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Abstract

As part of the code development and modcling work being carried out to character- |
" ize the flow m the unsaturated zone at 'Yucca Mountain, Nevada, capilliu'y hysteresis
models simulating the history-dependence of the characteristic curves have been
developed. The objecti\}e of the work has been both to develop the hysteresis models, as
well as to obtain some preliminary estimates of the possible hysteresis effects in the frac-

tﬁred rocks at Yucca Mountain given the limitations of prescntly'vavailablc data.

Altogether three different models were developed based on work‘ of other investvigab- _
tors reported in the literature. In these three models'diffcfent prihciples are used for
detefmining the scanning paths: in model (1) the scanning paths are interpolated from
tabulated first-order scanning curves, in model (2) simple interpolation functions are used
for scaling the scanning paths from the expressions of the main wetting and main drying
curves and in model (3) the scanning paths are determined from expressions deﬁ&ed_
bésed on the dependent domain theory of hysteresis. |
These models were interfaced with va numerical simulator for.unsatux.'atcd flow
v‘(TOUGH (Transport of Unsaturated Groundwater and Heat) Pruess, 1986) and prelim-
inary simulations were carried out. A system consisting of discrete fractures and rock
matrix parts was simulated under periodically occurring infiltration pulses. Comparisbns
were made betwccfl the procc,ss taking place along the main'drying curve alone and the
- hysteretic cases.- Material properties uscd.ncpn:sen't values reported for the densely
welded fuffs at Yucca Mountain, Nevada. The nécessafy data were derived bas\cd on
informatioﬁ available in the soils literature because no actual hysteresis measurements
are available for the welded tuffs. The results showed a Stmngly hysteretic behavior near
the land surface. This together with the overall weaker matrix capillary suctions gen-
‘erated higher fracture flows in the hysteretic case. Both the fractures and the matﬁx were

affected to greater depths. In the non-hysteretic case the wetting front was sharper but
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the influence was not felt as déep as ‘in the hysteretic case. Using the theoretically
derived hysteresis model (3) and assuming a heavy rair;fall every ten years, after 20 years
the pulse had penetrated about 1 m deeper in the hysteretic case than in the non-
hysteretic case and the largest local difference in matrix liquid saturation was appfoxi-

mately four percent.

Based 6n the results presented in this report some recommendations for the future
use of the three hysteresis models can also be given. When hysteretic processes with
reversals only up to first-order scanning are to be carried out, use of model (1) is recom-
mended because of the ease with which any data can be incorporated into this model.
Due 1o the fact that this type of model is poor in predicting second and higher order scan-
i ning curves and can thus-yield erroneous results for systems with multiple reversals, we
do not recommend the use of model (1) for such cases. If‘multiplc reversals are to be
modeled and measured scanning curve data are available, use of model (2) is recom-
mended since this model can be calibrated to fit measured data. Finally, if estimates of
hysteresis effects need to be .obtaincd without measured scanning curve data, use of
model (3) is probably most jusﬁﬁed, because the derivation of this model is based on the

theory of hysteresis and should consequently be soil-independent.

LY
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1.0. INTRODUCTION

- The unsaturated zone at Yucca Mountain, Nevada is being considered as a potential
site for storage of nuclear waste. Both field work and theoretical studies are being con-
ducted to characterize the fracture and rock matrix properties at the site and to under-

stand the fluid flow within the system. At present, work is being carried out to develop

. tools to design and analyze several large-scale field tests planncd for the near future.

As part of this work we have developed three capillary hysteresis models that simu-
late the history dependence of the characteristic curves. The objective of our.work has

been two fold: (1) to develop hysteresis models for the systéms encountered at.Yucca

| Mountain, and to interface the models with unsaturated fluid flow simulators, and (2) to

obtain prelimina;y estimates of the possible hysteresis effects in the fractured rocks at

Yucca Mountain within the limitations of presently availabie data.

In our work we started w1th ab concéptually simple hystéresis model (Niemi and
Bodvarsson, 1987; Niemi et al. 1987) and proceeded to more sophisticated ones. Alto-

gether, three different models were developed based on models reported in the literature.

- The models were incorporated into the numerical simulator TOUGH.(T ransport of Unsa-

turated Groundwater and Heat) (Pruess, 1986) and their performance was tested in realis-
tic simulations. B | - |

The mOdcls, as well as the results of the Simulatiohs conducted are présented in this
report. Based on the results obtéincd; recommendation.sb for the future use of the three

modcls is given.
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2.0. BACKGROUND ON HYSTERESIS

Capillary pressure (y) - liquid saturation (S) relation for unsaturated flow is usually
described by a single-valued function of the form y = y(S), in which each liquid satura-
tion value corresponds to only one c:\apillary pressure value. Hystefesis causes this rela-
tion to become history-dependent and one liquid saturation can correspond to any of the
capillary pressures faliing within the hysteresis envelope defined by the so—éallcd main
wetting and main drying curves. Which one of these values is the correct one for a giVen
situation, depends on the previous wetting/drying history of the system, or, more
specifically, on the hysteretic j)éth along which the system has previously been wetting
- and/or d.rying._ | o |

A hypothetical example of hysteretic data consisting of the main wetting and main
- drying curves i§ shown in Figure 1 (solid lines). A main drying curve is a curve along

which the process takes place if the Sys'tem' is continuously drying from a fully saturated
state. A main wetﬁng curve is a curve 'aJon.g which the process takes place in case of
continuous wetting from the residual saturation. If the systém, while drying along the
main drying curve, begins to rewet, the process stan§ to follow a so-called first-order
(wetting) scanning curve. Similarly, reversals from the main wetting curve are followed
by scanning along first-order (drying) scanning .éurvcs. Subsequent reversals ﬁom first-
order curves are followed by scanning Along second-order curves, reversals from the
secbnd-order curves by scanning along third-order curves and so on. Exazﬁples of hys-

teretic paths with multiple revérsal_s are also shown in Figure 1.

- A hysteretic path generated by, for example, a first-order and a second-order curve.
or by a second-order and a third-order curve always tends to close forming a looplike
“path. In other words, a second-order curve converges‘to_wardS the ’poirvn were the first-

order curve diverted.from. the main boundary curve; similarly a third-order curve con-
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verges towards the point where the secoﬁd-ordcr curve diverted from the ﬁrst-o:der curve
and so on (e.g. Banerjee and WatSori, 1984 and Parker and Lenhard, 1988). The ‘‘clos-
ing”’ 'property‘ of hysteresis loops is not enforced in many of the hysteresis models that
have been published. * The error that can be generated, when the closing is not
demanded is known in the hysteresis literature asv the *‘pumping effect,” (Klute and
Hccrmann; 1974 and Jaynes, 19842. An exémple of this kind»of crronébus result is

shown in Figure 2.

2.1. Measurements

Hysteresis in unsaturated porous medium has previously been studied using materi-
~ als with relatively weak capillary pressures such as sand, class beads, clay and loams
(Poulovassilis and Childs, 1971; Klute and Hccrrhann, 1974;.Mualem, 1974; Cary, 1975;
Dane and Wierenga, 1975; Lees and Watson, 1975; Mualcfn and Dagan, 1975; Poﬁlovas- |

silis and Tzimas, .197;; Perrens and Watson, 1977; Bancrjeé and Watson, 1984 and
| Curtis and Watson, 1984). All of these materials have significantly weaker capillary

pressurés than the welded tuffs encountered at Yucca Mountain, for which capillary pres-

sures of tens of bars have been measured.

Daily et al. (1987) conducted wetting/drying experiments with a fractured tuff sam-
ple at different temperatunes and atmbuted the irreversibility of thc dehydration /rehydra-
tion processes to hysteresis. Howcver, quantitative estimates of the possible hystcrcsxs

effects in the fracture or in the matrix have not been derived.

The presence of hystercsis in the capillary pressure-water content (y = y(6)) rela-
tion, .or cquivalently, in the capillary pressure-liquid saturation (y = y(S)) relation, as well
as in the relative permeability-capillafy pressure (ky = ky (y)) relation is well established
for many materials. There is, however, disagmcmcht about whether there is significant
hysfercs_is in the relative permeability-liquid saturation relation. After reviewing related
" measurements Pickens and Giltham (1980) concluded that the majority of published data

seems to indicate that the relation k,, =k, (S) can be assumed to be non-hyétcretic for all
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Figure 2. Example of the ‘‘pumping effect’’ (Klute and Heermann, 1974 and Jaynes, 1984).
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'Related measurements or discussions. are piesentcd by pop and Miller (1966),
Topp (1969); Topp (1971), Vachaud and.Thony (1971), Poulovass_ilis and Tzimas (1975),
Gillham et al. (1976), Mualem (1976), Aggelides and Youngs (1978), Pickens and Gill-
ham (1980), and Kool and Parker (1987). |

2.2, Models |
The capillary hysteresis fnodcls reported in ‘thc literature can be categorized into
 three groups: o ' | |
(1) | Intcrpolétivc models.
(2) Models eniplbying empirical closed-formed expressions.

(3) Models based on the domain theory of hysteresis.

In the interpoiative models, the main boundary and the ﬁrét-ordér scanning curves .
are given in tabulated form All values inside the mam envelope (region defined by the
main - wetting and main drymg curves) are determined from the - tabulated ﬁrst-ordcr
curves through interpolation. In doing so it is assumed that second- and higher-order
scanning curves can be approximated from the ﬁrst-ordcr curves. This method has been
used by Whisler and Watson (1969), Wa_tSon and Perrens (1973), Curtis (1977); Perrens
and Watson (1977) and Curtis and Watson (1984).

Dane and Wierenga (1975), Killough (1976), Hoa,et al. (1977), Pickens and Gill-
ham (1980), Scott et al. (1983), and_ Kool imd-Parkcr (1987) havé used_closcd-form
expressions to calculate the scanning cufvés. Most of these modcls;' are developed for a
speciﬁc soil and do not claim. general validity, although in some cases their predictions
are tested with différént soils.

~ The dbmain models are based dn théoreti'ca] rcpresentatioh of capillary hysteresis.
* Accordin g to the domain theory, the total volume of pores in the soil can be divided into

subvolumes (domains) each of ‘which has a characteristic wetting and drying pore radii
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(or is characterized by a pair of capillary pressure intervals A¢p and A¢w at which the
domain drains and rewets). The distribution of these domains, expressed m tcfms of dié-
tributibon_ functions, determines the hysteretic béhavior of the soil. Domain models éan be
~ divided into two groups: -'Models treating ﬂw pores as independent of the neighboring
pores are called indepcndént domain models and models which attempt tb take into
account the influence of the neighboring pores are called dependent domain models.
Domain models have been developed by Poulovassilis (1962) Poulovassilis and Childs
-(1971), Topp .(1971),_ Mualem (1974); Mualem and Dagan (1975), Lees and Wgtson
‘(1975), Poulovassilis and Tzimas (1975), Mualem (1976), Banerjee and Watson (1984),
and Mualem,(1984), among others. |

In comparison with thé other mcthbds,‘ the most sophisticated dependent domain
inodels are probably the mdst acburatc in predicting scanning curves for different media
(see, for example, Kool »an'd Parker, 1987); However, the accuracy of these models (for '
examp.lc, models of Mualem and Dagan (1975) and Ba_nerjec and Watson (1984)) is
achieved by using considerabic amounts of data for calibration (data of ﬁrétéorder scan-
ning curves is also needed). The formulation as well as cbrhputational aspects of ;llesc
" models are also more complicated. The modified dependent domain model of Mualem
(1984) requires only the main wetting and drying curveé fdr calibration. Howéver,'only

expressions for the first- and second-order scanning curves are given in this work.



* 3.0. DEVELOPMENT OF HYSTERESIS MODELS USED

" For our work we vdevelbp;d modeling -capa‘bilitics for three different modéls
describing the hysteretic capillary pressure-liquid saturation félation. Based on the litera-
mfe cited, the relative permeability-liquid saturation relation was assumed non-hystcmﬁc
for each model. In the numerical algoﬁthms capillary pressure is computed as a function
of liquid saturation from the appropriate scanning curve, or, in special cases, the -
appropriate b'oundary éurvc. The equation of the appropriate curve for a given timestep
is determined for each numerical element based oh the previous wetting/drying history.
~ Given the type of path element followed during the previous ﬁtﬁcstéps, along with infor-
mation as to whether the liquid saturation is increasing or decreasing; the program deter-
mines the type of path at the current timestep. If the same curve is used as in the previ-
ous timestep, the exact location of the path is known and the capillary pressure can be
determined. If a reversal from the previous curve is takmg placé, the equation of the new
path must be determined ﬁrsp '_I'his is done by assuming that the point of revérsal is

located at the solution point at the end of the previous tiniestcp.

3.1. Interpolation from First-Order Scanning Curves (model (1)) |

In the first hysteresis model, (model (1)) the interpolation nicthod is used. Tabu- |
lated data on boundary curves and first-order scanning curves are input and used for
interpolation. When a reversal from the previous wetting or drying curve occurs, the pro-v
gram finds the interval in which the turning pomt falls and solves the equation of the néw
scanning curve through interpolation between the tabulated curves of correct type below
and above the turning point. A éomplcte description of this"modeI and instructions for
incorporation into a nufneri;:al flow simulator are given m Niemi and Bodvarsson (1987)

and Niemi et al. (1987).
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The interpolation method was chosen for its conceptual simplicity and the fact that

any kind of experimental data can be easily incorporated into the model.

The major weakness of the interpolation method is that the hcl'osing of the hysteretic
loops is not enforced. With frequent reversals from vtblctting‘ to drymg and vice versa,
approximation of the higher-brder scanning curves through the first-order scanning -
curves can produce an crronéous “pumping effect’’ (Figure 2). If the wetting and drying
periods are short, the highei‘-ordcr scanning curves do not nécéssarily produce loop-like
paths such as those shown m Figure 1. This phenomenon, which has been dcmonsuatéd :
by Klute and Heermann (1974) and Jaynes (1984) is not limited to interpolation models,
but can occur with all the models for which closing of the hysteresis loops is not
required. According to Banerjec and Watson (1984), this type of method should not be -
used when frequent reversals ﬁom wetting to drying or vice vérsa are modeled. Perrens
and Watson (1977) also refer to this limitation, but éoncludc that the approach gcnerélly

describes most redistribution events with sufficient accuracy.

3.2. Empirical Model Using Interpolation Functions (Model (2))

The second model, which was based on the work of Killough (1976), uses simple
interpolation functions for determining the séanning pathsv as functions of the capillary
pressures on the main wetting and drying curves. Expressions for the main wetting and

' main drying curves need to be known.

The equations of the scanning paths are chosen such that the hysteretic path always

tends to close at the original pbint of reversal on the limiting boundary curve. vThi,s
prevents pnmping effects. The first-order scanning curves are assumed to converge
towards the maximum attainable saturation in the case of wetting scanning, or towards
the residual saturation in the case of drying scanning. After a reversal from these curves,
the equations for the second-order scanning curves are determined by assuming that the

curves converge towards the original point of reversal on the main boundary curve.
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The capillary pressures on a wetting scanning curve are determined from

YO =v®-F [V -y O] e
 where E | ' '
y; = capillary pressure on the main drying curve
V. = capillary pressure on the main wetting curve
'S = liquid saturation
‘and :
1 1
S=Sygp+€ €
F= s I ' | (1b)
—1 1 '
Su—Septe €
where '
S4ep = departure point saturation
Se = asymptotic saturation
€¢ = curvature coefficient

-

Equations (1a) and (1b) (Killough, 1976) are valid for both first- and second-orc_lcr wet-
ting scanning curves. In the case of first-order wetting scanning (curve 2 in Figure 3), the
departure saturation is the actual reversal point saturation _SDEPI and thc_' asymptotic
saturation is eqﬁal to the maximum attainable saturation SMAX (Figure 3). In the case
of second-order wetting-scanning (curve 4 in Figure 3), departure saturation is equal to
the saturation at an imaginary reversal point (point SDEP* in Figure 3). The ipcation of
the imaginary poim is’ determined based on the assumption that the wetting-scanning and
drying-scanning curves (curves 4 and 3, respectively in Figure 3) must vintcrsect at the
- turning point (point A). The asymptotic saturation for a second-order scanning curve 'vis

the saturation of the ongma.l pomt of reversal (pomt SDEP2 in Figure 3)

For drying- scanmng the capillary pressurcs are determmcd from:

VO=w O+F [W®-wE] e

. where
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For first-order drying scanning curves (curve 3 in Figure 3) the departure saturation is
again the actual departure point saturation (SDEP2 in Figﬁre' 3) and the a;ymptoﬁc
' saturation is thé residual saturation_ (SWR in Figure 3). For second-order scanning (curve
1) in.Figure 3) the values to be used are the nnagmary reversal saturation .(SDEP"‘* m
Figure 3) and theb s_aturatidn at the original point of reversal on the main drying curve
(SDEPI in Figure 3). | '
Examination of Equations 1b and 2b shows that increasing the value of € decrcéses |
the curvatre of the scanning curve. For examplc. in the case of Equation 1b F is
inversely prbpdrﬁonal to liquid saturation ‘.S, thus yielding sironget curv#tures near the
point of reversal. With the value e=0 the'dcbendencc is strongest and iricreasing the
' Vaiuc of € weakens this invefse depéndencc thus_yielding scanning f:urvcs with less cur-
vature. - | |
The modé] éan be adjusted to fit measured scénning curve data by varying the cur-
vature coefficient €. Killough (1976) developed the model for three-phase petroleum
reservoirs and reported values of € in the range of 0.05 to 0.1 for his data. Since the
‘model is empirical in nature it should be calibrated using some measured 'scanningb curve
data. | | |
Capillary pressures on-the main wetting and drying curves, which are used in Equa-
tions (1) and (2), can be computed for example by using closed-form van Genuchten
- expressions: | |

. _1 Stmax—Smin to e ' .
W——(;H S—Smin ] : —1} o ®

where
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Spmax = maximum liquid' saturation

Sin residual liquid saturation
o,m,n = van Genuchten parameters

The higher-order scanning curves are treated in the model in a sixﬁple manner suggested
by Killqugh (1976); if a reversal from sccond~brdcr to third-order scanning takes place,
~ the scanning returns to the original ﬁrst-ofdcr scanning curve and nd separéte expre'ssi_on
is used for the third-order curves. Consequently the following fourth-order curves are
combuted és sécond-drder curves converging towards the point of reversal on the main
boundary curve. This i§ a siniplifying assumption, since the true third-order scanning
path would rather lie between the first- and second-order curves and converge towards
the intersection point of these curves and the true fourth-order curve would lie between
the third- and second-order curve converging towards the intersection of these two éurves .
(see Figure 1). This assumption, however, preserves the simplicity of the model without
generating significant errors. The inaccuracies generated are of much smaller magnitude
. than the “pumping” effects discussed earlier. If scparate cXpressions were given for the
third- and fourth-order curves, Equations (1) and (2) could be used by choosing the rever-
sal and asymptotic values appropriately and by using the first- and second-order curves
for “‘scaling’’ instead of _thcvt‘n_ain boundary curves used above. -By doing so, however,
the amount of ‘‘history’’ information to be stored as well as the computational effort
‘needed for obtaining a value on a higher order curve becomes prohibitively large. The
| gained increase in accuracy doés not necessarily justify this inéreasc in complexity. The
simplifying assumption used will be discussed further later in this report, when the

results of some simulations are examined.

3.3. Model Using the Dependent Domain Theory (Model (3)) ,

-~ The third model was modified from the dependent domain model of Mualem
(1984). Unlike the two previous models the domain models are derived based on theoret-

‘ical presentation of hysteresis and should therefore be independent of soil type.' Also,
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based on results of comparison studies between model predictions and experimental
measurements, the dependent domﬁin models have probably proven to be the most accu-
rate of the available hysteresis models in predicting scanning curves for different media
| (see, for example, Kool and Pafkef, 1987).

Also for this model the expressions of the main-wetting and drying curves need to
be icnown. We compute these as continuous van Genuchten expressions of the form of l
Equation (3). The expressions for the scanning curves are computed internally based on
the dependent domain theory. Unlike in the case of model (2) no calibration factor is

used in the expressions.
For the first-order wetting scanning curve the following relation is used:

[Smax - Sd(‘l’l)] )

S=Syy)+ [Sumx = SuC¥)] [SwCW) — Sul¥)] @

_  [Smax = Sw(yD? |
where
S = liquid saturation on the scanning curve
S¢ = liquid saturation on the main drying curve
Sw = liquid saturation on the main wetting curve

v, = caplllary pressure at the pomt of reversal from the main drymg
curve to the first-order wetting scanning.

In the numerical flow simulator used in our studies (TOUGH; Pruess, 1986) liquid satura-
tion is Solved as one of the three ‘‘primary’’ variables and capillary pressures are solved
as “Secondary” variables as a function of S. Because of this,‘we use Equation (4) for
solving for S,(y), which is the only unknown in the expression, if S is knowﬁ. Maximum
liquid saturation S, is an input parameter, révers_al capi]lary pressure v, is saved when
the reversal takes place, and S4(y;) and S, (y;) can be solved from the expressions for the -
main drying and wetting curves. Once S«(v) is solved the corresponding y can be solved

from the equation of the main wetting curve. The parameters in Equation (4) are shown

in Figure 4.

For the second-order drying scanning curve the expression is
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S =§( 2)- [Smax = Sw(¥)] [Sw(\llz) S (¥))

[Smn Sw(¥H?

where

. S(y)= liquid saturation at the point of reversal from first-order "
o wetting scanning to second-order drying scanning

y, = capillary pressure at point of reversal from first-order
wetting scanning to second-order drying scanning

y* = capillary pressure for which S4(y*) =S.

Again, the only unknown in Equation (5) is Sw(\y) Reversal values S(y) and v, are

saved when the reversal takes place; thus, ,,(\y;) can also be determined. Capillary pres-

sure y* can be solved from the expression for the main drying curve as a function of S.
S;(w) can then be solved from Equation (5), with the resulting parabolic equation yield-
ing two solutions for Sy(y). With the aid of simple algebra it-cz«in be shown that only one
: of the solutions is sméllcr than S.(y) and'the cqhation thus yields only one meahingful
value for Sw(y)- Once S, (y) is known, capillary pressure can again be solved from the

expresswn of the main wetting curve (Flgure 4).

Mualem (1984) o‘nly _glvesv expressions for the first- and second-order scanning
curves. For our simulatioﬁs additional expre's.sions are needed for higher-order scanning
curves. As discﬁssed edrlier, the basic concepts of hysteresis require the higher-order
scanning curves to have shapes that allow the hystcrcsis loops at each level to close. If,
for example, the system begins to rewet, while drying aiong a second-order drying curve,
the wetting will take place ﬂong a thirdbrder wetting curve that converges toWards the
revcrsa;l'poiht from first-order wetting to sccoxid-order drying. If this rcvcrsal‘point is
reached and the system continues tb wet, the process follows the original first-order wet-
ting §canning curve and “forgets;_’ _thé previous higher-order curves. If, instead, the sys-
tefxﬁ begins to dry bcfore reaching this convergence point, the pfocess follows a fourth-
order drying scanning curve that converges towards the reversal point from second-order

drying to third-order wetting. As the order of the scanning curve gets higher, the width

-of the envelope becomes narrower and refining the process vbcyond the third-order éurve_s‘

= Sa(yM)] )
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is probably not meaningful (Parker and Lenhard, 1988).

In order to mamtam the simplicity of our model without significant loss of accuracy,
we approximatcd the third- and higher-order . scanning curves as log-straight lines
between the latest reversal point and the correct ‘point of convergénce. ' This
simplification was considered reasonable in the light of the results of Jaynes (1984). He
compared four different hystéfesis models and concluded that the entire process from |
first-order scanning curves on, could be presented with straight lines with reasonable
accuracy (ﬁnear hysteresis model), and recommended the use of this type of model over

more complicated ones due to its simplicity.



4.1, System Modeled
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4.0. TEST SIMULATIONS WITH MODELS (1) AND (2)

~ As a first step, simulations were carried out to test the performance of hysteresis
models (1) and (2) with realistic ma_térial properties. For this purpose a very simpliﬁcd

fracture-matrix system was modeled.

-~

The system modeled is shown in Figure 5a. A matrix *‘slice”” discretized with a
MINC-type (Mulﬁpl; Interacting Continua) mesh (Pruess, 1983) is assumed to be sur- |
roundcd by fractures on all four sides. Our interest is to examine the matrix response
under altemating Wctting/dfying conditions; thé fractures.aré treated as vaﬂable boun-

dary conditions for the matrix. During the wetting periods the fractures are assigned a

constant ‘*high”’ liquid saturation representing a rainy period; during the drying period

| they are assigned a constant ‘‘low’’ saturation representing a dry pcridd. Assuming that

durihg pulse infiltration conditions all incomjng flow will go initially into the fractures,
and assuming that the flow in the fractures is due to gravity alone, a ﬁrst-ofder estiniatc
for frécture liquid saturation near the land surface for given fracture properties and given
flux can be obiained .through Darcy’s law. The value ’of liquid saturation computed in
this manner was used as the wetting pexfiod fracture liquid saturation. During the drying |
periods, fracture liquid saturations are assumed to be -f‘O(l X 1_0‘5). It should.be noted
that by doing so we assume instantaneous changes (from wettiﬁg to drying and vice
vérsa) in the fracture saturations. We also ignore the amount of ‘Watcr lost frbm fraétures
into the matrix. Howevcr,» since the objcétive -bf these first simulations is‘to test the

model perfdrmance rather than to obtain reliable estimates of hysteresis effects, errors

- generated by these assumptions are not relevant.

The material properties used are summarized in Table 1. The hysteresis data for
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Element Element
number width in
: meters

DONHLWN -2

XBL 8612-12789

- Figure 5a. Discretized flow region used in the test simulations.
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'Téble 1. Parameters used in the test problgm‘

Matrix

(1) Non-hysteretic

(2) hysteretic; Model #1 -

Parameter Fracture®
" Absolute Permeability . -
-horizontal 2.0x 10712 24x107®
-vertical 2.0x 10710 24x10718
Relative Permeability | -k, = S}% k; = 10°696 (50r§,50.507)
Capillary Pressure '

vy =0.0134 2! (bars)

v =0.0134 $2! (bars)

' Tabulated mam wetting curve in

Figure S. :
Hysteresis data in Figure 5.

(3) hysteretic; Model #2 v =0.0134 2! (bars) Main wetting and
e S . ** drying curves ® in Figure 5;€=0.05
Porosity 1.00 0.12
Aperture? .0.1mm
Licuid Saturation ' 0.0049 during wetting* uniform initial liquid saturation
1quic Saturation 1 x 10”5 during drying of 0.71
Notes:

1. Source Rulon etal. (1986) v
2. Fracture parameters are on]y used for determining the wetting period fracture hqmd saturation.

3. Corresponds to an air entry value of 0.0134 bars if determined from the capillary rise equation

ba'=_21

where ¥, mterfacxa] tensxon of water, =0.07 kg/s?, 8 = apemn'e (m)

4. Corresponds to=0.2 mm/yr infiltration concentrated into a three- momh penod assummg that all
" water goes into fractures and is transported by gravity forces alone.

5. Continuous van Genucten (1980) expressions (Equation 3) with;

for main drying: S_,,=0.984, S
- for main wetting: S_,,=1, S,

min=0.318,m=0.671, n=3.040, o= 1.147 bar™
=0.002, m=0.358, n=1.558, a=8.4 x 10 2bar™!
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this set of simulations were generated by using the matrix characteristic curve for the
welded units reported by Rulon et al. (1986) as the main wetting curve. The curves for
these units fepbrted by Klavetter and Peters (1986) are used as the basis for the main dry-

ing curve. The resulting data are shown in Figure 5b.

4.2, Simulaﬁons ahd Results

Three sets of simulations were carried out. In the first set, non-hysteretic matrix
capillary pressure-liquid saturation relation was assumed. The non-hysteretic process
followed the curve specified as the main wetting curve in Figure 5b. For the second set
of simulations model (1) was used, and in the third set model (2) was used. Wetting
periods com§ponding to an infiltration of 0.2 mrh/yr concentrated into three-month wet-
ting periods were assumed to last for three months, after which a' nine-month drying

period followed. The cycle was rtpeated five times.

The simulated hysteretic sca:iniﬁg paths for one matrix element obtained with
models (1) and (2) are shown in Figures 6a and 6b, respectively. The cormresponding
non-hysteretic process took place along the main wetting curve. As can be seen from the
figure, model (1) produces a ‘‘pumping’’ effect between the first and second cycles. This
is a result of both the structure of the model and the coarsenéss with which the main wet-
ting curve is tabulated in the region of question (the main wetring- curvcris approximated
as log-straight lines between tabulated values rather than as a continuous line as in model

(2)). After the first cycle the predictions of the two hysteretic models are very similar.

The simulated matrix liquid saturation and capillary pressure distributions during
the fifth yéar are shown in Figure 7. As can be seen, the non-hysteretic casé and the two
hysteretic cases differ significantly while the predictions of the two hysteretic cases are
very similar (their differences are not resolved in Figure 7 except for the liquid satura-

tions at the end of the drying period).

The big difference between the non-hysteretic and the two hysteretic cases can be



Figure 5b. Hypothetical hystéresis data used in the test simulations
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easily explained through Figures 6a and 6b. In thé hysteretic cases the system is shifted
into considerably higher liquid saturation range than in the non-hysterctié case, where .thc
process occurs along the main wetting curve. The higher liquid saturations correspond to
higher relative permeabilities and more mobile fluid. Consé'quently, the matrix response
to variations in the fracture is faster aﬁd equiﬁbﬁum with the fracture is reached faster in
the ﬁ‘ysteretic cases. The overall values in liquid saturation are also very different (Fig-
ure 7). However, it should be emphasized that because of the highly hypothetical nature
of the hysteresis data used, no quantitative estimates .of the possible hysteresis effects
should be made based on these results. As will be discussed later in t.‘ms report, data from
soils literature indicate that the ratio of the o—parameters in the van Genuchten expression
between the main drying and wetting curves is generally on the order of Olwenting/Odrying = 2.
For the data in Figure 5b this ratio is = 13, whi;:h coﬁ'cspor;ds to a very wide hysteresis

envelope. In the simulations presented later in this report, with which we actually

wanted to obtain estimates of possible hysteresis effects, ratios of = 2 were used.
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5.0. CAPILLARY HYSTERESIS._ SIMULATIONS FOR FRACTURED ROCK
UNDER VARIABLE INFILTRATION CONDITIONS '

- In the simulations presented here we examine infiltration pulse penetration in an
idealized fractured rock system. The system was chosen to represent conditions similar
to those thought to be present in the welded units at Yucca Mountain within the limita-:
tions of available data at the present time. | |

Pulsc penetration vs'ithin the unsaturated zone at Yucca Mountain has been previ-
ously s‘tudied by Wang and Narasimhan (1986). Their study was carried out without con-
sidering hysteresis effects. a |

In our .work we studiéd the systém both -with and without .hystcncsis. Hysteresis
effects are likely to be more pronounced in matrix flow than in fracture ﬂpw (Montazer
and Wilson, 1984). Therefore, in our studies hysteresis was only considered for the
matrix flow; flow in the fractures was assumed non-hysteretic. All three hysteresis "~
models were used and their results were compared with each other and with the non-

hysteresis case.’

§.1. System Modeled

The fracture-matrix model used was idealized as consisting of discrete vertical frac-
tures 'and matrix columns. 'Acco\rding to Wang ahd Nérasimhan (1985), the presence of
horizontal fractures does not significantly afféct the vertical fluid flow for conditions
| similar to those used in this study. :I'herefore, the horizontal fractures were not included-
in our model and a system consisting of a matrix column bounded by four onhogoﬁal
. vertical fractures was modelcd. In the horizontal plane the the matrix was discretized
' uSing a MINC—type mesh (Pruess, 1983) with element width increasing with distance

from the fracture. The mesh used is shown in Figure 8.
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Mcfrix 0.6 08 —

Fracture 66\
X, /4 7/

1S m

horizontal discretization (m):
0.0001 (fracture),0.001,0.005,0.01,0.05,0.1,0.268

vertical discretization (m): v
3x0.5,3x0.833, 3 x1.333,3x2.333

Figure 8. Discretized fracture-matrix system used in the studies.
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Table 2. Parameter values used in the simulations.

Matrix

e porosity ' - ¢m=".l2' o
e absolute permeability ky=39-10"18m?

e capillary pressure

-*non-hysteretic; Curve (1) in Figure 9.

Shysteretic, Models #1 and #2; data shown in Figure 10.

~ -2hysteretic Model #3; main drying and main wetting curves

- eliquid saturation

Curves (1) and (3) in Figure 9.
o relative permeability® : SSun |2 S-Sm 1712
: | ky=|e—a—| {1-|1-|c—c—
- Smax=Smin v smn‘ min
Initial Conditions
e capillary pressures Y = -.968 bars -
e liquid saturation S, =.691
Fracture
e aperture* &=.lmm
® porosity o= 1.
e spacing - D=.60m
¢ absolute permeability
per fracture® ke=8.33-10710m?
e relative permeability - kg =S/9%
o capillary pressure - y;=.0134 - ;4! bars
Initial Conditions
o capillary pressure® V = -.968 bars
S =.164- 1073

Notes:

1. Source Rulon et al. (1986), unless otherwise indicated.

2. van Genuchten parameters (Eq. 3): Sp..
Olirying = Onoryn = 1.147 1/bar (all after Rulon et al. (1986) and Osreriing = = 2.294 1/bar (see Section

5.2).

= 0984, S = 0318, m = 0.671, n = 3.040,

3. van Genuchu:n parameters (Eq. 3). for main drying curve as in (2) and for main wetting curve
Smax = -89, Sin =.2,m=.6,n=2.5, & = 2.5 1/bar (see Section 5.2 for explanation).

4. Fracture aperture approximately corresponds to the air entry value = 00134 bar through the -

capillary rise equation (see Table 1).
5. Permeability determined from cubic law; k; = &)y12.
6. Assuming capillary pressure equilibrium between the fracture and the matrix.

- e m e e
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y
The material properties used are summarized in Table 2. They cdrrespond.to values
reported‘for the welded units at Yucca Mountain by Rulon et al. (1986), with the excep-
 tion of the hysteresis data for the matrix, which is discussed in a later section. The frac-
ture properties were obtained by using a parallel plate model (see, for example, Witherf |
spoon et al., 1980) along with the theofetically derived fracture characteristic curves
reported for the Welded units by Rulon et al. (1986). |
For the matrix, an initial liquid saturation of 0.69 was used. The initial liquid
saturation for the fractures was obta.ined “by assuming capillary pressure equilibrium
" between the fractures and the matrix. With these initial conditions and the material pro-
perties shown in Table 2, steady state flow through the matrix is about 0.1 mm/yr and the
flow through the fracture is-about 5% of the matrix flow rate. For the lower boundary a
constant preseure boundary condition was 'speciﬁed, which allowed for a liquid outflow
. corresponding io the background liquid flux. The mesh was ‘sufﬁciently large that thel
pulse effecfs did not reach this boundary. Using symmetry considemﬁons, no-flow boun-
dary conditions were specified at the sides of the system (assuming uniform fracture
spacing). For the upper boundary a varying flux boundary condition was used to
represent the penodxcally varying infiltration.

An intense rain period was assumed to take place every 10 years. For each 10-year
cycle a pulse infiltration corresponding to 1 mm/yr precipitation for 10 years, concen-
trated in a 3-month period (1 mm/yr x 10 yr/.25 yr = 40 mm/yr) was introduced for 3
months. During the rest of the cycle (9.75 yrs) only the constant background inﬁltrati_on
rate of 0.1 mm/yr was applied. This cycle was repeated twice. Based on the discussions _
of Beven and Germann (1982) and Wang and Narasimhan (1985) the macropore (frac-
ture) flow is initiated when the infiltration exceeds the matrix capacity (amount on flow
through a fully saturated matrix). In our study the saturated matrix capaeity is 1.2
mm/yr; thus, the flow exceeding the background infiltration of 0.1 mm/yr was introduced

directly into the fractures.
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The problem was first solved by assuming a non-hysteretic y = y(S) relation. For

- this case the process was assumed to occur along the curve used as the main drying curve

for all the hysteresis simulations. These results were then used, as a base case against
which the results from the hysteresis simulations could be compared. One set of simula-
tions was carried out with a smaller pulse and a oné-year cycle. Some of the parameter

values used in this set of simulations were different from those described above. -

5.2. Hysteresis Data

For each of the hysteresis models used the expressions for the main drying and main
wetting curves must be known. For model (1) the ﬁrst-order scanning curves also need to

be known. Models (2) and (3) generate these cxpfessioné internally. At present, limited

moisture-retention data are available for the welded tuffs at Yucca Mountain. These data _

‘have been used to simulate water migration through the system (Rulbn et al., 1986).
Using these data as our main drying curve (curve (1) in Figure 9), _the expression for the
main wetting curve was predicted by using available information from soil literature.
Based on theoretical models Mualem (1.977) has derived two simple formulas:
(model I and model II) for the pfédiction of the i'clationshipvbctween the main wetting
and main drying curves. When one of the curves is known, the other can be predictéd

'using those expressions. For model I the relation is given by

. , . Gd(\y) =2[0pax ew(w)]lfl -0,y | ‘ _ ©6)

and for model II :
o [on

04(Y) =2 - Bmax — Bu(W)]'2 - [ﬁ]

o (D

- where 6 is normalized with respect to the residual water content, -

s = normalized water content on the main drying curve
6, = normalized water content on the main wetting curve
normalized maximum water content o

e e b et R
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Using these expressions along with the equation of the main drying curve, we get two
predictions for the main wetting curve. These are shown as curve (4) (model I) and curve
(2) (model TI) in Figure 9. | -

Expressibns (6) and (7) are derived based on independent domain models using the
so-called extended similarity hypothesis, and should ideally be vaiid for all soils. 'Ihc _
difference between the two models is the pore domain distribution diagram used in their
derivations: the Neél» diagram (Mualem, 1977) wés used for model (I) and the Mualem
diagram for model (II). Mualem (1977) compared the predictions obtained by the two
models against experimental data for several soils. The results showed that model (I)
failed to reproduce the observed shapes, whéreas model (II) gavé good results in some of

the cases. But for soils where the effect of water blockage agaihs_t air éntry is apparent
(high and well defined air entry value), model (II) only yielded good predictions at low

saturations, whereas at higher saturations the predictions were poor.

Kool and Parker i1987) analyzed hysteresis measurements for eight different soils
by computing the -parameters of the vanchnuchten expression (scc Equation 3) for the
main wetting and main drying curves. They obtained the mean ratio Owening/Orying = 208, -
with a standard deviation of 0.46. They .concluded that the ‘ra-tio a,,@g/od,ying =2.0 would
provide a useful approximation m cases where data are lacking. The main wetting curve

 obtained by using IhlS empirical approach is shown in Figure 9 as curve (3). Of the three

predicted wetting curves, curve (3) was selected for use w1th the hysteresis model 3.

For hysteresis models 1 and 2, a slightly different daté set was used. These data are
shown in Figure 10. In the figure .the ratio Oloecting/Odrying = 2.2, which is close to that
assumed for mbdel (3) and also well within the range reported by Kool ﬁnd Parker
(1987). The convergence of the main wetting and main drying curve at high saturations

- is slower in Figure 10 than in Figuré 9. In Figure 9 at ﬁ cépillary pressure of 0.1 bars
curve (3) has practically converged with the curve (1), whcrea§ in Figure 10, the ratio of

the water contents on the main wetting and main curves is 0,,/84 =0.89. Although in

Ser e e o —— it Mo i M

i i m romem e 5 - . - - . . A
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Figure 10. Main wetting and drying curves and the first-order scanning curves used for
model (1) and (2); dotted lines for model (1) and dashed lines for model (2).
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most hysteresis literature the main bbundary cﬁrves are assumed to converge towards the
same maximum saturation, there is some experimental evidence (e.g., Kool and Parker,
1987) that the maximum saturation on. main wetting curve falls below the corresponding
- value on the main drying curve. Van Genuchten (1980) has reported measured main wet-
ting and drying curves for the Guelph Loam in a capillafy pi'essum range relatively simi-
lar to ihose used in our study ( vy values in his data arc}about an order of magnitude lower'
in comparison to the several orders of magmtudc difference for most other soils). In his

data 6,,,/64 is about 0.83 at maximum saturation.

The use of different exprcssions for the main wetting curve makes comparisbn of

‘the predictions from model 3) with those from mddels (1) and (2) somewhat difﬁéult.
‘This comparison would in any case not be very meanirigful until measured scanningl
curve data become évailable for the materials studied. As pointed out earlier the deriva- -
tion of models (1) and (2) is cmpmcal in nature and experimental data are needed for
their cahbranon which are not presently available. Model (3), on the other hand is
derived based on the theory of hysteresis, and should therefore be independent of soil

type. | |

We will, however, compare the results bbtained with models (1) gﬁxd (2). .F‘oi' this -
purpose the first-order scanning curves tabulated for model (1) were generated with the
same equatiohs (Equations 1 and 2) that are used intemally in model (2) for generating
the first-order scanning curves for this model. Thus, the two models should give similar
results in the casé of ﬁr§t-ord§r scanning and the possible pumping effects of model (1)
with higher-order curves can be easily estirpatc’d. The resulting scanning curves are
-shown in Figure 10. .For the calibration parameter in Equations (1) and (2) a value of
€=0.05 was used, which corresponds to the lower limit of the expenmcntal values
reported by Kﬂlough ( 1976), and consequently ylclds most curvature presenting a ‘‘worst

case’’ situation.

— TRl SRR e
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5.3. Simulations with Model (1) (Ten-Year Cycle)

The problem described earlier was simulated using the hysteresis model (1). In this
set of simulations the parafneter values given in Table 2 and the hysieresis data shown in
Figure 10 were used and the 3 mos/10 yr infiltration cycle described earlier was imposed
on the systcins |

Figure 11a through 11d show the computed hysteretic paths for some of the matrix
elements during the two cycles simulated. The hysteretic behavior is strongest in the-
uppermost layer (Figures 11a and 11b). With increasing depth the bscillations become
smaller and in the fourﬂx layer from the top (at the depth 1.9 m) the system is continu-
ously wetting along the ﬁrst-order wetting curves (Figures 11c and 11d).

If the simulated hysteretic paths in Figui'es 11a through 11d are examined, it can be
seen‘ that no significant pumping takes place in ihese trace elements. In Figures 11a and |
11b we see that the vwetting/d:ying oscillations are large enough for the hysteretic path to
become loop-like, with the loops almost closing. The loop is fully closed if the third-
order wetting curve, along which the process takes place after reversal from the first dry-
ing period, converges towards the point where the system began to dry after the first
pulse (3 months in Figure 11a).

The simulated liquid saturations in the fractures at the end of the first pulse (3
months) and at the end of the second recovery (drying) period (20 yrs) are shown in Fig-
ure 12 for both the case involving hysteresis and the non-hysteretic c.ase, in which the |
process takes place along the main drying curve. This figure shows that at the end of the
first pulse the liquid satufations in the fractures are considerably higher in the hysteretic
case than in the non-hysteretic case. This can be éxplained by inspeéting the results
shown in Figures 11a through 11d. When the matrix starts to wet along a first-order wet-
~ ting curve instead of the main drying curve used in the non-hysteretic case, the capillary
suction for a given liquid saturation is smaller and the system gets. “‘shifted’’ into lower

liquid saturation range, Wthh also corresponds to lower relative permeabﬂltlcs
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Figure 11d.

Model (i): Simulated hysteretic paths for gridblock, center of the matrix,
1.9 m depth.
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Consequently, the matrix absorbs less water and more water remains in the fractures.

The fracture liquid saturations remain higher for the hysteretic case throughout the
simulation. The liquid saturation distributions at the end of the second recovery show
that in the hysteretic case the pulse has penetrated about 2 m deeper than in the non-

hysteretic case.

The liquid saturation in the matrix immediately adjacent to the fracture, and in the
interior of the matrix, are shown in Figures 13a and 13b, respectively. If the liquid
saturation distributions at the end of the second recovery period are compared, it éan be
seen that the hysteretic case produces a somewhat rﬁore ‘‘smeared’’ liquid saturation dis- |
tribution. In the non-hysteretic case the distribution has a more S-like shape, with a clear
front and a mbre rapid convergence towards the background saturation. This is a result
of the combination of higher fracture flow and lower matrix capillary suctions in the hys-
tcreﬁc case. In the non-hysteretic case, with stronger capillary suctions and less water in
the fractures, the watcf is absorbed into the matrix more rapidly and the influence is not

felt as deep as in the hysteretic case.

At the end of the second drying periods (at 20 years) the capillary pressures in each
layer are practically uniform and the matrix has reached an equilibrium with the adjacent
fractures. With capillary pressure equilibrium the matrix liquid saturations are uniform
in each layer for thg: non-hysteretic case. In the hysteretic case matrix saturations are
also practically uniform in all layers except the two uppermost ones, where thc hysteretic .
behavior causes the same capillary pfessure to correspond to considerably different liquid |
saturations. Further down, where the reversals from the first-order wcfting curve are
smaller or non-existent, nearly uniform liquid saturation distributions in each layer result.
The horizontal liquid saturation distributions in the uppermost layer for the hysteretic and

non-hysteretic cases are shown in Figure 14.
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5.4. Simulations with Model (2) (Ten-year Cycle)

Tﬁc problem solved with model (1) in the previous section is solved using model )
in this section. The main wetting and drying curves shown in Figure 10 are used, and the
scanning pathé are solved internally using the equations given in Section 3.2.

~ Simulated hysteretic paths fér sofne matrix elements during one pulse cycle are
: showﬁ in Figurés 15a through 15d. Simulated liquid samration distributions in the frac-
tures and vin the adjacent matrix at thé end of the first pulse (3 months) and at the end of
the first drying period (10 yrs) are shown in Figures 16 and 17; the con'esponding results
obtained with model (1) afc also.shown in these figures.

_ With model (2), the simulation could not be continued beyond the end of the first
drying period. At the beginning of the second wetting period serious convergcncé prob-
lems and continuous phase transitions occurred in the uppermost fracture element (élé-
ment adjacent to the element shown in Figure 15a), ﬁreventingvthe reversal from drying
to wetting. This is most likcly' a result of the discontinuity of the scanning path at the -
reversal from second-order drying back to wemng As discussed in Section 3. 2 in model
(2) no separate expressions are used for third- and higher-order scanning curves, and
upon reversal from second-order drying back to wetting the process ‘‘jumps’’ back to the
first-order wetting curve. This approximation, sﬁggested by Killough (1976), was used in
order to maintain the simplicity of the model without generating significant errors. In the
case of the element in Figure 15a, however, this ‘‘jump’’ corresponds to a very
significant change in capillary pressure (from = .7 bars to = .4 bars) Bécause the adja-
cent fracture element has a very small volume and contams small amounts of water, t}us
kmd of drastic changes in the nexghbonng element can generate serious convergence
problems.

Since the first-order scanning curves used for model (1) (Figure 10), were originally
derived using Equations (1) and (2), which internally compute the scanning curves for

model (2), comparisons between the results obtained with the two models can be made.



LIQUID SATURATION

-47-

0.95'.
0.80-
0.85-
0.80-
0.75-
0.70-

0.65-

0.60-
- 0.

1

Figure 15a. Model (2): Simulated hysteretic paths for gridblock, 0.5 mm from the fracture,

0.25 m depth. _ .



-48-

0.95-

0.90-1

0.85-

0.80-

LIQUID SATURATION

0.75-

0.70 -

0.65 -

..............
e
LT
e
e
LY
e
-
-
-
-
-
-

Tea,
cee
e
LT
-
-
-
-
-
-
-
-

0.60

- 0.

-

CAPILLARY PRESSURE (bars) -

Figure 15b. Model (2): Simulated hysteretic paths for gﬁdblock, center of the matrix,

0:25 m depth. -



- LIQUID SATURATION

- 49 -

.................
...............
L2
.
e
L)
-
-
-
-
-
-
-
-
-

0.95-| o | -
0o .

0.85-

0804 "
0.75- R

0.70 -

0.65

.............................

0.60 -
=0.1

Figure 15¢. Model (2): Simulated hysteretic paths for
v 1.9 m depth.

gridblock, 0.5 mm from the fracture,



-50-

0.95 - o
0.90- : v ..
- 0.85- ' : o

0.80- . . - .

LIQUID SATURATION

0.75-

0.70 - _ | “.' 10 yrs \\‘

0.65 4 main wetting & drying curves \

k4 .

0.60- y y v v "y ’ 2 T T
~0.1 _ -1

CAPILLARY PRESSURE (bars)

Figure 15d. Model (2): Simulated hysteretic paths for gridblock, center of the matrix,

‘1.9 m depth.




-51-

0 ,
q! o : , o _9.....
_ n .o ' o
-1 I: ™
el

DEPTH (m)
o

-7-
]

8 ® end of Ist pulse - hysleresis , Model (1)

. 8 end of st drying = hysleresis , Model (1)

5 O end of 1st pulse — hysteresis , Model (2)

S T [ end of 1st drying = hysferesis , Model (2)
=10 — r Y T T T . Y ) T ! T T
"0 - 04 0.8 1.2 1.6 2 24 2.8 32 36 4 4.4 4.8

LIQUID SATURATION (x 10-3)

Figure 16. Model (2) versus model (1): Simulated liquid saturations in the fracture. .




-52- . -

.--9"’" ——-“"’_——“@

-1 ?f?-:;—"""@f/

c—-/mf‘ '
o {a |

: i

s L
-4 -

/

DEPTH (m)
U

-6 - ’
-7- .
.
8 @ end of Is! pulse ~ hysieresis Model (1)
B end of Ist drying - hysleresis Mode! (1)
9 : O end of Ist pulse — hysteresis Model (2)
» O end of 1st drying = hysleresis Model (2)
-10- T - Y T . T T
0.65 0.70 . 0.75 0.80 0.85 0.90 0.95

Figure 17. Model (2) versus model (1): Simulated liquid saturations fc;r the matrix .
cross-sections at 0.5 mm distance from the fracture. '

LIQUID SATURATION



-53-

As can be seen by examining Figures 16 and 17, the results after the first pulse are practi- -
cally identical. The similarity of the predictions during the first wetting period can also
be seen by coinparing Figures 11a through 11d with Figures 15a through 15d. |

. At the end of the first drying period the 1icjuid saturation distributions are somewhat

_ different. This difference is a resuit of the inaccuraby generated by model (1) due to the

fact that the second-order drying curves are apprommated by the tabulated first-order
curves. These curves converge towards the minimum saturation (see Figure 10), whereas
in model (2) the second-order curves converge towardsv the point on the main drying
curve from which the original fcversal-took place. This “‘pumping’’ effect of model (1)
results in slight overprediction of the hysteresis effects in the upper layers. However,
similar ‘‘smearing’’ of the moisture front can be seen in the prcdictioﬁs for both inodcls,

and the pulse penetration depths are also similar.

‘ The convergence problems that occurred with model (2) in the beginning of the
second. wetting pén'od obviously demonstrate a weakness of this model. These problems |
can be easily avdided by giving scparaté'expressidns for the third- and 'highcr.-ordér scan-
ning curves, for example m a mahner similar to that we have used for modelu (3). It
appears, however, .that» ihiS;'particular convergence prbblem was very sensitive to the

material properties uséd. When the systerh described earlier was solved with only

slightly different properties, these convergence problems did not occur. In this other

study all other parameter values were those shown in Table 2, except that a 1 mm -
volumetric aperture and a 0.1 porbsity were assumed for the fracture (resulting in a -
sdmewhat 'over-estimatéd fmcturc flow). For the k; =k, (S;) rélation for the matrix the |
cquatlon shown in Table 1 was used, rather than that shown in Table 2. The mesh used
was similar to that shown in Figure 8 except that three times coarser discretization was
used in the vertical direction (uppermost element 1.5 m thick in comparison 0.5 m uscd

earlier). The mesh was also longer due to the greater expected pénetration depth of the

pulse. The simulated hysteretic path for the matrix element closest to the top and adja-
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cent to the fracture obtained with these parameters is shown in Figure 18.

5.5. Simulations with Model (3) (Ten-Year Cycle)

In this set of si_mulations the problem earlier solved.with models (1) an_d ) is
solved using model (3). For this set of simulations curve (3) in Figure 9 was used as the

main wetting curve.

- Simulated hysteretic paths for the trace elem’ents used in the earlier examples are -

shown in Figures 19a through 19d.. Due to the structure of model (3), ‘‘pumping’’ can
not take place at é.ny level of the scanning curve order. Convergence problems such as

those encountered with model (2), do not occur because of the way we have trcatcd the

" higher than second-ordér_scanning curves. Figures 20; 21a,b and 22 show thc'simula,tcd

liquid saturations at the end of the first pulse and the second drying period for both the
h&sferetic and non-hysteretic cases. “Smearing”. of the liquid saturation distribution
observed in the earlier cases can be seen in these figures as well. For the fracture, the
pulse has penetrated about 1-_2 m deeper in the hysteretic casé than in the non-hysteretic

case. The strongly hysteretic behavior is limited to the uppermost layers and below the

third layer the system is continuously wetting along the first-order wetting curves. At the

end of both drying periods the capillary pressures are uniform and in equilibrium with
adjacent fractures. In the uppermost layer this corresponds to a non-uniform liquid

saturation distribution, as shown in Figure 22. The maximum local difference in the final

liquid saturations between the hysteretic and non-hysteretical cases is =4%. Because the

derivation of model (3), unlike those of models (1) and (2), is based - on theoretical
presentation of hysteresis rather than empirical results, prédictibns from this model can
probably be considered most reliable un_tilb actual hysteresis data for the welded units
become available. Keeping in mind that the main wetting curve used is derived by using

information from soil literature, one can probably look at these results as first-order esti-

mates of the possible hysteresis effects in a fracture-rock matrix system. -
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Figure 22. Model (3): Simulated liquid saturations fb; the matrix at 0.25 m depth.



5.6. Simulations with One-Year Cycle

One set of simulations was carried out by assuming an intensive annual rain period.
For each one-year cycle a pulse infiltration corresponding to 1 mﬁa/yr precipitation con-
centrated into a three-month period (1 mm/yr x 1 yr/0.25 yr = 4 mm/yr) was introduced
for three months. This pulsc. was followed by a nine-month drying peﬁod during which
the background precipitation of 0.1 mm/yr was assumed. The cycle was repeated eight
.times and the system was first modeled without capillary hysteresis and then with hys-
teresis, using models (1) and (2). '

“The parameter values used were similar to those shown in Table 2 except that the
matrix ky =ky(S) was that given in Table 1, and for the fracture a volumetric aperture of '
1 mm and a porosity of 0.1 were used. The mesh used was similar to that shown in Fig-
ure 8 except that a threc‘ﬁmes coarser vertical discrctiiation was used. |

The resulting matrix liquid saturations é.fter eight years are shown in Figures 23a
and 23b. As can be seen from fhese figures, the overall pulse effccts are Vt;ry small.
- With this pulse the liquid saturation in ihc uppermost layer in the intcriér of the matrix
oscillates between 'wetting a\nvd drying, but drying is so unsignificant that the hysterctic

paths 'appear to be almost monotonically increasing.

Adjacent to the fracture the changes in liquid saturation are significant enough to
produce clear reversals, but are too small to produce looplike scanning paths for model
(1), which produces a very pronounced pumping effect as seen in Figure 24a. The
corresponding path obtained with model (2) is shown in Figure 24b. Due to the pumping
effect the predictions of the two models are very different near the fracture (Figure 23a)
and also rather different in the interior of the matrix, considering that the overall hys-

teresis effects are rather small (Figure 23b).
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6.0. SUMMARY AND CONCLUSIONS

Based on capillary hysteresis models reported in the literature, three hysteresis
models han been devéloped and iricbi'porated into a numerical simulator for unsaturated
flow. In these three models different principles are used for determining the scanning
paths: in model (1) the scannian paths are interpolated from tabulated first-order curves,

“in model (2) simple interpolation functions are used for scaling the séanning paths from
the expressions of the main wetting and main drying cﬁfves aﬁd in model (3) the scan-
ning paths- are determined from expressions derived based on the dependent domain
theory of hy#tcresis.

Using the three models prcliminary~simulations havc'vbecn carried out in order to
test the performance of the models as well as to obtain first-order estimates of the possi-
ble hysteresis effects in the welded uhits af Yucca Mountain, "given the limitations of
presently available data. An idealized ﬁ'acmre-xbck matrix system with material proper-
ties fcborted for >the welded units at Yucéa Mountain by Rulon et al. '(1986)> was simu-
latéd under variable infiltration conditions. The ,wi_dth of the hystcre_si_s envelope was
estimzitcd based on experimental results from soil literature, by assigning a ratio of |
aw,mng/aq,ying =2 and the comparisons were made between thé hysteretic cases and the
non-hystergtic case that took place ‘a_lo‘ng the main dryihg curve alone. The following

hysteretic effects were observed: -

1. Due to the lower matrix capillary suction and .lower matrix liquid relative fcr-
| meabilities, pulse in the fracture penetratcd deeper in thé hysteretic case than
~ in the non-hysteretic case. | |

2. Due to the combined effect of lower matrix capillary suction and higher frac-

.ture ﬂQw, the matri* liquid saturation distribution had a more smeared shape in

“the hysteretic cases. In the non-hysteretic case with higher matrix suctions the
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excess water from the fractures was. absorbed into the matrix more rapidly and

S-shaped matrix liquid saturation distributions resulted.

Strong hysteretic behavior was limited to the uppermost one or two layers
(0.25 — 0.75 m depth). In these layers non-uniform liquid saturation distribu-
tions resulted even after capillary pressure equilibrium with the adjacent frac-

v

ture was reached.

Using a theoreﬁcally derived hysteresis model, model (3), and assuming that
the main wetting and drying curves converge towards the same maximum
saturation, the pulse in the fracture penetrated = 1 m deeper in the hysteretic
case. The biggest local difference in matri_x liqliid saturations between the

hysteretic and the non-hysteretic cases at the end of the simulations was = 4%.

‘With the two other models the hysteresis effects were somewhat bigger. Since

the derivation of these models is empirical, experimental scanning curve data
should be available for their calibration before quantitative estimates are made
based on their results. The observed increase in the hysteresis effects is, how-

ever, likely to be in part a result of the fact that a different main wetting curve

.was used. The ‘‘slight pumping’’ effects observed with model (1) also

increased the hysteresis effects somewhat.

Based on the simulations carried out conclusions about the performance of the various

models as well as some recommendations for their future use can also be made.

1.

Model (1)
Due to pronounced pumping effects model (1) failed to represent the hysteresis

effects in the case of the one-year pulse cycle. With a larger pulse and 10-year

- cycle the pumping effects were not significant and the results obtained were in

reasonable agreement with those obtained with other models.
The main advantage of this model is that any kind of measured hysteresis data

can be readily incorporated and accurately modeled up to first-order scanning.
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Due to the potential “‘pumping” effects, we db not recommend the usé of this
| model for systems with multiple reversals unless one can be certain that puxhp-
-ing is not gencfating significant errors. |

Model@) |

Due to the simplifying assumption, that after a reversal from a second-order

curve the brocess returns baék to the origihal first-order curve, discontinuities -

in the scanning paths are prescnt.' In one of the cases this'.generated. sqridus
~ numerical solution convergence problems. These problems can be avoided by

incorporating the computatidn of third- and higher-order scanning curves in a

manner simila; to that used for model (3) (a linear approxiination is used |

Betwe‘envthc latest point of the reversal and the proper point of convergehce).

If measured scanning curve data is av_ailablé it can be incorpofated into this

model by adjusting the curvature coefficient &. No pumping can take place
with this model. |

Model (3)

If estimates of hysteresis effects need to be made without measured scanning ‘
- curve déta, use of model (3) is probably most justified since the derivation of
this model is based on the theory of hysteresis rather than empirical results.
The design. of the model allows simulations ‘with mulﬁplc reversals to be car-
ried out withogt generating pumping efrors or encountering convergence prob-

lems.
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