
UC Irvine
UC Irvine Previously Published Works

Title
A noise-adaptive algorithm for First-Order Reed-Muller decoding

Permalink
https://escholarship.org/uc/item/4cn2c16t

Authors
Feldman, J
Abou-Faycal, I
Frigo, M

Publication Date
2002

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4cn2c16t
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

1

A Noise-Adaptive Algorithm for First-Order
Reed-Muller Decoding

Jon Feldman Ibrahim Abou-Faycal Matteo Frigo

Abstract— We consider the problem of decoding First-Order
Reed-Muller codes efficiently. We give an algorithm that implic-
itly adapts to the noise conditions, runs significantly faster than
known maximum-likelihood algorithms, and yields an error rate
that is very close to optimal. When applied to CCK demodulation
(used in the 802.11b standard for Wireless Local Area Networks),
the algorithm runs up to 4 times faster than a decoder based on
the Fast Hadamard Transform, with a loss of at most 0.2 dB in er-
ror rate. We show analytically that the error rate of our adaptive
algorithm is 2−Ω(n), where n is the length of a codeword.

I. INTRODUCTION

First-Order Reed-Muller (FORM) codes are widely used in
communications applications ranging from the 1969 Mariner
deep space probe [8] to the IEEE 802.11b standard for Wire-
less Local Area Networks (WLANs) [4]. While their good
distance properties and simple structure make them attractive,
soft-decision Maximum-Likelihood (ML) decoding of FORM
codes requires computing the correlation between the received
vector and all possible codewords. These operations are com-
putationally expensive, especially at high data rate as is the
case for Complementary Code Keying (CCK) demodulation in
802.11b [4]. The most efficient known algorithm for comput-
ing these correlations is based the Fast Hadamard Transform
(FHT) [9]. We will refer to a decoder that uses the FHT to
perform a correlation of all possible codewords as an FHT de-
coder. Even the FHT decoder may not be fast enough in certain
systems such as software radios. In the particular case of CCK,
the FHT decoder uses O(n2) operations to decode one code-
word of block length n. Even for the simplest FORM code,
the Hadamard code, the FHT decoder performs a superlinear
Θ(n logn) number of operations.

Alternatively, one could use majority logic or “threshold” de-
coding algorithms such as the ones described in [5], [2]. Intu-
itively speaking, majority logic decoders tally “votes” for the
value of each information symbol based on simple calculations
on the received codeword, and output the value with the most
votes. Decoders of this kind are simple and fast, but they are
suboptimal when used for soft-decoding FORM codes. When
applied to CCK demodulation, we observed that the symbol er-
ror rate of majority logic decoding can be up to 2.4 dB worse
than optimal.

Jon Feldman, NE43-309, Laboratory for Computer Science, M.I.T., Cam-
bridge, MA, 02139. Email:jonfeld@theory.lcs.mit.edu. This work
was done while the author was visiting Vanu Inc.

Ibrahim Abou-Faycal, Vanu Inc., 1 Porter Square, Suite 18, Cambridge, MA
02140. Email: ibrahim@vanu.com.

Matteo Frigo, Vanu Inc. Email: athena@vanu.com.

Nonetheless, the performance degradation of the majority-
logic decoder is negligible when the noise is low. Ideally, one
would like to use the fast majority-logic algorithm when the
noise is low, and the slower maximum-likelihood algorithm
when the noise is high. Unfortunately, the error conditions are
not known in advance, and they tend to change over time any-
way. Consequently, we design a decoding strategy that implic-
itly adapts its algorithm to the noise conditions without explic-
itly knowing what they are.

In this paper, we build such an adaptive strategy for decoding
FORM codes, which we refer to as the hybrid algorithm. We
build upon the work of Paterson and Jones [3], and Van Nee [6]
who explored variations of majority logic algorithms for de-
coding this class of codes with applications to OFDM in mind.
Both papers use a soft-decision version of majority logic, where
instead of taking the majority of a group of hard-valued votes,
the algorithm takes an average of a group of soft-valued votes,
and makes a hard decision on that average. We extend their
techniques by using this “soft average” as not only the value on
which to make a hard decision, but also as a confidence mea-
sure in the decision. When this confidence measure dips below
a certain level, we switch to the slower maximum-likelihood
decoder.

Our experiments show that the decoding speed of the hybrid
algorithm is significantly improved over an optimized imple-
mentation of an FHT decoder, at the expense of a negligible
degradation in error-correcting performance. When applied to
CCK demodulation, the algorithm runs up to 4 times faster than
FHT decoder, with a loss of at most 0.2 dB in error rate. (See
Figures 1 and 2.)

We obtain an analytical expression of the additive symbol er-
ror rate of our algorithm, assuming q-PSK modulation through
an AWGN channel. We show that overall, the symbol error rate
of our algorithm is at most an additive 2−Ω(n) worse than that
of an optimal ML algorithm, where n is the length of a code-
word, as long as the noise is above a certain threshold. (The
notation Ω(n) denotes some function that grows at least lin-
early with n.) The threshold is quite reasonable; for example,
if we are using 4-PSK, then as long as the SNR is at least 4 dB,
we give an upper bound of 2−n/10+1 on the additive difference
in error rate between our hybrid algorithm and an ML decoder.

A. Outline

We begin in Section II by showing how our hybrid algorithm
applies to the problem of CCK demodulation, and give our ex-
perimental results. In Section III, we generalize the hybrid algo-
rithm to decode any FORM code, and prove the 2−Ω(n) bound
on its symbol error rate in Section IV.

0-7803-7467-3/02/$17.00 ©2002 IEEE. 758

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on February 08,2024 at 01:04:50 UTC from IEEE Xplore. Restrictions apply.

2

II. CCK DEMODULATION FOR 802.11

The IEEE 802.11 standard for wireless local area networks
has high data rates in order to operate at speeds comparable to
Ethernet. Complementary Code Keying (CCK) was adopted by
the IEEE as the modulation scheme to achieve this data rate [4].
For the purposes of demodulation, CCK is essentially isomor-
phic to a simple FORM code. In this section, we detail our
decoding algorithm as it applies to CCK, and give experimen-
tal results that show a significant improvement in running time
with only a negligible loss in error rate.

For the modulation step of CCK, an information sequence
(c0, c1, c2, c3) is a block of four symbols, where ci ∈
{0, 1, 2, 3}. These are modulated using QPSK to values φi =
ωci , where ω = eπj/2 = j =

√
−1, and encoded into eight

complex numbers (y0, . . . , y7) using the following encoding
function:

y0 = φ0 y1 = −φ0φ1 (1)

y2 = φ0φ2 y3 = φ0φ1φ2

y4 = −φ0φ3 y5 = φ0φ1φ3

y6 = φ0φ2φ3 y7 = φ0φ1φ2φ3

These eight symbols are then subject to an AWGN channel.
We use (r0, . . . , r7) to denote the noisy symbols received at
the other end of the channel. We have ri = yi + Ni, where
Ni is a complex Gaussian random variable with mean 0 and
variance 2σ2. Based on the received vector r, the decoder
must output hard estimates ĉi of the information symbols ci,
where i ∈ {0, 1, 2, 3}.

Two details in CCK make it slightly different than a FORM
code. The negative signs in front of y1 and y4 are there to
achieve better autocorrelation properties from the codewords,
an important feature of CCK modulation [4]. Additionally, the
information carried by φ0 is differentially encoded; i.e., the ac-
tual information is the difference between the φ0 symbol of two
successive blocks. Neither of these two issues affects the under-
lying decoding problem directly.

A. Majority Logic Decoding

Consider the case where there is no noise in the channel, i.e.,
Ni = 0, and so ri = yi, for all i. Now the decoding problem is
simple. For example, consider the expression −r1r∗0 . If there is
no noise in the channel, then −r1r∗0 = −y1y∗

0 = φ1. Similarly,
−r∗4r6 = −y4y6 = φ2, and r7r∗3 = y7y

∗
3 = φ3. Therefore,

when there is no noise in channel, we can simply “read off”
φ1, φ2 and φ3 using simple operations between certain received
symbols.

In reality, these computations will be corrupted by noise, and
will not always yield the correct answer. For example, −r1r∗0 =
(−y1 +N1)(y0 +N0)∗. However, in expectation, we still have
−r1r∗0 = φ1, and if the noise is low, then −r1r∗0 will be close
to φ1.

The principle behind majority logic decoding is to use sim-
ple computations on the received bits to produce “votes” for the
value of each information symbol. In hard decision majority

logic, the value that receives the most votes becomes the de-
coded information symbol. In soft decision majority logic, the
votes are “soft” values, and they are averaged to form a “soft
estimate” for each information symbol. Ideally, these votes
should involve as many code bits as possible so that local noise
cannot drastically affect our estimate.

In CCK, we use (φ̂1, φ̂2, φ̂3) to denote the soft estimates for
φ1, φ2, φ3 (we will cover φ0 as a special case later), and com-
pute each of them based on four votes as follows:

φ̂1 = (−r1r∗0 + r3r∗2−r∗4r5 + r7r∗6) / 4

φ̂2 = (r2r
∗
0 − r∗1r3−r∗4r6 + r7r∗5) / 4

φ̂3 = (−r4r∗0 − r∗1r5+r6r∗2 + r7r∗3) / 4

Ideally, if φ̂i is a good estimate of φi, then |φi − φ̂i| should be
small. The majority logic decoders of Paterson and Jones [3],
and Van Nee [6] commit to a hard decision ĉi for each informa-
tion symbol ci, based on φ̂i. By a hard decision based on φ̂i,
we mean that ĉi = arg minc∈{0,1,2,3}|ωc − φ̂i|.

B. Switching to an optimal algorithm

Our hybrid algorithm first computes the values ĉi, i ∈
{1, 2, 3}, as in majority logic. However, before committing to
the hard estimates ĉi, the hybrid algorithm checks how close
the hard estimates are to their soft counterparts. We establish a
global “sensitivity” parameter θ. If | arg(φ̂i) − arg(ωĉi)| > θ,
for some i ∈ {1, 2, 3}, we discard all the estimates ĉi, and re-
vert to the optimal FHT decoder for the entire block; otherwise,
we commit to the hard estimates ĉi. Since in practice the chan-
nel amplifies the signal by some unknown gain, we choose to
use the difference in phase as a reliability measure instead of
the difference in magnitude.

We now address how compute the estimate ĉ0, once we have
committed to (ĉ1, ĉ2, ĉ3). We set φi = ωĉi , for all i ∈ {1, 2, 3},
and then use the equations in (1) to compute eight votes for φ0.
Specifically, we set φ̂0 = 1

8 (r0 − r1φ
∗
1 + r2φ

∗
2 + r3φ

∗
1φ

∗
2 −

r4φ
∗
3 + r5φ

∗
1φ

∗
3 + r6φ

∗
2φ

∗
3 + r7φ

∗
1φ

∗
2φ

∗
3), and make a hard

decision ĉ0 based on φ̂0. Otherwise, if we are not confident in
the estimates ĉi, we throw them out and revert to the optimal
FHT decoder for this block.

The hybrid algorithm can be optimized in many ways, some
of which we now describe. One simple optimization is to com-
pute each φ̂i separately, and perform the confidence check be-
fore computing the next one. In this way, we save computation
if the check fails. Also, we do not need to set each φ̂i to the av-
erage of its four votes, but simply to the sum of the votes, since
we are only interested in the phase of φ̂i. We need to compare
each phase difference | arg(φ̂i) − arg(ωĉi)| against θ, which is
a non-trivial task, since arg() is an expensive procedure. To
overcome this problem, we do not actually compute arg(). We
set a constant s = tan θ, and just compare the ratio of the real
and imaginary parts of φ̂i with s. This is logically equivalent to
comparing | arg(φ̂i) − arg(ωĉi)| ≤ θ (with perhaps some sign
changes depending on the value of ĉi), and only requires one
multiplication.

0-7803-7467-3/02/$17.00 ©2002 IEEE. 759

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on February 08,2024 at 01:04:50 UTC from IEEE Xplore. Restrictions apply.

3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-4 -2 0 2 4 6 8 10

R
un

ni
ng

 ti
m

e
(H

yb
ri

d)
 /

R
un

ni
ng

 T
im

e
(F

H
T

)

Signal-to-Noise Ratio (dB)

Fig. 1. Running time of Hybrid Decoding Algorithm as a function of SNR for
CCK Demodulation. Running time is given as a fraction of the running time
for the FHT decoder

C. Experimental Results

We ran our hybrid algorithm against an optimized version of
the FHT decoder for SNR from -5 to 10, and measured the run-
ning time and block error rate of both at each SNR. By block
error rate, we mean the number of blocks in which at least one
of the four φ’s is decoded incorrectly over the total number of
blocks. We used a value of θ such that tan θ = 2/3. This of-
fered the best trade-off between running time and error correct-
ing ability, since comparing to the ratio 2/3 is computationally
simple. All experiments were performed on 1 billion encoded
blocks of data subject to a simulated AWGN channel with vary-
ing SNR. All algorithms ran on a Pentium III 1 GHz processor.

When the SNR is high, the hybrid algorithm runs approx-
imately four times faster than the FHT decoder. As the
SNR decreases, the frequency with which the hybrid algorithm
switches to the slower FHT decoder increases, and thus the run-
ning time increases. Figure 1 shows this relationship in detail.
We remark that the hybrid algorithm is always faster than the
FHT decoder, regardless of the noise level.

The error performance of the hybrid algorithm is quite good.
Figure 2 shows the block error rate as a function of SNR of
the hybrid algorithm and the majority logic algorithm (without
switching), as compared to the optimal FHT algorithm. Here
we see that the majority logic algorithm can perform a full
2.4 dB worse than FHT, whereas the hybrid algorithm is never
more than .2 dB worse, making it quite close to an optimal de-
coder.

III. MAJORITY-LOGIC DECODING OF FORM CODES

In this section we show how the hybrid algorithm can be gen-
eralized to arbitrary FORM codes [5]. We first review FORM
codes, and establish a formal notation for them. We then go
through the same steps as we did for CCK. We define sim-
ple computations on the received symbols that act as “votes”
for each information symbol, show how to produce “soft esti-
mates” using those votes, and explain how these soft estimates

0

0.5

1

1.5

2

2.5

3

-4 -2 0 2 4 6 8 10

E
rr

or
 r

at
e

/ E
rr

or
 r

at
e

of
 F

H
T

 (
dB

)

Signal-to-Noise Ratio (dB)

Majority Logic Algorithm
Hybrid Algorithm

Fig. 2. Loss in block error rate of the majority logic and hybrid algorithms
vs. optimal algorithm as a function of SNR. The y-axis is Ea/Eo in dB, where
Ea is the block error rate of the plotted algorithm, and Eo is the block error
rate of the optimal FHT algorithm.

can be used as confidence measures in the same way as in CCK
demodulation.

Consider an information word c ∈ Z
k
q. The individual sym-

bols ci ∈ Zq can be viewed as coefficients of a first-order poly-
nomial P (x) = cTx, where x ∈ {0, . . . , p − 1}k for some
p ≤ q. A codeword consists of n = pk symbols from Z

q and
is obtained by evaluating P (x) mod q for all possible values
of x. We denote this code by FORM q(k, p). For simplicity, we
assume in the remainder of this paper that p is even. In classic
Reed-Muller codes, p = 2, as it does for most such codes used
in practice.

We note that CCK is essentially isomorphic to the the code
FORM 4(3, 2), apart from the negations used for autocorrela-
tion, and the fact that φ0 is differentially encoded. In fact, as we
defined FORM 4(3, 2), φ0 does not exist at all. Such a “phase
shift bit” can modeled in FORM codes by having an additional
information symbol c′ act as an additive constant to the polyno-
mial P , so P (x) = cTx+ c′.

To derive “votes” for information symbols from a received
codeword, we use a technique similar to the one used in Reed’s
algorithm [5] for decoding binary Reed-Muller codes of arbi-
trary order (See also [3], [6]). We decode one information sym-
bol at a time, and produce an estimate ĉ = (ĉ1, . . . , ĉk) of the
original information word c.

For all � ∈ {1, 2, . . . , k}, let F� be the set of all pairs (x, y),
x, y ∈ {0, . . . , p− 1}k, such that:

• xi = yi for all i �= �,
• x� is even, and
• y� = x� + 1.

The equality P (y)−P (x) = c� (mod q) holds for all (x, y) ∈
F�, and therefore each pair in F� can be seen as casting a “vote”
for c�. The cardinality of F� is |F�| = n/2, and therefore any
numberm ≤ n/2 of independent votes for c� may be selected
from F�.

0-7803-7467-3/02/$17.00 ©2002 IEEE. 760

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on February 08,2024 at 01:04:50 UTC from IEEE Xplore. Restrictions apply.

4

A. Soft-decision Decoding

Using q-PSK modulation, a codeword is sent through the
channel as the set {ωP (x) : x ∈ {0, . . . , p − 1}k}, where
ω = e2πj/q, j =

√
−1. Denote a received symbol by rx =

ωP (x) +Nx, whereNx is a complex Gaussian random variable
with mean 0 and variance 2σ2. We choose a set V� ⊆ F� of m
votes for each information symbol, and compute the following
quantity:

A� =
∑

(x,y)∈V�

ryr
∗
x .

Because P (y) − P (x) = c� (mod q) holds for all (x, y) ∈ V�,
we have ωP (y)(ωP (x))∗ = ωP (y)−P (x) = ωc� , and therefore
we have E[ryr∗x] = ωc� and E[A�] = mωc� . The majority-
logic algorithm now makes a hard decision by setting ĉ� to the
most likely value in Zq given the value for A�. For all i ∈ Zq,
let φi =

∣∣arg(A�) − arg(ωi)
∣∣. The hard decision is made by

setting ĉ� = argmini∈Zq
φi. This step can be made computa-

tionally efficient, especially for some values of q such as q = 4.

B. Switching to an optimal algorithm

Not only does A� provide a value on which to make a hard
decision, it also provides us with a measure of how reliable the
decision is. If A� is close to its expectation, we are confident
that the error is small and the decision correct.

The Hybrid algorithm accepts the decision when φĉ�
≤ θ, for

all �, for some fixed threshold angle θ < π/q. Otherwise, it dis-
cards the decision and reverts to a ML algorithm for the entire
block. A small θ improves the error correcting performance,
because the optimal algorithm runs more often, but it increases
the computational load.

IV. BOUND ON THE SYMBOL ERROR RATE

In this section we give a theoretical bound on the symbol er-
ror rate He of the Hybrid algorithm under the AWGN channel.
Our bound holds for any FORM code. We show that He is at
most an additive Be = e−Ω(m) larger than the symbol error
rate Oe of an optimal ML algorithm, where m is the number
of votes we choose to compute for each information symbol,
as long as the noise does not exceed a certain threshold. Since
m can be made as large as n/2, where n is the block length of
the code, this shows that the additive differenceBe in error rate
between the hybrid algorithm and an optimal ML algorithm can
be made exponentially small in the block length. We now state
our main theorem.

Theorem 1: For all parameters α, θ and t, such that 0 ≤ α ≤
1, 0 ≤ θ < π/q, and 0 ≤ t < 1, we haveHe ≤ Oe +Be, where

Be ≤ e
−

(
(1−α)2 sin2(2π/q−θ)

4σ2

)
m

+

e
−

(
tα sin(2π/q−θ)

σ2 −ln
(

t arccos(−t)

(1−t2)3/2 + 1
1−t2

))
m
.

Theorem 1 is proven in Section IV-B. For fixed q, θ and σ2, the
theorem givesBe = e−Ω(m), as long as there exist t and α such
that 0 ≤ t < 1, 0 ≤ t < 1, and

tα sin(2π/q − θ)
σ2 > ln

(
t arccos(−t)
(1 − t2)3/2 +

1
1 − t2

)
.

Many reasonable settings of the parameters give us this con-
dition. For example, let q = 4 (QPSK) and θ = arctan(2/3)
(as we chose for CCK). If we set t = 1/2, then as long as
σ2 ≥ 1/5, which corresponds to an SNR greater than 4 dB,
Theorem 1 boundsBe by approximately 2 · 2−m/5.

The remainder of this section is devoted to proving Theo-
rem 1. In the majority-logic algorithm, each soft vote con-
tributes to the soft symbol estimate a noise term that is the
product of two independent Gaussian variables. Consequently,
before proving Theorem 1, we first need to prove two technical
lemmas to analyze the distribution of the product of two Gaus-
sian random variables.

A. Probability distribution of the product of two Gaussians

In the following, Kν denotes the modified Bessel functions
of the second kind of index ν ([1, 9.6]). For brevity, we de-
fine the following function, which appears in the calculations
in Lemma 3:

g(t) =
t arccos(−t)
(1 − t2)3/2 +

1
1 − t2 .

Lemma 2: Let a and b be independent identically distributed
(IID) complex Gaussian variables with mean 0 and variance 2.
The probability density function of |ab| is f(c) = cK0(c).

Proof: Let F (c) = Pr[|ab| < c] be the probability distri-
bution function of |ab|, so that f(c) = d

dcF (c). We have:

1 − F (c) = Pr[|ab| ≥ c]

=
1

(2π)2

∫
C

da

∫
|b|≥c/|a|

e−(|a|2+|b|2)/2 db

=
1
2π

∫
C

e−|a|2/2da

∫ 2π

0

dθ

2π

∫ ∞

c/|a|
re−r2/2 dr

=
1
2π

∫
C

e
− 1

2

(
|a|2+ c2

|a|2

)
da

=
∫ ∞

0
re

− c
2

(
r2
c + c

r2

)
dr .

The substitution ez = r2/c yields

1 − F (c) =
∫ ∞

−∞

c

2
ez e−c cosh z dz

The Bessel functionK1 obeys the following identity [1, 9.6.24]:

K1(c) =
∫ ∞

0
e−c cosh z cosh z dz

=
∫ ∞

−∞

1
2
eze−c cosh z dz .

Therefore, 1 − F (c) = cK1(c) holds. From [1, 9.6.28], we
have d

dc [−cK1(c)] = cK0(c), and therefore the equality f(c) =
d
dcF (c) = d

dc [1 − cK1(c)] = cK0(c) holds.

Lemma 3: Let a1, . . . , am and b1, . . . , bm be IID complex
Gaussian variables with mean 0 and variance 2. Then, for all t
such that 0 ≤ t < 1, we have

Pr

[
m∑

i=1

|aibi| ≥ D
]

≤ e(ln g(t)− tD
m)m .

0-7803-7467-3/02/$17.00 ©2002 IEEE. 761

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on February 08,2024 at 01:04:50 UTC from IEEE Xplore. Restrictions apply.

5

Proof: Let Ls[f] be the Laplace transform of f , where f
is the probability density function of an arbitrary |aibi|. From
Lemma 2, we have f(c) = cK0(c). From [1, 29.2.9], we
have that Ls[−xF (x)] = (Ls[F (x)])′. Consequently, we have
Ls[f(c)] = Ls[c K0(c)] = −(Ls[K0(c)])′. From [7, p. 388],
we have Ls[K0(c)] = (1 − s)−1/2 arccos s, for s > −1. Fi-
nally, we get:

Ls[f] = − d

ds

[
(1 − s2)−1/2 arccos s

]
= − s arccos s

(1 − s2)3/2 +
1

1 − s2 ,

= g(−s), s > −1.

By the Chernoff bound, for all 0 ≥ s > −1,

Pr

[
m∑

i=1

|aibi| ≥ D
]

≤ (Ls[f])m

e−sD

The lemma follows from the substitution t = −s.

B. Proof of Theorem 1

If | arg(A�) − arg(ωc�)| < 2π/q − θ, then either the al-
gorithm decodes correctly, and does not switch to the optimal
algorithm, or it switches to the optimal algorithm. If this event
does not occur, we upper bound the probability of error by one.
Let Be = Pr [| arg(A�) − arg(ωc�)| ≥ 2π/q − θ]. Then, the
inequalityHe ≤ Oe +Be holds.

Let d be the distance between the pointmωc� and the closest
point such that | arg(A�) − arg(ωc�)| ≥ 2π/q − θ. We have
d = m sin(2π/q − θ). In order to cause an error, the distance
A� must deviate from its mean by at least d. Consequently, we
have

Be ≤ Pr [|A� −mωc� | ≥ d]

= Pr

∣∣∣∣∣∣

∑
(x,y)∈V�

N∗
xω

P (y) +Nyω
−P (x) +N∗

xNy

∣∣∣∣∣∣ ≥ d

 ,

where the Nx’s are the IID complex Gaussian additive noise
terms with zero mean and variance 2σ2.

For the ith pair (x, y) in V�, define new random variables
ai, bi, where ai = N∗

xω
P (y) and bi = Nyω

−P (x). These
new variables are phase-shifted versions of IID Gaussians, and
therefore they are IID Gaussian with the same variance as the
elements of N . Using the new variables, we have

Be ≤ Pr

[∣∣∣∣∣
m∑

i=1

ai + bi + ω−c�aibi

∣∣∣∣∣ ≥ d
]
.

We break this event down into two events, which we treat in-
dependently. Formally, for 0 ≤ α ≤ 1, we have Be ≤
B

(1)
e +B(2)

e , where

B(1)
e = Pr

[∣∣∣∣∣
m∑

i=1

ai + bi

∣∣∣∣∣ ≥ (1 − α)d

]
,

B(2)
e = Pr

[∣∣∣∣∣
m∑

i=1

ω−c�aibi

∣∣∣∣∣ ≥ αd
]
.

The probabilityB(1)
e is equivalent to Pr[|A| ≥ (1−α)d], where

A is a complex Gaussian random variable with variance 4mσ2.
We can compute this probability exactly:

B(1)
e = Pr [|A| ≥ (1 − α)d]

= e−
(1−α)2d2

4mσ2

= e
−

(
(1−α)2 sin2(2π/q−θ)

4σ2

)
m

(2)

To bound B(2)
e , we note that the sum of the magnitudes of

the products is no smaller than the magnitude of the sum of the
products. We have:

B(2)
e = Pr

[∣∣∣∣∣
m∑

i=1

ω−c�aibi

∣∣∣∣∣ ≥ αd
]

≤ Pr

[
m∑

i=1

|ω−c�aibi| ≥ αd
]

(3)

= Pr

[
m∑

i=1

|aibi| ≥ αd
]

(We can drop the ω−c� factor since its magnitude is one.) Now
let a′

i = ai/σ, b
′
i = bi/σ, for all i. We have:

B(2)
e ≤ Pr

[
m∑

i=1

|a′
ib

′
i| ≥ αd

σ2

]
.

By Lemma 3, we have

B(2)
e ≤ e(ln g(t)− tαd

mσ2)m

= e−(tα sin(2π/q−θ)
σ2 −ln g(t))m (4)

Combining (2) and (4) proves the theorem.

We note that our bound would be tighter if we could avoid
the approximation in (3). Perhaps a tighter analysis of the sum
of Gaussian products could help improve this bound further.

REFERENCES

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions
with Formulas, Graphs and Mathematical Tables. Dover, New York, 1965.

[2] J. L. Massey. Threshold decoding. Technical Report 410, MIT, Cambridge,
Mass., 1963.

[3] K. Paterson and A. Jones. Efficient decoding algorithms for generalised
Reed-Muller codes. Technical report, Hewlett-Packard Labs, Nov. 1998.

[4] Bob Pearson. Complementary code keying made simple, application note
9850, http://www.intersil.com/data/an/an9/an9850/an9850.pdf, May 2000.

[5] I. Reed. A class of multiple-error-correcting codes and the decoding
scheme. IRE Transactions on Information Theory, PGIT-4:38–49, Septem-
ber 1954.

[6] R. van Nee. OFDM codes for peak-to-average power reduction and error
correction. In Proc. IEEE Globecom ’96, London, England, pages 740–
744, Nov. 1996.

[7] G. N. Watson. A Treatise on the Theory of Bessel Functions, Second Edi-
tion. Cambridge University Press, 1996.

[8] S. Wicker. Error Control Systems for Digital Communication and Storage.
Prentice-Hall, Englewood Cliffs, NJ, 1995.

[9] R. K. Yarlagadda and J. E. Hershey. Hadamard Matrix Analysis and Syn-
thesis. Kluwer, Dordrecht, 1997.

0-7803-7467-3/02/$17.00 ©2002 IEEE. 762

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on February 08,2024 at 01:04:50 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

