE 1. Epoch construction on a 6‑taxa tree. a) Example tree with serially sampled data. b) One epoch example where epoch 𝑘𝑘 starts from
node 𝑘𝑘1 down to its anchor node 𝑘𝑘 and node 𝑘𝑘0 is the connecting node of epoch 𝑘𝑘 that belongs to epoch 𝑗𝑗. For the example tree in a) with anchor
tip 4, 𝑘𝑘 𝑘 4, 𝑗𝑗 𝑘 𝑗, and 𝑘𝑘0 𝑘 𝑗0. For anchor tip 2, 𝑘𝑘 𝑘 2, 𝑗𝑗 𝑘 4, and 𝑘𝑘0 𝑘 9. For anchor tip 𝑗, 𝑘𝑘 𝑘 𝑗 is the starting epoch that contains the root
node. Tip nodes 3, 5, and 6 do not anchor any epochs (i.e., their parent nodes belong to epochs anchored at other tip nodes).

node 𝑘𝑘𝑖𝑖 from epoch 𝑘𝑘 (i.e., 𝑖𝑖 𝑖 𝑖), we define its ratio
parameter 𝑟𝑟𝑘𝑘𝑖𝑖

as

𝑟𝑟𝑘𝑘𝑖𝑖
𝑘

𝑡𝑡𝑘𝑘𝑖𝑖
− 𝑡𝑡𝑘𝑘

𝑡𝑡𝑘𝑘𝑖𝑖−1
− 𝑡𝑡𝑘𝑘

, (1)

where 𝑡𝑡𝑘𝑘 is the height of the anchor node of epoch 𝑘𝑘 and
𝑘𝑘𝑖𝑖−𝑗 𝑘 pa(𝑘𝑘𝑖𝑖). Note that the anchor node of epoch 𝑘𝑘 is not
necessarily immediately descendant to node 𝑘𝑘𝑖𝑖, whereas
node 𝑘𝑘𝑖𝑖 is always immediately descendant to node 𝑘𝑘𝑖𝑖−𝑗.
In fact, the anchor node of epoch 𝑘𝑘 is the highest descen‑
dant tip node for all nodes in the epoch (by definition)
and is only immediately descendant to the last node 𝑘𝑘𝑚𝑚𝑘𝑘
of the epoch. Therefore, when 𝑖𝑖 𝑖 𝑖, node 𝑘𝑘𝑖𝑖−𝑗 and node
𝑘𝑘𝑖𝑖 are both from epoch 𝑘𝑘. And when 𝑖𝑖 𝑘 𝑖, node 𝑘𝑘0 is
the connecting node of epoch 𝑘𝑘 that belongs to another
epoch and the denominator in Equation (1) becomes 𝐿𝐿𝑘𝑘
(i.e., the length of epoch 𝑘𝑘). One can write the time of an
internal node as a function of the ratios and the epoch
lengths as

𝑡𝑡𝑘𝑘𝑖𝑖
𝑘 𝐿𝐿𝑘𝑘

𝑖𝑖
∏
𝑛𝑛𝑘𝑗

𝑟𝑟𝑘𝑘𝑛𝑛
+ 𝑡𝑡𝑘𝑘. (2)

To ease notation, let 𝑆𝑆𝑘𝑘𝑖𝑖
𝑘 ∏𝑖𝑖

𝑛𝑛𝑘𝑗 𝑟𝑟𝑘𝑘𝑛𝑛
be the product

of ratios for internal node 𝑘𝑘𝑖𝑖 of epoch 𝑘𝑘. Equation (2)
simplifies to

𝑡𝑡𝑘𝑘𝑖𝑖
𝑘 𝐿𝐿𝑘𝑘𝑆𝑆𝑘𝑘𝑖𝑖

+ 𝑡𝑡𝑘𝑘. (3)

Interestingly, there is only one degree of freedom for all
epoch lengths because

𝑡𝑡𝑘𝑘0
𝑘 𝑡𝑡𝑘𝑘 + 𝐿𝐿𝑘𝑘

𝑘 𝑡𝑡ℰ(𝑘𝑘0) + 𝐿𝐿ℰ(𝑘𝑘0)𝑆𝑆𝑘𝑘0
, (4)

such that the length of epoch 𝑘𝑘 is determined by the
length of the epoch of its connecting node (𝑘𝑘0) and the
two associated anchor node times (𝑡𝑡𝑘𝑘, 𝑡𝑡ℰ(𝑘𝑘0)). We arrive
at the following recursive relationship for epoch lengths

𝐿𝐿𝑘𝑘 𝑘 𝑡𝑡ℰ(𝑘𝑘0) − 𝑡𝑡𝑘𝑘 + 𝐿𝐿ℰ(𝑘𝑘0)𝑆𝑆𝑘𝑘0 . (5)

Therefore, there is effectively only one degree of free‑
dom for the scale of time with all ratios denoting the
relative height an internal node has using its parent
node and the anchor node as reference. There are many
choices for modeling this single dimension for time
scale (e.g., one may arbitrarily choose one of the epoch
lengths). We pick the starting epoch length as the free
parameter 𝐿𝐿ℰ(2𝑁𝑁−𝑗) 𝑘 𝑡𝑡2𝑁𝑁−𝑗 − 𝑡𝑡ℰ(2𝑁𝑁−𝑗), which we re‑
fer to as the height parameter because it represents the
height difference from the root node to its closest tip
node (all tip nodes are descendants of the root) and
is the only dimension. We refer to the space of the
height and 𝑁𝑁 − 𝑁 ratio parameters as the ratio space. We
refer to the space of all untransformed internal node
heights as the height space. We refer to the transforma‑
tion from the height space into the ratio space as the
ratio transform.

Algorithm 1 illustrates the ratio transform through
a single post‑order traversal that visits every node on
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Algorithm 1 Ratio transform through a single post‑
order traversal
for node 𝑖𝑖 in a post‑order traversal do

if 𝑖𝑖 is a tip node then
Set the anchor tip of epoch 𝑖𝑖 as node 𝑖𝑖.

else
Set the anchor tip of 𝑖𝑖 the same as the highest

anchor tip of its immediate descendant nodes.
Calculate 𝑟𝑟𝑖𝑖 = 𝑡𝑡𝑖𝑖−𝑡𝑡ℰ(𝑖𝑖𝑖

𝑡𝑡pa(𝑖𝑖𝑖−𝑡𝑡ℰ(𝑖𝑖𝑖
according to Equa‑

tion (1).
end if

end for

the tree in a descendant‑first manner. Likewise, one can
perform the inverse ratio transform to get node heights
from the ratios by reversing Equation (1) through a
pre‑order traversal.

Gradient and Jacobian.—Many modern inference ma‑
chineries benefit from gradient information to find
descending directions of the likelihood surface or to
efficiently integrate dynamics along the surface for gen‑
erating Monte Carlo proposals (e.g., Ji et al. (2020)
contains gradient applications in non‑linear optimiza‑
tion and Bayesian posterior sampling). When trans‑
forming probability densities from their original space
into another (e.g., the ratio space in this case), one
needs the determinant of the Jacobian matrix to cor‑
rectly “weight” the transformed density (see Theorem
2.1.5 from Casella and Berger (2001)). In this section, we
derive algorithms for transforming the “unweighted”
likelihood into the ratio space together with the associ‑
ated quantities from the log‑determinant of the Jacobian
matrix to correctly set the “weight.”

In Ji et al. (2020), we introduced a linear‑time algo‑
rithm for calculating the gradient of the log‑likelihood
with respect to the branch length 𝑏𝑏𝑖𝑖 = 𝔯𝔯𝑖𝑖(𝑡𝑡𝑖𝑖 − 𝑡𝑡pa(𝑖𝑖𝑖𝑖 that
is the product of the evolutionary rate 𝔯𝔯𝑖𝑖 and the time
duration 𝑡𝑡𝑖𝑖 − 𝑡𝑡pa(𝑖𝑖𝑖 of branch 𝑖𝑖. To calculate the gradient
with respect to node heights, one starts with the gradi‑
ent with respect to branch lengths and finishes via the
chain rule. More specifically, for node ℎ with its two im‑
mediate descendant nodes 𝑖𝑖 and 𝑗𝑗, the derivative of the
log‑likelihood, log ℙ(Y𝑖, with respect to 𝑡𝑡ℎ is:

𝜕𝜕
𝜕𝜕𝑡𝑡ℎ

log ℙ(Y𝑖

=
⎧{
⎨{⎩

𝜕𝜕 log ℙ(Y𝑖
𝜕𝜕𝜕𝜕ℎ

𝜕𝜕𝜕𝜕ℎ
𝜕𝜕𝑡𝑡ℎ

+ 𝜕𝜕 log ℙ(Y𝑖
𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝑡𝑡ℎ

+ 𝜕𝜕 log ℙ(Y𝑖
𝜕𝜕𝜕𝜕𝑗𝑗

𝜕𝜕𝜕𝜕𝑗𝑗
𝜕𝜕𝑡𝑡ℎ

, ℎ ≠ 2𝑁𝑁 − 𝑁
𝜕𝜕 log ℙ(Y𝑖

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝑡𝑡ℎ

+ 𝜕𝜕 log ℙ(Y𝑖
𝜕𝜕𝜕𝜕𝑗𝑗

𝜕𝜕𝜕𝜕𝑗𝑗
𝜕𝜕𝑡𝑡ℎ

, ℎ = 2𝑁𝑁 − 𝑁𝑁
(6)

It is important to recall that a ratio parameter is only
explicit to the node it assigns to and all its descen‑
dant nodes by Equation (2). Therefore, we only need

the partial derivatives 𝜕𝜕𝑡𝑡𝑘𝑘/𝜕𝜕𝑟𝑟ℎ from node ℎ and all its
descendant nodes 𝑘𝑘 to finish the chain rule

𝜕𝜕
𝜕𝜕𝑟𝑟ℎ

log ℙ(Y𝑖 = ∑
𝑘𝑘

[ 𝜕𝜕
𝜕𝜕𝑡𝑡𝑘𝑘

log ℙ(Y𝑖 𝜕𝜕𝑡𝑡𝑘𝑘
𝜕𝜕𝑟𝑟ℎ

]𝑁 (7)

To derive the partial derivative 𝜕𝜕𝑡𝑡𝑘𝑘/𝜕𝜕𝑟𝑟ℎ for any two
nodes ℎ and 𝑘𝑘 such that node 𝑘𝑘 is a descendant of node ℎ,
we separate the node pairs into two cases. The first case
considers node ℎ and node 𝑘𝑘 in the same epoch (in‑
cluding the pair where ℎ = 𝑘𝑘, e.g., Equation (3)), such
that

𝜕𝜕𝑡𝑡𝑘𝑘
𝜕𝜕𝑟𝑟ℎ

= 𝐿𝐿ℰ(𝑘𝑘𝑖
𝜕𝜕𝜕𝜕𝑘𝑘
𝜕𝜕𝑟𝑟ℎ

=
𝑡𝑡𝑘𝑘 − 𝑡𝑡ℰ(𝑘𝑘𝑖

𝑟𝑟ℎ
𝑁

(8)

For the other case where node ℎ and node 𝑘𝑘 belong to dif‑
ferent epochs, we start with revealing the relationship
between the partial derivatives of node 𝑘𝑘’s height 𝑡𝑡𝑘𝑘 and
its connecting node ℰ(𝑘𝑘𝑖0’s height 𝑡𝑡ℰ(𝑘𝑘𝑖0

with respect to
the same ratio 𝑟𝑟ℎ (e.g., plug Equation (5) in Equation (3)),
such that

𝜕𝜕𝑡𝑡𝑘𝑘
𝜕𝜕𝑟𝑟ℎ

= 𝜕𝜕𝑘𝑘
𝜕𝜕 𝜕𝑡𝑡ℰ(𝑘𝑘𝑖0

− 𝑡𝑡ℰ(𝑘𝑘𝑖 + 𝐿𝐿ℰ(ℰ(𝑘𝑘𝑖0𝑖𝜕𝜕ℰ(𝑘𝑘𝑖0
)

𝜕𝜕𝑟𝑟ℎ

= 𝜕𝜕𝑘𝑘
𝜕𝜕𝑡𝑡ℰ(𝑘𝑘𝑖0

𝜕𝜕𝑟𝑟ℎ
𝑁

(9)

Equation (9) shows that one obtains the partial deriva‑
tive of a node height 𝑡𝑡𝑘𝑘 with respect to ratio 𝑟𝑟ℎ by multi‑
plying the related ratio product (i.e., 𝜕𝜕𝑘𝑘) and the partial
derivative of the node height 𝑡𝑡ℰ(𝑘𝑘𝑖0

with respect to ratio
𝑟𝑟ℎ (i.e., 𝜕𝜕𝑡𝑡ℰ(𝑘𝑘𝑖0

/𝜕𝜕𝑟𝑟ℎ). Combining Equations (8) and (9), we
inductively derive a general expression for the deriva‑
tives where node ℎ and node 𝑘𝑘 do not belong to the same
epoch. We arrive at this derivation through the existence
of a series of connecting nodes (when traveling from
node 𝑘𝑘 to node ℎ) starting from epoch ℰ(𝑘𝑘𝑖 that the last
connecting node belongs to the same epoch as node ℎ,
that is, ℰ(ℰ(…ℰ(𝑘𝑘𝑖0𝑖0𝑖 = ℰ(ℎ𝑖. The general expression
for the derivative becomes

𝜕𝜕𝑡𝑡𝑘𝑘
𝜕𝜕𝑟𝑟ℎ

= 𝜕𝜕𝑘𝑘𝜕𝜕ℰ(𝑘𝑘𝑖0
… 𝜕𝜕ℰ(…ℰ(𝑘𝑘𝑖0𝑖0

𝜕𝜕𝑡𝑡ℰ(…ℰ(𝑘𝑘𝑖0𝑖0

𝜕𝜕𝑟𝑟ℎ
𝑁 (10)

By naively plugging Equations (8) and (10) into Equa‑
tion (7), we obtain the gradient with respect to the ratio
space. However, this operation amounts to𝒪𝒪(𝑁𝑁2) com‑
putations for transforming the gradient. To overcome
this computational burden, we develop a linear‑time
𝒪𝒪(𝑁𝑁𝑖 algorithm for transforming the gradient.

Post‑order traversal Consider 3 internal nodes ℎ, 𝑖𝑖, and 𝑗𝑗
such that node ℎ is the parent node of node 𝑖𝑖 and node 𝑗𝑗.
The linear‑time algorithm for transforming the gradient
with respect to ratio parameters builds on 2 properties
of the ratio transformation. The first property is that any
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descendant node of node ℎ except node 𝑖𝑖 or node 𝑗𝑗 is a
descendant node of either node 𝑖𝑖 or node 𝑗𝑗 (for bifurcat‑
ing trees). The other property is that node ℎ belongs to
the same epoch as either node 𝑖𝑖 or node 𝑗𝑗. As is common
in dynamic programming algorithms, we want to de‑
rive the relationship of 𝜕𝜕𝜕𝜕𝑘𝑘/𝜕𝜕𝜕𝜕ℎ with 𝜕𝜕𝜕𝜕𝑘𝑘/𝜕𝜕𝜕𝜕𝑖𝑖 and 𝜕𝜕𝜕𝜕𝑘𝑘/𝜕𝜕𝜕𝜕𝑗𝑗,
where node 𝑘𝑘 is descendant of node ℎ to reuse quanti‑
ties cached from evaluating Equation (7) on descendant
nodes. More specifically, we want to reuse the sum‑
mations already determined for (𝜕𝜕/𝜕𝜕𝜕𝜕𝑖𝑖)log ℙ(Y) and
(𝜕𝜕/𝜕𝜕𝜕𝜕𝑗𝑗)log ℙ(Y) when calculating (𝜕𝜕/𝜕𝜕𝜕𝜕ℎ)log ℙ(Y) as in
Equation (9).

Without loss of generality, we assume node ℎ belongs
to the same epoch as node 𝑖𝑖. The following relationships
between derivatives with respect to the three ratio pa‑
rameters 𝜕𝜕ℎ, 𝜕𝜕𝑖𝑖, and 𝜕𝜕𝑗𝑗 enable the linear‑time algorithm
through a single post‑order traversal to update the gra‑
dient from the height space into the ratio space (except
for the height parameter). From Equation (8) and Equa‑
tion (10), when node 𝑘𝑘 is a descendant of node 𝑖𝑖 (includ‑
ing 𝑖𝑖 𝑖 𝑘𝑘) such that node ℎ and node 𝑘𝑘 are in the same
epoch,

𝜕𝜕𝜕𝜕𝑘𝑘
𝜕𝜕𝜕𝜕ℎ

𝑖 𝜕𝜕𝜕𝜕𝑘𝑘
𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝑖𝑖
𝜕𝜕ℎ

. (11)

When node 𝑘𝑘 is descendant of node 𝑗𝑗 (including 𝑗𝑗 𝑖 𝑘𝑘)
such that node ℎ is the connecting node to the epoch ℰ(𝑗𝑗)
where node 𝑗𝑗 is the first node,

𝜕𝜕𝜕𝜕𝑘𝑘
𝜕𝜕𝜕𝜕ℎ

𝑖 𝜕𝜕𝜕𝜕𝑘𝑘
𝜕𝜕𝜕𝜕𝑗𝑗

𝜕𝜕𝑗𝑗
𝐿𝐿ℰ(𝑗𝑗)

𝜕𝜕𝜕𝜕ℎ
𝜕𝜕𝜕𝜕ℎ

. (12)

Note that we model the ratio parameters as independent
of each other (i.e., 𝜕𝜕𝜕𝜕ℎ/𝜕𝜕𝜕𝜕𝑖𝑖 𝑖 𝜕𝜕𝜕𝜕ℎ/𝜕𝜕𝜕𝜕𝑗𝑗 𝑖 0). Equations (11)
and (12) come from the special structure of the trans‑
form that the height of an internal node is a product of
a series of ratio parameters with one single height pa‑
rameter. Algorithm 2 illustrates updating the gradient
with respect to all ratio parameters (except for the height
parameter) where one reuses the derivatives of the log‑
likelihood with respect to two immediate descendant
nodes (i.e., nodes 𝑖𝑖 and 𝑗𝑗) to calculate the derivative of
the log‑likelihood with respect to the parent node (i.e.,
node ℎ).

Pre‑order traversal We now update the gradient of the
log‑likelihood with respect to the height parameter
which is the only dimension left in the ratio transform.
We use a pre‑order traversal to update the gradient in
this dimension because the transformation of all internal
node heights depends on it. The update is

𝜕𝜕
𝜕𝜕𝐿𝐿ℰ(2𝑁𝑁𝑁𝑁)

log ℙ(Y) 𝑖 ∑
𝑘𝑘

[ 𝜕𝜕
𝜕𝜕𝜕𝜕𝑘𝑘

log ℙ(Y) 𝜕𝜕𝜕𝜕𝑘𝑘
𝜕𝜕𝐿𝐿ℰ(2𝑁𝑁𝑁𝑁)

].

(13)
Based on Equation (4), we calculate all the partial deriva‑
tives 𝜕𝜕𝜕𝜕𝑘𝑘/𝜕𝜕𝐿𝐿ℰ(2𝑁𝑁𝑁𝑁) according to Algorithm 3 through a
single pre‑order traversal.

Algorithm 2 Transforming the gradient of the log‑
likelihood with respect to ratio parameters by post‑
order traversal
for node ℎ in a post‑order traversal do

if ℎ is a tip node then
Set the gradient of ℎ as 0.

else
Let node 𝑖𝑖 and node 𝑗𝑗 be the two immediate de‑

scendant nodes of node ℎ such that node 𝑖𝑖 and node ℎ
belong to the same epoch.

Set the gradient of ℎ as
𝜕𝜕

𝜕𝜕𝜕𝜕ℎ
log ℙ(Y) 𝑖 𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖
log ℙ(Y) 𝜕𝜕𝑖𝑖

𝜕𝜕ℎ
+ 𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗
log ℙ(Y) 𝜕𝜕𝑗𝑗

𝐿𝐿ℰ(𝑗𝑗)

𝜕𝜕𝜕𝜕ℎ
𝜕𝜕𝜕𝜕ℎ

+
𝜕𝜕

𝜕𝜕𝜕𝜕ℎ
log ℙ(Y) 𝜕𝜕𝜕𝜕ℎ

𝜕𝜕𝜕𝜕ℎ
.

end if
end for

Algorithm 3 Transforming gradient of the log‑
likelihood with respect to the height parameter by
pre‑order traversal
for node 𝑘𝑘 in a pre‑order traversal do

if 𝑘𝑘 is the root node then
Set the derivative of node height 𝑘𝑘 with respect

to height parameter as 1 (i.e., 𝜕𝜕𝜕𝜕2𝑁𝑁𝑁𝑁
𝜕𝜕𝐿𝐿ℰ(2𝑁𝑁𝑁𝑁)

𝑖 1).
else

Set the derivative of 𝑘𝑘 as the product of 𝜕𝜕𝑘𝑘 and
the derivative of its parent node with respect to height
parameter (i.e., 𝜕𝜕𝜕𝜕𝑘𝑘

𝜕𝜕𝐿𝐿ℰ(2𝑁𝑁𝑁𝑁)
𝑖 𝜕𝜕𝑘𝑘

𝜕𝜕𝜕𝜕pa(𝑘𝑘)
𝜕𝜕𝐿𝐿ℰ(2𝑁𝑁𝑁𝑁)

).
end if

end for

Determinant of the Jacobian matrix We now derive the
Jacobian matrix associated with the ratio transform
whose determinant sets the weight for the transformed
density. One derives the full Jacobian matrix for the
ratio transform by applying Equation (8) and Equa‑
tion (10). Note the special structure that has 𝜕𝜕𝜕𝜕𝑘𝑘/𝜕𝜕𝜕𝜕𝑖𝑖 ≠ 0
if and only if 𝑖𝑖 𝑖 𝑘𝑘 or node 𝑘𝑘 is descendant of
node 𝑖𝑖, and also note the independence between the
height parameter and the ratio parameters. By or‑
dering the entries in a descendant node first fashion
that coincides with how nodes are visited in a post‑
order traversal, the Jacobian matrix becomes triangular
(including the height parameter). Because the determi‑
nant of a triangular matrix only involves the diago‑
nal entries, the determinant of the Jacobian matrix J
becomes

|J| 𝑖 ∏
𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖

𝑖 ∏
𝑖𝑖

[𝜕𝜕pa(𝑖𝑖) 𝑁 𝜕𝜕ℰ(𝑖𝑖)] .
(14)
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Algorithm 4 Calculating gradient of the log‑
determinant of the Jacobian matrix with respect to
ratio parameters by post‑order traversal
for node 𝑘𝑘 in a post‑order traversal do

if 𝑘𝑘 is a tip node then
𝜕𝜕

𝜕𝜕𝜕𝜕𝑘𝑘
log |J| = 0

else
Let node 𝑖𝑖 and node 𝑗𝑗 be the two immediate de‑

scendant nodes of node 𝑘𝑘 such that node 𝑖𝑖 and node 𝑘𝑘
belong to the same epoch, and compute

𝜕𝜕
𝜕𝜕𝜕𝜕𝑘𝑘

log |J| = 𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖

log |J| 𝜕𝜕𝑖𝑖
𝜕𝜕𝑘𝑘

+ 𝜕𝜕
𝜕𝜕𝜕𝜕𝑗𝑗

log |J| 𝜕𝜕𝑗𝑗
𝐿𝐿ℰ(𝑗𝑗𝑗

𝜕𝜕𝜕𝜕𝑘𝑘
𝜕𝜕𝜕𝜕𝑘𝑘

+ 1
𝜕𝜕𝑘𝑘−𝜕𝜕ℰ(𝑘𝑘𝑗

𝜕𝜕𝜕𝜕𝑘𝑘
𝜕𝜕𝜕𝜕𝑘𝑘

.
end if

end for
for every internal node 𝑘𝑘 do

Update 𝜕𝜕
𝜕𝜕𝜕𝜕𝑘𝑘

log |J| = 𝜕𝜕
𝜕𝜕𝜕𝜕𝑘𝑘

log |J| − 1
𝜕𝜕𝑘𝑘

.
end for

Gradient of log‑determinant of the Jacobian matrix We
complete this section with a final linear‑time algorithm
for calculating the gradient of the log‑determinant of
the Jacobian matrix with respect to the ratio space
for applying HMC on this transformed space as de‑
scribed in the next section. This additional gradient
component facilitates using HMC to sample all di‑
mensions jointly in the ratio space. Similar to the case
of updating the gradient of the log‑likelihood from
the original space into the ratio space, naively apply‑
ing Equation (8) and Equation (10) results in an un‑
desired quadratic computational load. One can bene‑
fit from the same properties that lead to Algorithm 2
with a modified two‑pass linear‑time Algorithm 4 that
calculates all the derivatives of the log‑determinant
of the Jacobian matrix with respect to the ratio
parameters.

Hamiltonian Monte Carlo.—HMC is a state‑of‑the‑art
MCMC method that generates efficient proposals
through Hamiltonian dynamics (Neal 2011) for the
Metropolis–Hastings algorithm (Metropolis et al. 1953;
Hastings 1970). For an arbitrary and unbounded param‑
eter of interest 𝜽𝜽 with the posterior density 𝜋𝜋(𝜽𝜽𝑗, HMC
introduces an auxiliary parameter p and samples from
the product density 𝜋𝜋(𝜽𝜽𝜋p𝑗 = 𝜋𝜋(𝜽𝜽𝑗𝜋𝜋(p𝑗 through:

dp
d𝑡𝑡 = −∇𝑈𝑈(𝜽𝜽𝑗 = ∇ log 𝜋𝜋(𝜽𝜽𝑗 and

d𝜽𝜽
d𝑡𝑡 = ∇𝐾𝐾(p𝑗 = M−1p𝜋

(15)

where 𝑈𝑈(𝜽𝜽𝑗 is the “potential energy” often set to the
negative log‑posterior density and 𝐾𝐾(p𝑗 = p′M−1p/2
is the “kinetic energy” as the auxiliary parameter p
typically follows a multivariate normal distribution
p ∼ 𝒩𝒩(0𝜋M𝑗 with a “mass matrix” M as the covariance
matrix. HMC has shown great potential in diverse

phylogenetic applications (Dinh et al. 2017; Baele et al.
2020; Ji et al. 2020).

Naive application of HMC on the space of internal
node heights is highly inefficient because of the irreg‑
ular constraints on these parameters. Instead, the ratio
space is trivial to extend such that it is unbounded by
applying a logit‑transform to each ratio independently
and a log‑transfrom to the single height parameter. We
apply HMC on the (extended) ratio space for efficient
sampling of all internal node heights while fixing the
tree topology and other model parameters. Finally, we
also apply HMC for jointly sampling the evolutionary
rates and times (i.e., divergence time estimation) and
explore the additional efficiency gain this affords.

Preconditioning with adaptive variance The geometric
structure of the posterior distribution significantly af‑
fects the computational efficiency of HMC. For example,
when the scales of the posterior distribution vary among
individual parameters, failing to account for such struc‑
ture may reduce the efficiency of HMC (Neal 2011; Stan
Development Team 2017; Ji et al. 2020). We can adapt
HMC for such structure by modifying the dynamics
in Equation (15) via an appropriately chosen mass ma‑
trix M. In Ji et al. (2020), we employ a mass matrix in‑
formed by the diagonal entries of the Hessian matrix
of the log‑posterior to account for the variable scales
among dimensions. Unfortunately, one needs the full
Hessian matrix in the original height space to trans‑
form into the Hessian matrix with respect to the ratio
space. This strategy is too computationally expensive to
adopt.

To incorporate information from the covariance ma‑
trix without excessive computational burden, we seek
an alternative adaptive MCMC procedure (Haario et al.
1999; Andrieu and Thoms 2008; Roberts and Rosenthal
2009). Adaptive MCMC has previously found its way
into Bayesian phylogenetic inference (Baele et al. 2017)
and we use this technique here to tune M to the co‑
variance matrix estimated from previous samples in the
Markov chain. We further restrict M to remain diago‑
nal and hence to scale the ratio dimensions according to
their marginal covariance. This restriction is commonly
imposed to regularize the estimate, and a diagonal ma‑
trix alone can greatly enhance sampling efficiency of
HMC in many situations (Stan Development Team 2017;
Ji et al. 2020). We start the HMC sampler with an identity
matrix as M to collect an initial set of samples (e.g., 200
in our analyses), after which we employ the sample co‑
variance to tuneM adaptively. Also, we only update the
diagonal mass matrix every 10 HMC iterations so that
the cost of computing the adaptiveMdiagonals remains
negligible.

Data
We examine the molecular evolution of West Nile

virus (WNV) in North America (1999–2007), rabies virus
(RABV) in the United States (1982–2004), the S segment
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of Lassa virus (LASV) in West Africa (2008–2013),
Ebolavirus (EBOV) in the Democratic Republic of
Congo, Africa (2018–2020), and the coralline red algae
subclass Corallinophycidae with contemporaneous data
and fossil record informed calibration priors on 6 inter‑
nal nodes (Biek et al. 2007; Pybus et al. 2012; Andersen
et al. 2015; Mbala‑Kingebeni et al. 2021; Pena et al. 2020).
In all data sets, phylogenetic analyses have revealed a
high variation of the evolutionary rates across branches
in the underlying phylogeny.

West Nile virus West Nile virus is a mosquito‑borne
RNA virus that involves multiple species of mosquitoes
and birds where birds are the primary host. WNV
first emerged in the Americas in New York in 1999,
and quickly spread across the continent, causing an
epidemic of human disease accompanied with mas‑
sive bird deaths. In total, human infections have re‑
sulted in over 48,000 reported cases, 24,000 reported
neuroinvasive cases, and over 2300 deaths (Hadfield
et al. 2019). The molecular sequence data consist of 104
full genomes, with a total alignment length of 11,029
nucleotides, and were collected from infected human
plasma samples from 2003 to 2007 as well as near‑
complete genomes obtained from GenBank (Pybus et al.
2012).

Rabies virus Rabies is an RNA virus that can cause
zoonotic disease and is responsible for over 50, 000 hu‑
man deaths every year. Besides bats, several terrestrial
carnivore species such as raccoons are important rabies
reservoirs. Before the detection of a raccoon‑specific ra‑
bies virus variant in 1970s, there was only limited focus
on raccoons as a primary host for rabies in the southeast‑
ern United States, specifically Florida. Over the follow‑
ing decades, an emergence of the virus spread along the
mid‑Atlantic coast and northeastern United States. We
analyze the molecular sequences originally described in
Biek et al. (2007) that previously served as an example
dataset in work on the flexible non‑parametric skygrid
coalescent model (Gill et al. 2016). The data consist of 47
sequences sampled from rabid raccoons between 1982
and 2004 that contain the complete rabies nucleoprotein
gene (1365 bp) with part of a noncoding region (87 bp)
immediately following its 3′ end, and a large portion of
the glycoprotein gene (1359 bp).

Lassa virus Lassa virus is the causative agent of Lassa
fever, a hemorrhagic fever endemic to parts of West
Africa that is responsible for thousands of deaths
and tens‑of‑thousands of hospitalizations each year
(Andersen et al. 2015). LASV infections can lead to Lassa
fever, a hemorrhagic fever similar to that from EBOV
and endemic to parts of West Africa. Despite the fact that
Lassa fever can lead to over 50% fatality rates among
hospitalized patients, an effective vaccine for LASV has
yet to be developed and approved. Unlike EBOV (see
next paragraph), which passes directly between hu‑
mans, LASV circulates in a rodent (Mastomys natalensis)

reservoir and mainly infects humans through contact
with rodent excreta. The LASV genome is comprised of
2 negative‑sense single‑stranded RNA segments: the L
segment is 7.3 kilobase pairs (kb) long, and the S seg‑
ment is 3.4 kb long. In this paper, we use the S segment
of the LASV sequence data set of Andersen et al. (2015)
that consists of 211 samples obtained at clinics in both
Sierra Leone and Nigeria, rodents in the field, laboratory
isolates and previously sequenced genomes.

Ebola virus The Ebola virus disease (EVD) outbreak
in North Kivu province in the Democratic Republic of
Congo (DRC) during 2018–2020 was the world’s sec‑
ond largest Ebola outbreak on record. It led to 3481
total cases with 2299 deaths (World Health Organiza‑
tion 2021). One patient who received the recombinant
vesicular stomatitis virus‑based vaccine was diagnosed
with EVD and recovered within 14 days after treatment.
However, 6 months later, the same patient presented
again with severe EVD‑like illness and EBOV viremia
and died (Mbala‑Kingebeni et al. 2021). The molecular
sequence data consist of 297 sequenced isolates that con‑
tain 72 epidemiologically linked cases to the patient’s
second infection.

Algae The coralline red algae (Corallinophycidae) are
characterized by the presence of calcite crystals in their
cell walls. Corallines, as a group, possess the richest
fossil record among marine algae. In their pioneer‑
ing study, Pena et al. (2020) use a multi‑locus dataset
with taxon sampling and comprehensive collection of
carolline fossil records to reconstruct a time‑calibrated
phylogeny of the subclass Corallinophycidae. The algae
dataset contains 123 Corallinophycidae taxa and 9 out‑
group species with 7 genes (LSU, SSU, 23S, cos1, EF2,
psbA, rbcL) concatenated into an alignment of more than
8000 bp. We employ the same fossil‑informed normal
priors on 6 internal nodes as in the original study (Pena
et al. 2020). More specifically, we place the same nor‑
mal priors on the time to most recent common ancestor
(tMRCA) with mean 18.0 Mya (million years ago) and
standard deviation 8.40 Mya for clade A: Harveylithon,
mean 23.0 Mya and standard deviation 4.65 Mya for
clade B: Porolithon, mean 26.8 Mya and standard devia‑
tion 5.10 Mya for clade C: Lithophyllum pustulatum, mean
66.0 Mya and standard deviation 2.23 Mya for clade D:
Hydrolithoideae, mean 116.66 Mya and standard de‑
viation 0.66 Mya for clade E: Hapalidiales, and mean
137.63 Mya and standard deviation 1.23 Mya for clade
F: Sporolithales as shown in Figure 7.

Mixed‑effects Relaxed Clock Model
We employ mixed‑effects relaxed clock models (as

detailed in Bletsa et al. (2019)) to learn the evolution‑
ary rates of the 4 viral datasets and the algae dataset.
More specifically, we use the same random‑effects re‑
laxed clock model detailed in Ji et al. (2020) for the
analysis of WNV, RABV, and LASV datasets. For the
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EBOV example, we use a mixed‑effects relaxed clock
model with clade‑specific fixed‑effects to model clade‑
specific rate variations among the 3 branches lead‑
ing to 3 clades of interest (relapse clade, MAN14985
clade, and KAT21596 clade). For the algae example, we
use a mixed‑effects relaxed clock model with clade‑
specific fixed‑effects to model clade‑specific rate varia‑
tions among the 8 clades of interest as in the original
study. The use of the clade‑specific fixed‑effects mimics
a local clock model that allows us to model and compare
possibly within‑clade rate variations but has previously
not been computationally feasible.

Priors
We use the same data partitions, substitution mod‑

els, and prior distributions as in each example’s original
study (Biek et al. 2007; Pybus et al. 2012; Andersen et al.
2015; Pena et al. 2020; Mbala‑Kingebeni et al. 2021).

Implementations
We have implemented the algorithms in this

manuscript within the development branch of the soft‑
ware package BEAST (SHA 17da204e2d9bdadb6c8284f
d092413054f161bdc) (Suchard et al. 2018) with likeli‑
hood computations off‑loaded to the high‑performance
BEAGLE library (SHA 3bdb30bd645e15983f8c8cf95256
4813e306ad83) (Ayres et al. 2019). We provide in‑
structions and the BEAST XML files for reproducing
these analyses on Github at https://github.com/suchard‑
group/hmc_divergence_time_manuscript_supplement.

RESULTS
We summarize the computational efficiency improve‑

ment with HMC on the ratio space followed by our bi‑
ological findings on divergence time estimations of the
5 examples.

Computational Performance
We infer the posterior distribution of all internal node

heights using 2 different MCMC proposal kernels im‑
plemented in BEAST (Suchard et al. 2018) with likeli‑
hood computations off‑loaded to the high‑performance
BEAGLE library (Ayres et al. 2019). The first kernel pro‑
poses new values for one internal node height at a time
from their support. This represents the current best‑
practice approach used in BEAST and we will refer to
this kernel as “univariable.” The other proposal kernel
utilizes HMC with a diagonal mass matrix informed by
adaptive variance on the ratio space that we will refer
to as “HMC.” As is conventional for Bayesian phyloge‑
netics, we employ a Metropolis‑within‑Gibbs (Tierney
1994; Andrieu et al. 2003) approach that cycles between
sampling the tree, the evolutionary rates and the other
phylogenetic modeling parameters, each from their

respective full conditional distributions (see, e.g.,
Equation (6) in Hassler et al. (2023) for more details).

As expected, sampling the topology and the high‑
dimensional rate and time (i.e., node height) parameters
is computationally rate‑limiting. Therefore, we explore
2 scenarios: 1) we sample divergence times only, while
keeping the evolutionary rate and all other parameters
fixed in scenario “time”; and 2) we sample evolutionary
rate and time jointly, while keeping all other parame‑
ters fixed in scenario “rate & time.” We compare the
efficiency of these proposal kernels through their effec‑
tive sample size (ESS) per unit time for divergence time
estimations. For each analysis, we run the MCMC it‑
erations with each of the kernels for roughly the same
run time (more details regarding chain lengths can be
found in the supplementary BEAST XML files). This
strategy aims to accommodate the difference in com‑
putational cost per MCMC iteration among kernels for
fair comparisons. To maintain identifiability of inter‑
nal nodes, we constrain the comparisons of the WNV,
RABV, LASV, and algae examples to a fixed topology
that was randomly selected from its posterior distribu‑
tion. Specifically, we set all parameters, except for those
of interest in each scenario, fixed to their realized values
from a randomly selected MCMC iteration. The topolo‑
gies and parameter values of the WNV and LASV ex‑
amples are the same as in Ji et al. (2020). This topology
constraint brings no additional work or difficulty for
applying our method to integrate over topology space
since one typically cycles between sampling the topol‑
ogy, the divergence times and other parameters, each
from their respective full conditional distributions as in
a Metropolis‑within‑Gibbs inference strategy (Tierney
1994; Andrieu et al. 2003). To demonstrate, we relax the
topology constraint (i.e., we don’t fix the tree topology)
for the EBOV example. We also relax the topology con‑
straint when inferring the maximum clade credible evo‑
lutionary trees for all 5 examples and report posterior
estimates for the evolutionary rate parameters in this
scenario in the following section. We present the com‑
putational efficiency improvement with HMC in the ra‑
tio space for sampling node heights. The application of
HMC on the ratio dimensions greatly improves the mix‑
ing of the MCMC chain, whereas the univariable sam‑
plers are problematic for learning the height of some
internal nodes that are close to the root in the WNV
example.

Figure 2 illustrates the posterior sampling efficiency
with HMC and univariable samplers in terms of ESS per
unit time. Table 1 shows the summary statistics of the
efficiency gain of the HMC sampler compared with the
univariable samplers for the 3 examples. We exclude the
WNV example from the efficiency comparison because
the poor mixing with univariable samplers leads to an
inflated speed‑up for HMC. The HMC sampler yields
at least 5‑fold efficiency improvement in terms of the
minimum ESS per unit time in the RABV, LASV, and al‑
gae examples that have no difficulties of mixing for the
univariable sampler.
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FIGURE 2. Posterior sampling efficiency on all node height parameters for the WNV, RABV, LASV, and algae examples. We bin parameters
by their ESS/s values. The 2 proposal kernels employed in the MCMC are color‑coded: a univariable proposal kernel and an HMC proposal
kernel with an adaptive mass matrix.

Divergence Time Estimations
We summarize divergence time estimation results for

each of the five examples.

West Nile virus Our analysis estimates the tree‑wise
(fixed‑effect) rate with posterior mean 5.67
(95% Bayesian credible interval: 5.05, 6.30) × 10−4

substitutions per site per year and an estimated
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TABLE 1 Computational performance of proposal kernels for the RABV, LASV, and algae examples. Computational efficiency measured in
terms of effective sample size per second (ESS/s) and effective sample size per proposal (ESS/N). We compare the performance of our HMC
proposal kernels operating on the transformed ratio space with a univariable (univariable) proposal kernel on the original node height space.
We report speedup with respect to the minimum and median ESS/s and ESS/N (listed in the columns of “univariable” and “HMC”) across
parameters for each example and method. We do not report the unreliably high speed‑ups for the WNV dataset because of mixing issues under
the “univariable” kernel.

Univariable HMC Speedup

Source Minimum Median Minimum Median Minimum Median

ES
S/

s

RABV Time 3.187 12.154 17.358 23.579 5.4× 1.9×
Rate & Time 0.927 4.638 6.324 8.355 6.8× 1.8×

LASV Time 0.008 0.090 0.042 0.104 5.0× 1.2×
Rate & Time 0.002 0.016 0.018 0.040 8.0× 2.4×

Algae Time 2.47E−3 1.59E−2 2.72E−2 1.34E−1 11.0× 8.4×
Rate & Time 9.01E−5 7.37E−4 1.26E−3 4.26E−3 14.0× 5.8×

ES
S/

N

RABV Time 2.12E−4 8.10E−4 3.39E−2 4.60E−2 159.3× 56.7×
Rate & Time 2.26E−4 1.13E−3 2.45E−2 3.24E−2 108.3× 28.6×

LASV Time 8.68E−6 9.45E−5 1.17E−3 2.92E−3 134.8× 30.9×
Rate & Time 2.70E−6 1.98E−5 1.21E−3 2.63E−3 447.3× 132.9×

Algae Time 4.31E−5 2.77E−4 1.60E−3 7.86E−3 37.2× 28.4×
Rate & Time 2.51E−6 2.05E−5 2.87E−4 9.67E−4 114.2× 47.2×

variability characterized by the scale parameter of the
lognormal distributed branch‑specific random‑effects
with posterior mean 0.34 (0.21, 0.47). These values are
similar to previous estimates (Pybus et al. 2012; Ji
et al. 2020). Figure 3 shows the evolutionary tree ex‑
plored in the WNV example as well as trace plots of
several nodes of interest. Our analysis estimates the
date of the epidemic origin to have posterior mean
1998.6(1997.8, 1999.1) similar to previous estimates.
Matching previous findings that the American epidemic
was likely to originate from the introduction of a single
highly pathogenic lineage, our analysis infers the NY99
lineage to be basal to all other genomes.

Of important note, the MCMC chain suffers poor
mixing for some height dimensions close to the root
(including the root) under the “univariable” kernel as
illustrated by the trace plot in Figure 3b I and II. The
mixing issue propagates from the root node to a few
of its descendant nodes (e.g., node 198) that plagues
over these dimensions because univariable samplers
propose a new value for an internal node’s height from
the interval set by the height of its parent and closest
descendant node. Such a tree‑like boundary structure
requires multiple height changes on an internal node
and the nodes setting its boundaries in the same di‑
rection before a “big” move is possible that often fails
by one of these dimensions moving at the opposite
direction.

Rabies virus Our analysis results in a posterior mean
rate of 2.12 (1.73, 2.51) × 10−4 substitutions per site per
year. The estimated scale parameter has posterior mean
0.10 (0.00, 0.24). Figure 4 shows the maximum clade
credible evolutionary tree of the RABV example. Our
analysis estimates the date of the root of the tree to be
1971.9 (1951.3, 1979.7). This is slightly older than the es‑
timate in Biek et al. (2007) and our 95% Bayesian credible
interval is wider.

Lassa virus Our analysis yields a posterior mean rate
of 0.97(0.81, 1.14) × 10−3 substitutions per site per
year. The estimated scale parameter has posterior
mean 0.089(0.035, 0.140). Figure 5 shows the maximum
clade credible evolutionary tree of the LASV exam‑
ple. The date of the root of the tree is inferred to be
1434.0(1059.0, 1601.7). This agrees with the finding by
Andersen et al. (2015) that LASV is a long‑standing
human pathogen whose most recent common ancestor
existed around 600 years ago.

Ebolavirus Our analysis yields a posterior mean rate
7.70 (6.63, 8.82) × 10−4 substitutions per site per year.
The scale parameter has posterior mean 0.98 (0.64, 1.33).
Figure 6 shows the maximum clade credible evolution‑
ary tree of the EBOV example. The inferred MCC tree
shows a significant slow‑down in evolutionary rate on
the branch leading to the relapse clade with a poste‑
rior mean of 1.95 (0.12, 4.61) ×10−4 substitutions per site
per year that roughly spans over 5.3 months, similar to
the discovery from Mbala‑Kingebeni et al. (2021). The
posterior mean branch‑specific rate of the two branches
leading to the MAN4194 and KAT21596 clades are 5.98
(1.92, 10.84) ×10−4 and 6.30 (0.34, 16.06) ×10−4 substi‑
tutions per site per year respectively (please see section
for more comparisons between the mixed‑effects model
and the model employed in the original study). How‑
ever, our results have more variability in evolutionary
rates compared to the original study. The MAN4194 se‑
quence that was collected from the individual with the
relapsed Ebola infection is basal to all other DRC se‑
quences within the relapse clade. We estimate the date
of the most recent common ancestor (MRCA) of the re‑
lapse clade (Fig. 6b II) to be 2019.85 (2019.77, 2019.91).
This is similar to the estimate of Mbala‑Kingebeni et al.
(2021), but our analysis revealed a clearer bimodal pos‑
terior distribution that was previously missed. To con‑
firm that the bimodal posterior distribution was not
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FIGURE 3. Trace plot of 4 height parameters indicated on the WNV phylogeny. a) The WNV phylogeny explored in the example. Branches
are color‑coded by the posterior means of the branch‑specific evolutionary rates. Four representative nodes indicated by colored dots illustrate
mixing issues at nodes close to the root when learning the posterior distribution of their heights using the univariable samplers. b) The trace
plots of the height parameter of the 4 nodes indicated in a) using the same color scheme. The top 2 trace plots are obtained with the univariable
samplers for an MCMC chain of length 1.5 ×108 iterations. The bottom 2 trace plots are obtained with the HMC sampler for an MCMC chain
of length 600,000. The trace of the root height is shown in both plots for the same sampler to compare with other nodes.
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FIGURE 4. The RABV phylogeny explored in the example. Branches are color‑coded by the posterior means of the branch‑specific
evolutionary rates.

an artifact, we ran three independent MCMC chains
with the same model and confirmed that they con‑
verged to the same posterior distribution. Our estimated
date of the MRCA of the MAN14985 clade (Fig. 6b III)
is 2019.49 (2019.42, 2019.54) and the estimated date of
the MRCA of the KAT21596 set (Fig. 6b IV) is 2018.96
(2018.83, 2019.07).

Algae Our analysis yields a posterior mean rate 5.35
(4.97, 5.73) × 10−3 substitutions per site per million
years. The scale parameter has posterior mean 0.60
(0.52, 0.69). Figure 7 shows the maximum clade credi‑
ble evolutionary tree of the algae example. The date of
the root of the tree is inferred to be 194.0 (163.8, 229.3)
Mya. This is slightly older than the estimate in Pena et al.
(2020) and our 95% Bayesian credible interval is wider.

DISCUSSION
The confounding of evolutionary rate and time has

imparted divergence time estimation with high uncer‑
tainty and low reliability of the inference. Nonetheless,
much effort and improvement have shaped the molecu‑
lar clock models to better characterize evolutionary rate

heterogeneity along phylogenies (Thorne et al. 1998;
Kishino et al. 2001; Drummond et al. 2006; Rannala and
Yang 2007; Lemey et al. 2010; Lartillot et al. 2016; Bletsa
et al. 2019). We here introduce a linear‑time transforma‑
tion of the internal node height parameters into a ra‑
tio space with the aim to improve estimation efficiency
under complex molecular clock models. Naive trans‑
formation of the gradient of the log‑likelihood from
the original height space into the ratio space results in
𝒪𝒪(𝑁𝑁2) computations. To make the transformation scal‑
able, we present linear‑time algorithms that improve
the performance of this transformation. With a slight
modification, Algorithm 4 builds upon Algorithm 2
to calculate all derivatives of the log‑determinant of
the Jacobian matrix also in linear‑time. This collection
of linear‑time algorithms enables researchers to em‑
ploy dynamic‑based samplers (e.g., HMC) to sample
the internal node heights and substantially improve
inference.

When applying HMC on all dimensions in the ra‑
tio space, the sampler proposes a new set of values for
the height parameter and all ratios that corresponds
to a set of new values for all internal node heights in
the original height space. Alternatively, one may cycle
HMC on subsets of dimensions from the ratio space in
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FIGURE 5. The LASV phylogeny explored in the example. Branches are color‑coded by the posterior means of the branch‑specific
evolutionary rates.

a Metropolis‑within‑Gibbs inference strategy such that
in each iteration, HMC proposes new values to only a
subset of dimensions. For example, one possible choice
of these subsets is to separately sample the root height
and all the ratios (i.e., one subset containing only the
height parameter and one subset containing all ratio pa‑
rameters). Interestingly, each of the two subsets takes a
full traversal for updating the gradient through Algo‑
rithms 2 and 3 where the postorder traversal updates
the gradient with respect to all ratio parameters (𝑁𝑁 𝑁 𝑁
dimensional) and the preorder traversal updates only
the height parameter (single dimensional). Therefore,
sometimes it might be more computationally efficient to
mix the classic univariable sampling kernels with HMC
for the height dimension to benefit from the low compu‑
tational load for learning the root height dimension. For
example, one may apply classic univariable samplers on
the height dimension in ratio space instead of HMC. In
addition, one may apply classic univariable samplers on
the original root height dimension such that with care‑
ful caching of the previous iteration, each proposal only
needs updating 2 postorder partial likelihood vectors
corresponding to the 2 immediate descendant branches
from the root. However, as illustrated by the WNV

example, classic univariable samplers may suffer from
the constraints on the node heights resulting in poor
mixing in some dimensions (e.g., several internal nodes
close to the root in this case), where the mixture of sam‑
plers may lead to worse computational efficiency. To in‑
vestigate the univariable sampler’s validity, we ran the
chain 10× longer for the WNV example. As expected, the
trace plot of the longer chain exhibits a normal “caterpil‑
lar” shape that indicates both the validity and limitation
of the univariable samplers. Interestingly, in other ex‑
amples where we do not observe MCMC mixing issues
for the univariable sampler, the HMC sampler still out‑
performs the univariable sampler as shown in Figure 2
and Table 1 by generating higher ESS per unit time
for the dimension with the minimum ESS (for which
one usually waits to grow larger than certain thresh‑
old before terminating the MCMC chain). The sampling
efficiency is more uniform across dimensions in the
HMC sampler as compared to the univariable sampler.
This more uniform performance across different dimen‑
sions is partly because our adaptive variance informed
mass matrixM accounts for different levels of variabil‑
ity among dimensions. For example, Ji et al. (2020) show
a better performance of an HMC sampler with a mass
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FIGURE 7. The algae phylogeny explored in the example. Branches are color‑coded by the posterior means of the branch‑specific evolu‑
tionary rates. Horizontal bars represent 95% posterior credible intervals for the internal node times. Letters a)–f) indicate where fossil record
informed calibration normal priors are placed on the tMRCAs of clade a: Harveylithon, clade b: Porolithon, clade c: Lithophyllum pustulatum,
clade d: Hydrolithoideae, clade e: Hapalidiales, and clade f: Sporolithales.

matrix informed by the diagonal of the Hessian matrix
as compared to a vanilla HMC sampler with a mass ma‑
trix composed of an identity matrix. Another possible
cause is that we do not tune separate univariable sam‑
plers for dimensions with different levels of variability
where one may propose smaller jumps for dimensions
with small variations and larger jumps for dimensions
with large variations. However, Fisher et al. (2021) show
that allowing each dimension to tune a separate univari‑
able sampler results in little improvement as compared
to HMC. The mass matrix employed in this study has
only diagonal entries being non‑zero that is equivalent
to rescaling the dimensions by their variability. Such a
rescaling method has already shown its success in di‑
vergence time estimations (e.g., such as in Thorne et al.
(1998) and Rannala and Yang (2003)).

The EBOV example employs a more general mixed‑
effects relaxed clock model with clade‑specific fixed‑
effects and branch‑specific random‑effects. The original
study (Mbala‑Kingebeni et al. 2021) incorporates rate
variation into a strict molecular clock model by in‑
troducing a single parameter to capture fixed‑effects

from the clades of interest. Their molecular clock model
therefore has 2 dimensions. The mixed‑effects model
employed in this study now utilizes a 597‑dimensional
parameter (4 dimensions for clade‑specific fixed‑effects
with an intercept term, 592 dimensions for branch‑
specific random‑effects, and 1 dimension for the scale
parameter) to capture multiple sources of rate vari‑
ation. This more general mixed‑effects model detects
the same slow‑down of the evolutionary rate of the
branch leading to the relapse clade. Interestingly, the re‑
lapse clade and the MAN14985 clade are monophyletic
with posterior probability approaching 1 in our analy‑
ses whereas the KAT21596 clade is monophyletic with
posterior probability 0.37 compared to the posterior
probability of 0.95 in the original study. The lower
posterior probability estimate for the 2 sequences
(KAT21596 and BTB4325) forming a monophyletic clade
indicates a different mixture of tree topologies partly
owing to the more general molecular clock model
and potentially better mixing of node heights in each
topology. The difference in posterior probability of
the KAT21596 clade further affects the multi‑modal
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posterior distribution of tMRCA of the two sequences
as in Figure 6b. While our approach reveals clearer mul‑
timodal distributions, it remains an important research
direction to study its performance in revealing mul‑
timodalities and possibly improving mixing efficiency
over tree topologies through more intense investiga‑
tions (e.g., through simulation studies) which, however,
is out of the scope of this manuscript.

The algae example also employs a more general
mixed‑effects relaxed clock model with clade‑specific
fixed‑effects and branch‑specific random effects that
expands the dimension of the molecular clock‑related
parameter from 9 (1 dimension for base‑line molec‑
ular clock rate and 8 dimensions for fix‑effects from
clades of interest) to 272 (9 dimensions for clade‑specific
fixed‑effects with an intercept term, 262 dimensions
for branch‑specific random‑effects, and 1 dimension for
the scale parameter) to capture additional sources of
rate variation. As shown in Figure 7, our analysis re‑
veals substantial within‑clade rate variation that was not
modeled previously and a slightly different topology of
the maximum clade credible evolutionary tree (e.g., the
placement of clade C: L. pustulatum). The large variation
in the branch‑specific evolutionary rates may also con‑
tribute to the wider posterior credible interval estimated
for the root time and the tMRCAs of several clades. As
demonstrated in their study on the effect of molecular
clock rate model choices (dos Reis et al. 2018), it is im‑
portant for future studies to explore such influence on
divergence time estimations with fossil calibration pri‑
ors under now computationally feasible branch‑specific
evolutionary rate models.

Recent molecular clock models add additional de‑
pendence of evolutionary rate onto time (Aiewsakun
and Katzourakis 2015; Ho et al. 2015; Membrebe et al.
2019) that bring in more biological insights into the time‑
dependency of the evolutionary rates in viral evolution.
However, such a dependence structure further compli‑
cates the confounding of evolutionary rate and time.
Fortunately, the complex dependence structure only af‑
fects the derivatives without influencing the ratio trans‑
formation or the HMC machinery and is, therefore, the
reason Equation (6) uses more general terms 𝜕𝜕𝜕𝜕𝑖𝑖/𝜕𝜕𝜕𝜕𝑖𝑖,
𝜕𝜕𝜕𝜕𝑗𝑗/𝜕𝜕𝜕𝜕𝑖𝑖, and 𝜕𝜕𝜕𝜕𝑘𝑘/𝜕𝜕𝜕𝜕𝑖𝑖.

A caveat of the linear‑time algorithms that are in‑
troduced here is that they assume sampling dates are
given and fixed. Often, viral sequences are associated
with various levels of uncertainty, not only in their as‑
sociated metadata (e.g., sampling dates) but also with
regard to sequencing quality. Typically, a quality con‑
trol step removes unreliable sequences. In addition, fos‑
sil records with sequence information may present as
ancient tip nodes with associated uncertainties. In a
Bayesian framework, one may integrate out sampling
date uncertainty through their support so that sam‑
pling dates become parameters of the model and are
no longer fixed (Pybus et al. 2012). The proposed al‑
gorithms and HMC machinery remain unaffected if
one cycles between sampling all internal node heights

and tip heights from their full conditional distributions.
However, the derivative with respect to the height pa‑
rameter in the ratio space needs to consider contribu‑
tions from the tip nodes when one samples all node
heights (including variable tip heights) jointly. More‑
over, the anchor node and epoch constructions become
variable and need to be jointly updated with tip heights.
Another caveat of our algorithms is that we do not for‑
mally consider degree‑2 internal nodes such as those
employed in a “total‑evidence” dating analysis (see,
e.g., Stadler (2010) and Gavryushkina et al. (2014)) al‑
though one may effectively transform them into regu‑
lar degree‑3 nodes by adding length‑zero branches to
these degree‑2 nodes connected with a tip node with
sequences (if any) switched from the original degree‑2
internal nodes. In addition, some models may intro‑
duce discontinuity or non‑smoothness into the target
density, such as the “soft‑bound” calibration priors
introduced in Yang and Rannala (2006) that are contin‑
uous over the parameter space but that have deriva‑
tives with respect to node heights that do not exist for
a finite number of points. Although the rejection step
in the Metropolis–Hastings algorithm corrects any bias
caused by the discontinuity or non‑smootheness such
that HMC still samples from the correct target density,
these issues may increase the numerical integration er‑
ror in the leap‑frog step and thereby reduce sampling ef‑
ficiency. Fortunately, the pioneering work of Nishimura
et al. (2020) has demonstrated a promising HMC variant
to solve issues generated by discontinuities. All these
remain important avenues of future work.
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