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Abstracts

Applications of Causal Inference to Problems of Occupational Epidemiology

by

Daniel Martin Brown

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Maya Petersen, Co-Chair
Professor Mark J. van der Laan, Co-Chair

This dissertation concerns the application of the techniques of causal inference to prob-
lems of occupational health. The abstracts of the three works which comprise the primary
substance of this dissertation are reproduced below.

The healthy worker survivor effect (HWSE) is a feature of occupational cohort studies
which can lead to biased estimates of the etiologic effects of exposures if the estimation
procedure does not account for its sources. The HWSE arises from underlying temporal
processes characteristic of working populations in which time-varying health status is a cri-
teria for entry into follow-up as well as both a predictor and a consequence of exposure. We
distinguish two sources of HWSE: left-truncation in the presence of heterogeneous suscep-
tibility as well as time-varying confounding on the causal pathway. We apply longitudinal
minimum-loss-based estimation to simulated data in order to illustrate the effect of each
process on estimates of exposure response, and clarify the extent to which methodological
solutions can properly adjust for the bias.

We consider the problem of the estimation of parameters of the full-data distribution
from data structures in which some confounding variables are unmeasured in a portion of
the population. Our focus is on evaluating approaches to implementation of an augmented
inverse probability of censoring weighted targeted minimum-loss based estimator (A-IPCW
TMLE) first proposed by Rose and van der Laan (2012). This is an inverse probability
weighted estimator in which estimation proceeds using a reweighted set of fully observed data
points. The weights used are the inverses the estimated probability of being fully observed
which is then augmented by an estimate of the expectation of the full data influence function,
given the always observed variables. The estimator’s performance is compared to standard
weighting approaches and multiple imputation in both a simulation study and an applied
data example.

We investigate the effect of cumulative exposure to particulate matter with an aerody-
namic diameter <2.5 µm (PM2.5) on the incidence of ischemic heart disease (IHD) in a cohort
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of aluminum workers followed for 15 years, adjusting for time-varying confounding affected
by prior exposure. We use longitudinal targeted minimum-loss based estimation (TMLE)
to estimate the cumulative risk difference for IHD if always exposed above an exposure cut-
off compared to always exposed below, while never censored. We stratify our analyses by
sub-cohort employed in the smelters versus fabrication facilities. We selected two exposure
cut-offs a priori, at the median and 10th percentile, within each sub-cohort. In smelters, the
estimated IHD risk difference after 15 years is 2.1% (-1.3%, 5.5%) if always exposed com-
pared to never exposed above the median cut-off of 1.77 mg

m3 and 2.9% (0.6%, 5.1%) using
the 10th percentile cutoff of 0.10 mg

m3 . For fabrication workers, the estimated risk difference
is 0.9% (-1.6%, 3.5%) using the median cut-off of 0.20 mg

m3 and 2.5% (0.8%, 4.1%) using the
10th percentile cut-off of 0.06 mg

m3 . Results are presented as marginal incidence curves, de-
scribing the cumulative risk of IHD for each sub-cohort under each intervention regimen. By
control of the time-varying confounding on the causal pathway that characterizes healthy
worker survivor effect, TMLE estimated associations between cumulative PM2.5 exposure
and IHD that were not detectable using standard analytical techniques in a previous report.
This represents the first longitudinal application of TMLE, a method for generating dou-
bly robust semi-parametric efficient substitution estimators, in the field of occupational and
environmental epidemiology.
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Chapter 1

Introduction

This dissertation several issues common to occupational cohort studies through the lens of
causal inference. We demonstrate the ability of estimation methods motivated by the use
of causal frameworks to correct for time-varying confounding, selection bias, and health-
dependent censoring. We also highlight remaining barriers to unbiased estimation of causal
parameters commonly arising in occupational studies. We also explore an approach previ-
ously proposed by Rose and van der Laan (2012) for the application of targeted minimum-loss
based estimation in data structures with missing confounders, whose finite sample perfor-
mance had not yet been compared to common alternatives. We finish with an applied
example that suggests a causal relationship between heart disease and airborne particulate
exposure in a population of aluminum workers.

Occupational cohort studies are generally performed with the intent of estimating the
causal relationship between a workplace exposure and morbidity of the cohort. The healthy
worker effect (HWE) is a feature of occupational studies that must be accounted for during
the estimation process, as it can lead to inaccurate estimates of this true response if the
natural correlation between employment and health is not accounted for. This correlation
occurs due to two overarching effects. The first is the healthy hire effect (HHE), which occurs
because healthy people are more likely to seek employment and to be offered jobs, especially
the strenuous and dangerous jobs often related to the exposures under study. The second
reason is the healthy worker survivor effect (HWSE), in which healthy workers are more
likely to stay at work and therefore both accrue more exposure and have a larger probability
of being included into the cohort. The HWSE is a special case of time-varying confounding
on the causal pathway (Arrighi and Hertz-Picciotto, 1994) in which health status serves as
the mediator of the effects of exposure on both disease and work termination.

In some cases the HWE can manifest due to a selection process in which health status
serves as a determinant of participation in a study cohort (Hernán et al., 2005). This selection
process often results in data structures with non-ignorable (Rubin, 1976a) missing data
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patterns, via the following pathway. It is the case that at any point in time, the population
of active workers will contain a relatively healthy subset of the worker cohort. It is also often
true that researchers require additional information on potential confounders, which are not
regularly collected as part of the administrative databases that form the backbone of the
observed data. This information therefore often gathered on a convenient subset of the entire
cohort, usually consisting of a cross-sectional sample of active workers. The observed data
then contains a missing data problem where the assumption of no unmeasured confounding
is only true among a relatively healthy subset of the population. We address both of these
issues from a theoretical perspective in the first two chapters of this work, and the example
which completes the dissertation synthesizes this work in an applied setting.

In chapter two, we present the results of a simulation study that highlights several aspects
of occupational cohort studies. We first demonstrate the effects of time varying confounding
on the causal pathway on standard estimators as well as the ability of causally motivated
estimators to adjust for this confounding. We then examine the effects of the combina-
tion of left-truncation and susceptibility heterogeneity on the effect estimates derived from
prevalent cohorts. Finally we demonstrate the use of longitudinal targeted minimum loss-
based estimation (LTMLE) to estimate causal parameters when worker follow-up continues
past employment termination. We formalize the effects we are observing using the language
of directed acyclic graphs (DAGs) (Pearl, 1995, Greenland et al., 1999a) and argue for a
broader understanding of the healthy worker survivor effect that includes both time varying
confounding and left truncation in combination with heterogeneous susceptibility.

In chapter three, we consider the problem of the estimation of parameters of the full-
data distribution from data structures in which some confounding variables are unmeasured
in a portion of the population. Our focus is on evaluating approaches to implementation
of an augmented inverse probability of censoring weighted targeted minimum-loss based
estimation (A-IPCW TMLE) first proposed by Rose and van der Laan (2012). This is
an inverse probability weighted estimator (Li et al., 2011) in which estimation proceeds
using a reweighted set of fully observed data points. The weights used are inverses of an
estimate of the probability of being fully observed which is then augmented by an estimate
of the expectation of the full data influence function, given the always observed variables.
The estimator’s performance is compared to standard weighting approaches and multiple
imputation in both a simulation study and an applied data example.

In chapter four, we present an applied example of an analysis of the relationship between
occupational exposure to PM2.5 and incidence of ischemic heart disease. We apply LTMLE
to a cohort of aluminum smelter and fabrication workers in order to estimate the causal
effect of exposure to airborne particulate matter with an aerodynamic diameter <2.5 µm
on the incidence of ischemic heart disease. We present our results in the form of adjusted
survival curves predicting the estimated cumulative incidence of heart disease among all
workers had they been continually exposed above and below exposure cut-offs while staying
at work until retirement. We also provide a detailed walkthrough of the steps undergone to

2



create these estimators and a summary of the properties of the LTMLE estimator, designed
for an epidemiologic audience.

Appendix A contains a literature review compiling some of the key contributers to the
understanding of the healthy worker survivor effect and some concluding remarks.
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Chapter 2

Simulating the Healthy Worker
Survivor Effect

2.1 Introduction

Recent approaches to dealing with the healthy worker survivor effect in occupational epi-
demiology (Chevrier et al., 2012a, Dumas et al., 2013a, Naimi et al., 2014, Picciotto et al.,
2014) have focused on the problem of time varying confounding affected by prior exposure.
This occurs when time-varying health status serves as both a mediator between occupational
exposure and future disease as well as a predictor of future exposure. Decline in time-varying
health status will reduce future exposure, as workers in poorer health will tend to reduce
their hours, change to a lower exposed job, or to leave work altogether. Standard methods
of confounding adjustment will not generate unbiased estimators when analyzing data from
such studies, as health status at time t is both a confounder of exposure response at future
times t+ and a mediator of the effect of exposure at earlier times t−. Several methodolog-
ical solutions to this problem have been suggested, including G-estimation of a structural
nested model (Robins, 1987, Hernán et al., 2005), inverse probability of treatment weighted
(IPTW) estimation of the parameters of a marginal structural model (Robins, 2000b, 1999,
Hernán et al., 2000), and targeted minimum loss-based estimation (TMLE)(van der Laan
and Gruber, 2012, Bang and Robins, 2005, Stitelman Ori et al., 2012, Schnitzer et al., 2013).
All of these approaches can be loosely classified as causal methods.

Applications of these methods to occupational cohorts have stressed their ability to gen-
erate unbiased estimates in the presence of time-varying confounding and have concluded
that they have corrected for the HWSE (Chevrier et al., 2012a, Dumas et al., 2013a, Naimi
et al., 2014). While we agree with these statements, there are additional aspects of the
HWSE that are not addressed by this approach. These missing aspects are the effects of
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left-truncation and selection bias in the presence of heterogeneity of susceptibility. They can
occur when an occupational cohort is a prevalent cohort, comprising of workers who were
hired prior to the start of follow-up (Brookmeyer et al., 1987, Wang et al., 1993, Cole et al.,
2004, Howards et al., 2006). Such workers have been subject to both the exposure and the
risk of the disease of interest prior to the start of follow-up, and these may affect their prob-
abilities of remaining at work until cohort follow-up starts. In contrast, an incident cohort
of workers whose follow-up starts immediately at hire has not been subjected to the same
selection pressures.

Within this working population there may be a range of susceptibility to the exposure and
the disease of interest. We distinguish between two possible ways in which this susceptibility
could function in the population. We define exposure susceptibility as an effect modifier of
the exposure-disease relationship. We define disease susceptibility as increasing disease risk
independently from exposure.

If either type of susceptibility is heterogeneous in the population, a prevalent cohort will
tend to have fewer susceptible workers than an incident cohort of new hires. This is due
in part to left truncation, as those workers with the shortest survival times (less than the
time between hire and follow-up start) will not be at risk for incident disease and therefore
not be eligible for cohort inclusion. Similarly, workers who leave work in this interim time
between hire and follow-up start will not be available for cohort inclusion. These phenomona
can alternatively be viewed as a form of selection bias (Hernán et al., 2004). Estimation in
the prevalent cohort involves conditioning on both active work status and the absence of
prior disease, which could be consequences of both the exposure and disease of interest (Cole
et al., 2010). We will revisit these points later to make a distinction between left truncation
and selection bias.

The result of these phenomena is an observed population with a different mix of baseline
characteristics, including past exposure history, than would be observed in the cohort in
which all workers are followed from hire. The effect of exposure as estimated in the prevalent
cohort may then not be generalizable to the incident cohort. If the question of interest is
the effect of exposure among the population of all workers, rather than a subset of survivors,
left truncated cohorts in the presence of susceptibility heterogeneity present another source
of health worker survivor bias. This bias was explored previously in a simulation study
by Applebaum, Malloy and Eisen, who concluded that the bias due to left truncation and
heterogeneous susceptibility operated in the absence of the HWSE as defined by time varying
confounding (Applebaum et al., 2011).

Another salient feature of occupational studies is that follow-up may continue past em-
ployment termination (Picciotto et al., 2013). As unemployed workers can generally not be
exposed, the data structure contain subject-times in which the probability of exposure is
0. This is a violation of a positivity assumption commonly made to give a causal interpre-
tation to estimates generated by some methods. This has been used as a justification for
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the exclusive use of G-estimation of a structural nested model in occupational epidemiol-
ogy (Naimi et al., 2013, Robins, 2000b), as the causal interpretation of these parameters do
not rely on this assumption. There are alternative parameters for defining the causal effect
that do not rely on this assumption and can be estimated in data structures with follow-up
past employment termination (see for example the review in Petersen et al. (2012)). To our
knowledge, these methods have not been applied in the field of occupational epidemiology
in either simulated or applied examples.

2.2 Data, Models and Simulation

2.2.1 Data Description

We consider the following full data structures X and observed data structures for incident
(Oi) and prevalent (Op) cohorts, where:

X = (W,S,A(1), L(1), . . . , A(K), L(K))

Oi = (W,A(1), L(1), . . . , A(K), L(K))

Op = (W,A(1), L(1), . . . , A(c), L(c), . . . A(c+K), L(c+K)|Y (c− 1) = 0, C(c− 1) = 1),

where W is a vector of measured baseline variables that may be confounders of the rela-
tionship between A(t) and L(t) and S is an unmeasured indicator of susceptibility to the
exposure and/or disease of interest. A(t) is the treatment of interest and contains two nodes:
E(t) is a binary exposure experienced by a worker during year t and C(t) is an indicator
of active work status at the end of time point t, so C(t) = 1 indicates that a worker was
actively employed. L(t) = (H(t), Y (t)) are time-varying covariates measured at the end of
year t. H(t) is an indicator that a worker has been diagnosed with an adverse health status
(for example hypertension) and Y (t) is an indicator that a worker has been diagnosed with
the outcome of interest (for example ischemic heart disease). c is a time point subsequent
to hire, at which point only active and disease-free workers are recruited into the cohort.
All data sets contain K years of follow-up, but the prevalent cohort data, Op, contains an
additional c years of data prior to follow-up start.

The time-varying nodes are divided into two groups, where A(t) = (E(t), C(t)) are
the intervention nodes and L(t) = (H(t), L(t)) are the non-intervention nodes. These are
so named because we are interested in the effects of treatment regimes that possibly assign
values to the intervention nodes, while allowing the non-intervention nodes to take the values
that would result from the natural progression of the process under study.

We represent data histories using the overbar notation, so L̄(k) = (L(1), . . . L(k)) is the
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history of L through time point k, and Ā(k) = (A(1), . . . , A(k)) is the history of A through k.
We use QL(k) to denote the conditional distribution of L(k), given its parents. The parents of
any variable X are all the variables that directly affect X; the parents of L(k) are Pa(L(k)) =
(W,S, L̄(k − 1), Ā(k)). We use gA(k) to denote the conditional distribution of A(k) given its

parents Pa(A(k)) = (W, L̄(k− 1), Ā(k− 1)). We will also use the notation g1:K ≡
∏K

j=0 gA(j)

and note that gA(t) can be factorized as gE(k)(E(k)|Pa(A(k)))gC(k)(C(k)|Pa(A(k)), E(k)).

2.2.2 Causal Model and Treatment Regimens

A causal model is a construct that serves as the link between the observed data and the
counterfactual data that would have been observed if workers were exposed to a different
treatment regimen. We use non-parametric structural equation models (Pearl, 2000) to
construct our causal model. So, let

W = fW (UW )

S = fS(US)

L(k) = fL(k)(Pa(L(k)), UL(k)), k = 1 . . . , c+K

A(k) = fA(k)(Pa(A(k)), UA(k)), k = 1, . . . c+K

where fW , fS, (fL(k) : k = 1, . . . c + K), (fA(k) : k = 1, . . . , c + K) are unspecified deter-
ministic functions. (UW , US, UL(1), . . . , UL(c+K), UA(1), . . . , UA(c+K)) are sets of unmeasured
background factors used by the functions to determine the data.

The causal relationships between these variables are pictured in the directed acyclic
graphs (DAGs) (Pearl, 1995, 2000) in figures 2.1 and 2.2. The DAG in figure 2.1 illustrates
the relationships between the baseline variables S and W and the intervention and non-
intervention nodes A(t) and L(t). We note that S does not serve as an independent cause of
the intervention nodes A(t). The DAG in figure 2.2 illustrates the individual relationships
between the time-varying covariates at two successive time points. This illustrates the role
that H(t) plays in the causal structure of our data, as both a confounder of the E(t+ 1)→
Y (t+ 1) relationship and a mediator of the effect of E(t) on Y (t).

A post-intervention distribution is defined as the distribution that the observed data
would have under a specified interventions that sets the values of A(t) for t = 1, . . . , K. The
causal model is a model on all possible post-intervention distributions. The target causal
parameters of interest are parameters of these post-intervention distributions, i.e. we are
interested in making inferences about parameters of the distribution of non intervention
variables under one or more possible interventions to set the intervention nodes. In general,
we are interested in a contrast comparing the expectation of Y among the populations
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A(1) L(1) A(K)

W

L(K)...

S

Figure 2.1: Directed acyclic graph illustrating the relationships between unmeasured suscep-
tibility (S) measured baseline covariates (W ) and the time-varying intervention (A(t)) and
non-intervention (L(t)) nodes in the full data X.

E(1)

C(1)

H(1)

Y(1) E(2)

C(2)

H(2)

Y(2)

Figure 2.2: Directed acyclic graph illustrating the relationships between the time-varying
covariates at two successive time points. The nodes represent binary exposure (E(t)), active
work status (C(t)), diagnosis with an adverse health status (H(t)), and diagnosis with the
outcome of interest (Y (t)).
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following two complementary intervention regimes. For instance, we may be interested in
the additive or the relative effects of exposure.

There are several types of target parameters that we consider in the course of this study,
and each one defined with respect to a set of intervention regimes. One set are the static
regimes {ā0, ā1}, which set binary exposure E(t) to either 1 or 0 and C(t) to 1 for all time
points. We define the distribution of the non-intervention nodes under these regimes as Pā1

and Pā0 . Pā1 and Pā0 are the distributions of the counterfactual data that would have been
observed if all workers had been continuously exposed at these levels and stayed at work
for the duration of follow up. The target parameters about which we would make inference
are the means of the outcomes at time K, E(Yā1(K)) and E(Yā0(K)), parameters of the
distributions Pā1 and Pā0 .

Another set of static regimes that we consider are {ē0, ē1}, which set binary exposure
E(t) to either 1 or 0 for all point t, but do not intervene on leaving work C(t). We define
the distributions of the data under one of these regimes as Pē. Pē is the distribution of the
counterfactual data that would have been observed if exposures were controlled at a certain
level in the workplace, but workers were allowed to leave freely. We would then be interested
in making inference about the means at time K, E(Yē1) and E(Yē0(K)), parameters of the
distributions Pē1 and Pē0 .

Finally, we consider a class of dynamic regimes where a function d(L̄(t)) of the observed
data is used to set A(t). We define d1 as an intervention that sets E(t) to 1 and C(t) to 1
while the value of the time-varying health status H(t− 1) = 0. However, once the value of
H(t − 1) changes to 1, d1(L̄(k)) then sets C(t) to 0 and therefore E(t) to 0. d0 is similarly
defined except that active workers exposures are set to 0. We define the distributions of the
observed data under these interventions as Pd̄ and data following this distribution would be
observed if exposure had been controlled at a certain level in the workplace, but sick workers
were forced to leave work. Our corresponding parameters of interest for these types of
regimes are E(Yd̄1

(5)) and E(Yd̄0
(5)). In all cases, regimes must be chosen by investigators

both to generate causal contrasts of scientific interest and to ensure that workers have a
positive probability of following the regimes of interest (see for example review in Petersen
et al. (2012)).

2.2.3 Bias and Identifiability

The focus of this paper is to examine under what circumstances we will be able to generate
unbiased estimates of these causal parameters. Under a set of assumptions, the statistical
estimands generated from these observed data are equal to the target causal parameters.
These assumptions are:
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Positivity For any intervention ā(t) = (a(1), . . . , a(K)), there is a positive probability
that all workers could follow this intervention: P (A(t) = a(t)|W, L̄(t − 1)) > 0 ∀W, t
= 1, . . . , K.

Sequential Randomization Assumption The counterfactual values that the non-intervention
nodes would take under each intervention are independent from the observed in-
tervention nodes, given the observed covariates. A(t) ⊥ Ld(t

′)|Pa(A(t)) ∀t, t′ >
t and regimes d ∈ D. Here D is the set of all regimes we are interested in. This cor-
responds to there being no unmeasured confounders of any of the intervention nodes
and non-intervention nodes of interest.

We use a conception of bias that encompasses both statistical bias as well as a divergence
between the statistical parameter and the target parameter of interest caused by a lack of
identifiability. One useful property of DAGs is their ability to allow researchers to determine
whether effects of interest are identifiable, for example via the back-door criteria (Pearl, 2000)
and its sequential analogue. For example, consider the DAG in figure 2.1, which illustrates
the process that creates the incident cohort. The effect of A(t), t = 1, . . . , K on L(K) is
identifiable, as there are no unblocked paths between and A(t) node and L(K).

Next, consider the DAG in figure 2.3 which illustrates the selection into a prevalent
cohort, where follow-up starts at time c. Here we split A into its component pieces, exposure
E and active work status C and we are interested in the identifiability of the effect of both
E and C on L(K). Selection into the cohort involves conditioning on both C(c− 1) = 1 and
Y (c − 1) = 0, which opens up a back-door path through E(c) ← E(c − 1) − − − S → Y .
However, since E(c−1) has been measured for each observed subject, this path is blocked and
the effect is still identifiable. We therefore use the terminology left-truncation, as opposed
to selection bias, to describe the creation of the prevalent cohorts, as the unblocked back-
door paths opened by the selection process do not prevent the identifiability of the effect of
interest.

An investigator might estimate the effect of a chosen intervention (for instance, E(Yā1(K)),
thecumulative disease incidence if all workers were exposed and remained at work for K
years) among a prevalent cohort if this was the only cohort available for study. A natural
interpretation of such an effect estimate would be that it is the effect of K years of expo-
sure, without the provisio that it is only applicable to a prevalent cohort. However, this
interpretation of taking the effect estimate and applying it to an incident cohort, is akin to
attempting to identify the effect of a hypothetical intervention in which an incident cohort
is turned into a prevalent cohort, through the prevention of disease and censoring.

Figure 2.4 contains a DAG in which we can examine the effect of such an intervention
which sets Y (t) = 0 and C(t) = 1 for t = 1, . . . , c−1 and then sets the intervention nodes for
the K years following follow-up start A(t), t = c, . . . c+K. That is, we would be interested
in the additional effect of setting C(t) = 1 and Y (t) = 0 for t = 1, . . . , c. In this case, the
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S

E(c) L(c+K)E(c-1) C(c-1) L(c-1) ...

Figure 2.3: Directed acyclic graph illustrating the potential selection bias induced by condi-
tioning on cohort membership. The prevalent cohort starts follow up at time point c with
workers having Y (c − 1) = 0 and C(c − 1) = 1. This conditioning opens up a potential
back-door path from E(c− 1) to S, which is however, blocked due to E(c− 1) having been
measured.

intervention nodes include L(c− 1) as well as A(c− 1) and A(t), t = c, . . . c + K. However,
there is now an unblocked path through L(c − 1) ← S → L(c + K), and the effect of
this intervention is not identifiable. There are now unmeasured confounders between the
intervention and non-intervention nodes.

The actual target parameter being estimated in the prevalent cohort is E(Yā1(c+K)|Y (c−
1) = 0, C(c − 1) = 1), while the corresponding parameter from an incident cohort is
E(Yā1(K)). Calculating an effect estimate in a prevalent cohort implicitly conditions on
survival and remaining at work until follow-up starts, and this conditional density may be
unidentifiable. Therefore, estimators summarizing the effect of exposure in an incident cohort
using an observed prevalent cohort may get the wrong answer. This is not due necessarily
due to any statistical property of the estimation procedure, but rather due to this lack of
identifiability. To simplify our language, and in keeping with a common epidemiological
practice, we will refer to differences in effect estimates caused by this lack of identifiability
as bias.

2.2.4 Simulation

We designed a simulation study to explore the behavior of occupational cohorts and the
performance of estimation procedures when applied to them. The simulated data sets con-
tained the variables X = (W,S, L̄(t), Ā(t)), as defined earlier. Our simulated data sets were
generated in accordance with the DAGs and using the following formulas:

Baseline Covariates (W = (W1,W2), S) where W1 ∼ Bern(0.75), W1 ∼ Bern(0.7) and
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S

A(c) L(c+K)...A(c-1) L(c-1)

Figure 2.4: Directed acyclic graph illustrating the lack of identifiability of an intervention on
nodes A(c− 1), L(c− 1) and A(c). S is an unmeasured confounder between the intervention
node L(c− 1) and outcome L(K)

S ∼ Bern(0.5) are independent from each other.

Exposure (E) where E ∼ Bern(logit([βE0 + βE1 W ]I(t = 1) + [βE2 + βE3 E(t− 1) + βE3 H(t−
1)]I(t > 1))), βE0 = −1.2, βE1 = (1, 0.8), βE2 = −0.3, βE3 = 1, and βE4 = −0.5.

At Work (C) where C(t) = 0 if C(t − 1) = 0. Otherwise, C ∼ Bern(logit(βC0 + βC1 W +
βC2 H(t− 1) + βC3 E(t))), βC0 = 3.5, βC1 = (−0.1,−0.1), βC2 = −0.5, and βC3 = −0.5.

Adverse Health Status (H) whereH(t) = 1 ifH(t−1) = 1. Otherwise, H ∼ Bern(logit(βH0
+βH1 W+βH2 S+βH3 S∗E(t)+βH4 E(t))), βH0 = −3, βH1 = (0.5,−0.5), βH2 = 0.5, βH3 = 0.5,
and βH4 = 0.5.

Outcome (Y ) where Y (t) = 1 if Y (t − 1) = 1. Otherwise, Y ∼ Bern(logit(βY0 + βY1 W +
βY2 S + βY3 S ∗ E(t) + βY4 H(t) + βY5 C(t) + βY6 E(t) + βY7

∑t−1
k=1E(k))), βY0 = −4.5, βY1 =

(−0.2,−0.2), βY2 = 0.5, βY3 = 0.5, βY4 = 0.75, βY5 = 0.5, βY6 = 0.1, and βY7 = 0.1.

Data sets Oi were created by removing S fromX. Data sets Op were created by simulating
cohort experience for c+K years and including the histories for only workers with C(c) = 1
and Y (c) = 0. We designed three sets of experiments using these simulated data sets to
illustrate different aspects of occupational cohort studies. All simulation and data analysis
were performed in R 3.0.2 (R Development Core Team, 2008).

Our first set of simulation experiments explored the performance of standard methods of
confounding adjustment compared to causal methods when time-varying confounding was
active, but left-truncation was not. The observed data for these experiments consisted of
n = 10, 000 iid copies of Oi, and follow-up ended at employment termination. We first ran
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a standard Cox regression analysis, estimating the parameters of the model:

λ(t|E(t),W ) = λ0(t)(exp{α1E(t) + α2W}),

where λ(t|E(t),W ) and λ0 are the conditional and baseline hazards, respectively.

Using the same data set, we next fit an inverse probability of treatment and censoring
weighted (IPT/CW) Cox model (Hernán et al., 2000). This model is:

λTā1
(t|E(t),W ) = λ0 exp{β1E(t) + β2W},

where λTā1
is the hazard at time t among subjects with covariates values E(t),W had they

followed treatment regimen Ā = ā1, i.e. set E(t) = 1 and Ct) = 0 for t = 1, . . . , K. Each
worker-year was weighted by a stabilized weight

wt =
g1:t,n(A(t)|W, Ā(t− 1) = ā(t− 1))

gA,1:t,n(A(t)|W, L̄(t), Ā(t− 1) = ā(t− 1)))
.

where g1:t,n is the product of two independent logistic regressions fitting the exposure and
censoring mechanisms, given the conditioning covariates. We evaluated the bias of the
standard Cox model by comparing the model parameter estimate associated with exposure
(α̂1) to the value of the parameter returned by the IPT/CW model (β̂1), which we know to
be unbiased in data structures such as these (Westreich et al., 2012).

We also analyzed the data using the longitudinal TMLE of a mean outcome procedure
(LTMLE), which was introduced by van der Laan and Gruber in 2012 (van der Laan and
Gruber, 2012). This procedure produces a doubly-robust loss-based substitution estimator of
the cumulative incidence of Y at time point t if workers follow a specific exposure regimen.
For the first set of experiments, we estimated E(Yā1(5)) and E(Yā0(5)), the cumulative
incidences of Y if all workers are always exposed (ā1) or unexposed (ā0) while in both
cases preventing censoring. We compared the estimates to the actual cumulative incidences
obtained when simulating the data under each intervention regimen of interest. We used the
ltmle package (Schwab et al., 2013, Lendle et al., 2014) to perform this analysis. We chose
to focus on cumulative incidence estimators as generated by the LTMLE procedure as our
metric of interest for the subsequent simulation studies.

For the second set of simulation experiments, we investigated estimator performance in
the presence of left-truncation and susceptibility heterogeneity. The observed data used in
this case was n − m iid copies of Op, where m was the total number of workers who left
work or acquired the disease prior to time point 6, i.e. had either C(t) = 0 or Y (t) = 1
for t = 1, . . . , 5. We used LTMLE to evaluate E(Yā1(10)) and E(Yā0(10)), the results of
treatment regimens that set exposure and prevent leaving work, i.e. either E(t) = 1 or
E(t) = 0 while C(t) = 1 for t = (6, . . . 10). Follow-up for these data ended at employment
termination. These results were compared to the true cumulative incidences as determined
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via simulation among an incident cohort, where subjects were followed up for the first five
years after hire. We then refer to the difference between the estimate from the observed data
and this truth from the simulation as the bias. This bias is primarily a function of differences
between the surviving population that comprise a prevalent cohort and the original, incident,
population from which they were drawn.

For the third set of simulation experiments, we allowed follow-up to continue after sub-
jects had terminated employment. The observed data consisted of n = 10, 000 iid copies of
Oi, where follow-up did not end at employment termination. We then calculated estimators
for E(Yē1(5)), E(Yē0(5)), E(Yd̄1

(5)), and E(Yd̄0
(5)) using the LTMLE procedure. Yē1 and Yē0

correspond to interventions that set exposure values while at work, but do not intervene on
leaving work, while Yd̄1

and Yd̄0
correspond to interventions that enforce employees leaving

work subsequent to diagnosis with health status H = 1. We then evaluated the performance
of the LTMLE estimation procedure by comparing it to the true cumulative incidences as
determined through simulation. These regimes correspond to setting exposure to 1 or 0 re-
spectively unless a worker acquires the adverse health status, in which case she leaves work.
For the simulations focusing on the intervention regimens d0 and d1, we set the values of
the simulation parameters to βC2 = −2 and βH0 = −3.5 to ensure that the observed data
contained sufficient workers following the defined intervention regimens.

2.3 Results

The results from the first set of experiments are contained in table 2.1. The estimands
from the LTMLE procedure were generally unbiased. In contrast the estimands from the
standard Cox model demonstrated a downwards bias. This bias makes exposure appear
more protective from disease, whether the true exposure-response relationship was positive,
null, or negative.

The second set of experiments explored the combined effect of left truncation and suscep-
tibility heterogeneity and consisted of eight scenarios, described in table 2.2, with the results
contained in table 2.3. Each scenario compares the estimands for E(Yā1(5)) and E(Yā0(5))
as generated by ltmle from the prevalent cohort with the truth as simulated from an incident
cohort; with the differences reported as bias on both the relative and additive scales. The
first two scenarios demonstrate the effects of left truncation when susceptibility is homoge-
neous versus heterogeneous in the population. We see no bias on the additive scale when
susceptibility is homogenous (experiment 1), but we do see some when 50% of the workers
are susceptible. We observe bias on the relative scale in both cases due to an overall higher
risk in the left-truncated data. In scenario 3, when the levels of susceptibility are stronger,
we see the bias concurrently increase.

Scenarios 4 and 5 investigate the effect of left truncation plus heterogeneous susceptibility
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when the exposure has a null and negative (protective) effect on the outcome. We observe
similar results to experiment 1, in that the bias from the combination of left truncation and
susceptibility heterogeneity is downwards, regardless of the direction of the exposure-response
relationship. In scenarios 6,7 and 8, we reduced the proportion of susceptible workers to 10 %
of the population. We also varied whether susceptibility functioned as disease susceptibility
(increased risk regardless of exposure), exposure susceptibility (an effect modifier of exposure-
disease) or both. We observed a downwards bias in all three scenarios. The bias was largest
when both disease and exposure susceptibility were active, while the bias due to disease
susceptibility was larger than that due to exposure susceptibility.

The third set of experiments explored the ability of the LTMLE estimation procedure to
generate unbiased estimates when follow-up continued past employment termination. The
results in table 2.4 show the estimands and true values as determined through simulation in
an incident cohort for parameters corresponding to interventions {e0, e1} (set exposure but
not active status) and {d0, d1} (set exposure and work status dependent on health status
H). We see that the LTMLE procedure was able to generate unbiased estimates of all four
target parameters as well as additive and relative contrasts of them.

2.4 Discussion

We describe the HWSE as composed of at least two distinct phenomena. The first, and widely
recognized, is time-varying confounding affected by prior exposure. We demonstrate, using
a standard analytic procedure, both the direction and size of the bias that results from the
presence of time-varying confounding on the causal pathway (as suggested by (Steenland,
2013)). We observed a downwards bias under all possible true exposure-response levels:
positive, null and negative, provided that the health status associated with the outcome of
interest reduces the probability of future exposure. This bias can be corrected for using a
variety of ’causal’ methods.

The less widely recognized phenomenon, and the focus of our second set of simulation
experiments, is left truncation in the presence of heterogeneity of susceptibility. The findings
from our simulation study indicate that this phenomena results in effect estimates in a
prevalent cohort lower than the true effect as measured in an incident cohort. It occurs
because susceptible workers preferentially leave work or acquire the disease and the observed
effect is therefore measured in a population relatively more resistant to the exposure and
disease of interest. Observation of a worker occurs conditional on their surviving at work until
follow-up start, and the distribution of the conditioning event depends upon an unmeasured
variable S, and hence the original distribution is unidentifiable. Estimates derived from a
cohort consisting of both incident and prevalent workers will naturally fall in between the
effects within the incident and prevalent cohorts.

17



T
ab

le
2.

3:
R

es
u
lt

s
of

th
e

ex
p

er
im

en
ts

va
ry

in
g

su
sc

ep
ti

b
il
it

y
p
ro

p
er

ti
es

.
T

h
e

tr
u
e

eff
ec

t
of

ex
p

os
u
re

as
d
et

er
m

in
ed

b
y

si
m

u
la

ti
on

of
th

e
ex

p
er

ie
n
ce

of
th

e
in

ci
d
en

t
co

h
or

t
su

b
je

ct
to

ei
th

er
co

n
st

an
t

ex
p

os
u
re

or
la

ck
th

er
eo

f,
w

h
il
e

p
re

ve
n
ti

n
g

ce
n
so

ri
n
g.

L
on

gi
tu

d
in

al
ta

rg
et

ed
m

in
im

u
m

-l
os

s-
b
as

ed
es

ti
m

at
io

n
w

as
u
se

d
to

es
ti

m
at

e
th

e
cu

m
u
la

ti
ve

in
ci

d
en

ce
if

su
b

je
ct

ed
to

th
e

d
efi

n
ed

re
gi

m
en

s
as

in
th

e
si

m
u
la

te
d

p
re

va
le

n
t

ob
se

rv
ed

d
at

a
se

ts
.

B
ia

s
is

d
efi

n
ed

as
th

e
d
iff

er
en

ce
b

et
w

ee
n

th
e

tr
u
th

fr
om

th
e

in
ci

d
en

t
co

h
or

t
an

d
th

e
es

ti
m

at
es

fr
om

th
e

p
re

va
le

n
t

co
h
or

t.
T

h
e

ab
so

lu
te

d
iff

er
en

ce
s

as
w

el
l

as
th

ei
r

p
er

ce
n
ta

ge
s

of
th

e
tr

u
e

eff
ec

t
si

ze
ar

e
re

p
or

te
d
.

In
ci

d
e
n
t:

T
ru

th
P

re
v
a
le

n
t:

E
st

im
a
te

d
R

a
te

R
a
ti

o
A

d
d
it

iv
e

E
ff

e
ct

S
ce

n
a
ri

o
E

x
p

o
se

d
U

n
e
x
p

o
se

d
E

x
p

o
se

d
U

n
e
x
p

o
se

d
B

ia
s

%
B

ia
s

B
ia

s
%

B
ia

s

1
0.

13
0.

10
0.

11
0.

08
-0

.0
8

-
20

%
0.

00
2%

2
0.

28
0.

15
0.

26
0.

11
-0

.2
1

-
26

%
-0

.0
2

-1
1%

3
0.

34
0.

19
0.

48
0.

18
-0

.3
4

-3
5%

-0
.1

4
-4

8%
4

0.
21

0.
23

0.
20

0.
20

-0
.1

0
-2

20
0%

-.
02

-2
50

0%
5

0.
14

0.
22

0.
14

0.
20

-0
.0

7
-2

1%
-0

.0
2

-2
7%

6
0.

17
0.

11
0.

19
0.

10
-0

.2
7

-4
1%

-0
.0

4
-4

2%
7

0.
16

0.
12

0.
14

0.
10

-0
.1

0
-2

8%
-0

.0
1

-1
6%

8
0.

16
0.

10
0.

14
0.

14
-0

.1
6

-2
4%

-0
.0

0
-5

%

18



T
ab

le
2.

4:
R

es
u
lt

s
fr

om
ex

p
er

im
en

ts
ex

te
n
d
in

g
fo

ll
ow

u
p

p
as

t
em

p
lo

y
m

en
t

te
rm

in
at

io
n
.

In
te

rv
en

ti
on

re
gi

m
en

ts
ē
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We observed a negative bias from this phenomenon across a variety of parameter lev-
els and simulation conditions. The magnitude of the bias increased with the strength of
susceptibility and persisted when only a small proportion of the population was designated
as susceptible. The bias occurred whether the true effect of exposure was positive, null or
negative, and whether disease susceptibility, exposure susceptibility, or both were function-
ing. Left truncation in the presence of heterogeneity in unmeasured susceptibility can be
considered a form of HWSE, because it results in observed associations between exposure,
survival, health, and cohort membership that obscure the etiologic effect.

We can view this source of HWSE bias as an instructive example of the concept of trans-
portability. The effect that is estimated in the left-truncated population is not transportable
to the original population, due to differences in their baseline proportions of susceptibility.
While this concept is often applied to populations that differ in location, it is equally valid
to apply it to incident and prevalent cohorts that are distinguished only by time.

In several papers, Bareinboim and Pearl (Pearl and Bareinboim, 2011, Bareinboim and
Pearl, 2012) have given transportability a formal definition and demonstrated the use of
DAGs to identify systems whose measured effects are transportable to each other, using the
property of ’S-admissibility’. S-admissibility can be identified from a DAG by: (1) removing
all of the arrows out of the exposure and (2) checking for unblocked pathways between the
S node and the outcome (Petersen, 2011). If there are no pathways blocked by measured
variables, than this set of measured variables is S-admissible and effects measured in one
are transportable between populations. In their work, the S node stands for selection and
represents the variables that differ between the populations. In our case, S conveniently
stands for susceptibility, and a cursory look at Figure 2.1 demonstrates that S-admissibility
does not hold for systems such as we describe, where S is a direct cause of the outcome.

Other discussions of transportability (Hernán and VanderWeele, 2011) have identified the
fact that effect modifiers must be similarly distributed among the two populations in order
for effect estimates to be transportable between them. The results of our simulation, and the
use of the S-admissability criterion, show that this restriction is not solely applicable to effect
modifiers of the exposure, but to direct causes of the outcome as well. We saw bias with
respect to the incident cohort when susceptibility functioned as exposure susceptibility or
disease susceptibility, though the bias was highest when it functioned as both. This analysis
confirmed the findings of Applebaum et al. (2011), and placed them in the context of causal
inference by using the concepts of identifiability and transportability to explain the observed
distinctions between effect estimates.

Terminated employees cannot be exposed, so they represent a potential violation of the
assumptions of positivity: a combination of covariates such that the probability of being
exposed is 0. This violation implies the non-identifiability of causal effects defined by con-
tinuous treatment, which the parameters of a simple marginal structural model relating
exposure and outcome correspond to. We chose to implement longitudinal TMLE of a mean
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outcome in order to control for time-varying confounding on the causal pathway. The use
of this estimation procedure also demonstrates the potential for estimation using a dynamic
treatment regimen when follow-up extends past employment termination.

Picciotto et al. (2013) address the effect of truncating follow-up at employment termi-
nation. They concluded that it represented a potential source of bias in an applied data
example, due to a lack of exchangability between the terminated and non-terminated work-
ers. In this simulation, we did not observe the same bias because we had a measurement
of the time-varying health status (H) that predicted employment termination, and thus the
terminated and non-terminated workers were conditionally exchangeable.

Positivity violations have been offered (Robins, 2000b, Naimi et al., 2014) as a justifi-
cation for the exclusive use of G-estimation of the parameters of a structural nested model
when investigating occupational exposures. The parameters of a structural nested model do
not rely on the assumption of positivity to be identifiable, as the model itself specifies the
relationship between the timing of exposure and the timing of the outcome. In the simplest
case of an accelerated failure time model, the model implies that the effect of exposure on
the outcome is the same no matter when in an individual’s employment history it occurs.
While this assumption may be reasonable in some cases, in other cases it may not, so the
viability of other estimation approaches is worth exploring.

By defining treatment regimens, whether static like ē or dynamic like d̄, we were able
to generate estimates of the causal effect of exposure even when follow up continued past
employment termination. We note, however, that a portion of the effect of exposure E(t) on
the outcome travels through the nodes C(t) and E(t + 1). Indeed these effects of exposure
(to reduce future exposure and induce employment termination) are the root of the HWSE
that we are trying to remove from the analysis. We must be mindful, however, that the effect
we estimate is not the total effect of E, as some of its effect moves through the pathways
E → C or E → H → E. It is important to identify intervention regimes that correspond to
scientific questions of interest but also to recognize that an effect estimate’s interpretation
is dependent on how the defined regimen corresponds to a realistic sequence of events in
the real world. We would order the interventions we consider as (ā, ē, d̄) from least to most
realistic, as it is within the ability of an employer to control exposure levels, but less so to
control when employees choose to leave work.
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Chapter 3

Efficient Estimation in Data
Structures with Missing Confounders

3.1 Introduction

This chapter contains an exploration of the performance of an augmented inverse weighted
targeted minimum-loss based estimator for use in data structures with missing confounders,
where the probability of the confounders being measured is a function of the entire history
of the cohort. This section is organized as follows. In section 3.1, we describe the data
structures of interest, list our assumptions, and demonstrate the identifiability of our target
parameters. Section 3.2 contains background on other approaches to estimation for this
problem, focusing on the methodology we will use for comparison and those that directly
precede this paper. Section 3.3 describes the full data TMLE, the IPCW-TMLE, and the
A-IPCW TMLE procedures and highlights some of the statistical properties of the A-IPCW
TMLE estimators. Section 3.4 contains a description of and the results from a simulation
study, which investigated estimator performance as the proportion of missing data varies
as well as when various nuisance parameters were estimated based on misspecified models.
Section 3.5 demonstrates the application of these estimators to an applied example, an
investigation of the effect of occupational exposure to airborne particulate matter on the
incidence of heart disease in a cohort of smelter workers.

3.2 Model and Identifiability

Let X = (L, V ) be the full data and O = (RL, V,R) be the observed data. V is a vector of
always measured covariates and (A, Y ) ⊆ V denote the treatment (A) and outcome (Y ) of
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interest. L is a vector of potential confounders, possible causes of both A and Y , and R is an
indicator that the vector L has been measured. We are interested in some summary measure
of the effect of the treatment on the outcome. As an example, the target parameter of interest
might be following estimand, which under additional causal assumptions corresponds to the
average treatment effect (ATE):

ψF = EW,L(E(Y |A = 1,W, L)− E(Y |A = 0,W, L)).

where W ⊂ V are the set of measured baseline confounders. We will return to this example
at times, but this work is developed in generality in order to highlight its applicability to a
variety of target parameters.

The full data model is non-parametric: X ∼ PX , PX ∈MF , whereMF is non-parametric.
We indicate the true distribution of X with PX,0 and note that it can be factorized as
PX,0 = PL|V,0PV,0. We use the subscript 0 to refer to the true values of the parameters of
an object and the subscript n to refer to parameters that are estimates based on the ob-
served data. The mechanism generating R may be known or unknown, but we make two
assumptions about it:

Missing At Random (MAR): P (R|X) = P (R|V )

Positivity: P (R = 1|V ) > 0 a.e.

These assumptions allow the factorization of the observed data likelihood as follows. Let
CX(Oi) be the coarsening of the observed data point Oi = (RiLi, Vi, Ri) (i.e. CX(Oi) =
(Vi, Li) if Ri = 1, otherwise CX(Oi) = {(Vi, l) : PL|V (l|Vi) > 0}). The likelihood of an
observed data point Oi is then:

P (O = Oi) =

∫
x∈CX(Oi)

∫
r=Ri

PX(X = x)P (R = r|X = x)∂νR(r|x)∂νX(x)

=

∫
x∈CX(Oi)

PX(X = x)P (R = Ri|X = x)∂νX(x)

=

∫
x∈CX(Oi)

PX(L = l, V = Vi)P (R = Ri|V = Vi, L = l)∂νX(x)

= P (R = Ri|V = Vi)

∫
x∈CX(Oi)

PX(L = l, V = Vi)∂νX(x) (3.1)

Equation 3.1 implies that the log of the observed data likelihood equals the sum of two
terms

log(P (O)) = log(P (R|V )) + log

(∫
x∈CX(O)

PX(x)∂νX(x)

)
only one of which has to do with PX , so maximization of the observed data likelihood with
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respect to parameters of PX involves only the full-data likelihood.

We use the notation Π(V ) for P (R = 1|V ), which identifies the conditional distribution
of R. We denote the observed data likelihood with PΠ,PX

because, as shown in equation 3.1,
the choice of Π and PX identify this distribution. We assume the existence of a mapping
ΨF from the full data distribution to the d dimensional reals: ΨF : PX → Rd. The target
parameter to be estimated is this mapping applied to the true distribution, ΨF (PX,0) = ψF0 ,
and we define DF (PX) as the efficient influence curve of ψF at PX ∈ M. For our example
target parameter of the ATE, the efficient influence curve is:

DF (PX)(X) =
(
I(A=1)
g(1|W,L)

− I(A=0)
g(0|W,L)

)
(Y − Q̄(W,L,A))

+Q̄(W,L|A = 1)− Q̄(W,L|A = 0)− ψF . (3.2)

where Q̄(W,L,A) = E(Y |W,L,A) and g(a|W,L) = P (A = a|W,L). Our goal is to find a
mapping Ψ from the observed data distribution such that Ψ(PΠ,PX

) = ΨF (PX), where PX
on the right hand side is the full data distribution implied by PΠ,PX

.

We now demonstrate the identifiability of such a mapping from the observed data model
O ∼ PΠ0,PX,0

, where PΠ0,PX,0
is the true observed data distribution and PΠ0,PX,0

∈ M =
{PΠ,PX

: PX ∈MF ,Π has MAR and positivity}.

P (V = v, L = l, R = 1) = P (R = 1|V = v, L = l)P (V = v, L = l)

MAR︷︸︸︷
= P (R = 1|V = v)PX(V = v, L = l)

PX(V = v, L = l)
Positivity︷︸︸︷

=
P (R = 1, L = l, V = v)

Π(V = v)
(3.3)

Both P (R = 1, L = l, V = v) and Π(V ) are identified from the observed data distribution.

We can therefore define P̃X as an identifiable distribution with density P (R=1,L=l,V=v)
Π(V=v)

at all x.
Hence there exist mappings, Ψ, from the observed data distribution to the reals equivalent
to our desired full data mapping

Ψ(PΠ,PX
) ≡ ΨF (P̃X) = ΨF (PX).

We observe n i.i.d. copies of the random variable Oi and are concerned with the construction
of estimators of ψF0 based on Ō ≡ (O1, . . . On).
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3.3 Background

The presence of missing covariates is a ubiquitous problem in epidemiologic, clinical and
social research (Greenland and Finkle, 1995), and has long been an area of active statistical
and applied research. Likelihood based estimation, multiple imputation, and inverse weight-
ing are all possible approaches to estimation in this situation. Likelihood-based estimation
proceeds from the log of the factorized likelihood:

log(P (O)) = log(P (R|V )) + log

(∫
x∈CX(Oi)

PX(Vi, l)∂νX(x)

)
,

and then maximizes the empirical mean of the second term over PX ∈ M (Rubin, 1976b,
Kenward and Molenberghs, 1998). So,

PX,n = argmax
PX∈M

n∑
i=1

log (PX(Xi))
Ri + log

(∫
x∈CX(Oi)

PX(Vi, l)∂νX(x)

)1−Ri

, (3.4)

and the maximum likelihood estimator is ψn = Ψ(PX,n). This is an attractive approach
because of the optimality properties of the MLE, (Le Cam et al., 1986) but it is rarely
used in modern applications because if the dimension of L is high or contains continuous
components, the MLE becomes ill defined for the non parametric model.

Multiple imputation is viewed as an accessible and widely applicable approach to estima-
tion when confounders are missing (Rubin, 1996, Klebanoff and Cole, 2008). First proposed

by Rubin (1987), it is a process in which m = 1, . . .M full data sets, X̄(m) = (X
(m)
1 , . . . X

(m)
n )

are created. There are a variety of methods proposed for accomplishing this, but we describe
only the ’proper’ Bayesian approach (Nielsen, 2003). This begins with a parameterization
of the conditional density of the missing covariates, PL|V , by θ, i.e. PL|V (L|V ; θ), as well as
assumption of an (often non-informative) prior distribution, P (θ). The conditional distri-
bution of θ given the observed data, P (θ|Ō), is then estimated by combining P (θ) with the
conditional distribution of the data P (Ō|θ) using Bayes’ rule. For each of the m = 1, . . . ,M
desired data sets, draws θ(m) are made from P (θ|Ō) and PL|V (L|V ; θ(m)) is then used to

generate L(m) = (L
(m)
i ) for all subjects i with Ri = 0. L(m) is combined with O to create a

’full’ data set X̄(m).

We assume the existence of an estimation algorithm, Ψ̂(X̄) that generates a regular and
asymptotically linear estimator of ΨF (PX). This full data estimation algorithm Ψ̂F () can

then be applied to generate ψ
(m)
n = Ψ̂F (X̄(m)) and variance estimate σ

2,(m)
n . Rubin’s rules

(Schafer, 1997) can be used to combine these to generate estimates of the target parameter
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and its variance. So,

ψn,mi = M−1

M∑
m=1

ψ(m)
n

and the corresponding variance estimate is

σ2
n = M−1

M∑
m=1

σ2,(m)
n + (1 +M−1)(M)−1

M∑
m=1

(ψn,mi − ψ(m)
n )2.

Multiple imputation can be seen as a type of maximum likelihood approach that avoids
the need to compute difficult integrals such as in equation 3.4 (Carpenter et al., 2006,
Seaman and White, 2011). The multiple imputation literature is rich and varied (S Su et al.,
2011, L Schafer and W Graham, 2002, White et al., 2011), with different strategies proposed
to deal with data structures with differing missingness patterns, variable types comprising
L, and relationships PL|V (L|V ; θ). These methods commonly make parametric assumptions
on the shape of PL|V , and therefore assume a more restrictive model than M.

Inverse-probability weighted based estimation is an alternative approach to this problem,
whose form is suggested by the identifiability result in equation 3.3. Each data point is
weighted by I(Ri=1)

Πn(Vi)
, where Πn(V ) is an estimate of the probability that a subject would

have been completely observed. The full data estimation procedure is then applied to this
reweighted dataset. This process requires an estimation procedure that can accept a weighted
data set and estimators of this type generally suffer from a lack of efficiency (Li et al., 2011,
Seaman and White, 2011). This can be understood heuristically by noting that only complete
case subjects contribute information on the relationship between A and Y to the estimation
procedure, while subjects with Ri = 0 contribute no information beyond the fit of Πn.

In a series of articles (Robins et al., 1994, Robins and Rotnitzky, 1995, Rotnitzky and
Robins, 1995), Robins and colleagues introduced a class of inverse weighted estimators in a
semi-parametric regression model, which was subsequently fully developed for any full data
model (van der Laan and Robins, 2003). They define DF (ψ, h) as a class of full data esti-
mating functions for ψ indexed by functions h. These can be mapped into observed data
estimation functions D(ψ, h, φ) indexed by h and φ. They define a class of estimators as solu-
tions to the corresponding estimating equations: 0 = D̄(ψ, h, φ)(Ō) = n−1

∑
iD(ψ, h, φ)(Oi),

where

D(ψ, h, φ)(Oi) =
Ri

Π(Vi)
DF (ψ, h)−

(
Ri

Π(Vi)
− 1

)
φ,

where DF is a gradient of ψF .

The efficient choice for φ is φh = E(DF (ψ0, h)|V,R = 1). We will use the notation, γ, for
the conditional expectation of a full data gradient, and we note that, given that the MAR
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assumption holds,
γ ≡ E(DF (ψ, h)|V,R = 1) = E(DF (ψ, h)|V )

Estimators in this class are called ’double-robust’, because they remain consistent if either Πn

or γn are consistent. Estimators of this type have been found to be computationally challeng-
ing (Carpenter et al., 2006, Williamson et al., 2012) and their implementation in the applied
literature has been limited, in part because the form of the expectation E(DF (ψ0, h)|V )
is generally unknown. Some authors have suggested forgoing the estimation of γ and in-
stead relying on flexible modeling strategies such as splines (Little and Hyonggin, 2003) or
tree-based algorithms (Li et al., 2011) to generate consistent estimators of Π0.

Rose and van der Laan (Rose and van der Laan, 2012) considered the application of
targeted minimum-loss based estimation (TMLE) within model M. We fully describe this
estimation process in section 4.2, which relies upon an estimate Πn of the probability that a
subject is fully observed. Rose and van der Laan recommend the nonparametric estimation
of Πn, but note that when this is not feasible, a targeting step can be applied to Πn to
ensure that efficient influence curve is solved. The focus of this paper is to implement and
evaluate this approach; we update the fit of Πn in order to create efficient and doubly-robust
estimators of ψ0. We will refer to this approach as augmented inverse probability of censoring
weighted targeted minimum loss-based estimation (A-IPCW TMLE).

3.4 A-IPCW TMLE

3.4.1 Full-Data Targeted Minimum Loss Based Estimation (TMLE)

TMLE is a generalized method for the creation of loss-based efficient substitution estimators.
It was first introduced by van der Laan and Rubin (2006a) and van der Laan and Rose
(2011) present a comprehensive description and demonstration of the methodology within a
large class of estimation problems. TMLE involves the minimization of the empirical mean
of loss functions with respect to specifically defined parametric submodels, which generate
estimates of components of the observed data distribution that are targeted to the parameter
of interest. For the current work, we assume that a full-data TMLE for the parameter of
interest has been defined. That is, given n iid observations X̄ = (X1, . . . , Xn), there exists
a mapping Ψ̂(X̄) = Q∗X,n, an estimator for QX(PX,0), which are components of the full data
distribution QX(PX) such that DF (QX) = DF (PX) and ΨF (QX) = ΨF (PX). For example,
if the estimand corresponding to the ATE is the target parameter, with DF defined as in
equation 3.2, the set of components QX so defined are (PW,L, g, Q̄, ψ). Given a a targeted
estimate of these components Q∗X,n, ΨF (Q∗X,n) is the corresponding TMLE of the target
parameter ψF0 .
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TMLE requires LF (QX), a full data loss function minimized by the true distribution:

QX,0 = argmin
{QX(PX):PX∈MF }

E0L
F (QX)(X)

Let {QX(ε) : ε} be a working parametric submodel of QX constructed so that its score at
ε = 0 equals the full-data efficient influence curve:

∂

∂ε
log(QX(ε)(X))

∣∣∣∣
ε=0

= DF (QX)(X) (3.5)

Starting with an initial estimate of the components of the full data density, Q0
X,n, εkn is

defined as the iterative minimizer of the full-data loss function applied to the submodel of
the component estimate k − 1:

εkn = argmin
ε

P F
n L

F (Qk−1
X,n(ε)) (3.6)

and then P k
X,n = Qk−1

X,n(εkn). Above, P F
n is the full-data empirical distribution of X̄, which

is not identifiable from the observed data when some covariates are subject to missingness,
thus motivating our current study. Equation 3.6 is iteratively solved for k = 1, . . . K until
εKn ≈ 0. Minimizing the loss function with respect to the submodel QX(ε) ensures that the
empirical mean of equation 3.5, is zero. Therefore, the full-data TMLE solves the estimating
equation associated with the full data efficient influence curve

P F
n D

F (Q∗X,n) = 0

and achieves the minimal variance among unbiased estimators of ψ0 in MF .

3.4.2 IPCW-TMLE

Simple IPCW-TMLE, as introduced by Rose and van der Laan (2012), works by the incor-
poration of a weight: R

Π(V )
into the process described above. Specifically, the observed data

loss function is defined as:

L(QX)(O) =
R

Π(V )
(L(QX)(X))

A parametric submodel QX(ε) is then defined so that

∂

∂ε
logQX(ε)

∣∣∣∣
ε=0

=
R

Π(V )
DF (QX)(X) (3.7)
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and ε is estimated as the minimizer of the empirical mean of the loss function applied to
that submodel

εkn = argmin
ε

PnL(Qk−1
X,n(ε))

= argmin
ε

n−1
∑
i

Ri

Π(Vi)
L(Qk−1

X,n(ε))(Xi). (3.8)

The likelihood estimate is iteratively updated, with Qk
X,n ≡ Qk−1

X,n(εkn) for k = 1, . . . , K

until εKn ≈ 0. The final estimator QK−1
X,n (εKn ) ≡ Q∗X,n is a targeted estimate of QX,0 and

ΨF (Q∗X,n) = ψn is the IPCW TMLE for ψ0. This fit, Q∗X,n solves the efficient score equation
for the full data parameter, weighted by the inverse probability of being fully observed.

Pn

(
R

Πn(V )
DF (P ∗X,n)

)
= 0 (3.9)

Since the empirical score of Q∗X,n with respect to ε is 0, and equation 3.9 holds, the IPCW-
TMLE solves the estimating equation corresponding with the inverse weighted full data
efficient influence curve.

Rose and van der Laan prove that any additional properties of the full data TMLE (such
as double-robustness to the misspecification of the treatment and outcome mechanisms),
are inherited by the IPCW-TMLE, as long as the estimate of the missingness mechanism,
Πn, is consistent. They also prove that if Πn is estimated using non-parametric maximum
likelihood, then the IPCW-TMLE is an efficient estimator of ψ0. The reasons for this become
clear upon examination of the efficient influence curve for ψF in model M, which is:

D∗(PX ,Π)(Oi) =
Ri

Π(Vi)
DF (PX)(Xi)−

Ri − Π(Vi)

Π(Vi)
E(DF (PX)|Vi, Ri = 1). (3.10)

If Πn is the non-parametric maximum likelihood estimator, it solves the score equations for
all parametric submodels of Πn (Gill et al., 1989). The score equations for submodels

logit Π(δ) = logit Π + δ(φ(V )),

univariate logistic regressions with covariate φ(V ), are:

S̄(φ) =
n∑
i=1

(Ri − Πn(Vi))φ(Vi)

If Πn is the NPMLE, then S̄(φ) = 0 for all covariates φ(V ), in particular for φ(V ) =
E(DF (PX)|V,R=1)

Πn(V )
. Therefore the empirical sum of the second component of equation 3.10 will

be 0. Combined with the fact that the IPCW-TMLE procedure ensures that equation 3.9
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holds, we have that
PnD

∗(PX,n,Πn)(X) = 0.

However, if non-parametric MLE is not feasible (i.e. if V is high-dimensional and/or has
continuous components), additional steps must be taken to achieve efficient estimation. As
outlined by Rose and Van der Laan (Rose and van der Laan, 2012), this can be achieved
by the targeted estimation of the missingness mechanism, Π, incorporating an estimate of
the nuisance parameter γ. We now describe an approach to this targeting step, the central
component of the A-IPCW TMLE estimation process.

3.4.3 Augmented-IPCW TMLE

Augmented IPCW TMLE incorporates an estimator γn for E(DF (PX)|V,R = 1) into the
fitting process for the missingness mechanism, Πn. From here on, we will incorporate γ into
our notation for influence curves, i.e.

D(PX ,Π, γ) =
R

Π(V )
DF (PX)− R− Π(V )

Π(V )
γ(V ).

The augmentation procedure iteratively updates Πn(V ) until arriving at a final augmented
estimator for the missingness mechanism, Π∗n. Π∗n guarantees that the resulting estimates of
likelihood components Q∗X,n solve

∑
iD
∗
i (Q

∗
X,n,Π

∗
n, γn) = 0. This result implies that if γn is

consistently estimated, the A-IPCW TMLE estimator, ψn = Ψ(P ∗X,n), achieves the minimal
variance of all unbiased estimators of ψ0 in M.

The iterative updating of Πn starts with an initial estimate of the missingness mechanism,
denoted Π0

n(V ), and an estimate γn(V ) of the regression of DF (PX) on V . Any procedure
the investigator favored could be used to generate these estimates, for example a loss-based
ensemble learner such as SuperLearner (van der Laan et al., 2007). For k = 1, . . . , K, a
parametric submodel Πk

n(β) is defined such that

Πk
n(β)(V ) = expit

(
logit(Πk

n(V )) + β

(
γn(V )

Πk
n(V )

))
(3.11)

The empirical mean of the logistic loss function L(Π)(O) = − log(Π(V ))R(1 − Π(V ))1−R is
then minimized over Ō to estimate βkn.

βkn = argmin
β

PnL(Πk−1
n (β)) (3.12)

This corresponds to running a logistic regression of Ri on γn(Vi)

Πk−1
n (Vi)

, using Πk−1
n (Vi) as an

offset. The subsequent fit is defined as Πk
n = Πk−1

n (βkn) and the process is iteratively updated
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for k = 1, . . . K, until convergence when βKn ≈ 0. The final estimate of the missingness
mechanism is denoted Π∗n ≡ ΠK−1

n (βKn ). This estimate Π∗n is then used in the IPCW-
TMLE procedure to generate an estimate of the likelihood component Q∗X,n. As described

above, this involves weighting the full data TMLE loss function and submodel by R
Π∗

n(V )
and

iteratively minimizing the submodel until convergence at the final estimator, Q∗X,n. The
A-IPCW TMLE is then ψn = ΨF (Q∗X,n).

A-IPCW solves the Efficient Influence Curve

The contribution to the observed data likelihood (equation 3.1) from Πk
n(β) is (allowing Ei

to stand for γn(Vi)
Πk

n(Vi)
for notational clarity):

L(Π(β)) =
n∏
i=1

exp(Ri(βEi)

1 + exp(βEi)

with a corresponding score with respect to β of:

S(Π(β)) =
∂ log(L(Π(β)))

∂β
=

∂

∂β

n∑
i=1

RiβEi − log(1 + exp(βEi))

=
n∑
i=1

RiEi −
exp(βEi)

1 + exp(βEi)
Ei

=
n∑
i=1

E(DF |Vi, Ri = 1))

Πk
n(Vi)

(Ri − Πk
n(β)(V ))

and when βKn ≈ 0 and therefore Πk
n(β) ≈ Πk

n

=
n∑
i=1

Ri − Πk
n(Vi)

Πk
n(Vi)

E(DF |Vi, Ri = 1). (3.13)

The use of the logistic loss function ensures that the empirical score, equation 3.13, equals
0. Therefore, an updated Πn will result in an estimator that also ensures that the empirical
sum of the second half of the efficient influence curve is 0. When combined with the property
of IPCW TMLE that guarantees that equation 3.9 holds, we have that

PnD
∗(Q∗X,n,Πn(β), γn) = 0. (3.14)
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A-IPCW TMLE is Double Robust

The following section demonstrates that the A-IPCW estimator is doubly-robust to the
misspecification of either Πn or γn, as previously established in e.g. in van der Laan and
Robins (2003). We first note that any influence function of the form D∗(QX ,Π, γ) can be
re-expressed as follows:

D∗(QX ,Π, γ) =
(

R
Π(V )

DF (QX)(X)−
(

R
Π(V )
− 1
)
γ(V )

)
= DF (QX)(X) +

(
R−Π(V )

Π(V )

) (
DF (QX)(X)− γ(V )

)
. (3.15)

Therefore,
P0D

∗(Q∗X,n,Πn, γn) = P0D
F (Q∗X,n) + P0R(Πn, γn(QX))

where R(Πn, γn(QX)) is defined as the second term in equation 3.15 and we use the γn(QX)
notation to highlight the dependence of γn on QX . As demonstrated in section 4.3.1, the
A-IPCW estimation procedures guarantees that PnD

∗(Q∗X,n,Πn, γn) = 0. If we therefore
have that P0R(Πn, γn) converges to 0 if either γn(QX) converges to γ0 or Πn is converges to
Π0, then we will have that P0D

F (P ∗X,n) converges to 0.

P0R(Πn, γn) =P0

(
R− Πn(V )

Πn(V )

)(
DF (QX)(X)− γn(QX)(V )

)
=P0

(
E

((
R− Πn(V )

Πn(V )

)
(DF (QX)− γn(QX)(V ))

∣∣∣∣V))
=P0

((
E(R|V )− Πn(V )

Πn(V )

)(
E(DF (QX)|V )− γn(QX)(V )

))
(3.16)

Since E(R|V ) = Π0(V ) we have that if Πn → Π0 with respect to the L2
0(P0) norm, then

P0R(Πn, γn(QX))→ 0

If instead we have that γn(V )→ γ0(V ), it is clear that(
E(DF (QX)|V )− γn(V )

)
= (γ0(V )− γn(V ))→ 0

and the same result will hold.

This result relates to the consistency of the A-IPCW estimator as follows. If the full data
gradient itself satisfies an equality

P0D
F (P ∗X,n) = ΨF (PX,0)−ΨF (PX,n) +R(P ∗X,n, PX,0)

for some term R(P ∗X,n, PX,0) that converges to 0, than the estimator will be consistent.
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For example, the full data gradient for the average treatment effect (equation 3.2) has the
property that R(P ∗X,n, PX,0) converges to 0 if Q̄n or gn are consistent for their targets (van der
Laan and Rose, 2011). Therefore, an A-IPCW estimator for the average treatment effect
will be consistent if either γn or Πn are consistent for their targets and either Q̄n or gn are
are consistent for theirs.

A-IPCW TMLE Implementation

We define and compare three procedures for the generation of A-IPCW TMLE estimators.
These correspond with three distinct procedures for the calculation of γn, an estimate of
E(DF (QX)|V,R = 1). Estimation of this expectation depends on having an estimate of
DF (QX)(Xi) for all subjects with Ri = 1. This necessitates the estimation of QX , compo-
nents of the full data likelihood PX such that DF (QX) = DF (PX); the specific components
are dependent on the form of DF (PX). IPCW-TMLE is one approach that can generate
these initial estimates, as we describe below.

Initial Estimation of Likelihood Components Generate an initial estimate of Πn, for
example by using main term logistic regression to regress R on V , and denote this
estimate Πn,1. Then perform the IPCW TMLE using the observed data loss function:

L(QX)(O) =
R

Πn,1(V )
LF (QX)(X)

and a submodel of QX with parameter ε defined such that

∂

∂ε
log(QX(ε)(X))

∣∣∣∣
ε=0

=
R

Π(V )
DF (QX)(X)

That is, starting with an initial estimator Q0
X,n, for k = 1 . . . K, minimize the empirical

mean of the loss function of the submodel with respect to ε

εkn = argmin
ε

PnL(Qk−1
X,n(ε))(X)

then set Qk
X,n = Qk−1

X,n(εkn). Iterate this procedure until εKn ≈ 0 and denote the final

estimate QX,n = QK−1
X,n (εKn ). For the example parameter of the ATC, this process will

result in a set of estimates QX,n containing gn, Q̄n and ψFn . With these components in
hand, DF (QX)(X) can be estimated for all subjects with Ri = 1.

Augmentation of the Censoring Fit Now calculate DF (QX,n)(X) for all subjects with
Ri = 1. Regress DF (QX,n)(X) on V among these same subjects. This regression will
result in a function γn(V ), an estimate of E(DF (PX)|V,R = 1), which can be applied

33



to V for all subjects regardless of their value R. Calculate γn(V )
Πn,1(V )

for all subjects. Then

perform the updating steps as described in equations 3.11 and 3.12 and iterate until
convergence. The final estimate is denoted Π∗n,3, where the subscript 3 is used to be
consistent with the results presented later in the paper.

Implement IPCW-TMLE a Final Time IPCW-TMLE is then performed again, now
using a loss function that incorporates the updated missingness fit:

L(QX)(O) =
R

Π∗n,3(V )
LF (QX)(X). (3.17)

This results in Q∗X,n, a targeted estimate for QX,0. We also denote this QX(Π∗n,3) to
highlight its dependence on the specific missingness fit.

Final Estimator Q∗X,n, is used with the full data mapping to generate the final estimator
ψn,3 = ΨF (Q∗X,n).

We also consider an extension to this procedure, in which the missingness fit and the corre-
sponding likelihood components, QX(Πn), are both iteratively updated. That is, this process
uses each iteration of Πk

n in the IPCW TMLE procedure, to estimate QX(Πk
n). Given QX(Πk

n)
DF (QX(Πk

n))(X) is calculated among subjects with Ri = 1 and regressed on Vi to generate
γkn(V ). A new parametric submodel is defined, which incorporates this new estimate of γ0:

Πk
n(β)(V ) = expit

(
logit(Πk

n(V )) + β

(
γkn(V )

Πk
n(V )

))
.

The empirical mean of the logistic loss function is minimized with respect to β over the
observed data

βkn = argmin
β

PnL(Πk−1
n (β))(O)

for k = 1, . . . , K. This is iterated until βkn ≈ 0 and Πk−1
n (βkn) ≡ Π∗n,4. IPCW-TMLE is

then implemented a final time, using Π∗n,4 and Q∗X , the resulting targeted estimate of QX,0,
generates ψn,4 = ΨF (P ∗X).

A third approach that we consider is the use of multiple imputation to estimate the
parameters of the regression, γn. That is, values L(m) = (L

(m)
1 , . . . , L

(m)
j ) for m = 1 . . .M

are imputed for the j subjects where Ri = 1. L
(m)
i are combined with {Vi : Ri = 0} and

{(Vi, Li) : Ri = 1} to create M X̄(m)s, imputed full data sets. For each X̄(m), the full data

mapping Ψ̂F (X̄(m)) can be used to estimate Q
(m)
X,n and therefore calculate DF (Q

(m)
X,n)(Xi)

for all subjects. A parameterization of the regression of DF (Q)(X) on V , γn, indexed by

χ, is assumed, and χ
(m)
n is estimated using each of the data sets. Let χn = 1

M

∑
m χ

(m)
n

and γn,5 = γn(χn) be the estimate of E(DF (PX)|V,R = 1). A new parametric submodel
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{Πk
n(β) : β} is defined such that:

Πk
n(β)(V ) = expit

(
logit(Πk

n(V )) + β

(
γn,5(V )

Πk
n(V )

))
.

and iteratively updated as described in equation 3.12 until βkn ≈ 0. Π∗n,5 = ΠK−1
n,1 (βKn ) is

the final estimator for the missingness mechanism and a corresponding loss function, as in
equation 3.17, is defined. Q∗X is the resulting targeted estimate for QX,0 and ψn,5 = ΨF (Q∗X)
is then the A-IPCW TMLE for ψ0.

Variance Estimation

For all the procedures described, the asymptotic variance of
√
n(ψn − ψF0 ) can be estimated

by calculating the empirical variance of D∗(Q∗X ,Π
∗
n, γn). Since PnD

∗ = 0, this is equivalent
to the mean square of the empirical influence curve and

σ2
n =

1

n

n∑
i=1

D∗(Q∗X ,Π
∗
n, γn)(Oi)

2.

95% confidence intervals can then be calculated as ψn ± 1.96 σn√
n
. For the ATE estimatand,

this variance estimator is conservative if Πn and gn are consistent for their targets, and
correct if γn and Qn are also consistent.

3.5 Simulation

We examined the performance of the proposed estimators in simulation. Two simulation
studies were run. The first explored the performance of the various estimators as the pro-
portion of missingness changed while the second explored performance under misspecification
of Π and γ. The data structure contained the following variables whose variable definitions
and relationships mimic the motivating data set presented in the applied example in section
5. A directed acyclic graph representing the relationships between the variables is contained
in figure 3.1.

W (Age, Sex, Race) where Age ∼ N(46,
√

(103)), Sex ∼ Bern(0.7), Race ∼ Bern(0.7) are
independent from each other.

L (Smoking, BMI) where Smoking ∼ Bern(logit(βl0 + βl1W )) with βl0 = −1.8 and βl0 =
(0.4, .2, .18). BMI ∼ N(µl,

√
28) where µl = βL2 +βL3 W and βl2 = 28, βL3 = (.03, .95, .67)
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W

A Y

L E
R

Figure 3.1: Directed Acyclic Graph (DAG) of variables used in simulation study

A (Exposure) where A ∼ Bern(logit(βA0 +βA1 W+βA2 L)) and βA0 = 2.2, βA1 = (−.02,−.9, .37),
βA2 = (−.04,−.11).

Y (Outcome) where Y ∼ Bern(logit(βY0 + βY1 W + βY2 L + βY3 A)), and βY0 = −8.7, βY1 =
(.12, .21,−.19), βY2 = (.05, .49), βY3 = .2.

E (Leaving Work) where E ∼ Bern(logit(βE0 + βE1 W + βE2 L + βE3 A + βE4 Y ), and βE0 =
−3.0, βE1 = (.04,−.06,−.03), βE2 = (.006, .44), βE3 = .2, βE4 = −.5.

R (Measurement of L) where R ∼ Bern(logit(βR0 + βR1 W + βR3 A + βR4 Y + βR5 E)), and
βR0 = −2, βR1 = (.04, 0, 0), βR3 = 1, βR4 = −.5, βR5 = −.6.

The parameter of interest used for the study was the same as our running example in
the paper, the ATE of the treatment A: ψF = ΨF (PX) = EW,L(Q̄(Y |A = 1, L,W ) −
Q̄(Y |A = 0, L,W )). This parameter has the following efficient influence curve, where we
define g(a|W,L) = P (A = a|W,L):

DF (PX)(X) =
(
I(A=1)
g(1|W,L)

− I(A=0)
g(0|W,L)

)
(Y − Q̄(W,L,A))

+Q̄(W,L|A = 1)− Q̄(W,L|A = 0)− ψF .

The components of PX that need to be estimated in order to calculate DF (PX) are QX =
(Q̄, g, PW,L, ψ

F ) and DF (PX) = DF (QX). The full data mapping procedure we used was
simple TMLE for the average treatment effect as fully defined in,van der Laan and Rubin
(2006a) or Moore and van der Laan (2007).

Five estimators (ψn,1, ψn,2, ψn,3, ψn,4, ψn,5) were calculated in each of the simulated data
sets. ψn,1 was traditional IPCW-TMLE, ψn,3 was the basic augmented IPCW-TMLE, ψn,4
was the augmented TMLE with an iterative update of QX,n, and ψn,5 was an augmented
IPCW-TMLE where γn was estimated from multiply imputed data sets. We also included
a multiple imputation type estimator, ψn,2. For this, the full data estimation procedure
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was performed in each of M = 5 multiply imputed data sets and the results were combined
together using Rubin’s rules. All analysis was performed in R 3.0 (R Core Team, 2013a) and
the package mi (S Su et al., 2011) was used to perform the multiple imputation.

The first simulation was run with n = 15,000 and compared the performances of the
various estimators when each of the estimator components were correctly specified, but the
proportion of missingness (EPX

(R)) was changed. The intercept of the regression predicting
R, βR0 , was set to 9 different values in order to vary this proportion. For each intercept value,
100 data sets were created and the average bias, mean squared error (MSE) and coverage
probabilities of the estimators were compared.

Table 3.5 contains the results from this simulation which demonstrate that under correct
model specification, all five estimators are approximately unbiased. The multiple imputa-
tion based estimator ψn,2 delivered the lowest mean squared error of the five estimators. The
performance of the augmented-IPCW TMLE estimators (ψn,3, ψn,4, and ψn,5) demonstrated
slight reductions in bias and MSE as well as increased coverage probabilities, as compared to
IPCW TMLE (ψn,1). The coverage probabilities for the augmented estimators were consis-
tently higher than 95% and increased as the proportion of missing data increased. This can
be attributed to the fact that the true efficient influence curve for the augmented estimator
is D∗ minus its projection onto the space of scores for the missingness mechanism (van der
Laan and Robins, 2003, Tsiatis, 2006). Therefore, the variance estimates we use here, which
are based on D∗ only, are guaranteed to be conservative and the coverage probability is
greater than 95%.

Figure 3.2 demonstrates that as the proportion of missingness within the population
goes up, the gains due to the augmentation procedure become larger. It plots the ratio
of the relative mean squared error of the simple augmented IPCW-TMLE(ψn,3) to that
of the IPCW-TMLE (ψn,1) as a function of EPX

(R). The augmentation procedure results
in increased efficiency as the proportion of missingness increases. The efficiency gains are
modest at relatively low missingness proportions, but become substantial as this proportion
of missingness moves above 40%.

The second simulation explored the performance of the augmented estimators under mis-
specification of the Π and γ estimator components. The misspecification of Π was performed
by generating models, Πn that did not include the members of W Age or Sex. γ was mis-
specified by generating models for E(DF (PX)|V ) that also did not include these predictors.
Age or Sex were also not passed to the multiple imputation procedure when calculating ψn,2
and ψn,5 under misspecification of γ. Table 3.5 contains the MSEs and biases for the five
estimators calculated under these conditions on 100 data sets with n = 5000.

The A-IPCW estimators ψn,3 and ψn,4 outperform the IPCW estimator ψn,1 under each
of the study conditions. ψn,5 had lower absolute bias under each condition, but had a higher
MSE under misspecification of Π. When γ is correctly specified, the multiple imputation
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TMLE (ψn,1)

38



estimator ψn,2 exhibited lower absolute bias and MSE than any of the inverse weighted
estimators. When γ is misspecified, however, ψn,2 demonstrates bias which is not present in
the IPCW estimators.

Figure 3.3 shows the distribution of the bias for the five estimators among the 100 data
sets under each simulation condition. Under correct specification of γ and Π, each of esti-
mators are unbiased. When Π is misspecified, however, the IPCW estimator ψn,1 is biased,
while the MI estimator ψn,2 and the A-IPCW estimators ψn,3 and ψn,4 are unbiased. This
occurs despite the fact that the estimation of DF (QX,n(Πn)) is dependent on a misspecified
Πn for the A-IPCW estimators. We also note that both the bias and the variance for ψn,5
under misspecification of Πn is higher than expected. This may occur because we are not
assured of fully correct specification of γn, even when all relevant variables are included as
predictors, because the true form of the conditional regression is unknown. It is also possible
that under the simulation conditions, the second order bias becomes large (Kang and Schafer,
2007). Future work with these estimators will explore the application of flexible modeling
approaches for γ which may improve the performance of A-IPCW TMLE estimators of the
sort described here.

3.6 The Aluminum Worker Cohort

The present course of work was motivated by research on an occupational cohort of aluminum
smelter workers, in which we were interested in studying the effects of exposure to airborne
particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) on heart
disease incidence. The target paramter was the contrast between incidence of ischemic heart
disease (IHD) among workers constantly exposed above or below a cut-off for 15 years of
work. The cohort contained 5,426 workers who were followed for a maximum of 15 years
between 1996 and 2013, or until they left work. Worker’s occupational exposure to PM2.5

and experience of ischemic heart disease (IHD) were measured annually during follow-up,
following a two year washout period designed to remove prevalent cases from the cohort. Two
important potential confounders were body mass index (bmi) and smoking status, which were
incompletely measured in the population, with 3,914 (62%) workers having this information
recorded. This cohort and the application of longitudinal TMLE of a mean outcome to it
have been fully characterized by Costello et al. (2014) and in chapter 4.1 of this dissertation.
This applied example represents one of the several target parameters we consider therein.
We describe the application of the augmented IPCW TMLE to this analysis in the section
that follows.
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Figure 3.3: Distribution of bias for the 5 estimators ψn,1, ψn,2, ψn,3, ψn,4 and ψn,5 implemented
using correctly and incorrectly specified components Π and γ. ψn,1 is the IPCW TMLE, ψn,2
is the full data TMLE averaged over 5 multiply imputed data sets, and ψn,3, ψn,4 and ψn,5
are alternative approaches to implementing A-IPCW TMLE. Simulation condition Π-M γ-
C indicates that the probability of missingness Π = P (R|V ) was misspecified while the
conditional regression of the full data influence curve γ = E(DF |V ) was correctly specified
(in that it contained all relevant members of V )
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3.6.1 Data Structure and Target Parameter

The full data structure for the aluminum smelter worker cohort was:

X = (W (0), L, A(1),W (1), . . . , A(15), Y ∈ W (15), R)

with variables defined as follows:

W(t) Completely recorded variables, both time variant and invariant, as measured at end
of time point t. These include age, race, facility location, marital status, job grade,
calendar year, prior diagnosis of ischemic heart disease, diabetes, hypertension, dyslipi-
demia, or clinical obesity, risk score (an insurance-based health index), time off work,
time since hire, and an indicator of leaving work prior to 2009.

L Incompletely recorded time-invariant variables (bmi and smoking status).

A(t) A vector of intervention variables containing: E(t) an indicator of employment during
time t at a job where exposure to PM2.5 has been estimated to be above 1.77mg

m3 and
C(t) an indicator of either active work status while younger than 55,or being older
than 55 at the end of time point t.

Y(t) An indicator of diagnosis with incident ischemic heart disease by the end of time point
t. Y ≡ Y (15) is a measure of cumulative incidence by the end of follow-up and is the
variable about which we wish to make inference.

R An indicator of recording of L.

Measurement of BMI and smoking status were acquired from two sources: 1) Review of on-
site medical records performed by study personnel in 2009 and 2) A worker health database
maintained by the employer. A primary determinant of whether the medical records were
available for review was whether a worker was actively employed at the time. The two
sources were thus necessary to believe that the positivity assumption could hold for workers
who were not employed in 2009. Information on work termination was consequently included
in W ⊂ V to ensure that the MAR assumption was met.

The observed data structure was:

O = (W (0), LR,A(1),W (1) . . . A(15), Y ∈ W (15), R)

where we set all variables at time points after a worker leaves work to their last recorded
values. That is, if a worker leaves at time point k, then W (t) = W (k) and A(t) = A(k) for
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t = k, . . . , K. We can express the likelihood as

P0(O) =
{
P0(L|Pa(L))

K∏
k=0

P0(W (k)|Pa(W (k)))
K∏
k=1

P0(A(k)|Pa(A(k)))
}R

{∫
l

K∏
k=0

P0(W (k)|Pa(W (k)))
K∏
k=1

P0(A(k)|Pa(A(k)))∂νL

}1−R

=
{
P0(L|Pa(L))

K∏
k=0

Q0,W (k)(O)
K∏
k=1

g0;A(k)(O)
}R

{∫
l

K∏
k=0

Q0,W (k)(O, l)
K∏
k=1

g0;A(k)(O, l)∂νL

}1−R

where Pa(W (k)), Pa(A(k)) and Pa(L) denote the parents (all variables that directly affect
the values) of L of W (k), A(k), and L, respectively. Q0,W (k) is the true conditional dis-
tribution of W (k) given its parents and g0,A(k) is the true conditional distribution of A(k)

given its parents. We also use the notation g0:k ≡
∏k

j=0 gA(j). We define a statistical model
M for P0 as M = {P = PLQg,Q ∈ Q, g ∈ G} where Q contains all possible values for
Q0,W (k) : k = 0 . . . K and G contains all possible values for g0,A(k) : k = 1 . . . K.

Our target parameter of interest is the cumulative incidence from ischemic heart disease
among workers following specified intervention regimes, d̄ that specify the values of the
intervention nodes A at each time point. The two regimens of interest correspond to workers
always being exposed either above or below the exposure cut-off while remaining at work
until retirement age, after which they are free to leave as they wish. That is, we define two
treatment regimens corresponding to two levels of the binary exposure, d1(W̄ ) and d0(W̄ )
such that

de(W̄ (t))(t+ 1) = (e, 1) if age(t) <55

de(W̄ (t))(t+ 1) = (e, 0) if age(t) >55

Let P d(w) =
∏K

k=0Q
d
W (k)(w̄(k)) be the conditional distribution of w under the intervention

A(t) = de(W̄ (t)) for t = 1, . . . K, which we denote with Ā(K) = d̄(K) for notational clarity.
Here Qd

W (k)(w(k)) = QW (k)(w(k)|W̄ (k − 1), Ā(k) = d̄(k)). Then let W d ∼ P d be the distri-

bution of the covariates under intervention regimen d̄ and let Y d be its final element. We
are interested in making inferences about the parameters of the distribution of this variable
under different interventions. Our target parameter is the mean of Y d, ψ0 = EP dY d. Our full
data procedure (what we would have applied to the full data structure if L was measured)
was longitudinal TMLE of a mean outcome procedure, which is a mapping from the model
to the reals, Ψ :M→ R such that Ψ(P ) = EP dY d.
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3.6.2 Longitudinal TMLE of a mean outcome

The full data procedure we used to estimate EP dY d was longitudinal TMLE of a mean
outcome. This method involves representing the target parameter as an iterative conditional
expectation, as first demonstrated by Robins (2000a) and further explicated by Bang and
Robins (2005). By the tower rule of conditional expectations:

EY d(K+1) = E(. . . E(E(Y |W̄ (K), Ā(K) = d̄(K))|W̄ (K−1), Ā(K−1) = d̄(K−1)) . . . |W (0)).

The mean of the Y d(K+1) can therefore be estimated by conditioning first on W̄ (K), Ā(K) =
d̄(K), then on W̄ (K−1), Ā(K−1) = d̄(K−1) and so on until W (0). Longitudinal TMLE of
a mean outcome was first described by Van der Laan and Gruber in 2012 (van der Laan and
Gruber, 2012), and is a method for estimating estimands like EP dY d using targeted fits of
each of these conditional expectations. Each fit is targeted to ensure that the final estimator
solves the efficient influence curve equation. The efficient influence curve for this estimator
in M can be written as DF =

∑K+1
k=1 D

F
k where:

DF
K+1 =

I(Ā(K) = d̄(K))

g0:k

(Y − Q̄d
W (K+1))

DF
k =

I(Ā(k − 1) = d̄(k − 1))

g0:k−1

(Q̄d
W (k+1) − Q̄d

W (k))

D∗0 = Q̄d
W (1) − ψ0

Q̄d
W (K+1) = E(Y |W̄ (K), Ā(K) = d̄(K)) and Q̄d

W (k) = E(Q̄d
W (k+1)|W̄ (k − 1), Ā(k − 1) =

d̄(k − 1)). Note that DF (PX) is a function of PX through the likelihood components QX =
(Q̄d

W (1), . . . Q̄
d
W (15), g0:15). The longitudinal TMLE of a mean outcome procedure generates

targeted fits, Q∗X,n, of QX that ensure that the empirical sum of the efficient influence curve
will be 0:

1

n

n∑
i=1

DF (Q̄∗X,n, gn,0:15)(Oi) = 0

This is a necessary condition of the full data estimation procedure in order to be able to
apply AIPCW-TMLE. We used a modified version of the ltmle package (Schwab et al.,
2013, Lendle et al., 2014) and R 3.0.3 to perform our analysis.

3.7 Implementation of A-IPCW TMLE

The first step of AIPCW-TMLE implementation is to generate estimates of the necessary
likelihood components, QX , using IPCW-TMLE. We used logistic regression to create an ini-
tial estimate of the missingness mechanism, Πn,1(V ), by regressing R on V = (W (15), A(15)).
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Weights pi = (Πn,1(V ))−1 were then calculated for each worker. These were used in the next
step to estimate gn,0:K with weighted logistic regression models. The A vector has two com-
ponents, one for the exposure E and the other for the censorship state, C. We could therefore
partition g0 into two corresponding distributions

g0,E(t) = P0(E(t)|W̄ (t), L, C(t− 1) = 1, Y (t− 1) = 0)

g0,C(t) = I(Age(t) >55) + P0(C(t)|W̄ (t), L, E(t), C(t− 1) = 1, Y (t− 1) = 0,Age(t) <55)

g0,A(t) = g0,E(t)g0,C(t)

Estimates of g0,A(t) were made by fitting logistic regressions weighted by pi among workers
with Ri = 1. We made a Markov assumption that the intervention nodes at time t were only
a function of the parent nodes as measured at time t−1. This allowed us to pool observations
over time and generate a single fit for each distribution, gn,E(W (t−1), L, E(t−1), t, C(t−1) =
1, Y (t− 1) = 0) and gn,C(W (t− 1), L, E(t), t, C(t− 1) = 1, Y (t− 1) = 0, Age(t) <55). We
then defined:

gn,0:K ≡
K∏
t=0

gn,E(E(t)|W (t− 1), L, t, E(t− 1), C(t− 1) = 1, Y (t− 1) = 0)

gn,C(C(t)|W (t− 1), L, t, E(t), C(t− 1) = 1, Y (t− 1) = 0,Age <55)

which we used in the targeting of the sequential regressions as described below.

We generated an estimate for the first conditional expectation, Q̄d
Y,n of Q̄d

Y,0 = E0(Y d|
W̄ d(15), L, Ā(15) = d̄(15)) by fitting a weighted logistic regression of Y on (W (15), L, Ā(15) =
d̄(15), Y (14) = 0, R = 1), with weights p. The Markov assumption that only the members
of W as measured at time point t− 1 affected the distribution of Y at time t was made for
this and all subsequent conditional regressions. We then updated this fit by regressing Y on
(I(Ā(15) = d̄(15)))(gn,0:15(W̄ (15), L))−1, using Q̄d

Y,n as an offset and weights p. The result

was the final targeted fit of the conditional regression, Q̄d,∗
Y,n.

We then repeated a similar process for time point t = 14. We first generated Q̄d
W (14),n

by regressing Q̄d,∗
Y,n(W (15), L) on (W (14), L, Ā(14) = d̄(14), Y (13) = 0, R = 1). We then up-

dated this fit, generating Q̄d,∗
W (14),n, by regressing Q̄d,∗

Y,n on (I(Ā(14) = d̄(14)))(gn,0:14(W̄ (14), L))−1

on with offset Q̄d
W (14),n. This process was repeated 13 times until arriving at a final regression

Q̄d,∗
W (1),n. The final estimator was this function applied to the weighted empirical distribution

of fully observed baseline covariates.

ψn =
1∑n
i=1

Ri

pi

n∑
i=1

Ri

pi
Q̄d,∗
W (1),n(Wi(0), Li)

This process resulted in an estimate QX,n = (Q̄d,∗
Y,n, . . . , Q̄

d,∗
W (1),n, gn,0:15), which could be
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plugged into the formula for the full data efficient influence curve DF (QX,n)(X).

The application of augmented IPCW TMLE procedure was straightforward at this point.
DF (QX,n)(X) was regressed on V = (A(0), A(15),W (0),W (15)) among subjects withRi = 1.
This resulted in γn(V ), an estimate of the regression of the full data efficient influence
curve for the longitudinal data structure on the always observed variables. γn(V ) was then
used to update the fit of the missingness mechanism by regression of (γn(Vi))(Πn(Vi))

−1 on

Ri, with offset Π
(0)
n (Vi). After iteration, we arrived at a final fit Π∗n(V ) and new weights

p∗ = (Π∗n(V ))−1. The new weights were used to repeat the process described above and the
final estimator was ψn,3. The other augmented IPCW TMLE estimators ψn,4 and ψn,5 were
implemented in a similar manner, excepting for the previously described differences in the
estimation of γ.

3.7.1 Results

We applied the five estimation procedures to the aluminum smelter cohort and estimated
the counterfactual cumulative incidence of IHD under two different intervention regimens.
These regimens involve assignment of an exposure level as well as the prevention of censoring
due to leaving work prior to retirement age of 55. That is, censoring is defined within this
data structure leaving work when younger than 55 and the regimens of interest included
an intervention to prevent censoring. Workers following the first regimen (ē = 1̄) work in
jobs where they are exposed to greater than 1.77 mg

m3 PM2.5 for the duration of their work
experience and do not leave work when younger than 55. The experience of workers following
the first regimen is compared to that of workers following a second exposure regimen (ē = 0̄)
in which the intervention on censoring is maintained, but exposures are all at levels lower
than the cut-off of 1.77 mg

m3 PM2.5. Workers older than 55 were allowed to leave work at the
same time as they did under their observed exposure history, under the assumption that
retirement choices in this population are less likely to be affected by exposure and health
history. The definition of intervened-on censoring was made to prevent potential selection
bias due to unhealthy workers leaving work while maintaining a realistic treatment regimen
to ensure identifiability of the target estimator. (van der Laan and Petersen, 2007, Bembom
and van der Laan, 2007)

Table 3.7.1 contains the results of this estimation. Each method returned similar esti-
mates of approximately .076 for the cumulative incidence of IHD at year 15 under the ex-
posed intervention regimen (Y 1̄(15)). The inverse weighted estimators (ψn,1, ψn,3, ψn,4, ψn,5)
all estimated similar incidences of 0.044 and 0.043 for the unexposed intervention regimen
(Y 0̄(15)). The multiple imputation estimator (ψn,2), however, returned a higher point es-
timate of 0.054. The resulting rate ratios reflect these differences in point estimates. The
augmented-IPCW estimators have slightly narrower confidence bands around them com-
pared to the IPCW-TMLE estimator, and slightly wider intervals than the MI estimator.
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The narrower confidence bands generated by the augmented estimators result in the sta-
tistical significance of their rate ratios, with p-values of 0.02, while the traditional IPCW
estimator returned a p-value of 0.08. There was virtually no difference in performance be-
tween the three approaches to implementing the augmented IPCW estimator.
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Y1̄(15) Y0̄(15) Rate Ratio

Estimate 95% CI Estimate 95% CI Estimate 95% CI p-value
ψn,1 0.077 (.041, .112) 0.044 (.025, .063) 1.75 (0.93, 3.31) 0.08
ψn,2 0.075 (.048, .101) 0.054 (.032, .076) 1.38 (0.80, 2.37) 0.25
ψn,3 0.076 (.049, .103) 0.043 (.028, .058) 1.76 (1.10, 2.84) 0.02
ψn,4 0.076 (.049, .103) 0.043 (.028, .058) 1.76 (1.10, 2.84) 0.02
ψn,5 0.076 (.049, .103) 0.043 (.028, .058) 1.76 (1.10, 2.84) 0.02

Table 3.3: The five estimators as applied to the aluminum smelter worker cohort, comparing
the cumulative incidence of ischemic heart disease at 15 years among workers exposed to
two different PM2.5 exposure and censoring regimens. ā = 1̄ implies continuous exposure
at all time points t = 1 . . . 15 at levels higher than the median exposure of 1.77 mg

m3 while
preventing leaving work when younger than 55. ā = 0̄ implies continuous exposure to PM2.5

below 1.77 mg
m3 while preventing leaving work when younger than 55. Smoking status and BMI

measurements were missing for 1,512 (38%) of the 5,426 workers. ψn,1 is traditional IPCW-
TMLE; ψn,2 is a multiple imputation type estimator; ψn,3 is a basic augmented IPCW-TMLE;
ψn,4 is an augmented IPCW-TMLE with an iterative update of QX,n; ψn,5 is an augmented
IPCW-TMLE where γn was estimated from multiply imputed data sets.
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Chapter 4

Occupational Exposure to PM2.5 and
Incidence of Ischemic Heart Disease

4.1 Introduction

Particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) is recognized as
a major contributing factor to the global burden of heart disease, with the strongest evidence
for cigarette smoke and air pollution sources. There are fewer studies of cardiovascular health
and PM2.5 at concentrations in the mid-range between active smoking and air pollution
(Pope III, 2002). Studies of occupational exposures may help characterize the shape of the
exposure-response curve, although PM2.5 exposures vary widely across industry in terms
of composition and temporal patterns of exposure. Moreover, the populations exposed to
occupational PM2.5 differ from those exposed to more general sources in terms of underlying
health status, age, and other factors that may modify the health effects. Most occupational
studies do not have information on important potential confounders, such as smoking and
BMI, let alone measures of underlying cardiovascular health (Fang et al., 2010).

To address these research gaps, we have studied heart disease in a large cohort of actively
employed aluminum production workers with extensive data on health status available from
company personnel records, medical claims databases, and occupational medical records.
A previous study (Costello et al., 2014) demonstrated a positive association between IHD
incidence and current exposure to PM2.5 in this cohort, but a protective effect of cumu-
lative exposure. With extended follow-up, we have further investigated the relationship
between cumulative exposure to PM2.5 and IHD by applying a novel method to account for
time-varying confounders on the causal pathway. Variables on the causal pathway between
exposure at an earlier time period and heart disease can serve as confounders of the effect of
current exposure on risk of heart disease (Greenland et al., 1999b). We believe the protective
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association previously reported between cumulative exposure and IHD risk in (Costello et al.,
2014) may be due, in part, to this phenomenon, an aspect of the healthy worker survivor
effect (HWSE) (Eisen et al., 2006, Arrighi and Hertz-Picciotto, 1994). Workers with better
health tend to accrue more exposure, through the preferential movement of workers with
worse health to both lower exposed jobs as well as out of the work force. If poorer health
was caused by prior exposure, standard statistical methods will not be able to generate
consistent estimates of the effect of cumulative exposure (Naimi et al., 2011).

Robins and colleagues have developed a number of methods, known as the G meth-
ods, that can generate unbiased estimates in the presence of time-varying confounders on
the causal pathway. The original work (Robins, 1986) was motivated by the problems of
time-varying confounding in occupational health studies, although the methods have rarely
been applied to occupational epidemiology. In recent years, several authors have used these
methodologies, such as the parametric G formula (Cole et al., 2013), inverse probability
weighting of marginal structural models (Dumas et al., 2013b), and G-estimation of accel-
erated failure time models (Chevrier et al., 2012b), to address this problem in occupational
studies.

In the current work, we apply longitudinal TMLE to estimate the IHD incidence under
hypothetical interventions to set cumulative exposure, adjusting for time varying confounding
on the causal pathway. TMLE estimators (van der Laan and Rose, 2011, van der Laan
and Rubin, 2006b) are semi-parametric efficient substitution estimators that use targeted
fits of likelihood components. They also have the double robustness property, in that they
remain unbiased if either of two likelihood components (the outcome models or the treatment
models) are correctly specified. To our knowledge, this paper represents the first published
application of longitudinal TMLE, or any doubly-robust method, to the field of occupational
and environmental epidemiology.

4.2 Data

4.2.1 The Study Population and Outcome

Hourly workers employed at one of 11 US aluminum smelters and fabrication facilities for
more than two years between 1/1/1996 and 12/31/2012 who were also enrolled in the com-
pany health plan were eligible for inclusion in the analysis. Before 2003, we assumed that
all employed workers were enrolled in the company health plan because 97% of them filed a
claim during this period. After 2003, when the company changed providers, active worker
rolls were checked against an eligbility roster to determine health plan enrollment. Eligible
workers were followed for incidence of IHD after a two-year washout period, implemented to
remove prevalent cases of heart disease from the cohort. Follow-up ended at termination of
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employment.

Workers were assigned to the smelter or fabrication sub-cohorts based on jobs held dur-
ing follow-up. If they had ever been assigned to a smelter job they were included in the
smelter sub-cohort and likewise for fabrication. Incident IHD was defined by any of the fol-
lowing events: i) insurance billing claim for a relevant procedure, such as revascularization,
angioplasty, or a bypass, ii) face-to-face visit with a provider with a relevant ICD diagnosis
code (410 - 414), iii) hospitalization for more than two days along with the relevant ICD
admitting code, or iv) matching record of death from the National Death Index with the
ICD-9 codes 410-414 or ICD-10 codes I-20 to I-25 listed in the cause of death field.

4.2.2 Exposure Assessment

The details of the exposure assessment have been previously described in Noth et al.
(2013). In brief, each job was associated with an exposure level to total particulate matter
(TPM) based off 8385 personal samples collected at 11 facilities between 1980 and 2011.
Within eight of the facilities, additional samples were taken to determine the % PM2.5 in
the TPM. The % PM2.5 was then multiplied by the TPM estimate to determine the mean
concentration of PM2.5 associated with a particular job. Additional modelling and expert
judgment were used to generate estimates of TPM and % PM2.5 from jobs without measured
values. Each job was assigned a confidence level reflecting the method used to determine the
exposure level.

Each worker’s assigned exposure for a given year was the exposure level associated with
the job they held on January 1st of that year. The current analysis was performed on subjects
who, during any of their years of follow-up, had one of the two highest confidence levels for
their exposure. This indicates that the TPM estimate that determined the PM2.5 exposure
concentration was based upon an actual measurement (i.e. not modeled). Exposure was
treated as a binary variable in the analysis, each defined by a cut-off at either the median
or 10th percentile exposure within each subcohort.

4.2.3 Covariates

Human resource records were the source for worker’s age, sex, race, facility location,
time since hire, job title, and job grade. Claims files from the primary health care provider
were used to identify dates of diagnosis for four conditions associated with cardiovascular
risk: diabetes, hypertension, dyslipidemia, and obesity. Claims files were also parsed by a
proprietary algorithm (Verisk Health Inc, DxCG Software) to compute a ”risk score”. The
risk score estimated an individual’s future likelihood of using medical services and served as a
time-varying measure of overall worker health. This continuous measure was converted into
deciles for the analysis. The risk score has been shown in prior research to predict a variety
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of health outcomes including mortality in the higher deciles (Modrek and Cullen, 2013,
Handel, 2011, Kubo et al., 2013, Modrek and Cullen, 2012). Smoking and BMI information
was collected at occupational medicine clinics on site at each location.

4.3 Methods

Longitudinal TMLE allows for the estimation of cumulative incidence of disease in each year t
in a cohort following a treatment regimen specified by the author (van der Laan and Gruber,
2011). We used a dichotomous definition of exposure in which PM2.5 levels above a cut-off
were defined as ’exposed’, while PM2.5 levels below the cut-off were defined as ’unexposed’.
A priori, we chose two cut-offs which we calculate separately in each subcohort, one at the
median exposure and one at the 10th percentile. We estimated the effect of remaining at
work and in the same PM2.5 exposure category throughout follow-up until retirement age,
on the experience of incident IHD in the cohort.

We compare the estimated cumulative incidence of IHD within the worker population
if they were all exposed above the cut-off during each year of follow-up to the estimated
cumulative incidence within the same population if always exposed below the cut-off. Both
treatment regimens include an intervention that prevents censoring. We define censoring in
this population as leaving work prior to normal retirement age, or younger than 55 years
old. We chose this treatment regimen (for both the exposure and the censoring mechanisms)
in order to represent a realistic intervention on our population (van der Laan and Petersen,
2007, Bembom and van der Laan, 2007). This ensures the applicability of our results to
workers under study and avoids sparse data problems due to inadequate numbers of workers
following the regimens of interest.

4.3.1 Observed Data and Likelihood

Each observed worker history can be written as O = (Ā, L̄), where the overbar represents
the history of a random variable, so L̄ = (L(0), L(1), . . . L(15)) and L(1) is L measured at the
end of the first year of follow-up. A(k) = (C(k), E(k)) is the treatment node and contains
E(k), an indicator of exposure to PM2.5 above a cut-off level during time point k, and C(k),
an indicator of remaining free from censoring, which is defined as leaving work when younger
than age 55 during time point k. L(k) contains all other variables, time variant and invariant,
used in the analysis as measured at the end of time point k. L(k) contains Y (k), an indicator
that a subject has been diagnosed with IHD prior to the end of time point k.
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The likelihood of a data point can be written as:

PO(O) =
15∏
k=1

P0(L(0))P0(A(k)|L̄(k − 1), Ā(k − 1))P0(L̄(k)|Ā(k)L̄(k − 1))

=
15∏
k=0

P0(L(k)|L̄(k − 1), Ā(k))
15∏
k=1

P0(A(k)|Ā(k − 1), L̄(k − 1))

=
15∏
k=0

Q0,L(k)(L(k))
15∏
k=1

g0,A(k)(A(k))

where PO is the distribution of O, Q0,L(k) is the true conditional distribution of L(k) given
(L̄(k−1), Ā(k)) and g0,A(k) = g0,E(k)g0,C(k) is the true conditional distribution of the treatment

vector (E(k), C(k)) given (L̄(k − 1), Ā(k − 1)). We also use the notation g0:k =
∏k

j=0 gA(j).
The subscript 0 indicates that we refer to the true value of an object, and we use the subscript
n to indicate that an object is an estimate based upon the observed data.

We define a statistical model, M, for our observed data distribution P0. M contains
both Q the set of all possible values for Q0 = (Q0,L(0), . . . Q0,L(15)) and G,the set of all possible
values of g0 = (g0,A(0), . . . g0,A(15)). Therefore

P0 ∈M = {Q, g : Q ∈ Q, g ∈ G}

with Q and G as defined above.

4.3.2 Target Parameter and Identifiability

A causal model serves as the link between the observed data and counterfactual data
that would result from an intervention on the data generating system. We define our causal
model using non-parametric structural equation models (Pearl, 1995). Let

L(k) = fL(k)(L̄(k − 1), Ā(k), UL(k))

and
A(k) = fA(k)(Ā(k − 1), L̄(k − 1), UA(k))

where fL(k) and fA(k) are deterministic, non-parametric functions and the U elements rep-
resent the unobserved information used by nature to assign L(k) and A(k). We denote a
counterfactual variable with a subscript a, as in Ya, which is the random variable that would
result from this system had exposure been set to Ā = ā.
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Our target statistical parameter is, Ψ(P0) = EPa(Y a(t)) where

P a(l) =
t+1∏
k=0

Q0,L(k)(l(k)|l̄(k − 1), Ā(k − 1) = ā(k − 1))

represents the distribution of the observed data had we set the levels of Ā = ā, i.e. set
C(k) = 0 and E(k) = e ∀k. This is the G-computation formula for the post-intervention
distribution. La = (L(0), La(1), . . . La(t)) is a random variable distributed as P a and Y a(t) ∈
La(t) is the outcome of interest measured at time t. Under a set of causal assumptions the
distribution of variables distributed as P a(l) is equal to the distribution of the counterfactual
variables Ya ∼ Pa (Robins et al., 2000):

SRA : La(t) ⊥ A(k)
∣∣L̄(k), Ā(k − 1) ∀k < t

Positivity : P (A(k) = a
∣∣L̄(k), ā(k − 1)) > 0 ∀ (a, l̄(k), ā(k − 1))

Consistency : LA = L

The consistency assumption is implied by our use of non-parametric structural equation
models (Pearl, 1995), but we include for completeness and because of its problematic nature
in our application. We used a dichotomous exposure in this analysis, where E = 1 indicates
an occupational exposure above a cut-off and E = 0 indicates exposure below. These defini-
tions encompass a number of possible exposure values, and are an example of a compound
treatment (Hernán and VanderWeele, 2011). Acknowledging this fact, a stronger consistency
assumption must be made. This is treatment variation irrelevance, or that the counterfac-
tual outcome for each subject would be the same if they were exposed at any level within
a treatment definition. The relevance of the causal model to our observed data depends on
this somewhat dubious assumption, but acknowledging this, we nonetheless believe that the
statistical parameters we estimate are informative for our primary scientific question.

As first demonstrated by Robins, (Robins, 2000a), the mean outcome at time point t
under intervention Ā = ā can be identified as a series of conditional expectations, the first
of which takes the form:

Q̄a
L(t)(O) = E0(Y (t)|L̄(t− 1), Ā(t) = ā(t)).

This object corresponds to the regression of Y (t) on the past covariates, performed among
the population of treatment regimen followers (i.e. workers with observed Ā(t) = ā(t)). This
quantity, Q̄a

L(t), can be sequentially regressed on the past in reverse chronological order, i.e.

on L̄(k) for k = (t− 1, t− 2, . . . 0), amongst workers with observed Ā(k) = ā(k). We denote
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this regression with

Q̄a
L(k) ≡ EQL(k)

(Q̄a
L(k+1)|L̄(k − 1), Ā(k − 1) = ā(k − 1))

When k = 1 the result is a final constant Q̄a
L(1)(O). Under the stated assumptions, we have

that the distribution of the counterfactual outcome Ya is equal to the distribution of the
observed outcome under intervention, which equal to this final constant, a function of the
observed data likelihood, or

E0(Ya(t)) = EPa(Y a) = EQ̄a
L(1) = Ψ(P0).

4.3.3 Efficient Influence Curve

For a given target parameter, Ψ(P0) an estimator is asymptotically efficient if and only
if the estimator is asymptotically linear with influence curve equal to the canonical gradient
D∗(P0) of the pathwise derivative of Ψ at P0 in the model M (van der Laan and Rose,
2011). This gradient thus serves as a crucial building block for the construction of efficient
estimators in general and TMLE in particular. One way to ensure that this property holds
is for estimators to solve the efficient influence curve equation: PnD

∗(Qn, ψn) = 0, where
(Qn, ψn) are estimates of likelihood components and the target parameter, respectively, and
Pn represents the empirical distribution that places mass 1

n
at each observed point Oi.

As first established by Bang and Robins (Bang and Robins, 2005) and expanded on in
Van der Laan and Gruber (van der Laan and Gruber, 2012), the efficient influence curve for
the mean outcome at time point t under intervention a can be written as D∗ =

∑t+1
k=0D

∗
k.

Here we have that

D∗t+1 =
I(Ā(t) = ā(t))

g0:t

(Y − Q̄a
L(t+1))

and

D∗k =
I(Ā(k − 1) = ā(k − 1))

g0:k−1

(Q̄a
L(k+1) − Q̄a

k)

D∗1 = (Q̄a
L(2) − Q̄a

L(1))

Given consistently estimated conditional regressions Q̄a
n ≡ (Q̄a

L(t), . . . Q̄
a
L(0)) and a consistent

estimator gn of the exposure and censoring mechanisms, we have that we can ensure the
efficiency of the resulting estimator if

Pn

K+1∑
k=0

D∗k(Qn, gn) = 0
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4.3.4 The TMLE Algorithm

Implementation of TMLE for a this target parameter can begin once we have defined it
and identified its efficient influence curve in the statistical model. The first step is the con-
struction of initial estimators of the relevant likelihood components Q̄a

0 and g0. TMLE then
proceeds by defining a loss function L(Q̄a) for Q̄a

0 and a parametric submodel {Q̄a(ε, g) : ε}
so that the linear span of the score of the loss function applied to the submodel ∂

∂ε
L(Q̄a(ε, g))

at ε = 0 includes the efficient influence curve D∗(Q, g). There is a one:one correspondence
between the components of the conditional regressions, Q̄a and components of the efficient
influence curve. This allows for the creation of k = 1, . . . , t loss functions for each component
of Q̄a, Lk(Q̄a

L(k)), as well as t corresponding submodels Q̄a
L(k)(ε, g) such that ∂

∂ε
Lk(Q̄a

L(k)(ε, g))
at ε = 0 equals the kth component D∗k of the efficient influence curve D∗.

These loss functions and submodels are used to estimate and update each component of
Q̄a in the following manner. First, an initial estimator Q̄a

L(t),n of Q̄a
L(t),0 is made by regressing

Y on L̄(k), Ā(k) = ā(k). This initial estimator is then updated by minimizing the empirical
mean of the tth loss function Lt(Q̄a

L(t)), resulting in an updated fit Q̄a,∗
L(t),n = Q̄a

L(t),n(εt,n, gn)

where εt,n = argminε PnLt(Q̄a
L(t),n(ε, gn)(O)). An initial estimator for the next member of

Q̄a, Q̄a
L(t−1),n is then generated by regressing Q̄a,∗

L(t),n on L̄(t − 1), Ā(t − 1) = ā(t − 1). The

updating process is then repeated to generate Q̄a,∗
L(t−1),n = Q̄a

L(t−1),n(εt−1,n, gn) where εt−1,n =

argminε PnLt−1(Q̄a
L(t−1),n(ε, gn)(O)). This continues until an initial estimate for Q̄a

L(1),n is cre-

ated and updated as Q̄a,∗
L(1),n = Q̄a

L(1),n(ε0,n, gn) where ε1,n = argminε PnL1(Q̄a
L(1),n(ε, gn)(O)).

n−1
∑n

i=1 Q̄
a,∗
L(1),n(O) is the final TMLE of the target parameter Ψ(Q̄a

0) = EP0(Y a). The min-
imization of the empirical mean of the loss functions ensures that Qa

L(k),n, k = 1, . . . , t solves

the score equations for each of the submodels, and therefore we have that (Q̄a,∗
n , gn) solves

the efficient influence curve equation:

PnD
∗(Q̄a,∗

n , gn)(O) = 0.

4.3.5 Practical Implementation

The following steps detail how the implementation of TMLE in our application for a
given treatment regimen, Ā = ā and time point t.

• We first generated estimators for the treatment mechanism gn = (gE,n, gC,n), containing
exposure assignment and censoring mechanisms. gE,n was estimated using main term
logistic regression and regressing E(t) on L(t−1), Ā(t−1) = ā(t−1), t among all active
workers and time periods t. gC,n was estimated using main term logistic regression to
regress C(t) on L(t− 1), E(t), Ā(t− 1) = ā(t− 1), t among all active workers younger
than 55 years old and time periods t. For both fits, we made a Markov assumption
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that the values of the time-varying confounders as measured at the most recent time
points were the only salient values.

• We then regressed Y (t) onto Ā(t) = ā(t), L(t−1), using either main term logistic regres-
sion or alternatively bi-directional stepwise regression if the total number of workers
with Y (t) = 1 was less than 250, giving us the regression object Q̄a

Y,n

• We then fluctuated this initial estimator to target the parameter of interest. We used
the initial estimator Q̄a

Y,n(O) as an offset in a univariate logistic regression of Y (t) on
I(Ā(t) = ā(t))/g0:t,n among the subjects with Ā(t) = ā(t). This regression object is
the TMLE Q̄a,∗

Y,n(O) of the first conditional regression, Q̄a
Y,0(O).

• Next, we ran a logistic regression of Q̄a,∗
Y,n(O) onto Ā(t− 1) = ā(t− 1), L(t− 1), again

choosing between main term logistic regression and bi-directional stepwise regression,
resulting in Q̄a

L(t−1),n(O).

• We fluctuated this estimator, Q̄a
L(t−1),n(O), by using it as an offset in the regression of

Q̄a,∗
Y,n on I(Ā(t − 1) = ā(t − 1))/g0:t−1,n. The result of this is the TMLE Q̄a,∗

L(t−1),n of

Q̄a,∗
L(t−1),0.

• This process continued for k = (t − 2, . . . , 1) wherein we ran a logistic regression of
the previous TMLE fit Q̄a,∗

L(k+1),n(O) onto Ā(k) = ā(k), L(k) among the population of
treatment regimen followers at time point k. We then updated this fit by using the
initial estimate, Q̄a

L(k),n(O) as an offset of the regression of Q̄a,∗
L(k+1),n(O) on I(Ā(k) =

ā(k))/g0:k,n(O), resulting in the TMLE, Q̄a,∗
L(k),n, of that conditional regression Q̄a

L(k),0.

• The final step left us with Q̄a,∗
L(1),n(O), which was a function of L(0) only and a series

of nested conditional regressions Q∗n = (Q∗L(t),n, . . . , Q
∗
L(1),n). We estimate Q̄a

L(0 by

taking the average of this function applied to the entire worker population: 1
n

∑n
i=1

Q̄a,∗
L(1),n(Li(0)) = Q̄a,∗

L(0),n ≡ ψn is the TMLE of our target parameter Ψ(Q̄a
0).

• We use influence curve based variance estimates for inference, so σ̂2
IC = σ̂2

n/n, where

σ̂2
n = Var(D∗(Qn, gn, ψn)(Oi))

This series of iterative regressions was performed separately for each time period (t =
1, . . . 15) to create estimates of the cumulative incidence of disease among the whole pop-
ulation at time t. These 15 estimates were then used to create marginal incidence curves
which estimate the experience of the cohort over the entire length of follow-up under the
specified treatment regimen. We also used these estimates to calculate average treatment
effects and rate ratios and their corresponding confidence intervals, comparing the regimens
with exposures over the cut-off to the regimens with exposures under the cut-off. For each
of the four estimation procedures (two subcohorts each with two binary exposure variables),
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fits of the g models (gA,n and gC,n) were generated using all regimen-following person-years.
These model fits were then used to perform the outcome model updates for each of the 15
time points. The analysis was performed using a modified version of the ltmle (Schwab
et al., 2013, Lendle et al., 2014) package in R (R Core Team, 2013b) version 3.0.2.

For higher values of t, there were few subjects still at risk, which created the potential
for overfitting within the outcome model. We used bi-directional stepwise regression by AIC
to perform variable selection for outcome models with fewer than 250 cases (Peduzzi et al.,
1996) while forcing risk score and current exposure into the model. This allowed our models
to be more parsimonious and ensured that there was still some error variance which the
targeting step needs to be effective. We note that these model choices were made in order
to reduce the computational complexity and increase model interpretability, and recognize
that they open up the potential for bias due to model misspecification.

4.3.6 Incorporation of Multiple Imputation

Some covariates were missing in a portion of the cohort population, and we used multiple
imputation to account for this. Multiple imputation involves the combination of results from
different data sets in which the missing covariates are filled in by different imputation models.
Rubin’s rules (Rubin, 1987) can be used to combine these estimates as long as the estimator
of interest has an asymptotically normal distribution. As demonstrated by Van der Laan
and Gruber (van der Laan and Gruber, 2012),

(ψn − ψ0) =
1

n

n∑
i=1

D∗(Qn, gn, ψn)(Oi) + op

(
1√
(n)

)
,

which implies, given our model, that the TMLE is asymptotically normal√
(n)(ψn − ψ0)→ N (0, σ2

IC).

We described above the process for implementing TMLE for a single data set, resulting
in an estimator ψn and variance σ2

n. Given data sets and estimators indexed by b = 1 . . . B,
where B = 5 we combined the estimates from each as follows.

ψn =
1

B

B∑
b=1

ψn,b
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was the reported estimate and

σ2
IC =

1

B

B∑
b=1

σ2
IC,b +

1

B − 1

B∑
b=1

(ψn,b − ψn)2

was the variance used for inference.

Complete information was not available on all of the covariates of interest for all workers.
Smoking status was missing for 51% of person-years, BMI (body mass index) for 23%, marital
status for 2%, and risk score for 15% of person-years. We did not apply the augmented
IPCW-TMLE procedure we discussed in chapter 3 because the patterns of missing data
were not monotonic, in that a missing value for any of the variables subject to missingness
did not predict the missingness of any of the other variables. We could have used a hybrid
approach, in which the imputation was used for some variables, or to create a monotone
missingness pattern, and augmented IPCW-TMLE was used for some of the other variables.
This is what we did in the applied example presented in section 3.6 of this dissertation.
Multiple imputation was performed using the proc mi procedure in SAS 9.3 (SAS Institute
Inc., 2011), and included all variables used in our analysis in the prediction model.

4.4 Results

The original cohort contained 16,991 workers (140,179 person-years) and the restriction
to only workers with a high-confidence exposure resulted in an analysis cohort of 13,529
workers and 112,293 person-years, roughly 80% of the original cohort. The smelter subcohort
included 5,527 workers (46,723 person-years) and the fabrication subcohort included 7,211
workers (61,375 person-years). Some workers worked only in other environments, such as
refineries or mines, and were not included in either subcohort while 680 workers worked in
both smelters and fabricators and were included in both. In the smelter sub-cohort, the
median PM2.5 concentration was 1.77 mg

m3 and the 10th percentile was 0.16 mg
m3 . For the

fabrication subcohort, the median PM2.5 concentration was 0.20 mg
m3 and the 10th percentile

was 0.06 mg
m3 .

We compare the baseline demographic characteristics of cohort members by facility type
and exposure categories defined by alternative cut-offs in tables 4.1 and 4.2. In both smelters
and fabrication facilities, workers exposed above the median cut-off have lower frequencies of
cardiovascular risk factors and other measures of overall health than workers exposed below
the cut-off, although the rates of IHD are similar or slightly higher among the exposed. At
the 10th percentile cut-off, these differences become more stark. These tables are consistent
with a pattern of workers tending to move to lower exposed jobs as cardiovascular risk, job
tenure and age increase.

Table 4.3 presents the smelter and fabrication worker population sizes and incident disease
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counts by year of follow-up, with and without the restriction to those following the treatment
regimen of staying in the same exposure category (for the median cut-off). This restriction
resulted in the loss of 14% of the person-years and 12% of the incident cases from the
fabrication analysis and in the loss of 17% of the person-years and 16% of the incident cases
from the smelter analysis.

Table 4.4 shows the model parameters from the logistic regressions used to estimate the
effect at the median cut-off in the smelter sub-cohort. It contains parameter values for the
treatment and censoring models gA,n, gC,n, as well as two of the outcome models for the t = 15
estimator. The parameter signs are generally consistent with the hypothesis of the healthy
worker survivor effect operating in this population. The results from the 10th percentile
cut-off in the smelter sub-cohort and both cut-offs for the fabrication facility sub-cohort (not
shown) provided similar evidence of the direction of effects.

Figures 4.1, 4.2, 4.3, and 4.4 contain the marginal cumulative incidence curves as esti-
mated with TMLE for each of the four analysis groups. Each curve estimates the percentage
of the cohort that would remain undiagnosed with heart disease by the end of follow up had
all workers followed the treatment regimen. These curves are not traditional survival curves,
in that they do not purport to estimate the cohort’s absolute freedom from IHD incidence.
Rather they estimate the cohort’s freedom from observed IHD, specifically IHD incidence
prior to leaving work when older than 55.

Table 4.5 contains the average treatment effects (ATE) and causal rate ratios (RR)
at year 15 for each of the four analysis groups. The ATE is the difference between the
cumulative incidence of ischemic heart disease as predicted for a cohort subjected to the
treatment regimen with exposure above the cut-off and the cumulative incidence for that
same cohort subjected to the treatment regimen exposed below the cut-off. At year 15, we
estimate that the smelter worker sub-cohort, if constantly exposed above the median cut-off
of 1.77 mg

m3 while remaining at work until 55, would experience a 2.1% (95% CI = (-1.3%,
5.5%)) higher incidence of IHD compared to the same cohort if constantly exposed below
the cut-off. For the 10th percentile cut-off of 0.16 mg

m3 in the smelter sub-cohort, we estimate
that the cumulative incidence of IHD would be higher by 2.9% (0.6%, 5.1%). Among the
fabrication cohort, we estimate an ATE of 0.9% (-1.6%, 4.1%) for the median cut-off of 0.20
mg
m3 and an ATE of 2.5% (0.8%, 4.1%) for the 10th percentile cut-off of 0.06 mg

m3 .

The estimation of marginal cumulative incidence also allows us to calculate causal risk
ratios for the same comparison groups, by taking the ratio of the two incidences. Among the
smelter sub-cohort, the average causal risk ratio (over the 15 years of follow-up) was 1.39
(0.81, 2.39) at the median cut-off and 1.77 (1.03, 3.06) at the 10th percentile cut-off. Among
the fabrication facility sub-cohort, the average causal risk ratio was 1.14 (0.80, 1.63) at the
median cut-off and 1.45 (1.13, 1.86) at the 10th percentile cut-off.
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4.5 Discussion

These results provide evidence that increased risk of IHD is associated with occupational
exposure to PM2.5 in both the fabrication and smelter sub-cohorts. We were able to adjust for
possible time-varying confounders on the causal pathway through our use of the longitudinal
TMLE procedure. We have not addressed the question of precisely when the biologically
relevant exposure occurred; i.e. if IHD risk during time t is more dependent on exposure at
time t or on exposures accumulated prior to time t. This question would be answered by
estimating the indirect effect of cumulative exposure that does not travel through current
exposure, a target parameter that deserves future research.

The magnitude of the additive difference was similar in the smelters using either the
median or 10th percentile cut-off. By contrast, we saw a larger difference for the 10th per-
centile compared to the median cut-off in fabrication. These results are consistent with a
linear exposure -response curve over the higher concentrations of the smelters and a flattened
exposure-response curve over the lower concentrations of fabrication facilities. One possi-
ble explanation is that the measured variables were better able to adjust for time-varying
confounding within the smelter population and that the flattened exposure-response curve
is a result of uncorrected bias due to HWSE in fabrication (Stayner et al., 2003). Path-
way analysis (not shown) and anecdotal evidence suggests that the selection effects of the
measured variables are stronger in the smelter environment because workers are screened
and jobs with heat exposure are restricted to workers with low cardiovascular risk. Future
research with this cohort will involve investigating these exposure response curves further
through the estimation of the parameters of marginal structural models.

A sensitivity analysis demonstrated that including workers who never had a high-confidence
exposure estimate reduced the effect estimates. The industrial hygiene measurements used
to determine the job exposure matrix and the confidence scores were collected more fre-
quently in areas where high exposures were expected. Thus, subjects with high exposures
were preferentially selected into our final cohort, although many lower exposure jobs were
still measured with high confidence. If workers in low confidence jobs were substantially
different from the rest of the population then the restriction could result in biased effect es-
timates. It is also possible that the difference in effect estimates is due to reduced exposure
misclassification in the restricted cohort.We believe that the second conditions is more likely
because we are certain that the restriction reduced exposure misclassification, while there
is no reason to believe that the confidence measure is associated with the disease process.
Therefore we feel that the high-confidence restriction represents a less biased analysis than
the full cohort.

We want to control for leaving work when it is possibly mediated by health status caused
by prior exposure. Censoring is defined in this analysis as leaving work when younger than
55. Modeling (not shown) indicates that, at each age, workers who retired had worse health
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predictors than those who did not. The choice of age 55 represents a compromise between
controlling for health as a time-varying predictor of leaving work and reducing the reliance
of the procedure on those unusual individuals who stay at work past their eligibility for a
full retirement. Sensitivity analysis demonstrated that the results were robust to the age
cut-off; changing the age to 60 or 62 did not substantially change the results. Continuing
follow-up after work termination would give us the information needed to study the effects
of PM2.5 on post-retirement health.

We observed higher crude rates of IHD among the fabrication workers, and the marginal
cumulative incidence estimates reflect this fact. As with any procedure, these estimates do
not generalize precisely to different populations with their own underlying risk and termi-
nation patterns. For example, heart disease rates among the fabrication workers, had they
been exposed to the PM2.5 in the smelters instead, cannot be inferred. Although the two
sub-cohorts exhibit similar rates of chronic diseases, such as diabetes and hypertension, the
summary risk score was higher among the fabrication workers.

We observed excess IHD risk associated with PM2.5 in both smelters and fabrication
facilities where the composition and particle size distribution differ. In fabrication, the
PM2.5 is composed mostly of water-based metalworking fluids and in smelters, of inorganic
materials, such as fluorides, alumina dust, metals and related fumes (Ronneberg, 1995, Noth
et al., 2013). Thus our findings suggest that the total mass of PM2.5 may be the common
causal agent, although further study is needed to address this question. It is also possible
that the observed relationship between exposure to PM2.5 and IHD could be due in part to
co-exposure to other known cardiovascular hazards in these workplaces, such as noise and
heat.

The goal of causal inference is to make inference about counterfactual quantities, and
unbiased estimation can proceed only if several assumptions are met (Robins et al., 2000).
We believe there is minimal unmeasured confounding in this analysis. We have a rich data
set that captures many of the salient aspects of health upon which workers might base their
employment decisions. We also believe that we have limited positivity violations; there
were no combinations of covariates that strongly predicted exposure status. We believe the
assumption of consistency, which is often subsumed by the use of non-parametric structural
equation models (Pearl, 1995), may be more problematic. The dichotomization of exposure
means that a range of different true exposure values and constituencies are contained in a
single category. It is probably not the case that all workers would have the same outcome
had they been assigned to any exposure level above the cut-off that defined the category.

Longitudinal TMLE estimators have the property of double-robustness, in that they
remain unbiased if either the outcome models or the treatment (exposure and censoring)
models are correctly specified. For the sake of simplicity and computational efficiency, we
chose to proceed with main-term logistic regression with limited use of variable selection.
Our model fits could be improved and bias possibly reduced if we used, for instance, a cross-
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validated ensemble learner (van der Laan et al., 2007). By implementing multiple imputation,
we assumed missingness at random (Kenward and Carpenter, 2007) for the missing variables
as well as a specific model form for the imputation model. Violations of this assumption or
misspecification of the imputation model could result in bias. A sensitivity analysis showed
that the results were robust to the removal of the smoking and BMI variables, indicating
that they function as limited confounders in this data set.
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Figure 4.1: Estimated cumulative survival from IHD and 95% confidence iIntervals, adjusted
for measured baseline and time-varying risk factors, among the smelter worker population if
continuously exposed vs unexposed at the median cut-off of 1.77 mg

m3
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Table 4.1: Smelter worker cohort demographics, time varying covariates and outcomes by
PM2.5 exposure cut-off and exposure level at baseline

PM2.5 Cutoff Median (1.77 mg/m3) 10th %ile (0.16
mg/m3)

-

Exposure Status at Baseline Above Below Above Below Total

N 2,808 2,618 4,914 512 5,426

Person-years 21,241 18,772 35,827 4,186 40,013

Follow-Up Time, mean (IQR) 7.6 (4 - 11) 7.2 (3 - 11) 7.3 (3 - 11) 8.2 (4 - 12) 7.3 (3 - 11)

Demographics

Male (%) 96% 93% 95% 92% 94%

White (%) 87% 84% 85% 91% 86%

Age, median (IQR) 42 (34 - 51) 45 (36 - 52) 43 (34 - 51) 47 (42 - 53) 44 (35 -51)

Ever Been Married (%) 1 85% 84% 84% 85% 84%

Time Varying Covariates

Time Since Hire, median (IQR) 8 (2 - 24) 13 (2 - 25) 8.5 (2 - 25) 22 (6 - 27) 13.5 (2 -25)

Proportion of year off work,
mean

4% 4% 4% 3% 4%

High Job Grade (%) 36% 32% 33% 45% 34%

Hypertension (%) 13.5% 13.7% 13% 16% 14%

Diabetes (%) 4.0% 5.0% 4.4% 5.5% 4.5%

Dyslipidemia (%) 11% 14% 12% 16% 12%

Clinically Obese (%) 1.3% 1.0% 1.2% 0.6% 1.1%

Risk Score Decile, mean (IQR) 1 4.6 (2 - 7) 5.0 (3 - 7) 4.7 (2 - 7) 5.7 (3 - 8) 4.8 (2 - 7)

BMI, median (IQR) 1 28.3 (25 -
32)

28.9 (26 -
32)

28.6 (26 -
32)

28.4 (26 -
32)

28.6 (26 -
32)

Smoking Status: Current (%) 1 25% 28% 27% 27% 27%

Smoking Status: Ever (%) 1 38% 33% 35% 33% 35%

Smoking Status: Never (%) 1 38% 39% 38% 40% 38%

Cumulative Exposure
(mg
m3 *years), median (IQR)

19.2 (6 - 62) 5.1 (3 - 18) 12.6 (5 - 44) 3.4 (1 - 5) 27.2 (4 - 41)

Current Exposure (mg
m3 ), median

(IQR)
3.3 (2.0 -

3.4)
0.6 (0.3 -

1.5)
2.3 (1.1 -

2.6)
0.12 (.07 -

.16)
2.1 (0.6 -

2.6)

Outcomes of Interest

Incident IHD, n (%) 212 (7.5%) 191 (7.3%) 364 (7.4%) 39 (7.6%) 403 (7.4%)

Censored, n (%) 443 (15.7%) 439 (16.8%) 813 (16.5%) 69 (13.5% 882 (16.2%)

1 Among workers with recorded values. Marital status was measured in 98% of smelter workers, risk
score in 80%, BMI in 71%, and smoking status in 40%.

66



Table 4.2: Fabrication worker cohort demographics, time varying covariates and outcomes
by PM2.5 exposure cut-off and exposure level at baseline

PM2.5 Cutoff Median (0.19 mg/m3) 10th %ile (0.06
mg/m3)

-

Exposure Status at Baseline Above Below Above Below Total

N 3,344 3,777 6,612 509 7,121

Person-years 26,346 25,339 47,473 4,212 51,685

Follow-Up Time, mean (IQR) 7.9 (4 - 13) 6.7 (3 - 10) 7.2 (4 - 11) 8.3 (4 - 13) 7.3 (4 - 11)

Demographics

Male (%) 88% 74% 81% 82% 81%

White (%) 80% 84% 82% 91% 82%

Age, median (IQR) 42 (35 - 51) 45 (38 - 53) 44 (36 - 52) 45 (39 - 52) 44 (36 - 52)

Ever Been Married (%) 1 80% 74% 77% 76% 77%

Time Varying Covariates

Time Since Hire, median (IQR) 8 (2 - 21) 13 (2 - 25) 9 (2 - 24) 14 (2-25) 9 (2 - 24)

Proportion of year off work,
mean

3% 4% 3% 4% 3%

High Job Grade (%) 41% 43% 43% 32% 42%

Hypertension (%) 10.7% 11.9% 11% 16% 11%

Diabetes (%) 3.6% 5.1% 4.2% 6.3% 4.4%

Dyslipidemia (%) 10% 13% 11% 14% 12%

Clinically Obese (%) 0.9% 1.0% 0.9% 1.2% 0.9%

Risk Score Decile, mean (IQR) 1 4.9 (2 - 7) 5.3 (3 - 8) 5.1 (3 - 8) 5.2 (3 - 7) 5.1 (2 - 7)

BMI, median (IQR) 1 29.2 (26 -
33)

28.5 (25 -
32)

28.9 (26 -
33)

28.4 (26 -
33)

28.8 (26 -
33)

Smoking Status: Current (%) 1 28% 28% 27% 34% 28%

Smoking Status: Ever (%) 1 30% 30% 30% 28% 35%

Smoking Status: Never (%) 1 42% 43% 43% 38% 42%

Cumulative Exposure
(mg/m3*years), median (IQR)

3.9 (1 - 9) 2.9 (0.3 - 3) 2.3 (0.7 - 5) 2.2 (0.2 - 1) 2.0 (1 - 5)

Current Exposure (mg/m3), me-
dian (IQR)

0.89 (.25 -
.97)

0.12 (.07
-0.14)

0.21 (.14 -
.45)

0.04 (.04 -
.06)

0.48 (.12 -
.37)

Outcomes of Interest

Incident IHD, n (%) 294 (8.8%) 279 (7.4%) 531 (8.0%) 42 (8.3%) 573 (8.0%)

Censored, n (%) 551 (16.5%) 548 (14.5%) 1025 (15.5%) 74 (14.5%) 1099 (15.4%)

1 Among workers with recorded values. Marital status was measured in 95% of fabrication workers, risk
score in 79%, BMI in 69%, and smoking status in 44%.
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Table 4.3: Worker cohort membership and incident ischemic heart disease cases by year of
follow-up and facility type for all workers and only workers exposed consistently to either
above or below the median (fabricators: 0.19 mg/m3; smelters: 1.77 mg/m3) level of PM2.5

Fabricators Smelters
All Workers Workers With

Constant Exposure
All Workers Workers With

Constant Exposure
Time On
Follow Up

Subjects Incident
Cases

Subjects Incident
Cases

Subjects Incident
Cases

Subjects Incident
Cases

1 7121 80 7121 80 5426 39 5426 39
2 6623 75 6246 70 5044 56 4656 53
3 5824 63 5346 56 4498 47 3962 41
4 5380 52 4758 50 4047 35 3404 31
5 4685 57 4015 49 3639 45 2955 38
6 3716 35 3061 30 3153 35 2452 30
7 3193 42 2579 36 2731 31 2064 26
8 2757 28 2197 21 2417 23 1800 19
9 2536 27 1996 24 2185 23 1582 16
10 2289 22 1761 13 1912 23 1353 14
11 1916 13 1443 12 1563 13 1066 9
12 1774 20 1324 16 1173 10 792 8
13 1501 25 1090 21 927 9 633 5
14 1313 26 950 20 725 10 498 7
15 1057 8 763 6 573 4 396 4

Overall 51685 573 44650 504 40013 403 33039 340
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Table 4.4: Model Parameters for logistic regression models estimated among
smelter cohort using median cut-off (1.77 mg/m3). Treatment model and
censoring model estimate probability of receiving high exposure and remain-
ing uncensored, respectively. Outcome models predict probability of being
an observed case prior to time point 15 given covariates measured at time t

Treatment
Model

Censoring
Model

Outcome
Model (t=1)

Outcome
Model
(t=15)

Estimate Estimate Estimate Estimate
Intercept −4.22∗ 2.57∗ −4.50∗ 1.54
Male 0.16 −0.35∗ 0.28∗ -
White 0.27∗ -0.03 0.01 -

F
ac

il
it

y
C

o
d

es ALC -0.18 0.65 0.23 -
FWX -0.27 -0.57 0.34∗ -
MAS 1.74∗ 0.98 0.54∗ -
ROK 2.10∗ -0.88 0.29 -
WAR 0.39 0.85∗ 0.20 -
Ever been Married -0.02 0.51∗ 0.05 -
Obesity Diagnosis (t) 0.31 1.30 -0.03 -
Obesity Diagnosis (t -
1)

-0.74 -0.70 0.09 -

Diabetes Diagnosis (t) 0.14 0.89 0.29∗ 3.71∗

Diabetes Diagnosis (t-
1)

-0.15 -0.83 0.16 -

Hypertension Diagno-
sis (t)

-0.20 0.13 −0.09∗ -

Hypertension Diagno-
sis (t-1)

0.26 -0.34 0.21∗ -

Dyslipidemia Diagno-
sis (t)

0.07 -0.05 0.46∗ −2.45∗

Dyslipidemia Diagno-
sis (t-1)

-0.12 -0.01 0.06 -

Risk Score Decile (t) 0.00 −0.07∗ 0.01 0.42
Risk Score Decile (t-1) −0.04∗ −0.03∗ 0.01 -
BMI 0.00 0.00 0.00 -
Smoking Status (Cur-
rent vs Ever/Never)

-0.11 0.06 0.07∗ -

High Job Grade −0.27∗ -0.09 -0.03 -
Calendar Year 0.05∗ −0.11∗ −0.09∗ -
Age 0.02∗ 0.03∗ 0.03∗ −0.19∗

Time Since Hire 0.00 0.03∗ 0.00∗ -
Time Since Follow Up
Start

-0.01 0.01 - -

Exposure in Year t-1 6.54∗ 0.08 0.10∗ -
Cumulative Exposure 0.00∗ -0.01 0.00 -
Exposure in Year t - 0.00∗ 0.05 0.84

1 Outcome models at time t use stepwise AIC to select variables in the regression model
if there were less than 250 subjects subjects diagnosed with IHD during times (t . . . , 15)

2 ∗ : p < 0.1
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Figure 4.2: Estimated cumulative survival from IHD and 95% confidence intervals, adjusted
for measured baseline and time-varying risk factors, among the smelter worker population if
continuously exposed vs unexposed at the 10th percentile cut-off of 0.16 mg

m3

Facility ATE RR
Type Cut-off Estimate 95% CI Estimate 95% CI

Smelter Median (1.77 mg
m3 ) .021 (-.013, .055) 1.39 (0.81, 2.39)

Smelter 10th(0.16 mg
m3 ) .029 (-.006, .051) 1.77 (1.03, 3.06)

Fabricator Median (0.20 mg
m3 ) .009 (-.016, .035) 1.14 (0.80, 1.63)

Fabricator 10th (0.06 mg
m3 ) .025 (.008, .041) 1.45 (1.13, 1.86)

Table 4.5: Average treatment effects (ATE) and Risk Ratios (RR) of occupational exposure
to PM2.5 by facility type and cut-off level. The ATE is the difference between the cumulative
incidence ischemic heart disease predicted for a cohort subject to continuous exposure above
the cut-off and the incidence predicted for the same cohort subject to constant exposure
below that cut-off, where in both cohorts workers work until retirement age. The RR is the
ratio between the two cumulative incidences.
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Figure 4.3: Estimated cumulative survival from IHD and 95% confidence intervals, adjusted
for measured baseline and time-varying risk factors, among the fabricator worker population
if continuously exposed vs unexposed at the median cut-off of 0.20 mg

m3
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Figure 4.4: Estimated cumulative survival from IHD and 95% confidence intervals, adjusted
for measured baseline and time-varying risk factors, among the fabricator worker population
if continuously exposed vs unexposed at the 10th percentile cut-off of 0.06 mg

m3
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Chapter 5

Summary

In chapter 2, we argued for a broader understanding of the healthy worker survivor effect that
incorporates the ideas of left truncation in the presence of heterogeneity in susceptibility as
well as that of time-varying confounding affected by prior exposure. We have demonstrated
that these phenomena result in a negative bias in effect estimates relative to those that would
have been estimated in the full incident cohort. We have also demonstrated the viability
of using well defined treatment regimens to analyze data from occupational cohorts where
follow-up extends past employment termination.

In chapter 3, we explored the performance of a class of estimators of full data parameters
of data structures in which some of the confounders are unmeasured, which we refer to as
augmented inverse probability of censoring weighted targeted minimum-loss based estima-
tors. Implementation of these estimators involve a targeting step for the fit of the conditional
probability of missingness which can be approached in several ways. These estimators re-
duce bias and increase efficiency compared to the IPCW TMLE approach that they are based
upon, with a minimal increase in computational complexity. Simulation demonstrated that
the gains due to augmentation increase with the probability of missingness and that the
double robustness property reduced bias compared to IPCW and MI approaches under mis-
specification of the estimator components Πn and γn. The estimators were implemented for
a longitudinal target parameter estimating the effect of occupational exposure to PM2.5 on
incidence of IHD in an aluminum smelter workforce.

In chapter 4, we demonstrated the application of TMLE in a longitudinal setting to
account for time-varying confounding and generated doubly-robust, efficient, substitution
estimators of our parameters of interest. These parameters were used to create marginal
incidence curves that estimate the experience of the workforce if subjected to realistic inter-
ventions on the exposure assignment and censoring mechanisms. We believe that our analysis
provides strong evidence of a causal connection between an accumulation of occupational
exposure to PM2.5 and the subsequent incidence of ischemic heart disease.
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This dissertation considered topics in occupational epidemiology through the lens of
causal inference. We used directed acyclic graphs and non-parametric structural equations to
characterize our systems of interest and incorporated these structures into our definition and
estimation of effect estimates. We recommend that occupational researchers follow the causal
roadmap as set forth by van der Laan and Rose (2011), and, enumerate their assumptions
about their system, suggest a target parameter of interest, evaluate its identifiability, and
only then proceed with estimation.
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5.1 Introduction

The healthy worker survivor effect has been a known problem for occupational researchers
for many years. As the fields of epidemiology, biostatistics, and causal inference have de-
veloped in this time, so too have the field’s understanding of the HWSE and the proposed
methods for properly adjusting for it. In this appendix we describe select papers that repre-
sent key contributions to this process. This historical perspective highlights the great strides
made in both the philosophy and methodology of occupational health over this time.

5.2 Literature Review

Fox and Collier (1976) is the first modern reference that most researchers cite for the
healthy worker effect, although the earliest recorded mention of it was by William Ogle
in the late 1800’s (Ogle, 1885). Fox and Collier identified three separate aspects of the
healthy worker effect. The first aspect was the selection effect, in which people selected into
a workforce are healthy and robust enough to work and therefore have lower mortality than
the general population. The second aspect was the survival effect, in which workers who
continue to work are healthier than a comparable group that terminates employment. The
third aspect was the length of follow up effect, in that workers with shorter work histories
tend to to be less stable an therefore at a higher risk of death. The selection effect is now
generally referred to as the healthy hire effect, while the second and third aspects are portions
of what is generally referred to as the healthy worker survivor effect (HWSE).

Fox and Collier demonstrated the healthy worker effect using standardized mortality
ratios (SMRs), which the mortality experience of a cohort is indirectly compared with the
experience of the general population, adjusting for age, sex, race, and calendar year. They
chose different cohorts of the data to illustrate each of the aspects of the healthy worker
effect, which they identified with SMRs under 100. For the healthy hire effect, they looked
at the effect of the length of time since the start of work, demonstrating that the reduction in
SMR is almost eliminated after 15 years since start of hire. For the healthy worker survivor
effect, they demonstrated reduced SMRs among active workers, and elevated SMRs among
their inactive counterparts, 15 years following the initial hire date.

Following Fox & Collier’s illustrative paper, many occupational analyses were done using
internal comparison groups, controls who were employed in similar industrial jobs. However,
this correction is not sufficient to estimate the true effect of exposure, because some portions
of the working population may be more affected by the HWE than others. Specifically,
workers that maintain health as well as employment may be likely to take jobs with the
highest exposure levels, due to either their robustness or seniority (highly exposed jobs are
often demanding and dangerous and command a higher salary).
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Gilbert (1982) argued that SMRs were not an adequate effect measure for occupational
exposures, and proposed an alternative methodology based on the Mantel Haenszel pro-
cedure. She highlighted several inefficiencies with SMRs: they do not adequately adjust
for confounding by age, do not accurately represent the underlying risk ratios and require
exponentially more data as the number of confounders increase. Gilbert’s most lasting contri-
bution was twofold. The first was her recommendation that short-term workers be removed
from internal comparisons, as they are possibly not exchangable with the rest of the popu-
lation. Second, she recommended the introduction of lagged exposure variables, which can
reduce the HWSE in diseases with long latencies.

Nonetheless, Monson (1986) used SMRs below 100 as the primary evidence for the exis-
tence of the HWE. In an exhaustive analysis, he selected a number of potential confounders
through which to examine the HWSE. One of his most important observations was that
the HWE, as demonstrated through SMR reduction, seems to have a dynamic phase earlier
in follow-up, during which the the healthy hire effect disapates as the employed workforce
begins to more closely resemble the general workforce. Subsequent to this, he observed a
plateau phase later on, in which the underlying differences between an employed and general
population remain observable and unchanging. He observed a longer dynamic phase of 30
years than the 15 observed by Fox and Collier, probably due to his restriction to employed
workers (no follow-up after employment termination). Monson’s ultimate view is that it is
primarily due to two overriding factors. The first is the selection bias from hiring especially
healthy people. The second is the underlying demographic differences between the working
and general populations.

In 1987 Robins introduced a new approach to thinking about the healthy worker survivor
effect (Robins, 1987). He was the first to frame the HWSE as a bias that causes the true
effect of exposure on outcomes to be underestimated. This notion of a causal parameter as a
target of study was relatively novel at this point, and necessitated a further level of formality
in describing the relationships between exposure, employment status, and morbidity. As
a tool to accomplish this, Robins introduced measured graphs, in which each time point
was represented by a node, and nodes were connected by paths. The paths represented
different combinations of exposure level and employment status, and split and inter and
extra-nodal points. The difference between the two path splitting points is the notion of
exchangability. Extra-nodal splits represent populations splitting on exposure levels must
be assumed to be exchangable in order for a causal effect to be identifiable. Intra-nodal
splits, by contrast, represent subjects leaving work and the populations split between them
do not need to satisfy this same assumptions in order for the effect to be identifiable. This
is because, in a hypothetical randomized trial on exposure status in a workplace, people
who leave work would be no longer participating in the trial. They must be accounted for,
but can be assumed to have a different mix of confounders from the workers who remain.
Robins used these graphs to define the G-causal parameter, one of the first examples of an
unbiased estimator of the effect of exposure on mortality that appropriately adjusts for the
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intermediate variable of employment history.

Robins approach represented a new methodology for adjusting for confounding that could
take account of longitudinal exposures affecting future employment history which in turn
affects future exposure. This time-varying covariate, which is also possibly intermediate
to the outcome of interest, is not properly controlled for using standard methodologies of
confounding adjustments. This confounder is certainly one of the primary drivers of the HWE
and a part of the reason why it has been so difficult to correct for. Robins proposed two
methodologies for dealing with the HWE in occupational cohort analysis: the G computation
algorithm, the G null test and G-estimation. The G-computation algorithm is method
which uses fits of the successive regressions that generate the observed data to estimate the
experience of a cohort subject to a specific history of exposure and work status. The G-null
test is a proposed methodology for testing the the hypothesis that all causal parameters are
identically equal to 0.

G-estimation is a method for estimating the parameters of structural nested failure time
models, and it has the useful property of being able to utilize data from worker follow-up after
employment termination. It proceeds by first generating a model for g(t), the probability
of being exposed at time point t, given a worker’s history. This probability is obviously 0
for all workers after they are terminated. G-estimation proceeds by then using a range of
values for the parameters of the failure time model to generate estimates of T0, the time of
each worker’s failure if never exposed. Each of these vectors of times are then checked for
independence from the probability of exposure, and the estimate is the parameter value that
adds no information to the g model. This approach works by leveraging the no unmeasured
confounders assumption that failure time is independent from exposure assignment at all
time points, given the observed data. While Robins ideas represented a sea change in their
approach to the HWE, they were not recognized by the occupational health community for
the next fifteen to twenty years (Arrighi and Hertz-Picciotto, 1994) and have only recently
been applied to real data (Chevrier et al., 2012a, Naimi et al., 2014, Picciotto et al., 2014).

These ideas did not catch on within the world of occupational epidemiology immediately.
Indeed, a review article from 1992 Choi (1992), in which Choi interviewed nine occupational
epidemiologists to gain a consensus on the definition, sources, and strategies for the reduction
of the Healthy Worker Effect, there is no mention of Robin’s work. The only point of
agreement between all interviewees was that the HWE is ’an observed decrease in mortality
among workers’, in relation to the general population. Four generalized sources of the HWE
are identified, though: the true effect of work on health, selection bias, confounding bias, and
information bias. The confounding and selection biases both primarily deal with differential
health statuses between workers and non-workers. Information bias arises because individual
workers must be positively identified by a death record, while the general population rates
are summarized, and therefore missing matches may underestimate the true death rate of
workers. A variety of techniques were propose to adjust for the effect, representing the
divergent views of researchers at the time.
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One new strategy for adjusting for the HWE was proposed by Eisen et al (Eisen et al.,
1997). The target aspect of this analysis was the transfer bias, in which people at higher risk
for the disease of interest reduce their exposure not by leaving work, but by transferring to
lower exposed positions within the workplace. This method uses a cross-sectional sample of
a working population that has full information on job transfer, exposure and disease status.
The population is then analyzed ysing a longitudinal model, as if every person was followed
from their date of hire, and case exposure is measured as it was prior to disease onset. For a
rapid onset disease such as asthma, this method can reduce negative bias due to asthmatics
moving out of jobs with breathing exposures. This method was demonstrated to increase
the exposure-response effect estimate, but does not account for additional bias caused by
transfer out of the company altogether.

Steenland and Stayner (Steenland et al., 1996) were among the first to investigate the
healthy worker effect using simulated data sets. They used cumulative measure of the ex-
posure of interest and simulated an increased mortality rate among workers following em-
ployment termination. As predicted by theory, this resulted in significant protective effects
of cumulative exposure when modeling the dose-response for exposure and mortality. This
was observed when the true effect of exposure was both positive and null. They were able
to somewhat reduce the bias by including the active status of an employee as an interaction
term with exposure in the model. They discuss how the inclusion of active status as does
not fully account for its role as a mediator of the exposure-disease response, but postulate
that this effect is small compared to work statuses effect as a confounder.

Prior to 2004, one aspect of the healthy worker effect that had not received very much
attention by researchers was the change in mortality rates following termination. Workers
who contract a deadly disease often have the opportunity to quit work prior to the disease
running its course. Richardson et al. (2004) demonstrated an increase in mortality subse-
quent to employment termination using several empirical data sources. They augment these
observations with simulation analysis to quantify the effect on the exposure-response esti-
mates. The simulation demonstrated that this effect alone, in the absence of any effect of
exposure on work status or other time-varying covariates, can cause a negative bias. How-
ever, this aspect can be eliminated by adjusting for time since termination in a proportional
hazards model.

Another important feature of the HWE that is more recently being appreciated is the
role that disease susceptibility can play in its formation. A recent paper by Applebaum et al
(Applebaum et al., 2011) used simulation to demonstrate that bias is induced in effect esti-
mates when the analysis cohort is left truncated. Left truncated cohorts consist of prevalent
hires, workers who have survived for some amount of time between hire and follow-up start.
If an occupational cohort consists of workers with a range of susceptibility to the exposure of
interest, a prevalent cohort will contain fewer of the more susceptible workers. This results
in a downwards bias in effect estimates compared to the true effect in an incident cohort,
which is often the true target parameter. The authors suggest that using time since hire as
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a time metric prevent this problem, and suggest the use of flexible modeling approaches to
examine the changes in the true hazard ratio over time.

5.3 Discussion

Over the past 35 years, the understanding of the effect of the HWE on studies in oc-
cupational health has been greatly enriched by the work of the researchers whose work is
listed above, as well as many others. What seems on the surface to be a relatively simple
combination of two selection factors has shown itself to contain many aspects that are not
immediately apparent. In order to arrive at a cohesive theory of the HWE, several of these
aspects deserve special attention.

In Fox and Collier’s original paper, they noted that the HWE seemed to wear off after
15 years, and this statement has been often repeated in the literature. While true in their
observation, it relied on the use of an SMR which compares to the general population as an
outcome measure and on cohort members continuing on follow-up past employment termi-
nation. As time-since-follow-up increases, a larger percentage of the initial study population
are not longer active, and eventually represent a similar mix of employment statuses as the
general population. The estimate of 15 years is dependent on the rate of leaving work within
the cohort, which we would not expect to be constant across time and different industries.
Monson’s analyses, which stratified on employment status, confirms this view, as he observed
reduced SMRs as far as 30 years out from the hire date. From a causal perspective, work and
health form a continuous loop, with work providing the financial, medial, and psychological
support necessary to maintain personal health, while this health allows a person to continue
working. What is clear is that as time moves forward from the start of hire, the healthy hire
effect will continue to reduce its effect, but the survivor effect will continue.

While consideration of the HWE is a necessary step for any study involving an occupa-
tional exposure, the different understandings and approaches to controlling for it suggested
by the authors we discuss illustrate an important point; its effects are highly specific to the
exposure, outcome, industry, and study design. For instance, the lagging of an exposure
may make sense for a disease with a long latency period, such as cancer, but is not a rea-
sonable approach for heart disease. Additionally, concerns about controlling for time-since
termination are only relevant in cases in which follow-up extends past a termination event.
If follow-up ends at termination, than the possibility of differential censoring by health sta-
tus must be addressed. Adjustment for censoring or exposure assignment necessitates a
detailed understanding of the processes for hiring and job placement strategies, an appraisal
of the immediate physical effects of exposure, and the other opportunities available to the
workforce.

Many variables traditionally available in an occupational cohort study have been used to
attempt to adjust for the HWE, including time-since-hire, active status, time-since-follow-
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up-start, and time-since-termination. Controlling for each individually or all together can
help to elucidate aspects of the effect and reduce bias as compared to an uncontrolled study.
However, standard methods of covariate control, such as stratification, can not properly deal
with time-varying confounding on the causal pathway. This is why we focused our analyses
in this dissertation on methods that can handle such variables.
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