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ABSTRACT

We study the relative Hilbert scheme of a family of nodal (or smooth)

curves, over a base of arbitrary dimension, via its (birational) cycle map,

going to the relative symmetric product. We show the cycle map is the

blowing up of the discriminant locus, which consists of cycles with mul-

tiple points. We determine the structure of certain projective bundles

called node scrolls which play an important role in the geometry of Hilbert

schemes.
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Introduction

In the classical (pre-1980) theory of (smooth) algebraic curves, a dominant role

is played by divisors — equivalently, finite subschemes — and their parameter

spaces, i.e., symmetric products. Notably, one of the first proofs of the existence

of special divisors [6] was based on intersection theory on symmetric products,

developed earlier by Macdonald [10]. In more recent developments however,

where the focus has been on moduli spaces of stable curves, subscheme meth-

ods have been largely absent, replaced by tools related to stable maps and their

moduli spaces (see [18] for a sampling stressing Vakil’s work). Our purpose in

this paper (and others in this series) is to develop and apply global subscheme

methods suitable for the study of stable curves and their families, aiming even-

tually, inter alia, to extend Macdonald’s theory to the case of families of curves

with at most nodal singularities.
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In this paper we always work over the complex numbers. Fix a family of

curves given by a flat projective morphism

π : X → B

over an irreducible base, with fibres

Xb = π−1(b), b ∈ B

which are nonsingular for the generic b and at worst nodal for every b. For

example, X could be the universal family of automorphism-free curves over the

appropriate open subset of Mg, the moduli space of Deligne–Mumford stable

curves. Consider the relative Hilbert scheme

X
[m]
B = Hilbm(X/B),

which parametrizes length-m subschemes of X contained in fibres of π. This

comes endowed with a cycle map (also called ‘Hilb-to-Chow’ — in this case,

‘Hilb-to-Sym’ — map) to the relative symmetric product

cm : X
[m]
B → X

(m)
B .

See §1 for a review. Because X
(m)
B may be considered ‘elementary’ (though it’s

highly singular — see [14]), cm is a natural tool for studying X
[m]
B . The structure

of cm is the object of this paper. Our first main result is the following theorem

which was announced with a sketch of proof in [13], where some applications

are given as well.

Blowup Theorem: cm is equivalent to the blowing up of the discriminant

locus

Dm ⊂ X(m)
B ,

which is the Weil divisor parametrizing nonreduced cycles.

In particular, we obtain an effective Cartier divisor

2Γ(m) = c−1
m (Dm)

so that −2Γ(m) can be identified with the natural O(1) polarization of the

blowup. In fact, we shall see that Γ(m) also exists as a Cartier divisor, not nec-

essarily effective, and the dual of the associated line bundle, i.e., O(−Γ(m)), will

be (abusively) called the discriminant polarization (though ‘half discriminant’

is more accurate); we will also refer to Γ(m) itself sometimes as the discrim-

inant polarization. We emphasize that the Blowup Theorem is valid without



4 Z. RAN Isr. J. Math.

dimension restrictions on B. As suggested by the Theorem, the discriminant

polarization encodes the additional information in Hilb vis-a-vis the unwieldy

Sym and so, unsurprisingly, plays a central role in subsequent developments of

geometry and intersection theory on the Hilbert schemes X
[m]
B .

The proof of the Blowup Theorem occupies §§2–4 and may be outlined as

follows.

(i) A preliminary reduction is made to the local case (§2);

(ii) we construct an explicit local model H for the relative Hilbert scheme

(§3);

(iii) we construct an ideal G in the relative Cartesian product, whose syzy-

gies correspond, essentially, to the defining equations of the pullback

OH of H over the Cartesian product; this yields a map γ from the

blowup of G to OH (§4);

(iv) using the local analysis, it is shown that γ is an isomorphism and that

G is the ideal of the ordered discriminant (big diagonal);

(v) consequently γ descends to an isomorphism from the blowup of the ideal

of the discriminant to H.

The usefulness of the local model H extends far beyond the Blowup Theorem;

in particular, it yields information about the singularity stratification, of X
[m]
B ,

which may be defined as follows. Let θ1, . . . , θr be a collection of distinct, hence

disjoint, relative nodes of the family, each living in the total space over its own

boundary component, and let n1, . . . , nr be integers. Set

Sm,n.(θ.;X/B) = {z : cm(z) ≥
∑

niθi} ⊂ X [m]
B .

This is mainly interesting when all ni ≥ 2. In this case, we construct a surjection⋃
1≤ji≤ni−1,∀1≤i≤r

Fm,n.j. (θ.;X/B) � Sm,n.(θ.;X/B)

where each Fm,n.j. (θ.;X/B), called a node polyscroll (or node scroll, when r = 1),

is a (P1)r-bundle over the smaller Hilbert scheme (Xθ.)[m−
∑
ni], where Xθ.

denotes the blowup (=partial normalization) of X in θ1, . . . , θr, defined over

the intersection of the boundary components corresponding to the θi. The fibre

parameter of the i-th factor of the node polyscroll encodes a sort of higher-order

(more precisely, (ni − 1)-st order) ‘slope’, locally at the i-th node, and these

together constitute the additional information contained in the Hilbert scheme

beyond what’s in the symmetric product.
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In the following section §6 we give an analogue of the blowup theorem in the

case of flag-Hilbert schemes, which are often important in inductive arguments

and procedures.

Our next main results (see Theorems 9.3, 9.5) determine the structure of

node polyscrolls as (P1)r-bundles. In fact, the disjointness of the nodes (in the

total space) implies that the P1 factors ‘vary independently’, which allows us

to reduce to the case of node scrolls, i.e., r = 1.

Actually, what’s essential for the enumerative theory of the Hilbert scheme,

as studied, e.g., in [16], and in which node scrolls play an essential role, is the

structure of the node scroll F as a polarized P1 bundle, that is, the rank-2 vector

bundles E so that there is an isomorphism P(E) ' F , under which the canonical

O(1) polarization on P(E) associated to the projectivization corresponds to the

restriction of the discriminant polarization −Γ(m) on F . To state the result

(approximately), denote by θx, θy the node preimages on Xθ, and by ψx, ψy

the relative cotangent spaces to Xθ/T along them, and by [m− n]∗D, for any

divisor D on Xθ, the ’norm’ of D, considered as a divisor on (Xθ)[m−n].

Node Scroll Theorem: There is a polarized isomorphism

Fm,nj (θ) = P(O(−Dn
j (θ))⊕O(−Dn

j+1(θ)))

where

Dn
j (θ) = −

(
n− j + 1

2

)
ψx−

(
j

2

)
ψy+(n−j+1)[m−n]∗θx+j[m−n]∗θy+Γ[m−n].

This result, and its polyscroll analogue, reduce intersection theory on poly-

scrolls to that of the Mumford tautological classes, about which a great deal

is now known thanks to the work of Witten, Kontsevich, Faber and many

others (see, e.g., [18] and references therein). The Node Scroll Theorem is

one of the main ingredients of a complete ‘Hilbert- tautological’ intersection

calculus, developed in [16], which allows us to extend the intersection theory

and enumerative geometry of a single smooth curve, as developed notably by

Macdonald [10] and presented in [2], to the case of families of curves with at

most nodal singularities, extending work of Cotteril [3] in low degrees. As

described in [16], this intersection calculus has now been implemented on the

computer, in the form of a Java program called macnodal [9], due to Gwoho

Liu and available from the author’s web page. See also [12] for an application

to the class of the closure of the hyperelliptic class in Mg.
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tions.

Convention: In this paper we always work over C.

Part 1. Blowup theorem and discriminant polarization

1. Review of cycle map

See [1], [8] or [17] for more information.

1.1. Norms and multisections. Let Z = SpecT (A) → T be a finite, flat,

degree-m morphism of algebraic C-schemes, corresponding to a sheaf of T -

algebras A that is locally T -free of rank m. The action of the algebra Symm
T A

on the invertible T -module
∧m

T (A) yields a T -homomorphism of algebras

Symm
T (A)→ OT = EndT

( m∧
T

(A)

)
.

This is a symmetric-tensor version of the norm map, usually given as a homoge-

neous polynomial; it can be written locally it terms of determinants. Applying

Spec, we get a T -map, called the canonical multisection of Z/T ,

σZ/T : T → Z
(m)
T = SpecT (Symm

T (A)).

This map is obviously compatible with base-change and satisfies a ‘locality’

property, namely if Z =
∐
Zi with each Zi flat of degree mi ,then σZ/T factors

through ∏
σZi/T : T →

∏
Z

(mi)
T .

Consequently, if t ∈ T and the fibre Z(t) =
∐
Zi(t) and each Zi is supported at

a unique point pi, then σZi/T (t) is the unique point of (Zi)
(mi)
T , usually denoted

mipi, and σZ/T (t) =
∑
mipi.

1.2. Cycle map. Let X → B be a quasi-projective morphism, T → B a

morphism and Z a T -valued point of the relative Hilbert scheme X
[m]
B , i.e., a

closed subscheme of X ×B T that is finite flat of degree m over T . Examples of
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possible T include the Hilbert scheme X
[m]
B itself and any scheme mapping to

it. We have the canonical multisection, which is a T -morphism

σZ/T : T → Z
(m)
T ⊂ (X ×B T )

(m)
T = X

(m)
B ×B T.

Composing with the projection, we get the cycle map, a B-morphism

cZ : T → X
(m)
B .

Again, this is compatible with base-change B′ → B and has a locality property.

Moreover, it depends only on Z quasi-intrinsically in the sense that if Y ⊂ X is

any locally closed subscheme such that Y ×B T contains Z scheme-theoretically,

then cZ factors through Y
(m)
B . Also, there is an analogous and compatible

construction in the analytic category.

2. Blowup Theorem: Set-up and preliminary reductions

2.1. Set-up. Let

π : X → B

be a flat family of nodal, generically smooth curves with X,B reduced and irre-

ducible. Let Xm
B , X

(m)
B , respectively, denote the mth Cartesian and symmetric

fibre products of X relative to B. Thus, there is a natural map

ωm : Xm
B → X

(m)
B

which realizes its target as the quotient of its source under the permutation

action of the symmetric group Sn. Let

Hilbm(X/B) = X
[m]
B

denote the relative Hilbert scheme parametrizing length-m subschemes of fibres

of π, and

c = cm : X
[m]
B → X

(m)
B

the natural cycle map constructed above, associated to the universal subscheme

Z ⊂ X
[m]
B ×B X. Let Dm ⊂ X

(m)
B denote the discriminant locus or ‘big diago-

nal’, consisting of cycles supported on < m points (endowed with the reduced

scheme structure). Clearly, Dm is a prime Weil divisor on X
(m)
B , birational to

X ×B X(m−2)
B (though it is less clear what the defining equations of Dm on

X
(m)
B are near singular points). The main result of Sections 1–4 is the
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Theorem 2.1 (Blowup Theorem): The cycle map

cm : X
[m]
B → X

(m)
B

is equivalent to the blowing up of Dm ⊂ X(m)
B .

The proof presented here is an elaboration of the one sketched in [13].

2.2. Reductions. We begin with some preliminary remarks and reductions.

To begin with, recall that the cycle map is compatible with base-change, as was

observed in §1, and note now that the same is true of the blowup of Dm: indeed

given a base-change XB′ = X ×B B′, we have IDm(XB′/B
′) = IDm ⊗OB′ , hence

also InDm(XB′/B
′) = InDm ⊗OB′ , so

⊕
n

InDm(XB′/B
′) =

(⊕
n

IDm

)
⊗OB′ ,

and applying Proj we get

B`Dm(X
(m)
B )×B B′ = B`Dm(XB′/B

′)(XB′)
(m)
B′ .

Because the Theorem is local over B and locally any family is a base-change

from a versal one, we may as well assume X/B is a versal deformation of a

nodal curve X0, and in particular X and B are smooth.

Next, the Theorem is the statement that the natural birational correspon-

dence between X
[m]
B and B`Dm(X

(m)
B ) projects isomorphically both ways (in

particular X
[m]
B is irreducible). By GAGA, it suffices to prove for the corre-

sponding analytic spaces. Then, since the statement is local over X
(m)
B , we

may work over a neighborhood of a given cycle Z =
∑k
i=1mipi, of the form∏

B(Ui)
(mi)
B where Ui is a suitable analytic neighborhood of pi. The correspond-

ing open subset of X
[m]
B is just

∏
B(U

[mi]
i )B , where for an analytic open U ⊂ X,

U
[m]
B ⊂ X

[m]
B is the set of schemes contained in U . We note that this depends

only on U/B up to analytic isomorphism: e.g., because it can be identified with

a Douady space of finite subspaces of U ; or more directly, by GAGA, there is

a natural correspondence between analytic families of finite subschemes X/B

contained in U and finite analytic subspaces of U/B. Now choosing Ui appro-

priately, we may assume there is an open subset V ⊂ C2 such that Ui/B is a

base-change of the family V/T given by xy = t (the ‘standard model’).
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Now suppose we could show that V
[m]
T ,∀m, is the blowup of V

(m)
T in Dm.

Then the same is true for (Ui)
[mi]
B ,∀i. To conclude that∏

B
(Ui)

[mi]
B ' B`Dm

∏
B

(Ui)
(mi)
B ,

it would suffice to show that

B`Dm
∏

B
(Ui)

(mi)
B '

∏
B

(B`Dm(Ui)
(mi)
B ),

or equivalently,

B`Dm
∏

B
(Ui)

(mi)
B '

∏∏
B(Ui)

(mi)

B

(B`Dm(Ui)
(mi)
B ).(2.1)

(2.1) holds because:

(i) The local analysis of the next two sections will show, in particular, that

B`Dm V (m)
T is a small blowup, centered over the locus of schemes with

multiplicity ≥ 2 at the node, therefore so is B`Dm(Ui)
(mi)
B .

(ii) IDm(
∐
Ui/B)|∏

B(Ui)
(mi)

B

=
∏

IDmi (Ui/B).

(iii) The blowup centers are transverse for different i.

(iv) The following general remark.

Remark 2.2: Let I1, . . . , Ik be an arbitrary collection of ideals on a variety X,

not necessarily mutually transverse or even distinct.

(i) The blowup B`I1...Ik X of the product ideal is the unique X-dominating

component of the fibre product B`I1 X ×X · · · ×X B`Ik X. For simplicity we

check this for k = 2. We may work locally over X. If fi, gi are generators for

I1, I2 respectively, then the blowup of I1I2 is covered by open affines Ui,j whose

coordinate rings are generated over X by symbols [fi′gj′/figj ] satisfying the

obvious relations figj [fi′gj′/figj ] = fi′gj′ , ∀i′, j′. Similarly with open affines

V 1
i , V

2
j for the blowup of I1, I2, with generators [fi′/fi], [gj′/gj ] are regular.

There are obvious maps Ui,j � V 1
i ×X V 2

j , defined by

[fi′gj′/figj ] � [fi′/fi]⊗ [gj′/gj ],

leading to maps over X

B`I1I2 X � B`I1 X ×X B`I2 X.

These clearly give an isomorphism as claimed.

Note that the foregoing argument makes no assumption regarding transver-

sality of I1, I2. In general, if I1, I2 are not transverse, e.g., I1 = I2 = I, then

B`I1 X ×X B`I2 X is reducible: e.g., [f1/f2][f2/f1]− 1 is a zero-divisor (usually
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nonzero) on B`I X ×X B`I X. The dominating component of B`I X ×X B`I X
is B`I2 X ' B`I X.

(ii) In the above situation, if the B`Ii X are small blowups, i.e., for each i

the exceptional locus on X (the center), i.e., the non-invertible locus of Ii, is of

codimension≥ 3 and its inverse image is of codimension≥ 2, and if for different i

the centers are mutually transverse, then the fibre product is in fact irreducible,

i.e., has no non-dominating components. This is because any non-dominating

component would have to be of smaller dimension, whereas by semi-continuity,

in the fibre product, which is the inverse image of the small diagonal in Xk by

the natural map ∏
B`Ii X → Xk,

every component is of dimension ≥ dim(X).

We have now reduced the Theorem to the case where X/B is the standard

family xy = t, which we assume till further notice; we also let U denote any

neighborhood of the origin in X.

3. A local model

We now give an explicit construction in coordinates of the relative Hilbert

scheme of the standard family. This construction will have many applications

beyond the proof of the Blowup Theorem. We begin with some preliminaries.

3.1. Symmetric product. Assuming U/B has the local form xy = t, the

relative Cartesian product UmB , as a subscheme of Um ×B, is given locally by

x1y1 = · · · = xmym = t.

Let σxi , σyi , i=0, . . . ,m denote the elementary symmetric functions in x1, . . . , xm

and in y1, . . . , ym, respectively, where we set σ0 = 1. We note that these func-

tions satisfy the relations

σymσ
x
j = tjσym−j , σxmσ

y
j = tjσxm−j ,(3.1)

tm−iσym−j = tm−i−jσxj σ
y
m, tm−iσxm−j = tm−i−jσyj σ

x
m(3.2)
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(of course the relations in the second set follow from those of the first). Putting

the sigma functions together with the projection to B, we get a map

σ : U
(m)
B = Symm(U/B)→ A2m

B = A2m ×B

σ = ((−1)mσxm, . . . ,−σx1 , (−1)mσym, . . . ,−σ
y
1 , π

(m))

where π(m) : X
(m)
B → B is the structure map.

Lemma 3.1: σ is an embedding locally near mp where p = (0, 0) is the origin

in U .

Proof. It suffices to prove this formally, i.e., to show that σxi , σyj , i, j = 1, . . . ,m

generate the completion m̂ of the maximal ideal of mp in X
(m)
B . To this end it

suffices to show that any Sm-invariant polynomial in the xi, yj is a polynomial in

the σxi , σ
y
j and t. Let us denote by R the averaging or symmetrization operator

with respect to the permutation action of Sm, i.e.,

R(f) =
1

m!

∑
g∈Sm

g∗(f).

Then it suffices to show that the elements R(xIyJ), where xI (resp. yJ) range

over all monomials in x1, . . . , xm (resp. y1, . . . , ym) are polynomials in the σxi , σ
y
j

and t. Because xiyi = t, we may assume I, J are disjointly supported in the

sense that Ik > 0 ⇒ Jk = 0. On the other hand, expanding the product

R(xI)R(yJ) we get a sum of monomials xI
′
yJ
′

times a rational number; those

with I ′ ∩ J ′ = ∅ add up to 1
m!R(xIyJ), while those with I ′, J ′ not disjointly

supported are divisible by t. Thus,

R(xIyJ)−m!R(xI)R(yJ) = tF

where F is an Sm-invariant polynomial in the xi, yj of bidegree (|I| − 1, |J | − 1),

hence a linear combination of elements of the form R(xI
′
yJ
′
), |I ′| = |I| − 1,

|J ′| = |J | − 1. By induction, F is a polynomial in the σxi , σ
y
j and clearly so is

R(xI)R(yJ). Hence so is R(xIyJ) and we are done.

Remark 3.2: It will follow from the Blowup Theorem 2.1 and its proof that the

equations (3.1)–(3.2) actually define the image of σ scheme-theoretically (see

Cor. 4.5 below); we won’t need this, however.
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3.2. A projective family. Now we present a construction of our local model

H̃. This is motivated by our study in [15] of the relative Hilbert scheme of

a node. As we saw there, the fibres of the cycle map are chains consisting of

n rational curves where n takes the values from n = 0 for the generic fibre

(meaning the fibre is a singleton) to n = m − 1 for the most special fibre.

Therefore, it is reasonable to try to model the cycle map on a standard pencil

of rational normal (m−1)-tics specializing to a chain of lines. Further motivation

for the construction that follows comes from [14], where an explicit construction

is given for the full-flag Hilbert scheme.

Let C1, . . . , Cm−1 be copies of P1, with homogeneous coordinates ui, vi on

the i-th copy. Let

C̃ ⊂ C1 × · · · × Cm−1 ×B/B

be the subscheme over B defined by

(3.3) v1u2 = tu1v2, . . . , vm−2um−1 = tum−2vm−1.

This construction is motivated (cf. [14]) by viewing ui/vi as a stand-in for

yI/xIc where I ⊂ [1,m] is of cardinality i and xI =
∏
a∈I xa etc.; the ratio is

independent of I for fixed |I|. That said, C̃ is in any event a reduced complete

intersection of divisors of type

(1, 1, 0, . . . , 0), (0, 1, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1, 1)

(relatively over B) and it is easy to check that the fibre of C̃ over 0 ∈ B is

(3.4) C̃0 =

m−1⋃
i=1

C̃i,

where

C̃i = [1, 0]× · · · × [1, 0]× Ci × [0, 1]× · · · × [0, 1]

and that in a neighborhood of the special fibre C̃0, C̃ is smooth and C̃0 is its

unique singular fibre over B. We may embed C̃ in Pm−1 ×B, relatively over B

using the plurihomogeneous monomials

(3.5) Zi = u1 · · ·ui−1vi · · · vm−1, i = 1, . . . ,m.

These satisfy the relations

(3.6) ZiZj = tj−i−1Zi+1Zj−1, i < j − 1
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so they embed C̃ as a family of rational normal curves C̃t ⊂ Pm−1, t 6= 0

specializing to C̃0, which is embedded as a nondegenerate, connected chain of

m− 1 lines.

3.3. To Hilb. Next consider an affine space A2m with coordinates a0,. . ., am−1,

d0, . . . , dm−1. The ai, dj are to play the roles of σxm−i, σ
y
m−j respectively (where

as we recall ui/vi plays that of ym−i+1 . . . ym/x1 . . . xm−i). With this and the

relations (3.1), (3.2) in mind, let H̃ ⊂ C̃ × A2m be the subscheme defined by

(3.7)
a0u1 = tv1, d0vm−1 = tum−1,

a1u1 = dm−1v1, . . . , am−1um−1 = d1vm−1.

Note that H̃ comes equipped with a map to B (via the projection to C̃), whence

a projection

pA2m
B

: H̃ → A2m
B .

Set Li = p∗CiO(1). Then consider the subscheme of Y = H̃ ×B U defined by the

equations

F0 :=xm + am−1x
m−1 + · · ·+ a1x+ a0 ∈ Γ(Y,OY ),(3.8)

F1 :=u1x
m−1 + u1am−1x

m−2 + · · ·+ u1a2x+ u1a1 + v1y ∈ Γ(Y, L1),(3.9)

...

Fi :=uix
m−i + uiam−1x

m−i−1 + · · ·+ uiai+1x(3.10)

+ uiai + vidm−i+1y + · · ·+ vidm−1y
i−1 + viy

i ∈ Γ(Y,Li),

...

Fm :=d0 + d1y1 + · · ·+ dm−1y
m−1 + ym ∈ Γ(Y,OY ).(3.11)

The following statement essentially summarizes results from [15].

Theorem 3.3: (i) H̃ is smooth and irreducible.

(ii) The ideal sheaf I generated by F0, . . . ,Fm defines a subscheme of H̃×BX
that is flat of length m over H̃ and flat over X.

(iii) The classifying map

Φ = ΦI : H̃ → Hilbm(U/B)

is an isomorphism and via Φ, the projection pA2m
B

: H̃ → A2m
B corre-

sponds to the cycle map.
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(iv) Φ induces an isomorphism

C̃0 = (C̃)0 = p−1
A2m
B

(0)→ Hilb0
m(X0) =

m−1⋃
i=1

Cmi

(cf. [15]) of the fibre of H̃ over 0 ∈ A2m
B with the punctual Hilbert

scheme of the node on the special fibre X0, in such a way that the point

[u, v] ∈ C̃i ' Cmi ' P1 corresponds to

• the subscheme with ideal

Imi (u/v) = (xm−i + (u/v)yi) ∈ Cmi ⊂ Hilb0
m(X0)

if uv 6= 0,

• the subscheme (xm+1−i, yi) ∈ Cmi if [u, v] = [0, 1],

• the subscheme (xm−i, yi+1) ∈ Cmi if [u, v] = [1, 0].

In particular, C̃i corresponds to Cmi .

(v) Over the standard open Ui = (Zi 6= 0) ⊂ Pm−1, a co-basis for the

universal ideal I (i.e., a basis for O/I) is given by

1, . . . , xm−i, y, . . . , yi−1.

(vi) Φ induces an isomorphism of the special fibre H̃0 of H over B with

Hilbm(X0), and H̃0 ⊂ H̃ is a divisor with global normal crossings⋃m
i=0D

m
i where eachDm

i is smooth, birational to (x-axis)m−i×(y-axis)i,

and for i = 1, . . . ,m−1 has special fibre Cmi under the cycle map pA2m
B

.

Proof. Assertions (i), (ii) are clear from the defining equations. To prove (iii)

and (iv) consider the point qi, i = 1, . . . ,m, on the special fibre of H̃ over A2m
B

with coordinates

vj = 0, ∀j < i; uj = 0, ∀j ≥ i.

Then qi has an affine neighborhood Ui in H̃ defined by

Ui = {uj = 1, ∀j < i; vj = 1, ∀j ≥ i},(3.12)

and these Ui, i = 1, . . . ,m cover a neighborhood of the special fibre of H̃. Now

the generators Fi admit the following relations:

ui−1Fj = ujx
i−1−jFi−1, 0 ≤ j < i− 1; viFj = vjy

j−iFi, m ≥ j > i

where we set ui = vi = 1 for i = 0,m. Hence I is generated on Ui by Fi−1, Fi

and assertions (iii), (iv) follow directly from Theorems 1, 2 and 3 of [15] .
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As for (v), it follows immediately from the definition of the Fi, plus the fact

just noted that, over Ui, the ideal I is generated by Fi−1, Fi, and that on Ui,

we can set ui−1 = vi = 1. Finally (vi) is contained in [15], Thm. 2.

At this point it’s worth noting the following consequences of Theorem 3.3,

(i). First, recall that a deformation X/B of a nodal curve X0 is said to be

locally versal (or locally versal at the nodes) if the natural map of B to

the product of local deformation spaces is smooth.

Corollary 3.4: Let X/B be a family of nodal or smooth curves.

(i) X
[m]
B /B is a normal crossings morphism, i.e., fibres have normal cross-

ings.

(ii) If X/B is locally versal at the nodes, then X
[m]
B and the universal sub-

scheme over X
[m]
B are smooth.

(iii) If X is irreducible then so is X
[m]
B

Remark: In (ii), the smoothness claimed is of course in the absolute sense, i.e.,

over C, not over B.

Proof. We first prove (ii) as (i) is similar and simpler. Working near a fibre X0,

there is a standard coordinate neighborhood Ui of each node pi, i = 1, . . . , k,

which is a pullback of V/T : xy = t, and such that the product map B → T k is

smooth. Then
∏
B(Ui)

[mi]
B is smooth over

∏
CV

[mi]
T , and the latter is smooth.

Therefore
∏
B(Ui)

[mi]
B is smooth, hence so is X

[m]
B .

(iii) It follows from the local models that every fibre component of X/B

is m-dimensional and dominates a fibre component of X
(m)
B . Since X

(m)
B is

irreducible, so is X
[m]
B .

In light of Theorem 3.3, we identify a neighborhood Hm of the special fibre in

H̃ with a neighborhood of the punctual Hilbert scheme (i.e., c−1
m (mp)) in X

[m]
B ,

and note that the projection Hm → A2m×B coincides generically, hence every-

where, with σ ◦ cm. Hence Hm may be viewed as the subscheme of U
(m)
B ×B C̃

defined by the equations

(3.13)

σxmu1 =tv1,

σxm−1u1 =σy1v1, . . . , σ
x
1um−1 = σym−1vm−1,

tum−1 =σymvm−1.
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Alternatively, in terms of the Z coordinates, Hm may be defined as the sub-

scheme of U
(m)
B × Pm−1 × B defined by the relations (3.6), which define C̃,

together with

σyi Zi = σxm−iZi+1, i = 1, . . . ,m− 1.(3.14)

4. Reverse engineering and proof of Blowup Theorem

Reverse-engineering an ideal means finding generators with given syzygies. Our

task now is effectively to reverse-engineer an ideal (discriminant ideal) in the

σ’s whose syzygies, for suitable generators, are given by (3.14) and (3.6). This

will be achieved by passing to the ordered version of Hilb, i.e., X
[m]
B ×

X
(m)
B

Xm
B .

The sought-for generators will be given by certain ‘mixed Van der Monde’ de-

terminants. The proof of the Blowup Theorem is then concluded, essentially

by showing explicitly that, locally over Hilb, all the generators are multiples of

one of them.

4.1. Order. Let OHm = Hm ×U(m)
B

UmB , so we have a cartesian diagram

OHm
$m−→ Hm

ocm ↓ � ↓ cm
Xm
B

ωm−→ X
(m)
B

and its global analogue

X
dme
B

$m−→ X
[m]
B

ocm ↓ � ↓ cm
Xm
B

ωm−→ X
(m)
B

Here the horizontal maps are all Sm-quotients, hence flat. Note that X
(m)
B is

normal and Cohen–Macaulay: this follows from the fact that it is a quotient by

Sm of Xm
B , which is a locally complete intersection with singular locus of codi-

mension ≥ 2 (in fact, > 2, since X is smooth). Alternatively, normality of X
(m)
B

follows from the fact that Hm is smooth and the fibres of cm : Hm → X
(m)
B are

connected and reduced (being products of connected chains of rational curves),

using the following general fact: if f : A → B is a proper surjective morphism

with connected reduced fibres between integral algebraic schemes over an al-

gebraically closed field and A is normal, then so is B [proof : For any closed

point b ∈ B, the inclusion OB,b/mB,b → H0(Of−1(b)) = H0(OA/mB,bOA) is an



Vol. 00, XXXX CYCLE MAP FOR HILBERT SCHEMES 17

isomorphism because f−1(b) is reduced and connected. By an easy composition

series argument, the analogous statement holds with mB,b replaced by mnB,b for

any n ≥ 1. Consequently, by the Formal Function Theorem ([5], §3.11), we have

f∗(OA) = OB . Then since the local rings of A are integrally closed, the same

is true of OA(U), U ⊂ A open, hence also for the local rings of OB ].

Now a few remarks are in order.

• The map ωm is simply ramified generically over Dm and we have

ω∗m(Dm) = 2ODm

where

ODm =
∑
i<j

Dm
i,j

where Dm
i,j = p−1

i,j (OD2) is the locus of points whose ith and jth com-

ponents coincide.

• B`ODm Xm
B = B`2ODm Xm

B as blowups, because blowing up an ideal

and its powers are the same (see [5], Ex. II.7.11.a).

• We have

(B`Dm X(m)
B )×

X
(m)
B

Xm
B = B`ω∗m(Dm)X

m
B = B`2ODm Xm

B .

So if the natural map X
dme
B → B`2ODm Xm

B is an isomorphism, then

(obviously) so is the Sm-equivariant map

f : X
dme
B → (B`Dm X(m)

B )×
X

(m)
B

Xm
B ,

which is just the pullback of the natural map

c′m : X
[m]
B → B`Dm X(m)

B

by the finite flat surjective map $m, therefore so is c′m itself (which is

the Sm-quotient of f).

• Therefore finally we are reduced to showing that ocm is equivalent to

the blowing up of ODm.

The advantage of working with ODm rather than its unordered analogue is

that at least some of its equations are easy to write down: let

vmx =
∏

1≤i<j≤m

(xi − xj),
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and likewise for vmy . As is well known, vmx is the determinant of the Van der

Monde matrix

V mx =


1 . . . 1

x1 . . . xm
...

...

xm−1
1 . . . xm−1

m

 .
Also set

Ũi = $−1
m (Ui),

where Ui is as in (3.12), being a neighborhood of qi on Hm. Then in U1, the

universal ideal I is defined by

F0, F1 = y + (function of x)

and consequently the length-m scheme corresponding to I maps isomorphically

to its projection to the x-axis. Therefore over Ũ1 = $−1
m (U1), where F0 splits

as
∏

(x− xi), the equation of ODm is simply given by

G1 = vmx .

Similarly, the equation of ODm in Ũm is given by

Gm = vmy .

Now let

Ξ : OHm → Pm−1

be the morphism corresponding to (the pullback of) [Z1, . . . , Zm] (cf. (3.5); note

that this is by definition essentially a product projection, hence a morphism);

set

L = Ξ∗(O(1)).(4.1)

Note that Ũi coincides with the open set where Zi 6= 0, so Zi generates L over

Ũi. Let

OΓ(m) = oc−1
m (ODm).

We shall see below that this is a Cartier divisor, in fact we shall construct an

isomorphism

(4.2) γ : O(−OΓ(m))→ L.

This isomorphism will easily imply Theorem 1. To construct γ, it suffices to

specify it on each Ũi.
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4.2. Mixed Van der Mondes. A clue as to how the latter might be done

comes from the relations (3.14). Thus, set

(4.3) Gi =
(σym)i−1

t(i−1)(m−i/2)
vmx =

(σym)i−1

t(i−1)(m−i/2)
G1, i = 2, . . . ,m.

Thus,

(4.4) G2 =
σym
tm−1

G1, G3 =
σym
tm−2

G2, . . . , Gi+1 =
σym
tm−i

Gi, i = 1, . . . ,m− 1.

In light of (3.1), (3.2), we deduce

(4.5) σxm−iGi+1 = σyiGi.

Comparing this with (3.14) certainly suggests solving our reverse-engineering

problem by assigning Zi to Gi, which is what we will do eventually.

Remark 4.1: Clearly vmx , hence all the Gi, are invariant under the alternating

group Am, hence are well-defined on the ‘Orientation product’, i.e., the quotient

of Xm
B by the action of Am, which coincides with the double cover of X

(m)
B

branched on Dm.

Now an elementary calculation shows that if we denote by V mi the ‘mixed

Van der Monde’ matrix

V mi =



1 . . . 1

x1 . . . xm
...

...

xm−i1 . . . xm−im

y1 . . . ym
...

...

yi−1
1 . . . yi−1

m


then we have

(4.6) Gi = ±det(V mi ), i = 1, . . . ,m.

Indeed, for i = 1 this is standard; for general i, it suffices to prove the analogue

of (4.4) for the mixed Van der Monde determinants. For this, it suffices to

multiply each jth column of V mi by yj , and factor a t = xjyj out of each of

rows 2, . . . ,m− i+ 1, which yields

(4.7) σym det(V mi ) = (−1)m−itm−iV mi+1.

From (4.6), it follows, e.g., that Gm as given in (4.3) coincides with ±vmy .
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4.3. Conclusion of proof. The following result is key for the Blowup The-

orem.

Lemma 4.2: Gi generates O(−OΓ(m)) over Ũi. In particular, OΓ(m) is Cartier.

Proof of Lemma. This is clearly true where t 6= 0 and it remains to check it

along the special fibre OHm,0 of OHm over B. Note that OHm,0 is a sum of

components of the form

(4.8) ΘI = Zeros(xi, i 6∈ I, yi, i ∈ I), I ⊆ {1, . . . ,m},

none of which is contained in the singular locus of OHm. Set

Θi =
⋃
|I|=i

ΘI .

Note that

C̃i × 0 ⊂ Θi, i = 1, . . . ,m− 1

and therefore

Ũi ∩Θj = ∅, j 6= i− 1, i.

Note that yi vanishes to order 1 (resp. 0) on ΘI whenever i ∈ I (resp. i 6∈ I).

Similarly, xi − xj vanishes to order 1 (resp. 0) on ΘI whenever both i, j ∈ Ic

(resp. not both i, j ∈ Ic). From this, an elementary calculation shows that the

vanishing order of Gj on every component Θ of Θk is

(4.9) ordΘ(Gj) = (k − j)2 + (k − j).

We may unambiguously denote this number by ordΘk(Gj). Since this order is

nonnegative for all k, j, it follows firstly that the rational function Gj has no

poles, hence is in fact regular on Xm
B near mp (recall that Xm

B is normal); of

course, regularity of Gj is also immediate from (4.6). Secondly, since this order

is zero for k = j, j − 1, and Θj ,Θj−1 contain all the components of OHm,0

meeting Ũj , it follows that in Ũj , Gj has no zeros besides OΓ(m) ∩ Ũj , so Gj is

a generator of O(−OΓ(m)) over Ũj .

The Lemma yields a set of generators for the ideal of ODm:

Corollary 4.3 (of Lemma): The ideal of ODm is generated, locally near

(p, . . . , p), by G1, . . . , Gm.
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Proof. If Q denotes the cokernel of the map
⊕

mOXmB → OXmB (−ODm) given

by G1, . . . , Gm, then oc∗m(Q) = 0 by the Lemma, hence Q = 0, so the G’s

generate OXm(−ODm).

Now we can construct the desired isomorphism γ as in (4.2), as follows. Since

Zj is a generator of L over Ũj , we can define our isomorphism γ over Ũj simply

by specifying that

γ(Gj) = Zj on Ũj .

Now to check that these maps are compatible, it suffices to check that

Gj/Gk = Zj/Zk

as rational functions (in fact, units over Ũj ∩ Ũk). But the ratios Zj/Zk are

determined by the relations (3.14), while Gj/Gk can be computed from (4.5),

and it is trivial to check that these agree.

Now we can easily complete the proof of Theorem 1. The existence of γ,

together with the universal property of blowing up, yields a morphism

Bcm : OHm → BODmX
m
B

which is clearly proper and birational, hence surjective. On the other hand,

the fact that the G’s generate the ideal of ODm, and correspond to the Z

coordinates on OHm ⊂ Xm
B × Pm−1, implies that Bcm is a closed immersion.

Therefore Bcm is an isomorphism.

Remark 4.4: It follows from the foregoing proof that the cycle map is a nonlinear

blowup, i.e., that the inclusion Proj(
⊕
InDm) ⊂ P(IDm) is proper.

4.4. Complements and consequences. These concern the standard family

V/T given by xy = t:

Corollary 4.5: For the standard family, the image of the relative symmetric

product V
(m)
T under the elementary symmetric functions embedding σ (cf. Lem-

ma 3.1) is schematically defined by the equations (3.1)–(3.2)).

Proof. We have a diagram locally

(4.10)

Hm ⊂ Pm−1 × A2m × T
↓ ↓

V
(m)
T

σ
↪→ A2m × T.
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We have seen that the image of the top inclusion is defined by the equations

(3.6), (3.14). The equations of the schematic image of σ are obtained by elimi-

nating the Z coordinates from the latter equations, and this clearly yields the

equations as claimed.

Now as one byproduct of the proof of Theorem 2.1, we obtained generators of

the ideal of the ordered half-discriminant ODm. As a further consequence, we

can determine the ideal of the discriminant locus Dm in the symmetric product

X
(m)
B itself: let δxm denote the discriminant of F0, which, as is well known [7],

is a polynomial in the σxi such that

(4.11) δxm = G2
1.

Set

(4.12) ηi,j =
(σym)i+j−2

t(i−1)(m−i/2)+(j−1)(m−j/2)
δmx .

It is easy to see that this is a polynomial in the σx. and the σy. , such that

ηi,j = GiGj .

Corollary 4.6: For the standard family xy = t, the ideal of Dm is generated,

locally near mp, by ηi,j , i, j = 1, . . . ,m.

Proof. This follows from the fact that $m is flat (being a Sm-quotient) and

that

$∗m(ηi,j) = GiGj , i, j = 1, . . . ,m

generate the ideal of 2ODm = $∗m(Dm).

Because any family of nodal curves X/B is locally isomorphic to a pullback of

the standard family V/T , it follows that analogues of the previous two corollaries

hold for X
(m)
B over a neighbourhood of a point mθ, where θ is a relative node.

5. Discriminant polarization

We now return to the case of a general family X/B of nodal-or-smooth curves.

We study some natural sheaves, including the discriminant polarization, on the

Hilbert schemes X
[m]
B .

Note that the ideal of the Cartier divisor c∗m(Dm) on X
[m]
B , that is,

O
X

[m]
B

(−c∗m(Dm)),
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is isomorphic in terms of our local model H̃ to O(2) (i.e., the pullback of O(2)

from Pm−1). This suggests that O(−c∗m(Dm)) is divisible by 2 as line bundle

on X
[m]
B . This is indeed so, and is subsumed in the definition of discriminant

polarization which follows, together with that of tautological sheaf. Consider

the tautological subscheme

Dm,1 ⊂ X [m]
B ×B X

with maps pX : Dm,1 → X, p
X

[m]
B

: Dm,1 → X
[m]
B .

Definition 5.1: (i) For any sheaf A on X, the associated tautological sheaf

is defined by

Λm(A) = p
X

[m]
B ∗(p

∗
X(A)).

(ii) The discriminant polarization on X
[m]
B is defined by

O
X

[m]
B

(1) = O(−Γ(m)) := det(Λm(OX)).

Note that if A is locally free, then by flatness so is Λm(A). These bundles are

obviously compatible with base-change. Moreover, note that the trace pairing

Λm(OX)⊗ Λm(OX)→ O
X

[m]
B

yields a generically injective map Λm(OX)→ Λm(OX)∗ which drops rank pre-

cisely on the discriminant c∗m(Dm), therefore 2Γ(m) ∼lin c
∗
m(Dm).

We will also use the notation

O(Γ(m)) = O
X

[m]
B

(−1).

Note that Γ(m) is defined as an effective Weil divisor, and as a line bundle,

but not necessarily as an effective Cartier divisor, though 2Γ(m) and Γdme are

effective (the latter because the symmetrization map Xm
B → X

(m)
B is generically

ramified with multiplicity 2 alongDm). In fact, Γ(m) is essentially never effective

Cartier, as Remark 5.3 below shows. Nonetheless, −Γ(m) is relatively ample on

the Hilbert scheme X
[m]
B over the symmetric product X

(m)
B , hence the name

discriminant polarization.

Further light on the discriminant is shed by the notion of norm:

Definition 5.2: For a line bundle A on X, its m-th norm on X
[m]
B is defined by

[m]∗(A) = det(Λm(A))⊗O(Γ(m)).
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If A = O(Y ) for an effective divisor Y , the exact sequence

0→ Λm(A∗)→ Λm(OX)→ Λm(OY )→ 0

shows that in this case [m]∗(A) = −[m]∗(A
∗) = det(Λm(OY )) is an effective

divisor supported on the locus of schemes whose support meets that of Y .

Remark 5.3: Let X be a smooth curve of genus g ≥ 2 and fix m ≥ 2. Then the

discriminant D ⊂ X(m) is not algebraically equivalent to
∑
aiAi where each

ai > 0,
∑
ai ≥ 2 and the Ai are effective and nontrivial; thus, D is neither

splittable nor divisible as effective divisor up to algebraic equivalence.

Proof. Else, it follows that D, being a prime divisor, meets each Ai properly,

hence OD(Ai) is effective, therefore OD(D) is effective up to algebraic equiva-

lence on D. Letting f : X ×X(m−2) → D denote the obvious (normalization)

map, f(x, z) = 2x+ z, it follows that f∗(D) is effective. But

f∗(D).(X × pt) = −deg(ωX) = 2− 2g < 0,

which contradicts effectivity.

For g ≤ 1, D is effectively divisible by 2, at least for a single curve. For

g = 1, X is an elliptic curve with group law ∗ and D is algebraically equivalent

to 2Da, a ∈ X, where

Da =

{
x+ x ∗ a+

m−2∑
i=1

xi

}
.

The algebraic equivalence becomes linear when a has order 2 in the group.

6. Flags

See [17] for Flag-Hilbert schemes in general. Flag-Hilbert schemes for points on

nodal curves were studied in [14, 15]. In [14], a construction is given for the full-

flag Hilbert scheme via an explicit blowup procedure, different in flavor from the

above discriminant blowup. In [15], a model analogous to Hm was constructed

for the relative Hilbert scheme X
[m,m+1]
B of (m,m+ 1)-flags, i.e., pairs of ideals

(z1 ⊃ z2) of respective lengths (m,m + 1). Here we try to reconcile the two

viewpoints by showing that the full-flag Hilbert scheme can also be represented

as a blowup of a discriminant-like (viz. incidence) variety, in analogy with the

case of the ordinary Hilbert scheme.
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Consider the flag-Hilbert scheme, which fits in a diagram

X
[m,m+1]
B ⊂ X

[m]
B ×X [m+1]

B

p[m] ↙ ↓ p[m+1]

X
[m]
B X

[m+1]
B

(6.1)

Via this, X
[m,m+1]
B is endowed with divisors denoted Γ(m),Γ(m+1), which are

pullbacks of analogous divisors on X
[m]
B , X

[m+1]
B respecively. There is a natural

morphism (where X is identified with the set of colength-1 ideals)

X
[m,m+1]
B → X

(z1 ⊃ z2) 7→ Ann(z1/z2)

whence a map

cm,1 : X
[m,m+1]
B → X

[m]
B ×B X.(6.2)

Theorem 6.1: cm,1 is the blowing-up of the incidence variety

D(m,1) = {(z, x) : x ∈ z}.

Proof. Let

b : Y → X
[m]
B ×B X

be the blowing up of D(m,1) and Γ(m,1) the exceptional (Cartier) divisor, i.e.,

the inverse image of D(m,1). Because c−1
m,1(D(m,1)) = Γ(m+1) − Γ(m) is Cartier,

it follows from the universal property of blowing up that we get a diagram

X
[m,m+1]
B

c′−→ Y

cm,1 ↘ ↙ b

X
[m]
B ×B X

On the other hand, there is an obvious map

Y → X
(m+1)
B

and the pullback of D(m+1) is just Γ(m) + Γ(m,1), hence Cartier. So by the

Blowup Theorem we get a map Y → X
[m+1]
B . Together with the projection

Y → X
[m]
B , this gives a map Y → X

[m]
B ×B X

[m+1]
B whose image is clearly

contained in X
[m,m+1]
B , whence a map

d : Y → X
[m,m+1]
B ,
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which together with c′ fits in a diagram

X
[m,m+1]
B

c′

�
d

Y

cm,1 ↘ ↙ b

X
[m]
B ×B X

As both vertical maps are birational, c′ and d are mutually inverse isomor-

phisms.

As a consequence, we obtain recursively a presentation of the full-flag Hilbert

scheme as a blowup of incidence varieties. This slightly generalizes a result

proven in ([14], Thm. 2.1) by more explicit means.

Corollary 6.2: Denote by Wm.(X/B) the flag Hilbert scheme parametriz-

ing flags of subschemes of fibres (zm1 < zm2 · · · < zmk) of respective lengths

m1 < m2 < · · · < mk. Then Wm.,mk+1(X/B) is the blowup of Wm.(X/B)×BX
in the incidence variety

D(m.,1) = {(z., x) : x ∈ zmk}.

Remark 6.3: We don’t know if the analogues of Theorem 6.1 or Corollary 6.2

hold for arbitrary flags, e.g., of type [m,m+ 2]. Those Hilbert schemes seem to

be worse behaved: inter alia, the fibres of the cycle map on X [m,m+2] can have

dimension 2 if m > 1. For instance, a generic length-2 subscheme of a node is

contained in just two length-3 subschemes, but in an entire 1-paramater family

of length-4 subschemes.

Part 2. Node scrolls

7. Study of Hm

We continue our study of the cycle map over a neighborhood of a maximally

singular cycle mθ with θ a fibre node, using the model Hm. The results will be

applied in the Node Scroll theorem. Having previously determined the structure

of cm along its ‘most special’ fibre c−1
m (mθ) (which corresponds in the model Hm

to the fibre over the origin 0A2m), our purpose in this section is to determine its

structure along nearby fibres and their variation. Thus we will assume for the

rest of this section, unless otherwise stated, that we are in the local situation

where B is a smooth curve, with local coordinate t, and the family U/B is the
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standard degeneration xy = t. Our purpose is to prove the following result,

which serves as the foundation for our study of node scrolls. The notation will

be explained below; suffice it to recall here that on a node with equation xy = 0,

an ideal of type Cnj (resp. Qnj ) is generated by xn−j + tyj , t 6= 0 (resp. xn−j+1

and yj).

Lemma 7.1: For each 1 ≤ j ≤ n − 1, there exists a P1-bundle Fm,nj over

(Uθ)(m−n), together with a pair of disjoint sections Qm,nj , Qm,nj+1 and a map

pj,[m] : Fm,nj → Hm,

such that

(i) the image of pj,[m] coincides with the closure of the locus of schemes

having length n and type Cnj at θ;

(ii) the combined image of

n−1∐
j=1

Fm,nj → Hm

coincides with the locus of schemes of length at least n at θ

(iii) the image pj,[m](Q
m,n
• ), • = j, j + 1, coincides with the closure of the

locus of schemes having length n and type Qn• at θ.

7.1. Nearby fibres. Let U ′, U ′′ denote the x, y axes, respectively in U0 =

X0 ∩ U , with their respective origins θ′, θ′′ mapping to θ ∈ U . Set

Uθ = U ′
∐

U ′′,

the normalization of U0. If the special fibreX0 is reducible, then U ′, U ′′ globalize

to (i.e., are open subsets of) the two components of the normalization. If X0 is

irreducible, then both U ′ and U ′′ globalize to the normalization. For any pair

of natural numbers (a, b), 0 < a+ b < m, set

U (a,b) = U
′(a) × U

′′(b)

(which globalizes to a component — the unique one, if X0 is irreducible — of

the normalization of Xa+b
0 ). Then we have a natural map

U (a,b) → (U0)
(m)
B ⊂ (U)

(m)
B

given by(∑
mixi,

∑
njyj

)
7→
∑

mi(xi, 0) +
∑

nj(0, yj) + (m− a− b)θ.
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This map is clearly birational to its image, which we denote by Ū (a,b). Thus

U (a,b) coincides with the normalization of Ū (a,b). It is clear that Ū (a,b) is defined

by the equations

σxm = · · · = σxa+1 = 0, σym = · · · = σyb+1 = 0.

A point

c ∈ Ū (a,b) − (Ū (a+1,b) ∪ Ū (a,b+1)),

i.e., a cycle in which (0, 0) appears with multiplicity exactly n = m − a − b, is

said to be of type (a, b). Type yields a natural stratification of the symmetric

product U
(m)
0 . Now let H̄(a,b) be the closure of the locus of schemes whose cycle

is of type (a, b), i.e.,

(7.1) H̄(a,b) = closure(c−1
m (Ū (a,b) − (Ū (a+1,b) ∪ Ū (a,b+1)))) ⊂ Hm.

Also let

H(a,b) = H̄(a,b) ×Ū(a,b) U (a,b).(7.2)

Clearly the restriction of cm on H̄(a,b) factors through a map

c̃m :H̄(a,b) → Ū (a,b),

c̃m =((σx1 , . . . , σ
x
a), (σy1 , . . . , σ

y
b )).

Approaching the ‘origin cycle’ m(0, 0) through cycles of type (a, b), on Ū (a,b),

means that a (resp. b) points are approaching the origin θ′ (resp. θ′′) along the

x (resp. y)-axis. For a general cycle c of type (a, b), we have, for all j ≤ b, that

σyj 6= 0, σxm−j = 0, hence by equations (3.7) (setting each ai = σxm−i, di = σym−i),

we conclude vj = 0; thus

(7.3) v1 = · · · = vb = 0;

similarly, for all j ≤ a, we have σym−j = 0, σxj 6= 0 (c being general), hence again

by equations (3.7) , we conclude um−j = 0; thus

(7.4) um−1 = · · · = um−a = 0.

Consequently, the fibre of cm over this point is schematically

(7.5) c−1
m (c) = c̃−1

m (c) '
m−a−1⋃
i=b+1

Cmi ,
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provided a + b ≤ m − 2 (where the Cmi are the components of the punctual

Hilbert scheme, as in the basic construction of the model Hm, see Theorem

3.3). If a+ b = m− 1, the fibre is the unique point given by

v1 = · · · = vb = ub+1 = · · · = um−1 = 0

(as a subscheme of X/B, this point is the one denoted Qmb+1 in [15], and has

ideal (xm−b, yb+1)). As c approaches the ‘origin’ (mθ) in U
(a,b)

, or for that

matter any point c′, the equations (7.3), (7.4) persist, so we conclude

(7.6) c̃−1
m (c′) =


⋃m−a−1
i=b+1 Cmi , a+ b ≤ m− 2,

Qmb+1, a+ b = m− 1.

[Informally, this is a priori plausible: because schemes in Cmi represent i points

coalesced through the y-axis and m − i points coalesced through the x-axis.

Then moving ‘out’ to c represents generalizing b < i (resp. a < m− i) of the i

(resp. m− i) points over the y (resp. x) axis.]

Of particular interest naturally is the case where the union above is a single

P1, in other words when b = i− 1, a = m− i− 1 = m− b− 2. In this case

H̄(m−i−1,i−1) → Ū (m−i−1,i−1)

is just a P1-bundle, with fibre Cmi at the origin. Of course the same is true with

the bars removed (i.e., after pullback over U (m−i−1,i−1)). [Informally again,

this says Cmi as a component of the punctual Hilbert scheme (schemes of length

m concentrated at θ) extends most generically by freeing up i− 1 and m− i− 1

points respectively over the two axes.]

More generally, for any 1 ≤ j < n ≤ m− 1, a+ b = m− n, we have a natural

map

α(n− j − 1, j − 1) : U (a,b) →U (a+n−j−1,b+j−1),

(., .) 7→(.+ (n− j − 1)θ′, .+ (j − 1)θ′′).

Pulling back over H(a+n−j−1,b+j−1), we obtain P1-bundles

(7.7)

Fm,nj (a, b)→ U (a,b)

Fm,nj =
∐

a+b=m−n

Fm,nj (a, b)→ (Uθ)(m−n) =
∐

a+b=m−n

U (a,b).

We call Fm,nj a ‘model node scroll’. It is a special case of the general node

scroll, to be studied further below. Note that Fm,nj comes equipped with a
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map Fm,nj → Hm, whose combined image for j = 1, . . . , n − 1 by definition is

the closure of the locus of schemes having length n at the node θ. Note that

any subscheme z having length n locally at θ sits over a cycle c of type (a, b),

a+ b = m− n and therefore occurs in (7.5) for some i, hence also in Fm,nj with

j = i− b. Furthermore, if z′ is a subscheme having length n′ ≥ n at θ, it occurs

on Fm,nj (a′, b′), a′ + b′ = m− n′ for some j. Then choosing a ≥ a′, b ≥ b′ with

a+ b = m− n, we can factor α(n′ − j − 1, j − 1) via U (a,b):

U (a′,b′) → U (a,b) α(n−j−1,j−1)→ U (a′+n′−j−1,b′+j−1)

to conclude that z′ occurs on Fm,nj (a, b) and in particular on Fm,nj . Thus, the

image of Fm,nj in Hm corresponds to the closure of the locus of schemes which

are of length n and type Cnj (i.e., local equation xn−j + αyj), α ∈ C∗) at the

node θ.

Also, referring to (7.6), we see that Fm,nj (a, b) and also Fm,nj contain two

special, mutually disjoint cross sections corresponding to Qmj , Q
m
j+1, which come

respectively from

H̄(m−i,i−1), H̄(m−i−1,i) ⊂ H̄(m−i−1,i−1).

We denote these by Qm,nj (a, b), Qm,nj+1(a, b) and Qm,nj , Qm,nj+1 , respectively. This

notation is slightly imprecise in that there is a Qm,nj on both Fm,nj and Fm,nj−1 .

But both of them have the same image in the Hilbert scheme, viz. the closure

of the locus of schemes having length n and type Qm,nj (i.e., local equations

(xn−j+1, yj) at θ). The reason is the same as given above in the case of Fm,nj .

This completes the proof of Lemma 7.1.

7.2. Node scrolls: an optional preview. This subsection is not needed

anywhere. It presents an alternative, more ‘qualitative’ perspective on a prop-

erty of node scrolls that is subsumed in the Node Scroll Theorem 9.3. This

property has to do with the intrinsic, as opposed to polarized, structure of

these scrolls. Fixing m,n, a, b for now, the Fj = Fm,nj (a, b) are components of

special (but typical) cases of what are to be called node scrolls. It follows from

Lemma 7.1 that we can write

Fj = P(Lnj ⊕ Lnj+1)

for certain line bundles Lnj , Lnj+1 on U (a,b), corresponding to the disjoint sections

Qm,nj , Qm,nj+1 , where the difference Lnj − Lnj+1 is uniquely determined (we use

additive notation for the tensor product of line bundles and quotient convention
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for projective bundles). The identification of a natural choice for both these line

bundles, using methods to be developed later in this section, will be taken up

in the next section and plays an important role in the enumerative geometry

of the Hilbert scheme. But the difference Lnj − Lnj+1, and hence the intrinsic

structure of the node scroll Fj , may already be computed now, as follows.

Write

Qj = P(Lj), Qj+1 = P(Lj+1)

for the two special sections of type Qm,nj , Qm,nj+1 respectively. Let

Dθ′ , Dθ′′ ⊂ U (a,b)

be the divisors comprised of cycles containing θ′ (resp. θ′′). In the local model,

these are given locally by the respective equations

Dθ′ = (σxa), Dθ′′ = (σyb ).

Lemma 7.2: We have, using the quotient convention for projective bundles,

(7.8) Fj = PU(a,b)(O(−Dθ′)⊕O(−Dθ′′)), j = 1, . . . , n− 1.

Proof. Our key tool is a C∗-parametrized family of sections ‘interpolating’ be-

tween Qj and Qj+1. Namely, note that for any s ∈ C∗, there is a well-defined

section Is of Fj whose fibre over a general point z ∈ X(a,b) is the scheme

Is(z) = (sxn−j + yj)q sch(z),

where sch(z) is the unique subscheme of length a + b, disjoint from the nodes,

corresponding to z, and we are identifying a (principal) ideal with the corre-

sponding subscheme..

Claim: The fibre of Is over a point z ∈ Dθ′ (resp. z ∈ Dθ′′) is a scheme of type

Qm,nj , i.e., (xn−j+1, yj) (resp. Qm,nj+1).

Proof of Claim. Indeed, set-theoretically the claim is clear from the fact that

this fibre corresponds to a length-n punctual scheme meeting the x-axis (resp. y-

axis) with multiplicity at least n− j + 1 (resp. j + 1).

To see the same thing schematically, via equations in the local model Hn+1,

we proceed as follows. We work near a generic point z0 ∈ Dθ′ , necessarily of

multiplicity 1 at the origin. Then we can, discarding distal factors supported

away from the nodes, write the singleton (length-1) scheme corresponding to a
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nearby cycle z as sch(z) = (x− c, y) where c→ 0 as z → z0, and then

Is(z) = (sxn−j + yj)(x− c, y) = (sxn−j+1 − csxn−j − cyj , yj+1).

Thus, in terms of the system of generators (3.8) et seq., Is(z) is defined locally

by

(7.9) cuj − svj = 0

(with other [uk, vk] coordinates either [1, 0] for k < j or [0, 1] for k > j). The

limit of this as c→ 0 is [uj , vj ] = [1, 0], which is the point Qj .

Clearly Is doesn’t meet Qj or Qj+1 away from Dθ′∪Dθ′′ . Therefore, denoting

the scroll projection by π, we have

Is ∩Qj =Qj .π
∗(Dθ′),(7.10)

Is ∩Qj+1 =Qj+1.π
∗(Dθ′′);(7.11)

an easy calculation in the local model shows that the intersection is transverse.

Because Qj ∩Qj+1 = ∅, it follows that

Ia ∼ Qj + π∗(Dθ′)(7.12)

Ia ∼ Qj+1 + π∗(Dθ′′).(7.13)

These relations also follow from the fact, which comes simply from setting s = 0

or dividing by s and setting s =∞ in (7.9), that

(7.14) lim
s→0

Is = Qj + π∗(Dθ′), lim
s→∞

Is = Qj+1 + π∗(Dθ′′)

It then follows that

(Qj)
2 = Qj .(Is − π∗(Dθ′)) = Qj .(Qj+1 + π∗(Dθ′′ −Dθ′)),

hence

(Qj)
2 = Qj .π

∗(Dθ′′ −Dθ′),(7.15)

therefore finally

(7.16) Lnj − Lnj+1 = π∗(Dθ′′ −Dθ′).

This proves the Lemma.
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8. Definition of node scrolls and polyscrolls

We now begin to extend our scope to a global proper family X/B of nodal

curves, with possibly higher-dimensional base and fibres with more than one

node. Our main interest is in the node scrolls in this generality, where, rather

than living over a symmetric product, they become P1-bundles over a relative

Hilbert scheme (of lower degree) associated to a ‘boundary family’ of X/B, i.e.,

a family obtained, essentially, as the partial normalization of the subfamily of

X/B lying over the normalization of a component of the locus of singular curves

in B (viz. the boundary of B). For our purposes, it will be convenient to work

‘node by node’, associating to each a boundary family. We begin by making

the appropriate notion of boundary family precise.

8.1. Boundary data. Let π : X → B now denote an arbitrary flat family of

nodal curves of arithmetic genus g over an irreducible base, with smooth generic

fibre. In order to specify the additional information required to define a node

scroll, we make the following definition.

Definition 8.1: A boundary datum for X/B consists of

(i) an irreducible variety T with a map δ : T → B unramified to its image;

(ii) a relative node over T , i.e., a lifting θ : T → X of δ such that each

θ(t) is a node of Xδ(t);

(iii) a labelling, continuous in t, of the two branches of Xδ(t) along θ(t) as

x-axis and y-axis, denoted X ′, X ′′.

Given such a datum, the associated boundary family Xθ
T is the normal-

ization (= blowup) of the base-changed family X ×B T along the section θ,

i.e.,

Xθ
T = B`θ(X ×B T ),

viewed as a family of curves of arithmetic genus g − 1 with two smooth, ev-

erywhere distinct, individually defined marked points θx, θy on the respective

branches X ′, X ′′. We denote by φ the natural map fitting in the diagram

Xθ
T

↓
φ

↘
X ×B T → X

↓ ↓
T

δ→ B.



34 Z. RAN Isr. J. Math.

Remark 8.2: Note that the fibres of Xθ
T are disconneted (e.g., a disjoint union

of smooth curves of genera i, g − i) whenever θ is a separating node; still they

always have arithmetic genus g− 1, where the arithmetic genus of a curve X is

defined as 1− χ(OX).

Note that a boundary datum indeed lives over the boundary of B; in the

other direction, we can associate to any component T0 of the boundary of B

a finite number of boundary data in this sense: first consider a component T1

of the normalization of T0 ×B sing(X/B), which already admits a node-valued

lifting θ1 to X, then further base-change by the normal cone of θ1(T1) in X

(which is 2:1 unramified, possibly disconnected, over T1), to obtain a boundary

datum as above. ‘Typically’, the curve corresponding to a general point in T0

will have a single node θ and then the degree of δ will be 1 or 2 depending

on whether the branches along θ are distinguishable in X or not (they always

are distinguishable if θ is a separating node and the separated subcurves have

different genera). Proceeding in this way and taking all components which

arise, we obtain finitely many boundary data which ‘cover’, in an obvious sense,

the entire boundary of B. Such a collection, weighted so that each boundary

component T0 has total weight = 1, is called a covering system of boundary

data.

8.2. Node scrolls: definition.

Proposition-definition 8.3: Given a boundary datum (T, δ, θ) for X/B and

natural numbers 1 ≤ j < n, there exists a P1-bundle Fm,nj (θ), called a node

scroll over the Hilbert scheme (Xθ
T )[m−n], endowed with two disjoint sections

Qm,nj,j (θ), Qm,nj+1,j(θ), together with a surjective map generically of degree equal

to deg(δ) of

n−1⋃
j=1

Fm,nj (θ) :=

n−1∐
j=1

Fm,nj (θ)/

n−2∐
j=1

(Qm,nj+1,j(θ) ∼ Q
m,n
j+1,j+1(θ))

onto the closure in X
[m]
B of the locus of schemes having length precisely n at

θ, so that a general fibre of Fm,nj (θ) corresponds to the family Cnj of length-n

schemes at θ generically of type Cnj , with the two nonprincipal schemesQnj , Q
n
j+1

corresponding to Qm,nj,j (θ), Qm,nj,j+1(θ) respectively. We denote by δnj the natural

map of Fm,nj (θ) to X
[m]
B .
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Proof-construction. We fix m and θ (and suppress them when convenient). The

scroll Fm,nj (θ) is defined as follows. Fixing the boundary data, consider first

the locus

F̄nj ⊂ T ×B X
[m]
B

consisting of compatible pairs (t, z) such that z is in the closure of the set of

schemes which are of type Inj (i.e., xn−j + ayj , a ∈ C∗) at θ(t), with respect to

the branch order (θx, θy). The discussion of §7 shows that the general fibre of

F̄j under the cycle map is a P1, namely a copy of Cnj ; moreover, the closure of

the locus of schemes having multiplicity n at θ is the union
⋃n−1
j−1 F̄

m,n
j . In fact

locally over a neighborhood of a cycle having multiplicity precisely n + e at θ,

F̄m,nj is a union of components F̄nj (a, b) × U (m−e), a + b = e, where U is an

open set disjoint from θ, F̄nj (a, b) ⊂ Hn+e maps to (U ′)a× (U ′′)b and is defined

in Hn+e by the vanishing of all Zi, i 6= j + b, j + b+ 1 or alternatively, in terms

of u, v coordinates, by

v1 = · · · = vj+b = uj+b+1 = · · · = un+e = 0.

Then Fm,nj (θ) is the locus

{(w, t, z) ∈ (Xθ
T )[m−n] ×T F̄nj : φ∗(cm−n(w)) + nθ = cm(z)},(8.1)

where φ : Xθ → X is the natural map, clutching together θx and θy, and φ∗

is the induced push-forward map on cycles. Then the results of the previous

section show that Fm,nj (θ) is locally defined near a cycle having multiplicity b

at θy, e.g., by the vanishing of the Zi, i 6= j + b, j + b+ 1 on

{(w, u, Z) ∈ (Xθ
T )[m−n] ×X(e)

B × Pn+e : φ∗(cm−n(w))θ + nθ = u}

where θ indicates the portion near θ. The latter locus certainly projects iso-

morphically to its image in (Xθ
T )[m−n] × Pn+e, hence Fm,nj (θ) is a P1-bundle

over (Xθ
T )[m−n]. Since Fm,nj (θ) admits the two sections Qm,nj,j (θ), Qm,nj+1,j(θ), it

is the projectivization of a decomposable rank-2 vector bundle.

Note that the node scroll Fm,nj (θ) also depends on m, and is by construction

a subscheme of the ‘flag-like’ Hilbert scheme

Fm,nj (θ) ⊂ {(z1, z2) : φ(z1) ⊂ z2} → X
[m]
B

↓
(Xθ

T )[m−n]

(8.2)
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Of course z1, z2 live on different families so this is not the usual flag-Hilb. We will

denote the two Hilbert-scheme targeted projections on Fm,nj (θ) by p[m−n], p[m]

respectively. When the dependence on θ,m, . . . is obvious, we will omit the

corresponding designator. The following simple technical point will be needed

below.

Lemma 8.4: Let T ′ → T be a base change and θ′ a section of Xθ
T ′ disjoint from

the distinguished sections (θx)T ′ , (θy)T ′ and identified with the corresponding

section of XT ′ . Then on the pulled- back node scroll Fm,nj (θ)T ′ ,

p∗[m][m]∗θ
′ = p∗[m−n][m− n]∗θ

′.

Proof. It suffices to verify this on the ordered version where, e.g.,

[m]∗θ
′ =

m∑
i=1

p∗i θ
′

and the projection p[m−n] corresponds to projection on the first m− n coordi-

nates. But then for i > m− n, we have p∗i θ
′ ∩ F = ∅ as the nodes are disjoint.

This gives our assertion.

Obviously, Qm,nj,j−1(θ) and Qm,nj,j (θ) coincide in (Xθ
T )[m−n] × X [m]

B and when

convenient we will write them as Qm,nj (θ) or Qm,nj (θ), omitting θ when harmless.

It is noteworthy that the map from Qm,nj (θ) can be written down explicitly:

Lemma 8.5: The map (Xθ
T )[k] ' Qm,nj (θ)→ X

[m]
B is given by

z0 + axθx + ayθy 7→ φ(z0) +Q
n+ax+ay
j+ay

(8.3)

where z0 is supported off θx ∪ θy.

Proof. To begin with, as θx, θy are smooth sections of Xθ
T , any length-k sub-

scheme of it can indeed be expressed uniquely as in the formula. The formula

is clearly true when ax = ay = 0. Then the general case follows by taking

limits, in view of the explicit local description of the schemes of type Qpr as

(xp−r+1, yr).

8.3. Polyscrolls. Consider now a collection θ. = (θ1, . . . , θr) of distinct rel-

ative nodes of X/B and T = T (θ1, . . . , θr)→ B a common boundary locus for

them, compatible with the boundary data for each θi. Thus, XT is endowed

with r distinct relative nodes that we still denote by θ1, . . . , θr. Let Xθ.
T be

the blowup or partial normalization of XT in θ1, . . . , θr. As the θi are disjoint,
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the blowing up may be done inductively, in any order, or simultaneously. Let

(j.), (n.) be sequences of r positive integers with (j.) < (n.) in the sense that

ji < ni,∀i. We aim to define a node polyscroll

F := Fm,n.j. (θ.;X/B).

This can be done using induction on r. Assume the (r − 1)-polyscroll

F ′ = Fm−n1,n2,...,nr
j2,...,jr

(θ2, . . . , θr;X
θ1
T (θ1))

is defined, together with maps

F ′
p[m−n1]→ (Xθ1)

[m−n1]
T (θ1)

p[m−|n.|] ↓
(Xθ.

T )[m−|n.|]

the horizontal one being generically finite and the vertical one a (P1)r−1-bundle

projection. Of course, the node scroll Fm,n1

j1
(θ1;X/B) is a P1-bundle over

(Xθ1)
[m−n1]
T (θ1) . Define F as the fibre product

F

↙ ↘
Fm,n1

j1
(θ1;X/B) ♦ F ′

↘ ↙ ↓
(Xθ1)

[m−n1]
T (θ1) (Xθ.

T )[m−|n.|]

(8.4)

Then F comes equipped with a (P1)r-bundle projection

p[m−|n.|]F → F ′ → (Xθ.
T )[m−|n.|],

as well as a generically finite map

p[m−n1] : F → Fm,n1

j1
(θ1;X/B)→ X

[m]
B .

Writing, suggestively, F ′ as F (θ̂1) and assuming inductively maps F ′ → F ′(θ̂i),

∀i > 1, we can identify Fm,n1

j1
(θ1;X/B)×F ′(θ̂i) as F (θ̂i) and obtain an induced

map F → F (θ̂i). Then taking a fibre product with Fm,niji
(θi;X/B), we obtain a

morphism, easily seen to be an isomorphism, from F to a similar node polyscroll

with θ1, θi interchanged. Continuing in this way, it is easy to see that F is

independent of the ordering and the composite F → F ′ → (Xθ.
T )[m−|n.|] is a

(P1)r-bundle.

We summarize some of the important properties of node polyscrolls as follows:
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Proposition 8.6: (i) The r-polyscroll F = Fm,n.j. (θ..X/B) is a (P1)r-

bundle over the Hilbert scheme (Xθ.
T )[m−|n.|].

(ii) F parametrizes subschemes of X/B having length at least ni at θi,

i = 1, . . . , r.

(iii) F is independent of the order of (θ., n., j.) and admits a (P1)r−s-bundle

projection to a pullback of the s-polyscroll based on any s of the

(θi, ni, ji).

9. Structure of node scrolls

We fix a boundary datum (T, δ, θ) as above. Our aim now is to determine the

structure of a node scroll as P1 bundle together with the relative polarization

induced by minus the discriminant. The following result is critical:

Proposition 9.1: Let Qm,nj = Qm,nj (θ) be the canonical section of type Qm,nj

in the node scroll

Fm,nj = Fm,nj (θ) ⊂ X [m]
B .

Then up to linear equivalence, we have

(9.1)

Γ(m).Qm,nj ≡lin −
(
n− j + 1

2

)
ψx −

(
j

2

)
ψy

+ (n− j + 1)[k]∗θx + j[k]∗θy + Γ(k)

:=Dm,n
j (θ)

where k = m − n, Qm,nj is identified with (Xθ)
[k]
T and Γ(k) is the discriminant

on the latter.

Proof. We begin with the special case n = 2. Here the possible values of j are

1 and 2 and by symmetry it suffices to consider j = 1, where the formula reads

Γ(m).Qm,21 ∼ −ψx + 2[k]∗θx + [k]∗θy + Γ(k).(9.2)

Recall that Q = Qm,21 is the graph of the morphism q : (Xθ)
[k]
T → X

[m]
B given

as in Lemma 8.5. Every scheme in the image of q contains the length-2 scheme

along the x-axis, (2θx), locally defined by (y, x2). Therefore q clearly factors



Vol. 00, XXXX CYCLE MAP FOR HILBERT SCHEMES 39

through a map

q′ : (Xθ)
[k]
T → X

[2,m]
B

to the Hilbert scheme of (2,m)-flags. Moreover, the projection of q′ to X
[2]
B

is the relatively constant map with value (2θx) (the unique length-2 scheme

contained in the x-branch).

Now, X
[2,m]
B carries the pullback of −Γ(2) from X

(2)
B , which clearly pulls back

via q′ to the cotangent space in the x direction, i.e., ψx. So we get an injection

OQm,21
(−Γ(m)) ⊂ ψx ⊗OQm,21

(−Γ(k))

(where Γ(k) = Γ
(k)

XθT
denotes as above the discriminant associated to the bound-

ary family Xθ
T ). This injection is clearly an iso over the open set of subschemes

of Xθ disjoint from θx ∪ θy. Therefore

OQm,21
(−Γ(m)) = ψx ⊗OQm,21

(−Γ(k) − α[k]∗θx − β[k]∗θy)

for some nonnegative integers α, β. To identify these, we can work at a general

point of their support, which corresponds to a scheme with a length-3 portion

near θ. By the usual support decomposition of Hilbert schemes as in §2, we are

reduced to the case m = 3, working near a scheme of type Q3
2 = (y2, x3) for β

or Q3
1 = (y1, x2) for α. Moreover, pulling back by the finite flat morphism from

the ordered Hilb X
d3e
B , we are reduced to working there with the 3rd coordinate

being the one from Xθ and the first two corresponding to the map to X
[2]
B (so

that y1 = y2 = x2
1 = x2

2 = 0).

Then finally, in the first case, the generator G3
2 (i.e., the mixed Van der

Monde) can be expanded along the last row, which shows that it maps to yψx,

therefore β = 1. In the second case, the generator G3
1 maps to x2ψx, so α = 2.

This completes the proof in the case n = 2.

Passing to the general case, recall from §7 that Qm,nj is the pullback of Q2,m
1

via the map

f : (Xθ)
[k]
B →(Xθ)

[m−2]
B

z 7→z + (n− j − 1)θx + (j − 1)θy.
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Then given (9.2), the desired formula (9.1) is a consequence of following ele-

mentary formulas (recall k = m− n)

f∗([m− 2]θx) =[k]∗θx − (n− j − 1)ψx,

f∗([m− 2]∗θy) =[k]∗θy − (j − 1)ψy,

f∗(Γ(m−2)) =Γ(k) + (n− j − 1)[k]∗θx −
(
n− j − 1

2

)
ψx

+ (j − 1)[k]∗θy −
(
j − 1

2

)
ψy.

Note that because θx, θy map to a node of X/B, they are contained in the

smooth part of Xθ/B. Then, note that f is an iterate of maps of the following

form, associated to a section σ : B → Y of a nodal family,

iσ : Y
[k]
B →Y [k+1]

B

iσ(z) =z + σ.

To prove the above formulas, it suffices by an evident recursion to prove the

following Lemma, which will conclude the proof of Lemma 9.1.

Lemma 9.2: For σ as above and a section σ′ disjoint from σ, assume σ, σ′ are

contained in the smooth part of Y/B. Then we have, where ψσ = ωY/B |σ,

(9.3)
i∗σ([k + 1]∗σ) = [k]∗σ − ψσ, i∗σ([k + 1]∗σ

′) = [k]∗σ
′,

i∗σ(Γ(k+1)) = Γ(k) + [k]∗σ.

Proof of Lemma 9.2. It suffices to prove the analogous fact on the relative sym-

metric product, where = becomes linear equivalence of Weil divisors. Because

such linear equivalence descends via a finite flat map like the symmetrization, it

suffices to prove the analogous fact over the relative Cartesian product. There,

the first two assertions are obvious (keeping in mind the the image of our sec-

tions is disjoint from the nodes). The last assertion becomes obvious as well

once we recall that the big diagonal on the Cartesian product is the sum of

pullbacks from 2-fold products.

We are now in position to determine the polarized structure of the node scroll

Fm,nj (θ). This means finding a vector bundle E such that Fm,nj = P(E) and

such that the canonical O(1) polarization on P(E) corresponds to −Γ(m). We

recall (see EGA or [5], Ch. II.7 or [4] which unfortunately uses the opposite

sign convention) that for any vector bundle E, there is a canonically defined
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(depending on E) line bundle on P(E), denoted O(1) or OE(1), which restricts

to the usual (Grothendieck, or quotient) O(1) on (geometric) fibres.

Theorem 9.3 (Node Scroll Theorem): For any boundary datum (T, δ, θ), and

any 1 ≤ j < n ≤ m, there is an isomorphism

Fm,nj (θ) ' P(O(Dn
j (θ))⊕O(Dn

j+1(θ)))(9.4)

which pulls back the canonical O(1) polarization on the RHS to the restriction

of −p∗
X

[m]
B

Γ(m) + p∗
(Xθ.T )[m−n]Γ

(m−n) on the LHS.

Proof. As Fm,nj (θ) admits the two disjoint sections Qm,nj , Qm,nj+1 , the result is

immediate from Proposition 9.1.

Corollary 9.4: On Fm,nj (θ), we have

(9.5)
−Γ(m) ∼ Qm,nj + p∗[m−n](D

n
j+1)

∼ Qm,nj+1 + p∗[m−n](D
n
j ).

Proof. It follows from the elementary fact that on any P1-bundle P(A⊕B) with

projection π, we have

c1(O(1)) ∼ P(A) + π∗(c1(B)).

Indeed the natural map

π∗(B)→ O(1)

vanishes precisely on the divisor P(A) ⊂ P(A⊕B).

The extension to polyscrolls is direct from the definition in §8.3 once we note

that thanks to the disjointness of the nodes, the divisors Dm,ni
ji

(θi) correspond

naturally to a similarly-denoted divisor on (Xθ.
T )[m−|n.|], with [m−ni]∗θx,i cor-

responding to [m− |n.|]∗θx,i, e.g., on Fn1
j1

(θ1),

p∗[m][m]∗θ2,x = p∗[m−n1][m− n1]∗θ2,x

etc. where p[k] denotes the natural map to the length-k Hilbert scheme (of X

or Xθ1) (compare Lemma 8.4).

Theorem 9.5 (Node Polyscroll Theorem): There is an isomorphism

Fm,n.j. (θ.;X/B) ∼
∏

(Xθ.
T (θ.)

)[m−|n.|]
P(O(Dm,ni

ji
(θi))⊕O(Dm,ni

ji+1 (θi)))(9.6)

under which −Γ(m) + Γ(m−|n.|) corresponds to the canonical O(1, . . . , 1).
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Proof. We use the setting and notations of §8.4. Consider the natural projection

F → F ′, which is just a base-change of the scroll projection

p[m−n1] : F1 = Fm,n1

j1
(θ1, X/B)→ (Xθ1)[m−n1].

Via this, we have

OF1
(1) =

(
n1 − j1 + 1

2

)
ψ1,x +

(
j1
2

)
ψ1,y

− (n1 − j1 + 1)[m− n1]∗(θ1,x)− j1[m− n1]∗θ1,y.

On F this becomes, using Lemma 8.4 (essentially, the disjointness of the sec-

tions θi),

OF1
(1)|F =

(
n1 − j1 + 1

2

)
ψ1,x +

(
j1
2

)
ψ1,y

− (n1 − j1 + 1)[m− |n.|]∗(θ1,x)− j1[m− |n.|]∗(θ1,y)

and, by Theorem 9.3, this coincides on F with −Γ(m) + Γ(m−n1)|F ′ . By induc-

tion, −Γ(m−n1)|F ′ + Γ(m−|n.|) coincides with the appropriate O(1, . . . , 1) on the

(r − 1)-polyscroll F ′, and the Theorem follows.

Remark 9.6: As mentioned in the Introduction, the paper [16] and the related

software Macnodal [9] contain numerous numerical examples and applications

of the Node Scroll and Polyscroll Theorems.

Remark 9.7: Define a smudgy curve of type g, p, k to be a nodal, p-pointed,

genus-g curve together with a length-k subscheme such that the entire object has

finite automorphism group, and let M[k]

g,p denote the moduli space (DM stack)

of smudgy curves of this type (assuming it exists). Some interesting questions

about (ordinary) curves (for example, Brill–Noether loci) can be formulated

in terms of smudgy curves. The node scrolls define correspondences between

smudgy moduli spaces:

M[k1]

g1,p1+1 ×M
[k2]

g2,p2+1 ←− Fm,nj −→ M[k1+k2+n]

g1+g2,p1+p2 ,

M[k]

g−1,p+2 ←− Fm,nj −→ M[k+n]

g,p

where k = k1 +k2, p = p1 +p2, g = g1 +g2 (identifying the LHS with a boundary

component of M[k]

g,p). These are analogous to the correspondences used by

Nakajima [11] to define creation-annihilation operators on the cohomology of

Hilbert schemes of surfaces.
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