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SUMMARY Rapid and accurate profiling of infection-causing pathogens remains a
significant challenge in modern health care. Despite advances in molecular diagnos-
tic techniques, blood culture analysis remains the gold standard for diagnosing sep-
sis. However, this method is too slow and cumbersome to significantly influence the
initial management of patients. The swift initiation of precise and targeted antibiotic
therapies depends on the ability of a sepsis diagnostic test to capture clinically rele-
vant organisms along with antimicrobial resistance within 1 to 3 h. The administra-
tion of appropriate, narrow-spectrum antibiotics demands that such a test be ex-
tremely sensitive with a high negative predictive value. In addition, it should utilize
small sample volumes and detect polymicrobial infections and contaminants. All of
this must be accomplished with a platform that is easily integrated into the clinical
workflow. In this review, we outline the limitations of routine blood culture testing
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and discuss how emerging sepsis technologies are converging on the characteristics
of the ideal sepsis diagnostic test. We include seven molecular technologies that
have been validated on clinical blood specimens or mock samples using human
blood. In addition, we discuss advances in machine learning technologies that use
electronic medical record data to provide contextual evaluation support for clinical
decision-making.

KEYWORDS biomedical engineering, DNA sequencing, diagnostic, infectious disease,
microbiology techniques

INTRODUCTION

Sepsis is a serious and life-threatening clinical condition that generally results from
a primary bacterial infection or, less frequently, from a fungal and/or viral infection.

Affecting nearly 1 out of every 23 hospitalized patients, it is the sixth most common
reason for hospitalization (1–5). At present, it is the most expensive condition treated
in U.S. hospitals, with an aggregate cost of US$15.4 billion in 2009 (4, 5), whereas
nonspecific diagnoses of sepsis account for another US$23.7 billion each year (6, 7).
Alarmingly, the incidence of sepsis is increasing, with a 17% increase in the number of
documented cases between 2000 and 2010 (5), while sepsis-related deaths have surged
31% between 1999 and 2014 (8). Approximately 30,000 sepsis-related deaths occur
annually, with particularly high rates in critically ill patients admitted to intensive care
units (ICUs) (5, 9, 10).

Neonates, or infants within 28 days of life, comprise an additional group at risk for
infection due to the relative deficiency of their adaptive immune responses from the
lack of antigen exposure in utero as well as the immaturity of innate immune responses,
impairments which are directly related to their gestational age at birth. In the United
States, sepsis is the fifth leading cause of neonatal mortality, surpassed only by loss of
life due to preterm birth and intrapartum complications (11–13). Furthermore, infection
has been linked to preterm birth (14–16). Devastatingly, 25% of all neonates in the
United States admitted to a neonatal ICU (NICU) will be diagnosed with sepsis, and 18
to 35% (21,000 neonates/year) will die from their infection (11, 17, 18). Low-birth-
weight premature infants have a 10-fold increased risk of serious infection or sepsis
compared to their full-term counterparts, with a 30% mortality rate (19–21).

Septic patients usually present with malaise, fever, chills, and leukocytosis, which
often prompt care providers to evaluate patients for the presence of bacteria in the
bloodstream (bacteremia) by using blood culture analysis. Considered a medical emer-
gency, sepsis can rapidly progress to organ dysfunction and death despite immediate
and aggressive medical therapies (10). In the absence of robust diagnostic tests, the
reflexive utilization of broad-spectrum and highly potent antibiotic treatment in pa-
tients suspected of having sepsis has contributed to the emergence of drug-resistant
organisms and atypical pathogens (22, 23). Survivors of sepsis may experience sub-
stantial long-term complications leading to a prolonged length of stay and/or dis-
charge to a long-term-care setting (6). Neonatal sepsis survivors are at an increased risk
for poor neurodevelopmental outcomes, including cerebral palsy, deafness, blindness,
and cognitive delays (11, 24).

Because of the high mortality rate associated with sepsis, the dangers of under-
treating some infections, or concerns about the use of inappropriate antibiotics,
physicians tend to order blood cultures liberally (10). This results in bacteria being
isolated in only 4 to 12% of processed blood culture tests. In more-restrictive settings
where blood cultures are ordered less liberally, positivity rates can be much higher.
Regardless, the detection of positivity occurs several hours to days after the patient has
been treated (25–29).

Pathogen detection by blood culture is, unfortunately, worse in the neonatal patient
population than in older children and adults. A major confounding factor arises from
the fact that clinical signs related to sepsis are similar to those of other noninfectious
life-threatening conditions, such as perinatal asphyxia, respiratory distress syndrome,
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and symptoms associated with severe prematurity. Although more than 60% of sepsis
evaluations occur in the first 3 days of life, �1% of blood culture tests detect an
organism. Even in symptomatic neonates, blood culture methodologies can detect the
offending microorganism in only 10 to 15% of neonates after contaminants are
excluded (30, 31). This burden is worse in underserved communities. For example, in
the United States, black preterm neonates have the highest incidence of and case
fatality rate from neonatal sepsis (32). Around the world, neonates born in low- and
middle-income countries suffer the highest rates of sepsis (33). Critically, in low- and
middle-income countries, resistant bacterial strains are implicated in the majority of the
cases, highlighting the need for rapid susceptibility testing.

Underrecognition of illness in addition to the emergence of resistant pathogens,
delays in diagnosis, and the inability to access or afford specialized medical care
contribute to the high mortality and morbidity rates associated with sepsis (34). The
correct initial choice of antibiotic therapy has been shown to save more lives than any
other medical intervention (35–38), and studies suggest that there is a 1- to 3-h
diagnostic window, from symptom-based sepsis recognition to the initiation of anti-
microbial treatment, before the mortality rate increases (39). The Surviving Sepsis
campaign advocates for the implementation of antibiotic therapy within 1 h of clinical
recognition of sepsis and collection of blood for culture prior to the administration of
antibiotics (35). However, a 5-fold reduction in survival has been reported as a conse-
quence of inappropriate antimicrobial therapy in the first 6 h after the recognition of
sepsis (40). A recent editorial questioned blind antibiotic use and made a compelling
case for the initiation of targeted antimicrobial therapy, preferably after the detection
of the pathogen (41). Thus, rapid diagnostic tests that are capable of profiling antimi-
crobial resistance or ruling out bacterial infection as a cause of sepsis must be
integrated into the initial 1 to 3 h of the clinical timeline to influence the appropriate
use of antibiotics and patient outcomes.

Unfortunately, findings from standard diagnostic tests are not available within this
critical time frame to allow focused, effective, and potentially life-saving medical
interventions. Other faster adjunct standard hematological analyses used in routine
clinical practice have low sensitivity and specificity, particularly in neonatal patients
(42). Recently, biomarkers such as C-reactive protein (CRP), procalcitonin (PCT), and the
neutrophil marker CD64 have made their way into sepsis evaluations, with limited
success. Most diagnostic approaches that are currently employed rely on individual
biomarkers, with binary yes or no answers. An integrative diagnostic strategy that
incorporates a broader range of biomarkers could in theory characterize the host
response to rule in/out infection, identify and quantify the pathogen(s), and predict
resistance. Such a test is greatly needed to distinguish patients who are truly septic and
assist with the appropriate use of antibiotics.

THE IDEAL SEPSIS DIAGNOSTIC TEST

Considering the current clinical challenges and the need to impact clinical manage-
ment by informing targeted treatment, the ideal technology should include the fol-
lowing characteristics (43, 44):

1. rapid detection (the pathogen needs to be identified in less than 3 h) (35, 39);
2. broad-based detection, including bacteria, viruses, and fungi;
3. minimal invasiveness, utilizing clinical samples with low specimen volumes (�1

ml blood for pediatric patients, including neonates, and 5 to 10 ml blood for
adults) (45–47);

4. high sensitivity and specificity for the immediate initiation of targeted antibiotic
use in the presence of signs and symptoms of systemic inflammation (the
diagnostic tests should not compromise on sensitivity with low pathogen levels
in the specimen);

5. polymicrobial detection of pathogens in the presence of contaminants across a
wide range of pathogen loads (�1 to 100,000 CFU/ml blood);
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6. detection of drug resistance;
7. integration into the clinical workflow (the process should be easy to use and

require minimal technical expertise to process samples and interpret test results;
for the greatest impact, the technology must be usable in noncentralized
low-resource settings);

8. the ability to detect unknown and emerging pathogens (detection capabilities
must be able to easily expand without compromising the robustness of detec-
tion and the required specimen volume); and

9. the ability to distinguish the inflammatory response as being either host or
pathogen driven (48, 49).

LIMITATIONS OF STANDARD DIAGNOSTIC BLOOD CULTURE METHODOLOGIES
(“GOLD STANDARD”)

Today, the use of standard culture techniques for the detection and isolation of
pathogenic organisms from a sterile body fluid specimen is still considered the “gold
standard” for the diagnosis of infection and sepsis (50). However, routine blood cultures
can take 6 h to 5 days to grow an organism to detectable levels, with additional time
being required to identify (24 h) and test for (48 h) antibiotic susceptibility (28, 51, 52).
This test is also plagued by many complicating factors. First, the quantity of microbes
present in circulation during bloodstream infection (BSI) is usually low, ranging from
only 1 to 1 � 104 CFU/ml (24, 53–55). In older children and adults, routine blood culture
tests are performed in timed sequences of up to four separate replicates comprising
approximately 20 to 30 ml of blood each. This repeat blood sampling improves
pathogen detection to capture the causative organism in 73 to 95% of cases (35,
55–58). Small sample volumes can therefore lead to false-negative results with con-
ventional practices (59–61). Unfortunately, in neonates, especially very-low-birth-
weight (VLBW) (birth weight of �1,500 g) premature infants, blood collection is
restricted to a single sample with a minimal volume (1 ml), which can further hinder
pathogen capture, particularly when the level of bacteremia is low (45–47). Neonatal
sepsis concentrations often fall within the range of 1 to 1,000 CFU per ml, with some
studies finding that concentrations in 68% of culture-positive cases fall below 10 CFU
per ml (62, 63).

False-negative results can also occur due to the challenge of recovering infectious
etiologies by routine blood culture techniques after the initiation of antibiotic therapy,
which affects 28 to 63% of adults with suspected sepsis (35, 55, 61, 64, 65). Exposure
to antimicrobials prior to blood culture testing is magnified in neonatal patients, as an
estimated 30 to 35% of laboring women receive empirical intrapartum antibiotics for
the prevention of neonatal group B Streptococcus (GBS) disease (21). Subsequently,
compliance with Centers for Disease Control and Prevention (CDC) GBS guidelines
exposes an estimated 65% of VLWB infants to antibiotics prior to birth (66–68).
Prolonged delays in pathogen identification and antibiotic susceptibility testing also
cause neonates to be unnecessarily exposed to broad-spectrum antibiotics, leading to
bacterial antibiotic resistance in noninfected neonates while preventing targeted an-
timicrobial therapy in septic neonates. Additionally, prolonged broad-spectrum antibi-
otic exposure in neonates can lead to invasive fungal (Candida) infection, necrotizing
enterocolitis, and death (17, 18, 69).

Failure to adhere to standard antiseptic procedures during sample collection can
also lead to contaminated, or false-positive, blood culture results. In 2005, the College
of American Pathologists reported an overall mean blood culture contamination rate of
2.89% in 356 institutions, with rates of 2.08% noted for neonatal patients and 2.92%
noted for nonneonatal patients (70). Contamination rates for individual institutions in
this study ranged from 2.15% to 3.67% and contributed to an additional estimated cost
of US$5,506 per patient (70). Thus, contaminated samples can have enormous financial
and clinical ramifications in adult populations in the United States, including 1,372 to
2,200 extra hospital days and an extra US$1.8 million to US$1.9 million in medical costs
each year (71, 72). In pediatric patients, these tainted samples are associated with
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readmission rates of 14 to 26% (61, 73, 74) and increased lengths of stay from 1 to 5.4
days (61, 72, 75). In low- and middle-income countries, where there is a dearth of
trained medical staff and quality health care services, blood culture contamination is
not uncommon and can have grave consequences. Notably, almost half of patients
with false-positive blood cultures are treated with antimicrobials compared to those
with true-positive test results (61, 76–78). Additionally, 40 to 50% of adult patients with
bacteremia (and 70% with fungemia) received incorrect antimicrobial therapy during
their empirical treatment period before microbiology culture results were available (1,
5, 79). This misuse of antimicrobial agents and delays in pathogen identification cause
prolonged exposure to broad-spectrum antibiotics, which can also result in an in-
creased number of Clostridium difficile infections, antibiotic allergic reactions and drug
toxicity, antimicrobial-resistant bacterial strains, prolonged length of stay, and in-
creased medical costs (5, 61, 80–82). Additional approaches to mitigate contamination
have been described with some success, such as algorithms, including clinical judg-
ments, numbers of positive blood culture sets among all sets obtained, and ancillary
laboratory tests such as CRP and PCT measurements (83).

In summary, routinely used blood culture methods are not an ideal gold standard,
as the results often come too late, are incomplete or not sensitive enough, and can be
misleading and relatively labor-intensive. There is a crucial unmet need to shorten as
well as improve current laboratory procedures for the detection and identification of
microorganisms. In the last decade, various engineering innovations have generated
promising pathogen detection approaches that incorporate sample preparation, mo-
lecular detection, automation, miniaturization, multiplexing, and high-throughput anal-
ysis toward the development of an effective diagnosis technology. The following
sections give an overview of current and emerging detection systems designed for the
rapid, sensitive, and cost-effective diagnosis of bloodstream infections.

TOWARDS DETECTION DIRECTLY FROM WHOLE BLOOD: CURRENT AND
EMERGING TECHNOLOGIES FOR RAPID DIAGNOSIS OF MICROBIAL INFECTIONS
WITHOUT CULTURE

In the United States today, nearly all U.S. Food and Drug Administration (FDA)-
approved sepsis molecular diagnostic tests are postculture technologies, meaning that
a blood sample must be cultured to allow the number of microbes to increase before
the diagnostic test can be conducted. This initial growth-based amplification ensures
sensitive detection but extends the diagnostic timeline such that test results do not
effectively impact patient management. It also restricts the breadth of organisms
detected by relying on a single culture medium formulation, which cannot support the
growth of all organisms or may mask susceptibilities (84–87). While molecular diag-
nostic tests are completed within 20 min to 2 h, the initial step of blood culture takes
several hours to days and may not be successful. Likewise, determining the antibiotic
susceptibility of the pathogen also depends first on additional culture methods. Current
technologies do not benefit antibiotic stewardship programs aimed at deescalating
empirical antibiotic therapy and encouraging timely targeted treatment. Recent re-
views by Opota et al. (55, 88), Kothari et al. (89), Afshari et al. (90), and Ecker et al. (91)
describe the state of the art for such diagnostic tests in more detail. In this review, we
focus on emerging technologies that are not dependent upon initial microbial growth.
All technologies described in the following paragraphs are summarized in Table 1.

Modern Nucleic Acid Amplification Technologies

For several years, nucleic acid amplification technologies (NAATs) have promised to
circumvent the need for bacterial growth. These technologies function by rapidly
creating copies of DNA or RNA originating from pathogen or host cells through
biochemical reactions, amplifying the nucleic acid sequences to a detectable level. The
sequences are then used to identify the infecting agent or the status of the immune
response. However, the promise of NAATs for revolutionizing sepsis diagnosis has yet
to be realized. This can be attributed to challenges in reliably capturing and amplifying
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pathogen nucleic acids from complex samples like blood, where the infecting agents
are present at low levels or as polymicrobial mixtures within a high background of
human DNA. In this sample context, traditional NAATs cannot simultaneously satisfy
the need for sensitive, specific, and broad-based detection. The emerging technologies
discussed here represent novel integrations of NAATs with other cutting-edge tech-
niques that together are capable of overcoming many current diagnostic limitations.
We also discuss the exciting promise that further synergistic integration holds for
producing the ideal sepsis diagnostic test.

Iridica Plex ID. The Iridica Plex ID platform (Abbott Molecular, Des Plaines, IL) boasts
the most broad-based detection of any direct-from-blood emerging technology, iden-
tifying an impressive 780 bacteria and Candida species with a turnaround time of 6 h
(55, 92). However, only four antimicrobial resistance markers (mecA, vanA, vanB, and
blaKPC) are detected. Iridica accomplishes this by integrating multiplexed PCR amplifi-
cation of pathogen DNA with electrospray ionization mass spectrometry (ESI-MS) for
sequence identification. The process starts with automated DNA extraction from a 5-ml
whole-blood sample. The extracted DNA is distributed across several PCR mixtures
containing different primers targeting conserved regions of pathogen genomes, in-
cluding the 16S and 23S rRNA genes for bacteria and Candida, respectively. These
primers and reaction components have been optimized to limit interference due to
human DNA, which can otherwise lead to nonspecific amplification or low amplification
efficiency. Amplified copies from each reaction are selectively enriched by removing
over 98% of human DNA. They are then assessed by ESI-MS, which generates nucleo-
tide base composition data. Finally, the data from each amplicon are compared to a
library of all expected base compositions and used to triangulate the pathogen species
(Fig. 1) (54, 93).

While this approach achieves a wide breadth of detection, clinical studies show that
the sensitivity, specificity, and negative predictive value (NPV) of Iridica vary widely
from 45% to 83%, 69% to 94%, and 80% to 97%, respectively, against conventional
culture methods (Table 2 and Fig. 2). After the exclusion of possible contaminant
bacteria and estimation of true-positive rates based on PCR test replicates or clinical
chart and culture results for patient-matched specimens, sensitivity and specificity
values can be improved from 77% to 91% and from 87% to 99%, respectively (54, 92).
Improvement with multiple test replicates suggests that sample heterogeneity and
sampling error remain problematic. In the case of a low level of a pathogen, sampling
error first occurs at the point of the blood draw, is combined with any inefficiency in
nucleic acid extraction, and then occurs again when the sample is split across multiple

FIG 1 Workflow for the analysis of a single whole-blood specimen for pathogen identification. Even though U-dHRM shows
promise as the fastest technology, it could benefit from parallelizing for multiple loads in the future.
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distinct amplification reactions targeting different genes on the Iridica platform. Im-
proving the sensitivity and reliability of detection will require circumventing these
sources of error. For the same reasons plus amplification competition, polymicrobial
samples may present another challenge for this approach. Some evidence suggests
that the Iridica platform can detect mixed pathogen populations, but its utility for
clinical samples is currently inconclusive. We found only one study that investigated
polymicrobial specimens. Here, the Iridica platform identified only one causative or-
ganism in four out of nine cases of blood culture-positive polymicrobial infection (94).

Iridica has been evaluated in a limited number of clinical studies across patients with
suspected sepsis, systematic inflammatory respiratory syndrome (SIRS), and febrile
neutropenia (54, 92–95). Interestingly, significant differences in sensitivity have been
reported across ICU and emergency room (ER) patients (P � 0.005), with higher
sensitivity being seen for ICU patients (92). This may derive from higher pathogen loads
in this patient population, which would have the effect of reducing sampling error.
Limits of detection of the Iridica platform range from 0.25 to 128 CFU/ml for bacteria,
depending on the target species, and 4 CFU/ml for Candida species (54, 93).

This broad-based semiquantitative technology shows promise for use on whole-
blood samples to detect a wide variety of pathogens, but its potential impact on
antibiotic stewardship is low given the limited number of resistance markers detected.
However, this technology benefits from the ability to expand the test to more targets
in the future. The use of 5 ml blood is promising for adult patients but limits feasibility
for use on pediatric patients (96). The Iridica platform is an end-to-end diagnostic
solution with a structured and easy-to-use workflow. Individual steps are automated,
thus reducing labor and increasing efficiency. The time to detection ranges from

TABLE 2 Characteristics of studies reviewed for data on the Iridica platform

Reference
Patient
setting(s)

No. of paired
tests Blood vol (ml) Inclusion criterion % sensitivitya % specificitya NPV (%)a

54 ICU 331 5 Suspected bloodstream infection 83 93.6 98.9
95 ICU 616 5 Suspected or proven sepsis or severe infection 81 69 97
92 ICU, ER 408 5 Suspected sepsis 74.8 78.6 74.1

ICU 220 5 78.4 70.8 95
93 ER 285 5 �2 SIRS criteria for sepsis 83 72 94
94 Hematology 105 5 Febrile neutropenia 45 93 80
aAgainst blood culture.

FIG 2 Sensitivity plotted against specificity of test results compared against the gold standard of blood culture for Iridica, SeptiFast, and SepsiTest.
The marker/symbol area is proportional to the number of paired blood tests in the study. Darker shades of color signify larger blood volumes
used for the test. (A) For Iridica, we included data from 6 publications found by a PubMed literature search. (B) For SeptiFast, we included data
from 2 meta-analyses (summary statistics from analyses are shown in black, along with the confidence intervals) in addition to data from 8 new
relevant studies. (C) For SepsiTest, we included data from 5 publications found by a PubMed literature search.
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between 6 and 8 h with only 30 min of hands-on time for a batch of 6 samples (93, 94).
However, this technology fails to meet the ideal turnaround time of 1 to 3 h. This
technology is not yet approved by the U.S. FDA but is Conformité Européenne (CE)
marked, meaning that it complies with the European In-Vitro Diagnostic Devices
Directive and is commercially available in Europe (55, 91). However, it may fall short in
noncentralized clinical settings due to the dependence on multiple bulky devices and
high up-front costs of about US$357,043 (90, 97). The cost per test ranges from
US$262.92 to US$419.14 (assuming that £1 equals US$1.33) (98).

SeptiFast. SeptiFast (Roche Diagnostics, Risch-Rotkreuz, Switzerland) is a commer-
cially available (in the European Union), broad-based microbe identification test for
whole blood. It can identify over 16 bacteria, 5 Candida species, and Aspergillus
fumigatus fungi using a 1.5-ml whole-blood sample within 6 h. In addition, it can detect
the mecA antibiotic resistance gene after a sample tests positive for Staphylococcus
aureus. This technology is CE marked but not yet FDA approved.

The SeptiFast test integrates multiplexed real-time PCR with probe hybridization
and DNA melting analysis. The test begins with nucleic acid extraction from whole
blood under a contamination-controlled workflow. This is followed by real-time PCR
amplification using a combination of universal and specific primers in three parallel
reactions for Gram-positive bacteria, Gram-negative bacteria, and fungi (99). The prim-
ers target the internal transcribed spacer (ITS) regions between the 16S and 23S genes
for bacteria and between the 18S and 5.8S genes for fungi. PCR products are detected
by using species-specific probes that fluoresce in one of the four detection channels.
Species identified in the same detection channel are subsequently differentiated by
using melting temperature analysis (Fig. 1) (99, 100).

SeptiFast has a reported sensitivity of between 3 and 100 CFU per ml, depending on
the microorganism (99). A meta-analysis of 41 studies reported a summary sensitivity
and specificity of 68% (95% confidence interval [CI], 63% to 73%) and 86% (95% CI, 84%
to 89%), respectively, for a total of 10,493 SeptiFast tests compared to blood culture
(101). Another meta-analysis that included only data from journal publications reported
slightly better overall sensitivity and specificity, 75% (95% CI, 65% to 83%) and 92%
(95% CI, 90% to 95%), respectively, based on 8,438 tests (102). Recent studies show
similar heterogeneous results (Table 3 and Fig. 2) (100, 103–140). These numbers
improved when studies incorporated clinical markers along with blood culture results
(124, 125, 137, 141). However, as many as 35% of the SeptiFast-positive episodes were
not supported by any microbiological or clinical data (109, 120). On the other hand, low
sensitivity prevented SeptiFast from identifying culture-positive organisms in 20 to 30%
of cases (142). SeptiFast has been reported to resolve polymicrobial infections with
higher detection rates (�2 � 4.50; P � 0.0339) than blood culture (121, 132, 133, 143,
144). However, the detection of mixed pathogens may be hindered by competing
amplification due to the use of multiple specific primers and needs further investigation
(137).

In summary, SeptiFast may be considered broad-based, with coverage of the 25
most relevant pathogens for sepsis, and incorporates the ability to detect mixed
pathogen populations. However, it is missing pathogens that are highly relevant for
neonatal sepsis. This technology considerably lowers the blood volume needed for
testing compared to that needed for conventional technologies, which could be
beneficial for pediatric patients (100). However, 1.5 ml of blood is excessive for
neonates, for whom samples are limited to 1 ml. SeptiFast, when used with MagNA
Pure (Roche) automated DNA extraction, shortens the complete workflow time to 3.57
h for eight parallel loads (115). This diagnostic test may be of added value for the
management of patients with suspected sepsis who are SeptiFast positive but blood
culture negative (106, 121, 129, 145, 146). However, low sensitivity deems negative
results nonactionable. It may also fall short in noncentralized clinical settings due to the
dependence on multiple bulky devices and up-front costs of about US$35,167 (90, 97).
The cost per test is estimated to range from US$204.73 to US$273.83 (assuming that £1
equals US$1.33) (98). Other limitations include incomplete antibiotic resistance infor-
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mation and the inability to expand the test due to a limited number of detection
channels.

SepsiTest. SepsiTest (Molzyme, Bremen, Germany) is a commercially available (in the
European Union) broad-based microbial identification test for whole blood. It can
identify over 345 bacteria and 13 fungi in 8 to 10 h from a 1-ml whole-blood sample.
This technology is CE marked and commercially available in Europe but not yet FDA
approved.

SepsiTest integrates universal PCR with Sanger sequencing after a unique sample
preparation step whereby selective lysis and human DNA degradation are used to
improve sensitivity (147). After DNA is isolated, PCR is performed with a universal
primer targeting the 16S and 18S rRNA genes for bacteria and fungi, respectively.
Bacteremia or fungemia is reported in �4 h. Further purification followed by Sanger
sequencing accomplishes species detection, which takes an additional 4 to 6 h (Fig. 1).

SepsiTest can detect as few as 10 to 80 CFU/ml, with some organism bias (148, 149).
It has a reported sensitivity ranging from 11% to 87% and a high specificity ranging
from 85% to 96% compared to blood culture in adult and pediatric patients with SIRS,
sepsis, febrile neutropenia, and infectious endocarditis (130, 150–154) (Table 4 and
Fig. 2). Multiple studies report promising NPVs close to 97% against blood culture with
the detection of multiple fastidious organisms (152, 154). Similar sensitivities ranging
from 37.5% to 78.6% and specificities ranging from 86.8% to 94.4% were observed in
studies adjusting for clinical context by excluding contaminants (130, 153). Additionally,
as many as 45% of PCR-positive test results were reported to be due to contaminants
(153). Pathogens detected in mixed populations were often identified as contaminants
(151, 152). In one reported study, only one organism was identified in three of four
blood culture-positive polymicrobial specimens (152).

SepsiTest is a broad-based test that requires a small amount of blood appropriate for
both adult and pediatric patients. It can, in principle, detect polymicrobial infections;
however, its ability to inform clinical decision-making needs further study. SepsiTest
provides the option to automate DNA extraction (SelectNA plus; Molzyme) and process
up to 12 samples in one run, making it easy to integrate into the clinical workflow.
However, it does not provide any information on antibiotic sensitivity. In addition, it still
requires multiple steps that are not integrated into one platform, increasing the risk of
contamination and the turnaround time. This limits its utility for informing clinical
decisions regarding targeted antimicrobial therapy. It may also fall short in noncen-
tralized clinical settings due to the dependence on multiple bulky devices and high
up-front costs of about US$57,553 (90, 97). The cost per test ranges from US$144.28 to
US$199.21 (assuming that £1 equals US$1.33) (98). The use of Sanger sequencing is the
time-limiting step for SepsiTest. In the future, massively parallelized next-generation
sequencing technologies may enhance this approach and provide antibiotic resistance
information. In the next paragraph, we provide a short summary of such an emerging
sequencing technology.

Nanopore sequencing (MinION). The MinION (Oxford Nanopore Technologies,
Oxford, United Kingdom) is a portable, real-time, USB-powered DNA/RNA sequencer

TABLE 4 Characteristics of studies reviewed for data on SepsiTesta

Reference Patient setting(s)
No. of
paired tests

Blood
vol (ml) Inclusion criterion(s)

%
sensitivityb

%
specificityb

NPV
(%)b

152 ICU, hematology/oncology 342 1 SIRS or sepsis, hematology/oncology with febrile
neutropenia, or immunodeficiency and fever

87 85.2 97.2

151 Surgery IE 30 1 Infectious endocarditis 85 NA NA
130 Critical care 75 NA NA 28.6 85.3 92
150 ER 125 1 �2 SIRS criteria for sepsis 11 96 80
154 ICU 160 1 High-risk patients on ECMO 78.6 88.4 97.7
153 ICU 236 1 SIRS or suspected sepsis 33 82.9 84.7
aIE, infectious endocarditis; ECMO, extracorporeal membrane oxygenation.
bAgainst blood culture.
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with a 10- to 50-min library preparation step. The main advantages of the MinION
platform over other next-generation sequencing technologies are its (i) rapid turn-
around, (ii) low capital cost, and (iii) small size. This technology was released to
researchers for alpha testing as part of an early-access program in 2014 (155). It is a
generic sequencing system that has shown the potential for the rapid identification of
pathogens (�4 h) (156) directly from blood when combined with a PCR amplification
step using the 16S Rapid Amplicon Sequencing kit (155). Because it performs sequenc-
ing at the single-molecule level, it offers new possibilities to study microbial diversity
in clinical samples and also allows multiplexing of samples. This technology has been
validated for viral pathogen identification from 140 �l whole blood in �40 min with
100% sensitivity and specificity (157, 158). For bacteria, it has been validated only with
clinical urine and fecal samples (156, 158). Polymicrobial pathogen identification has
been demonstrated by using genomic DNA mixtures of 20 bacterial strains in equal
amounts (100,000 copies per organism per �l) (159, 160). By using specific primers that
amplify a wide range of bacterial 16S rRNA genes, 90% of the full-length 16S rRNA gene
could be reconstructed with the MinION nanopore technology. However, pathogen
assignment could be completed for only 8 of the pathogens from the DNA mixture due
to low sequencing coverage. This was attributed to nonoptimized 16S PCR amplifica-
tion, despite the use of universal primers (159). This points to the need for the
optimization and validation of this technology as a complete system with whole blood.
Other improvements are needed to transition MinION into the clinic. These improve-
ments include automation; standardized external and internal spike-in controls that run
in parallel to prevent carryover contamination (161); as well as optimization of the
bioinformatic pipeline used to identify organisms, resistance genes, and/or mutations
(156, 162, 163). A major benefit of this technology is that it does not require up-front
capital costs. According to the Oxford Nanopore Technology website, it is currently
being offered to members of a developer-style access program for US$1,000, which
includes the MinION device, three flow cells, two reagent kits, and software.

U-dHRM and machine learning on pathogen DNA fingerprints. The universal
digital high-resolution melt (U-dHRM) platform is a broad-based microbial identification
technology used with whole-blood samples. It can currently detect 37 bacterial patho-
gens with single-organism and single-genome sensitivity as well as resolve polymicro-
bial infections in �4 h using �1 ml whole blood (164, 165). This technology is in the
validation phase (University of California, San Diego) and is not yet commercially
available.

U-dHRM integrates universal digital PCR (dPCR) with high-resolution melt (HRM)
analysis on a microfluidic chip to enable probe-free differentiation and quantification of
bacteria within a sample (165). The test procedure begins with DNA extraction followed
by sample “digitization,” which separates all pathogen genomes into their own PCR
mixtures by spreading the sample across a microfluidic chip containing 20,000 picoliter-
sized reaction mixtures. In each reaction, universal amplification targeting the 16S rRNA
gene takes place. Subsequently, precise heating and simultaneous imaging are per-
formed on all reaction mixtures to generate HRM curve fingerprints for each pathogen’s
16S gene sequence (Fig. 1). HRM generates sequence-specific melt curves by unwind-
ing DNA amplicons in the presence of a fluorescent double-stranded intercalating dye
(166–169). Each distinct DNA sequence melts uniquely, generating a loss of the
fluorescence signature as a function of temperature that is then used for species
identification (Fig. 3). A supervised machine learning algorithm automatically identifies
the microbial species by its melt curve. U-dHRM has reported a classification accuracy
of 99.9% for the 37 pathogens tested, with load quantification for individual pathogens
(165). This technology was validated by using mock blood samples, demonstrating its
ability to identify pathogens in the presence of excessive human DNA (165).

U-dHRM is a rapid, broad-based test to detect multiple organisms in a blood sample
of less than 1 ml, which is suited for pediatric patients and neonates. While it is
currently limited to 37 bacteria relevant to neonatal sepsis, it has the potential to
expand to include additional bacteria, fungi, and viruses in the future. Since this
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technology is probe free and digitized, it has the potential to detect all sepsis-causing
organisms contained in a single sample, including polymicrobial infections. Early
studies showed promising single-genome sensitivity and 99.9% specificity, but further
evaluation with clinical blood samples is needed. Validation at other sites will also be
important. In addition, automation is required to accomplish a sample-to-answer time
of �3 h. This system is easy to use and can incorporate the detection of antibiotic
resistance determinants. Its machine learning framework provides the potential iden-
tification of new and unknown pathogens and allows for an expanding library. The
speed and simplicity of U-dHRM along with its integrated technology platform suggest
a promising first-pass screening method for neonatal sepsis. This technology also
shows the potential to deliver at- or near-point-of-care diagnosis. The possibility of
moving U-dHRM toward a portable, inexpensive system can be of immense value to
noncentralized systems in low-resource settings (170, 171), where the cost per test
must typically fall between US$1 and US$30.

Summary of modern nucleic acid amplification technologies. In summary, the
results of clinical studies using PCR-based technologies are heterogeneous. For the
most part, these results are reported in comparison with the gold standard of blood
culture, which is far from ideal and may contribute significantly to this heterogeneity.
Blood may be drawn with varied timing, at different bodily locations, and in various
amounts for blood culture. This contributes to the challenge of validating emerging
technologies against blood culture. Hence, it is important to interpret diagnostic results
in conjunction with clinical context.

(i) Interpreting false-positive results against blood culture. One of the major
advantages of a PCR-based technology is its ability to detect nonviable, fastidious, and
unculturable organisms that would otherwise be missed by blood culture. A PCR-
positive, blood culture-negative specimen may reflect a real pathogen yet leads to
biased lower sensitivity and specificity values of the PCR test. Hence, it is crucial that we
carefully design comparison studies to include other molecular and adjunct tests
instead of relying solely on an imperfect gold standard. It should be noted that
false-positive results could also be due to cell-free pathogen DNA circulating in the
blood originating from an old or controlled infection or contamination (172). Typically,
PCR-based methods are unable to differentiate between viable and nonviable DNA
(173). On the contrary, the use of 16S gene primers to amplify long 1-kb amplicons by
U-dHRM may allow the differentiation of intact DNA relevant to active infection from
the degraded DNA of dead pathogens or from the environment (165, 174). This can be
a significant advantage over other molecular diagnostic tests, including sequencing
technologies, which detect a high background level of organisms; clinical trials are
pending. It has been reported that both Iridica and SepsiTest have higher rates of
contamination than blood culture (95, 153), which likely arises from the use of broad-
based universal primers that are targeted to amplify short fragments of DNA. In

FIG 3 Digitization and melting of genomes after amplification with PCR technology. A melt curve corresponding to the
individual genome is generated for identification and absolute load quantification of the pathogen and contaminants.
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addition, as shown in Fig. 2, SepsiTest and Iridica involve more sample transfer steps
than SeptiFast and U-dHRM. This further increases the risk of contamination (153).

Both SeptiFast and Iridica use semiquantitative methods to detect contaminants
and limit false-positive results. SeptiFast uses a cutoff value that represents the number
of PCR cycles at which DNA is adequately amplified to identify contaminants (175, 176).
Iridica also uses similar thresholds based on the number of genomes per well to limit
contaminants and reduce false-positive results. However, these techniques may need
further optimization, as they can conversely lead to false-negative results (92, 176).
Absolute load quantification in conjunction with clinical characteristics may improve
diagnostic accuracy as well (175). An emerging theme is the need for integrating
quantitative results with clinical context, potentially provided by a machine learning
framework. For example, a diagnostic algorithm that uses a patient’s CD64 index to
determine whether SepsiTest should be performed has been proposed. This approach
showed an improved detection of pathogens in patients with suspected BSI (177). A
similar approach in conjunction with neutrophil/lymphocyte count ratios and levels of
presepsin and procalcitonin has been suggested (150, 178).

U-dHRM manages contamination through the use of small reaction mixture vol-
umes, which keeps contaminants from overwhelming low-level pathogen DNA in the
amplification step. This also enables absolute quantification, since each organism’s
genome is amplified individually, without affecting detection sensitivity (164). It also
integrates the amplification (dPCR) and detection (HRM) steps into a single closed
system, which eliminates contamination due to sample transfer and reduces hands-on
time (164). Importantly, the ease of use, speed, and quantitative power of this tech-
nology could enable repeated testing to track the appearance and removal of bacterial
DNA in the blood during antibiotic treatment. In combination with host inflammatory
markers, such repeated testing could lend deeper insights into the progression of
sepsis. Having the ability to conduct repeated testing over time could reveal novel
disease dynamics that may contribute to a further understanding of pathogen detec-
tion inconsistencies that often arise in technology comparison studies. U-dHRM also
holds promise to address the need for point-of-care diagnostic tests, whereas other
commercially available PCR tests typically need bulky and expensive equipment that is
not feasible for use in noncentralized systems.

(ii) Interpreting false-negative results against blood culture. While false-positive
results may lead to the inaccurate overuse of antibiotics and contribute to the
generation of resistant organisms, false-negative results and the inaccurate withholding
of antibiotic treatment are more immediately threatening to patient welfare (179).
Accurately withholding empirical antibiotic use will require an improved sensitivity of
PCR technologies (�98% negative predictive value) (43). PCR tests can be limited in
their ability to detect pathogens for a variety of reasons, including the need for effective
lysis across a broad range of microbes, the interference of human DNA or other
inhibitory substances carried over from blood into the assay mixtures, the effect of
off-target interactions, and amplification bias (180–182). It is interesting to note that
even though all the above-described technologies rely on an initial PCR amplification
step for microbe detection followed by a secondary step for species identification, they
differ in their diagnostic sensitivities. The two major contributors to these differences
are (i) the approach used for reducing interference from human DNA and (ii) the
amplification strategy using either a single universal primer (SeptiTest and U-dHRM) or
multiple broad-range or species-specific primers (Iridica and SeptiFast), which may
suffer from amplification competition (Fig. 1). All commercially available PCR tests have
optimized their workflow to improve pathogen DNA amplification, yet none of them
show promise to replace blood culture due to their limited sensitivity for clinical
specimens (Fig. 2). The Iridica platform recently increased the sample volume 5-fold,
from 1 ml to 5 ml, under the assumption that low sensitivity arises from the inefficient
capture of the pathogen in low-volume blood samples (54).

The enhanced sensitivity of U-dHRM is attributed to the diluting effect of the digital
reaction format on inhibitory substances and the optimized dPCR reaction conditions
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ensuring the amplification of single copies of bacterial DNA. U-dHRM has been shown
to significantly reduce false-negative error rates compared to traditional dPCR, indicat-
ing that amplification errors can be reliably identified and accounted for (164). In
addition, U-dHRM is the only test that provides absolute load quantification to enable
the resolution of polymicrobial infections and contamination. Further investigation
with clinical samples will determine how this approach compares with commercially
available technologies.

(iii) Turnaround times. The ideal turnaround times for all the technologies reviewed
here are summarized in Fig. 4. The advertised turnaround times of 6 to 8 h for
commercially available technologies, including Iridica, SeptiFast, and SepsiTest, may be
optimistic for noncentralized and low-resources settings, where the sample-to-result
time can be up to 16 h (134, 135). This increased time represents the time for batchwise
analysis, sample transfer, and availability of staff. With the possibility of integration as
near-point-of-care diagnostic tests, the estimates of �4-h turnaround times for MinION
and U-dHRM are more realistic. Here, it is also worth briefly mentioning loop-mediated
isothermal amplification (LAMP) technologies, as they offer high portability and short
turnaround times. Importantly, however, they cannot be expanded to include a broad
range of organisms without losses in sensitivity and specificity (183). The use of multiple
specific primers does not allow multiplexing for a large number of pathogens. Alter-
natively, parallelizing tests using a small blood volume is also undesirable, as it results
in a loss of sensitivity for the detection of low-level pathogen loads often associated
with sepsis. That being said, LAMP-based tests may be suitable for applications where
the detection of a single organism or class of pathogens is desired. The features of
isothermal amplification and low technical complexity are particularly advantageous for
low-resources settings (184, 185) and could support diagnosis for specific clinical
presentations such as tuberculosis or malaria. Likewise, biosurveillance testing for
specific viruses could also benefit from the LAMP approach. However, this method is
unlikely to replace blood culture in clinics for general infection screening.

Host-Targeted Technologies
SeptiCyte Lab. SeptiCyte Lab (Immunexpress Inc., Seattle, WA) is the first RNA-based

technology that targets specific human inflammatory markers using 2.5 ml whole blood
for sepsis determination in 4 to 6 h. It has 510(k) clearance from the U.S. FDA for use
as an aid in differentiating infection-positive (sepsis) from infection-negative systemic
inflammation (SIRS) in critically ill patients on their first day of ICU admission.

SeptiCyte Lab is a host response-targeted, reverse transcription-quantitative PCR
(RT-qPCR)-based test that quantifies the relative expression levels of four RNA biomark-
ers (CEACAM4, LAMP1, PLA2G7, and PLAC8) known to be involved in innate immunity
and the host response to infection. In the discovery phase, microarray analysis was used

FIG 4 Timeline of sepsis technologies and where they fall compared to the gold standard of blood culture and the 1- to 3-h
critical time for affecting clinical decision-making. SeptiCyte and U-dHRM may be further optimized to provide results in a
shorter time frame.
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to identify RNA biomarkers that could differentiate patients with sepsis from patients
with postsurgical infection-negative systemic inflammation (186). These biomarkers
were then converted to a RT-qPCR format and used to develop the SeptiCyte Lab test
for sepsis (186). SeptiCyte Lab is rapid, robust, and accurate for classifying patients with
infection-related sepsis across gender, race, age, and date of ICU admission (186). It has
been suggested to be an indicator of the probability and not the severity of sepsis (187,
188). In a pilot study using 2.5 ml of blood, SeptiCyte Lab effectively discriminated
between two groups of critically ill pediatric patients (40 children with clinical severe
sepsis syndrome versus 30 children with congenital heart disease). The area under the
curve (AUC) in receiver operating characteristic (ROC) curve analysis, which describes
the probability that a test will rank a positive incident higher than a negative one when
chosen at random, was used to discriminate between the two cohorts. Even for
different RNA analysis techniques, an AUC value of �0.9 was obtained (0.99 versus
0.95), indicating high accuracy. In another prospective observational study with 129
adult ICU patients, an AUC of 0.88 was obtained to discriminate SIRS from sepsis.
SeptiCyte Lab scores have shown the ability to classify sepsis better than individual or
combinations of other clinical, demographic, and laboratory markers (189).

SeptiCyte is a promising, novel, broad-based diagnostic test for sepsis. The current
4- to 6-h turnaround time can potentially be reduced to a targeted 1.5 h by optimizing
the RT-qPCR platform on which the test is implemented. One drawback is the require-
ment for 2.5 ml of blood, which is not feasible for use on neonatal populations.
Additionally, this test does not provide any information about the pathogen or its
antibiotic resistance. However, a determination of infection-negative SIRS could serve
to limit antibiotic treatment. More clinical studies across different patient populations
are needed to confirm the ability of SeptiCyte to improve outcomes in the clinic.
Nonetheless, it has the potential to play a role in reducing inappropriate empirical
antibiotic use, which could be of tremendous value in light of the recent antibiotic
resistance epidemic. This technology has not yet commercially launched, and no cost
information is available at this time. Combining SeptiCyte with pathogen- and
resistance-targeted tests that work within the same critical time frame could generate
significant synergy, with the potential to enhance the overall NPV of these diagnostic
tests and their impact on antibiotic use. Furthermore, such combined approaches may
deepen our understanding of the progression of infection-related sepsis.

Amplification-Free Technology
Droplet digital detection technology. An emerging technology termed “integrated

comprehensive droplet digital detection” (IC 3D) (Velox Biosystems, Irvine, CA) claims to
selectively detect individual bacterial species directly from small quantities of whole
blood within 1 to 4 h (190). In a one-step, culture- and amplification-free process, the
IC 3D method provides quantitative bacterial detection with single-cell sensitivity.

IC 3D combines DNAzyme-based sensors with real-time droplet microencapsulation
and a particle counter. First, blood samples are directly partitioned into billions of
micrometer-sized droplets containing bacteria and a solution containing a fluorescent
DNA sensor. The sensor is a DNA probe conjugated to a fluorescent reporter. Upon
hybridization to the target sequence, the probe is cleaved and generates a fluorescent
signal. Thus, droplets containing bacterial genetic material can be identified by fluo-
rescence. A three-dimensional particle counter is then used to rapidly, robustly, and
accurately quantify the fluorescent droplets containing bacteria (191, 192). The distri-
bution of the blood sample into many small droplets minimizes interference from
components of blood, making it possible to directly detect target bacteria without
sample preparation and purification. In a proof-of-concept study, where blood was
infused with Escherichia coli, the IC 3D method confirmed the presence or absence of
this target bacterium within an hour. Quantitative measurement of the amount of E. coli
bacteria was accomplished in about 3.5 h. In samples containing 1 cell per ml, the assay
detected bacteria about 77% of the time (190).

This technology accomplishes rapid pathogen detection with a small blood volume
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with single-cell sensitivity in a relatively easy-to-use format. Additional probes could be
added to detect antibiotic resistance markers. However, the current system design is
limited by its ability to detect only one bacterial species (e.g., E. coli) per analysis. There
is the potential to expand the sensor set and develop a multiple-wavelength detection
system for the detection of multiple bacteria or pathogens (190). However, the extent
of this expansion would be limited by the small number of fluorescent channels and
would not be able to incorporate the detection of emerging pathogens. Furthermore,
the specificity of this technology has not yet been determined, and this technique has
not yet been validated by using clinical samples. This technology is currently under
commercial development. No cost information is available.

Beyond Rule-Based Decision Support: Power of Electronic Medical Records and
Machine Learning-Based Algorithms

Typically, clinical decision support systems use limited data from patient history to
generate severity scores and early warning signs using rule-based algorithms (194–
197). Recent advances in machine learning further enable improvements to the time-
liness and predictive accuracy of these computerized clinical decision rules. The appli-
cation of powerful algorithms to large clinical data sets enables these technologies to
learn site-specific contexts and novel relationships. As it increasingly becomes clear that
a single biomarker may not have both the sensitivity and specificity to inform treatment
(198), several groups have proposed algorithms that combine optimal subsets of
biomarkers with rich electronic medical record (EMR) data (199–201). For example, a
novel targeted real-time early warning score (TREWScore) predicts the development of
septic shock in adult ICU patients 28 h before clinical onset (202), providing a superior
alternative to the modified early warning score (MEWS) (203). This algorithm uses
supervised machine learning to incorporate continuous sampling of a variety of phys-
iological inputs, including platelets, ratio of blood urea nitrogen (BUN) to creatinine,
arterial pH, temperature, bicarbonate, respiratory rate (RR), white blood cell count,
systolic blood pressure (SBP), heart rate, and heart rate/SBP ratio (shock index). The
TREWScore was developed by training the model with data from 13,000 patients to
achieve an AUC of 0.83 with a sensitivity of 0.84 and a specificity of 0.67 on a validation
set with 3,000 patients. Another recent study used machine learning to identify five
optimal biomarkers for use with EMR data and reported an AUC of 0.81 with 10-fold
cross-validation on 444 hospitalized adults. This study also attempted to stratify the
sepsis syndrome to advance the fundamental understanding of the progression of this
disease (199). Several other groups have demonstrated the validity of such algorithms
in retrospective studies (204–206). However, only a few machine learning-based algo-
rithms have been implemented in prospective studies beyond the development phase
using retrospective chart review. Given this, it is difficult to discuss EMR-based machine
learning algorithms in the light of the characteristics of ideal sepsis diagnostic tests.
Nonetheless, we think that it is worth summarizing two of these promising approaches,
which are under commercial development.

HeRO score. Heart rate characteristics (HRCs) have been used in clinics to provide an
“early warning” of patient distress. Available commercially as the HeRO score algorithm
(Medical Predictive Science Corporation, Charlottesville, VA), this technology uses signal
processing and machine learning to identify subtle irregularities in heart rate variability.
The HRC index used by HeRO was shown to reduce the mortality rate from 10% to 8%
in an industry-sponsored randomized controlled clinical trial of 3,003 VLBW infants
(207). However, the mechanisms for mortality reduction remain unclear. An indepen-
dent, academic study of HRC monitoring in VLBW infants reported a greater utilization
of antibiotics and more sepsis evaluations in a cohort with HRC monitoring than in
controls without monitoring. This study also determined that there were no differences
in the rates of blood culture-positive sepsis or clinically suspected sepsis as a function
of the HeRO index (208). An additional single-center retrospective study reported that
elevated HRC scores had a limited ability to detect bloodstream infection among
neonates in the NICU, emphasizing that HRCs alone may not be adequate (209). Thus,
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HeRO may represent another technology that could provide synergy in an integrated
format with other diagnostic measures. The incremental costs of HRC monitoring are
estimated to be US$2,000 per bed per year, or US$333 per patient, with an average
length of stay for VLBW neonates (K. L. Karvonen, J. Vergales, R. A. Sinkin, and R. J.
Swanson, presented at the Pediatric Academic Societies [PAS] Meeting, San Francisco,
CA, 6 to 9 May 2017).

InSight. InSight (Dascena, Hayward, CA) uses routinely available clinical data to
predict likelihood scores for user-specified outcomes. This algorithm has been validated
for the early prediction of sepsis, severe sepsis, and septic shock in pediatric and adult
populations across multiple centers (210–213). Conveniently, this algorithm requires
only electronic health record data routinely available in clinics, with no need for
continuous waveform data and extensive laboratory tests. This algorithm allows adap-
tation to site-specific data by training the model with baseline data from the proposed
implementation center. It also allows modifications of gold-standard measures to
predict patient conditions, such as in-hospital mortality (212) or patient stability (214).
A recent trial across two surgical ICUs with 142 patients (75 controls) reported a 2.7-day
reduction in the length of stay (P � 0.04) and a 12% reduction in in-hospital mortality
(P � 0.02). Another study, reporting a 4-month experience in a 242-bed acute-care
hospital, demonstrated a reduction in the length of stay of 0.43 days, along with a
reduction in the mortality rate by 60.24% and a reduction in the rate of sepsis-related
30-day readmission, by 50%, postimplementation (215). Across these two studies, the
algorithm score had a sensitivity and a specificity of 0.83 and 0.96, respectively, for
sepsis. For severe sepsis, a sensitivity of 0.85 to 0.9 and a specificity of 0.9 were
observed for adults. This algorithm has also been validated in pediatric patients (n �

11,000), reporting an AUC of 0.72 for predicting sepsis 4 h before onset and an AUC of
0.92 for predicting sepsis at onset (213). These results show promise for the early
detection of sepsis in adult and pediatric patients. However, it remains to be seen if
such methods will be equally successful for the neonatal population, where the
physiology and pathogenesis of sepsis may be slightly different. For an individual ICU
with 50 beds, InSight is predicted to annually save 75 additional lives and reduce
sepsis-related costs by US$560,000 (216).

Machine learning techniques allow for the use of heterogeneous data sets to inform
clinical decisions. The future should see the incorporation of EMR data with broad-
based molecular detection technologies and clinical context to provide a significant
increase in the reliability of these technologies. In this era of large-scale data integra-
tion, combining broad-based molecular techniques with EMR data represents tremen-
dous opportunities for the timely and accurate diagnosis and management of sepsis as
well as gains in insight into human disease mechanisms.

CONCLUSION

An exciting new era of molecular diagnostics for bloodstream infections is emerging
through innovations in sample preparation, single-molecule detection methods, se-
quencing, and applications of machine learning. However, each emerging technology
harbors unique benefits and drawbacks. For example, U-dHRM addresses the challenge
of detecting pathogens in a low blood volume with high sensitivity while resolving
polymicrobial infections, all in a potentially portable format and clinically actionable
time frame. However, sample preparation and handling are still required, which in-
creases the time to detection and may lead to some loss of sensitivity. Likewise,
SeptiCyte provides a robust way to detect whether a pathogen is present based on the
host response and provides this information in a time frame similar to that of U-dHRM
but requires a higher volume of blood and initial sample preparation. The IC 3D
technology is limited in the number of targets that it can detect in a single sample but
is capable of skipping sample preparation entirely to accomplish the simplest and most
direct testing from blood samples. This may be of significant value for rapidly tracking
the spread of individual organisms in the context of outbreaks and hospital-acquired
infections. Furthermore, in the era of big data, advances in the field of machine learning
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can add patient-specific contextual information to each diagnostic test to potentially
increase its sensitivity. The integration of host- and pathogen-targeted diagnostic
technologies and their combination with EMR data sets using machine learning con-
stitute a promising new frontier. Combining diagnostic technologies that build on
distinct approaches could be a rapid way to improve positive and negative predictive
power and truly impact antibiotic usage in the clinic. Together, these emerging
technologies have the potential to identify microorganisms and provide relevant
subspecies and antibiotic resistance information in a clinically relevant time frame that
is much shorter than that currently required for blood culture. Such an integrated
approach may overcome the limitations of each technology individually to facilitate
targeted and precise antibiotic use.
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