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Systems/Circuits

Endogenous Opioid Activity in the Anterior Cingulate Cortex
Is Required for Relief of Pain

X Edita Navratilova,1 Jennifer Yanhua Xie,1 Diana Meske,1 Chaoling Qu,1 Kozo Morimura,1 Alec Okun,1

X Naohisa Arakawa,1 Michael Ossipov,1 X Howard L. Fields,2 and Frank Porreca1

1Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, Arizona 85724, and 2Department of Neurology, University of
California, San Francisco, San Francisco, California 94143

Pain is aversive, and its relief elicits reward mediated by dopaminergic signaling in the nucleus accumbens (NAc), a part of the mesolim-
bic reward motivation pathway. How the reward pathway is engaged by pain-relieving treatments is not known. Endogenous opioid
signaling in the anterior cingulate cortex (ACC), an area encoding pain aversiveness, contributes to pain modulation. We examined
whether endogenous ACC opioid neurotransmission is required for relief of pain and subsequent downstream activation of NAc dopa-
mine signaling. Conditioned place preference (CPP) and in vivo microdialysis were used to assess negative reinforcement and NAc
dopaminergic transmission. In rats with postsurgical or neuropathic pain, blockade of opioid signaling in the rostral ACC (rACC)
inhibited CPP and NAc dopamine release resulting from non-opioid pain-relieving treatments, including peripheral nerve block or spinal
clonidine, an �2-adrenergic agonist. Conversely, pharmacological activation of rACC opioid receptors of injured, but not pain-free,
animals was sufficient to stimulate dopamine release in the NAc and produce CPP. In neuropathic, but not sham-operated, rats, systemic
doses of morphine that did not affect withdrawal thresholds elicited CPP and NAc dopamine release, effects that were prevented by
blockade of ACC opioid receptors. The data provide a neural explanation for the preferential effects of opioids on pain affect and
demonstrate that engagement of NAc dopaminergic transmission by non-opioid pain-relieving treatments depends on upstream ACC
opioid circuits. Endogenous opioid signaling in the ACC appears to be both necessary and sufficient for relief of pain aversiveness.

Key words: affective dimension of pain; anterior cingulate cortex; neuropathic pain; nucleus accumbens; postsurgical pain; reward

Introduction
Pain involves somatosensory, affective, and cognitive features.
Human and animal studies have identified multiple brain re-
gions, including the insula, prefrontal cortex, anterior cingulate
cortex (ACC), amygdala, and dorsal and ventral striatum, in-
volved in processing the affective component of pain (i.e., pain
aversiveness; Leknes and Tracey, 2008; Becker et al., 2012; Bush-
nell et al., 2013). ACC activity is reported consistently after acute
noxious stimulation (Apkarian et al., 2005) and is correlated with
subjective unpleasantness (Rainville et al., 1997). The ACC re-
ceives nociceptive input from the spinal cord via the thalamus
(Vogt and Sikes, 2000). ACC neurons show wide bilateral recep-
tive fields and long-lasting responses to noxious stimulation
(Wang et al., 2003). Microinjection of excitatory amino acids into
the rostral ACC (rACC) of uninjured rats produces conditioned

place aversion without altering sensory thresholds (Johansen and
Fields, 2004). In contrast, rACC lesion abolishes pain-induced
aversive behavior without altering acute evoked behavioral pain
responses (Johansen et al., 2001; LaGraize et al., 2004; Qu et al.,
2011). Thus, excitatory neurotransmission in the ACC produces
a teaching signal that is necessary and sufficient for nociceptive
aversiveness.

The ACC is also involved in pain modulation (Bushnell et al.,
2013). Emotional states affect pain unpleasantness, and the mag-
nitude of this effect often correlates with altered pain-evoked
ACC activations (Villemure and Bushnell, 2009). ACC activa-
tions have been demonstrated during placebo-induced analgesia
(Wager et al., 2004), with termination of a prolonged noxious
stimulation (Becerra et al., 2013) and after relief of neuropathic
pain (Hsieh et al., 1995; Willoch et al., 2003).

Opioids are used widely for the treatment of persistent pain
and have been suggested to act within brain circuits, including the
ACC, to primarily modulate pain affect (LaGraize et al., 2006;
Oertel et al., 2008). High levels of opioid receptors are expressed
in rostral regions of the ACC (Vogt, 2005). In humans, activation
of endogenous opioids in the ACC has been shown during pla-
cebo analgesia (Wager et al., 2007; Zubieta and Stohler, 2009) and
during sustained experimental pain (Zubieta et al., 2001). A pos-
itive correlation between pain-induced ACC endogenous opioid
activation and reduced affective aspects of pain was found (Zu-
bieta et al., 2001).
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Relief of ongoing pain, like relief of other aversive states, is
rewarding. In animals, relief of pain aversiveness promotes learn-
ing and motivation to seek a context associated with relief (neg-
ative reinforcement) that can be assessed by conditioned place
preference (CPP) (King et al., 2009; Navratilova et al., 2013). In
rats with ongoing postsurgical pain, peripheral nerve block
(PNB) produced CPP and elicited dopamine (DA) release in the
nucleus accumbens (NAc; Navratilova et al., 2012). Additionally,
CPP and NAc DA release has been shown in rats with neuro-
pathic pain after intrathecal clonidine, an �2-adrenergic receptor
agonist (Xie et al., 2014). We hypothesized that the relief of on-
going pain requires opioid signaling in the rACC and subsequent
downstream activation of DA neurotransmission in the NAc
mediating the reward of pain relief. Additionally, we explored
whether opioid activation of ACC underlies reward of pain relief
(Leknes et al., 2011) after systemic opioid administration.

Materials and Methods
Animals. Male Sprague Dawley rats (250 –350 g; Harlan Laboratories)
were housed on a 12 h light/dark cycle with food and water ad libitum.
Procedures were conducted such that the number of animals and ani-
mals’ suffering was minimized. All experiments were performed in ac-
cordance with policies and procedures set forth by the International
Association for the Study of Pain and the National Institutes of Health
guidelines for the handling and use of laboratory animals under approv-
als from the Institutional Animal Care and Use Committee of the Uni-
versity of Arizona.

Incisional injury pain model. Incision of the skin plus deep tissue, in-
cluding fascia and underlying muscle, was performed as described pre-
viously (Brennan et al., 1996; Xu and Brennan, 2009, 2010). Rats were
anesthetized with 2% isoflurane, and a 1 cm longitudinal incision was
made through the skin of the left hindpaw to expose the muscle that was
subsequently incised longitudinally. Incised skin was stitched with two
5-0 nylon sutures, and the wound site was treated with topical neomycin.
Sham animals were anesthetized, and the left hindpaw was cleaned but
no incision was made. Rats were tested 1 d after surgery.

Spinal nerve ligation pain model. As described previously by Kim and
Chung (1992), the L5/L6 ligation was used to produce experimental
chronic neuropathic pain. Rats were anesthetized with 2% isoflurane,
and the lumbar vertebrae on the left side were exposed. The L5 and L6

spinal nerves were ligated tightly with 4-0 silk suture and the wound was
closed. Sham-operated rats were prepared in the same manner except
that the L5/L6 spinal nerves were not ligated. Rats were monitored for any
visual signs of motor deficits and for general health and weight mainte-
nance. Rats were tested 14 –21 d after surgery.

Intracranial cannulation. Stereotaxic surgeries were performed in rats
anesthetized with a ketamine (80 mg/kg; Western Medical Supply) and
xylazine (12 mg/kg; Sigma) mixture. Cannulas were implanted according
to coordinates derived from the brain atlas of Paxinos and Watson
(2007). A pair of 26 gauge guide cannulas in a single pedestal (Plastics
One) was directed toward the NAc shell [anteroposterior (AP), bregma,
�1.7 mm; mediolateral (ML), midline, �1.0 mm; dorsoventral (DV),
skull, �6.5 mm] or the rACC (AP, bregma, �2.6 mm; ML, midline,
�0.6; DV, skull, �1.8 mm). For NAc microdialysis, a single guide can-
nula (AG-8; Eicom) was implanted vertically into the left NAc shell (AP,
bregma, �1.7 mm; ML, midline, �1.0 mm; DV, skull, �6.0 mm). For
microdialysis studies requiring intra-rACC injections, bilateral 26 gauge
guide cannulas (Plastics One) were implanted into the rACC at a 25°
forward-facing angle (AP, bregma, �4.1 mm; ML, midline, �0.8; DV,
�3.0 mm) together with the microdialysis NAc guide cannula. A single
vertical 26 gauge guide cannula directed into the contralateral (right)
rACC (AP, bregma, �2.6 mm; ML, midline, �0.6; DV, skull, �1.8 mm)
together with the left NAc microdialysis cannula was used in experiments
involving rACC morphine/saline. Stainless steel dummy cannulas were
inserted into each guide to keep cannulas free of debris. After surgery, all
animals were housed individually and allowed a minimum of 7 d to
recover.

Intrathecal cannulation. Rats were anesthetized with a ketamine (80
mg/kg; Western Medical Supply) and xylazine (12 mg/kg; Sigma) mix-
ture. The atlanto-occipital membrane was exposed, and a T-shaped in-
cision was made in the dura mater. A length of polyethylene-10 tubing
was filled with saline, and one end was heat sealed. A loose knot was made
to leave an 8 cm length of tubing that was inserted into the vertebral canal
and advanced to the level of the lumbar enlargement. The catheter was
secured to the fascia and the wound was closed (King et al., 2012). The
animals were allowed a minimum of 7 d to recover.

Brain microinjection. The injection cannulas (Plastics One) extended 1
mm beyond the end of the guide cannulas and were connected to a 2 �l
Hamilton syringe and driven by a syringe pump. Drug injections into the
rACC or the NAc were given in a volume of 0.5 �l/side at the following
doses: naloxone hydrochloride (3 �g; Tocris Bioscience), morphine sul-
fate (20 �g; National Institute on Drug Abuse), �-flupenthixol dihydro-
chloride (3 �g; Sigma), or vehicle (saline). Dermorphin–saporin (Derm-
SAP) or saporin (SAP; 1.5 pmol; Advanced Targeting Systems) were
microinjected 28 –32 d before experimentation directly into the rACC
(AP, bregma, �2.6 mm; ML, midline, �0.6; DV, skull, �2.8 mm) using
a microinjector with a 33 gauge needle connected to a 2 �l Hamilton
syringe. After each experiment, rats were killed with CO2 overdose, and
0.5 �l of Black India Ink was injected into the rACC or NAc to verify
cannula placement. Data from animals with misplaced cannulas were
removed from analyses.

PNB. Lidocaine (4% w/v; Roxane Laboratories) or saline (vehicle) was
injected at a volume of 300 �l into the popliteal fossa. This volume is
sufficient to cover the sciatic nerve, including the peroneal, sural, and
tibial branches (Kadiyala et al., 2005).

Intravenous drug administration. Animals received an intravenous in-
jection of morphine sulfate (0.25, 0.5, 1.0, 2.0, or 4.0 mg/kg; National
Institute on Drug Abuse drug supply program) dissolved in sterile saline.
For evoked studies, intravenous morphine or saline was administered in
animals placed in a restraining device. For CPP experiments, intravenous
morphine or saline injections were done in rats that were lightly anesthe-
tized with isoflurane (2% mixed with room air, 2 L/min). Animals typi-
cally awaken from anesthesia within 1 min while they are being placed in
the paired chamber. Anesthesia was used to minimize stress associated
with the intravenous injection. Importantly, anesthesia exposure neither
increased (suggesting preference) nor decreased (suggesting aversion)
time spent in the chamber in control animals. For microdialysis experi-
ments, injections were done in awake animals that were restrained min-
imally by the experimenter 10 min before the start of experimental
dialysate fraction collection.

Tactile and thermal hypersensitivity. Tactile hypersensitivity was tested
using a series of calibrated von Frey filaments applied to the plantar
aspect of the ipsilateral hindpaw. The up– down method was used to
determine the 50% withdrawal threshold with the Dixon nonparametric
test as described previously (Chaplan et al., 1994). Thermal hypersensi-
tivity (King et al., 2006) was determined using the method of Hargreaves
et al. (1988). A noxious radiant heat source (i.e., high-intensity projector
lamp) was directed onto the plantar surface of the left hindpaw, and the
latency to the first escape response (i.e., jumping, licking, or climbing)
was recorded. Experimenters were blinded to the treatment groups.

CPP. Experiments were conducted as described previously (King et al.,
2009; Okun et al., 2011) using an unbiased conditioning protocol in
which neither the apparatus (i.e., the CPP box) nor the procedure of
animal assignment to the pairing chambers demonstrates preference be-
fore conditioning (Cunningham et al., 2003). On the preconditioning
day (Day 1), rats were placed in the Place Preference System (San Diego
Instruments) consisting of two pairing chambers with distinct sensory
cues and a neutral middle chamber in which they had free access to all
chambers for 15 min (i.e., 900 s). Time spent in each chamber was auto-
matically computed with the proprietary software. In some studies, rats
were monitored in CPP boxes by video recorders, and the time spent in
the chambers was determined with the ANY-Maze video tracking system
(Stoelting). Rats that spent �720 s or �180 s in either testing chamber
were excluded from the study (King et al., 2009; Okun et al., 2011).
Animals were grouped to ensure no baseline chamber preference in each
experimental group. On the morning of the conditioning day (Day 2),
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rats were injected with vehicle and immediately placed into the condi-
tioning chamber for 30 min; 4 h later, rats were administered the test
drug and placed into the opposite conditioning chamber for 30 min.
Vehicle and drug administrations were performed under identical con-
ditions. On the test day (Day 3), rats were placed in the CPP box with free
access to all chambers for 15 min, and the time spent in each chamber was
recorded. Difference scores were calculated by subtracting the time spent in
the drug-paired chamber of Day 1 (baseline) from that of Day 3 (testing).

In vivo microdialysis and DA quantification. Microdialysis experiments
were done in awake and freely moving rats. Microdialysis probes (AZ-8-
02; Eicom) were inserted into the guide cannula so that the 2 mm semi-
permeable membrane protruded from the guide into the NAc shell. The
probe was perfused with artificial CSF (in mM: 147.0 NaCl, 2.8 KCl, 1.2
MgCl2, and 1.2 CaCl2) at a rate of 2.0 �l/min using a syringe, pump drive,
and controller (MDN-0250, MD-1001, and MDN-1020, respectively;
BASi). After a 75–90 min washout period, two baseline and four experi-
mental fractions (30 min/fraction) were collected into prechilled (4°C)
Eppendorf tubes containing 1.5 �l of 40� antioxidant solution (6.0 mM

L-cysteine, 2.0 mM oxalic acid, and 1.3% glacial acetic acid; Hubbard et
al., 2010). In some experiments, one baseline and one experimental frac-
tion (90 min/fraction) were collected. All rats were then injected with
cocaine (20 mg/kg, i.p.), and dialysate was collected for an additional 60
min. Fractions were analyzed via an Agilent 1100 HPLC system coupled
to an inline Coulochem III electrochemical detector with model 5011A
analytical cell (E1, �150 mV; E2, �250 mV) and model 5020 guard cell
(�350 mV; ESA; Acworth and Cunningham, 1999). Catecholamines
were separated using an MD-150 analytical column (3 mm � 15 cm) and
MD-TM mobile phase (ESA) diluted to 9% acetonitrile, at a flow rate of
0.400 ml/min. Agilent ChemStation data acquisition software was used
to analyze the chromatograms. Posttreatment DA levels were expressed
as percentage of each animal’s baseline.

Immunohistochemistry. Rats with Derm-SAP or SAP lesions were tran-
scardially perfused with PBS, followed by 4% paraformaldehyde. Coro-
nal brain sections (30 �m) were cut using a Microm HM 525 cryostat and
mounted on Superfrost Plus microscope slides. Brain tissue was perme-
abilized with 0.2% Triton X-100, blocked with 5% normal goat serum
plus 1% bovine serum albumin, and incubated overnight with rabbit
polyclonal anti-� opioid receptor (MOR) antibody (AOR-011; 1:20,000;
Alomone Labs). The sections were incubated with biotinylated anti-
rabbit antibody, followed by the ABC complex (Vectastain Elite ABC kit;
Vector Laboratories) and tyramide signal amplification detection (TSA
Plus Fluorescein Kit; PerkinElmer Life and Analytical Sciences). Slides
were mounted in Vectashield mounting medium containing DAPI nu-
clear staining (Vector Laboratories) and examined under an Olympus
BX51 microscope equipped with a Hamamatsu C8484 camera.

Statistical analysis. For CPP experiments, data are presented as differ-
ence scores [i.e., the difference between the time spent in the drug-paired
chamber on Day 3 (testing) and on Day 1 (baseline)]. Previous experi-
ments confirmed that the CPP procedure used is unbiased. Thus, a pos-
itive CPP score represents place preference, a negative score indicates
aversion, and zero indicates no preference (Kuo and Yen, 2005; Mitchell
et al., 2014). To evaluate significance ( p � 0.05) of differences between
the treatment groups, an unpaired t test or a one-way ANOVA was used
for two- or three-group comparisons, respectively. Two-way ANOVA
was used to analyze experiments containing two variables. For microdi-
alysis experiments, data were calculated as the percentage change from
baseline. In those experiments in which four 30 min experimental frac-
tions of dialysate were collected, the area under the time-effect curve
(AUC) of percentage change from baseline was calculated, and the results
were plotted as “AUC of % change.” In microdialysis experiments in
which one 90 min baseline and one 90 min experimental fraction were
collected, the percentage increase from baseline was calculated and plot-
ted as “ % baseline.” Significance ( p � 0.05) of the change in NAc DA
levels was determined using ANOVA with Bonferroni’s or Tukey’s post
hoc test when experiments contained three or more groups or Student’s t
test for two-group comparisons. The numbers used, p values, degrees of
freedom, and F ratios or t scores were reported in Results. CPP and
microdialysis measurements were performed in separate groups of ani-

mals. Statistical calculations were made with GraphPad Prism 5.0
(GraphPad Software).

Results
Reward from pain relief is dependent on opioid receptors in
the rACC
We first examined in rats with post-incisional or neuropathic
pain whether rewarding effects of pain relief produced by non-
opioid treatments would be prevented by inactivation of endog-
enous opioid neurotransmission in the rACC (corresponding to
Brodmann areas 32 and 24). The CPP paradigm was used to
assess the motivational drive of rats with ongoing pain to seek
relief (negative reinforcement; King et al., 2009; Navratilova et al.,
2013). When saline (vehicle) was microinjected in the rACC,
relief of postoperative pain with lidocaine-induced PNB pro-
duced CPP in incised, but not sham, rats (Fig. 1C). However, CPP
was not observed after PNB in rats with bilateral rACC microin-
jections of the opioid receptor antagonist naloxone (3 �g, 10 min
before PNB; Fig. 1C). A two-way ANOVA showed a significant
effect of injury and ACC drug (n � 13–23; injury, F(1,62) � 5.102,
p � 0.0274; drug, F(1,62) � 4.237, p � 0.0438; Bonferroni’s com-
parison for naloxone vs saline in incised rats, *p � 0.05). Addi-
tionally, in a separate group of rats, in vivo microdialysis
demonstrated increased levels of NAc DA after PNB in incised
animals pretreated with rACC saline (Fig. 1D). PNB-induced in-
crease in NAc DA was blocked by pretreatment of rats with rACC
naloxone (3 �g, 10 min before PNB; Fig. 1D). The effect of nal-
oxone was statistically significant, as confirmed by a two-way
ANOVA (n � 5–10; interaction, F(1,23) � 4.744, p � 0.0399;
Bonferroni’s comparison for naloxone vs saline in incised rats,
*p � 0.05).

These observations were extended in a model of chronic neu-
ropathic pain produced by spinal nerve ligation (SNL). Intrathe-
cal clonidine (10 �g) produced significant preference only in SNL
rats pretreated with rACC saline but not naloxone as demon-
strated by a two-way ANOVA (n � 13–14; interaction, F(1,49) �
4.994, p � 0.0300; Bonferroni’s comparison for naloxone vs sa-
line in SNL rats, **p � 0.01; Fig. 1G). In a separate group of rats
pretreated with rACC saline, intrathecal administration of cloni-
dine (10 �g) produced NAc DA efflux selectively in injured rats
(Fig. 1H). This effect was abolished by intra-rACC naloxone pre-
treatment (3 �g, 10 min before intrathecal clonidine) as shown
by a two-way ANOVA (n � 8 –11; interaction, F(1,31) � 4.971,
p � 0.0332; Bonferroni’s comparison for naloxone vs saline in
SNL rats, **p � 0.01; Fig. 1H). The same naloxone treatment in
the rACC had no effect on evoked thresholds and did not inter-
fere with the reversal of evoked hypersensitivity by PNB or intra-
thecal clonidine in incised or SNL rats, respectively (Figs.
1B,E,F). Microinjection of rACC naloxone alone in SNL rats did
not produce CPP (difference score, 6 � 60 s; n � 7).

Ablation of MOR-expressing neurons in the rACC blocks
behavioral and neurochemical consequences of pain relief
The essential role of opioid receptors in the rACC for pain relief
reward was further confirmed by selective loss of neurons ex-
pressing the MOR in this region using microinjection of the cy-
totoxic ribosome inhibitor Derm-SAP (Porreca et al., 2001).
Bilateral rACC administration of Derm-SAP (1.5 pmol), com-
pared with unconjugated SAP, 28 –32 d before testing resulted in
selective ablation of MOR-expressing neurons as demonstrated
previously (Porreca et al., 2001) and confirmed immunohisto-
chemically by the lack of MOR staining in brain sections at the
location of Derm-SAP injection (Fig. 2A–E). Spinal clonidine
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produced place preference in SAP-treated but not in Derm-SAP-
treated SNL rats. A Student’s t test confirmed that the difference
between groups is significant (n � 11–14, *p � 0.05, t(23) � 2.064;
Fig. 2I). Moreover, in SNL rats, ablation of MOR neurons abol-
ished intrathecal clonidine-induced DA release (n � 8, *p �

0.048, t(14) � 2.168; Fig. 2J). Derm-SAP pretreatment had no
effect on baseline evoked thermal and tactile hypersensitivity or
the reversal of these evoked responses by intrathecal clonidine in
SNL-treated rats (Fig. 2G,H). Additionally, Derm-SAP lesion did
not interfere with the CPP elicited by systemic administration of

Figure 1. Blockade of opioid signaling in the rACC with naloxone prevents pain relief-induced CPP and NAc DA release in animals with incisional or neuropathic pain without altering evoked
hypersensitivity. A, The rACC injection site for saline or naloxone (NLX; 3 �g, 10 min before testing). B, In rats with incisional injury, administration of saline or naloxone in the rACC had no effects
on tactile hypersensitivity and its reversal by PNB with lidocaine injection into the popliteal fossa of the injured limb (n � 6). C, PNB produced significant preference only in incised rats pretreated
with rACC saline but not naloxone (n � 13–23). D, In incised rats, rACC naloxone abolished PNB-induced NAc DA release (n � 5–10). E, In SNL rats, rACC saline or naloxone had no effect on tactile
thresholds (n�6 –7). F, Neither treatment altered intrathecal clonidine-mediated reversal of tactile hypersensitivity (n�6 –7). G, Intrathecal clonidine produced significant preference only in SNL
rats pretreated with rACC saline but not naloxone (n � 13–14). H, In SNL rats, rACC naloxone blocked intrathecal clonidine-induced DA release (n � 8 –11). Two-way ANOVA with Bonferroni’s
comparison: *p � 0.05, **p � 0.01. Data are means � SEMs.

Figure 2. Ablation of MOR-expressing neurons in the rACC with Derm-SAP prevents pain relief-induced CPP and DA release in injured rats with no effects on evoked hypersensitivity. A, Derm-SAP
or blank SAP (1.5 pmol) was administered in the rACC 28 –32 d before experimentation. Coronal brain sections at the level of the rACC were labeled with a rabbit polyclonal anti-MOR antibody.
Micrographs demonstrate lack of MOR staining in the rACC of Derm-SAP-pretreated rats (C) but not in SAP animals (B). D and E show higher-magnification (20� objective) images of the rectangular
areas outlined in B and C, respectively; MOR-positive neurons are in green, and DAPI nuclear staining is in blue. Images were acquired and processed using identical settings. F, Derm-SAP ablation
does not interfere with cocaine-induced CPP, demonstrating that the deficit in MOR signaling in the rACC does not influence the animals’ ability to learn and experience cocaine reward (n � 21–22).
G, In SNL rats, rACC SAP or Derm-SAP did not block the development of thermal hyperalgesia nor its reversal by spinal clonidine (n � 5– 6). H, SAP or Derm-SAP did not block tactile allodynia or its
reversal by spinal clonidine (n � 5–9). I, Spinal clonidine produced significant preference in SAP-treated but not in Derm-SAP-treated SNL rats (n � 11–14). J, In SNL rats, ablation of MOR neurons
abolished intrathecal clonidine-induced DA release (n � 8). Student’s t test: *p � 0.05. Data are means � SEMs.
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cocaine (Fig. 2F), indicating that ablation of MOR-expressing
neurons does not impede associative learning. Results presented
in Figures 1 and 2 demonstrate that opioid receptors expressed on
neurons in the rACC are necessary for activation of the brain
motivation/reward circuits and motivated behavior after relief of
pain with non-opioid treatments and implicate endogenous opioid
neurotransmission within the rACC in reward from pain relief.

Opioid neurotransmission in the rACC elicits CPP in injured
animals through release of DA in the NAc
To examine whether opioid signaling within the rACC activates
reward circuits selectively in conditions of pain, we measured
CPP and NAc DA release after microinjection of morphine into
the rACC of injured or sham-operated animals. In rats with post-
surgical injury, bilateral (20 �g/side) or contralateral (20 �g;
right side) injections of morphine in the rACC produced CPP.
One-way ANOVA confirmed that the difference between groups
was significant (n � 11–39, p � 0.0173, F(2,59) � 4.347, Tukey’s
test, *p � 0.05; Fig. 3C). In vivo microdialysis experiments in
freely moving animals demonstrated that contralateral rACC
morphine elicited DA efflux in the NAc (n � 8 –15; two-way
ANOVA; interaction, F(1,31) � 6.119, p � 0.0178; Bonferroni’s
comparison: ACC saline vs morphine in incised rats, *p � 0.01;
Fig. 3D). Bilateral rACC morphine did not influence evoked tac-
tile hyperalgesia in incised rats (Fig. 3B).

Parallel to the findings in incised animals, rACC administra-
tion of morphine in rats with neuropathic pain also produced
CPP (Fig. 3G) and elicited NAc DA release (Fig. 3H) without
affecting evoked pain responses (Fig. 3F). A Student’s t test dem-
onstrated that CPP difference scores were significantly elevated in
SNL compared with sham rats (n � 10 –21, *p � 0.0103, t(35) �
2.710). A two-way ANOVA showed a significant increase in DA
release in SNL rats (n � 9 –10; interaction: F(1,34) � 10.95, p �
0.0022; Bonferroni’s comparison: ACC saline vs morphine in
SNL rats, ***p � 0.001). Of 83 rats with incision (59 rats) or SNL
(24 rats) surgery receiving bilateral or contralateral rACC mor-
phine injections, 11 animals were excluded as a result of incorrect
cannula placement. The average CPP difference score for these

rats was �1.9 � 34 s (n � 11). Additionally, in SNL animals,
bilateral injections of the same dose of morphine (20 �g/0.5 �l/
site) in the caudal ACC (AP, bregma, �0.2 mm; ML, midline,
�0.6; DV, skull, �2.6 mm) did not produce CPP (difference
score, 19.6 � 33 s; n � 18). These findings demonstrate specific
effects of morphine on CPP in the rACC.

The finding that CPP and DA efflux were not observed in
sham incision or sham SNL rats suggests that rACC opioids elicit
reward only in an injured condition. Importantly, we further
determined whether opioid neurotransmission in the rACC reg-
ulates behavior by modulating dopaminergic signaling in the
NAc. Significant CPP induced by bilateral rACC morphine treat-
ment was observed in SNL rats pretreated with NAc saline. No-
tably, CPP was abolished by bilateral NAc �-flupenthixol (3 �g,
10 min before rACC injection), as shown by a significant differ-
ence between the two groups (n � 15–16, *p � 0.0149, t(29) �
2.588; Fig. 3E). Collectively, these data reveal that activation of
rACC opioid receptors only in animals with injury, and presumably
with ongoing pain, is sufficient to stimulate DA signaling in reward
circuits and to motivate behavior. Moreover, NAc DA signaling is
required for rACC morphine-induced CPP, revealing the modula-
tory influence of the rACC on the reward circuit in injured states.

Systemic morphine can preferentially induce CPP and NAc
DA release in SNL rats
We investigated whether systemically administered morphine
could selectively activate reward circuits in injured animals. The
intravenous route of morphine administration was selected be-
cause of the fast onset of effect, allowing the animals to learn to
associate the chamber with the onset of pain relief. SNL surgery
produced tactile hypersensitivity that was reversed by intrave-
nous administration of morphine in a dose- and time-dependent
manner (Fig. 4A,B). Morphine (4 mg/kg) produced full reversal
of tactile hypersensitivity in SNL rats (n � 5–7, p � 0.001, F(4,25)

� 17.81). This dose also elicited CPP in both sham and SNL rats
(Fig. 4C). In contrast, administration of morphine at a dose (0.5
mg/kg) that did not reverse tactile hypersensitivity induced sig-
nificant CPP only in SNL but not sham rats (Fig. 4C). However,

Figure 3. Administration of morphine in the rACC relieves pain. A, The rACC injection site for morphine (20 �g/site) and the NAc injection site for �-flupenthixol (3 �g/site). B, In rats with
postsurgical pain, bilateral administration of morphine (20 �g) in the rACC had no effect on tactile hyperalgesia (n � 7– 8). C, Bilateral (20 �g) or contralateral (20 �g; right side) injections of
morphine in the rACC produced CPP in incised rats (n � 11–39). D, Contralateral rACC morphine produced NAc DA release in incised rats (n � 8 –15). F, Rats with SNL developed tactile
hypersensitivity that was not reversed by bilateral rACC morphine (n � 12–17). G, In neuropathic but not sham rats, bilateral administration of morphine into the rACC produced CPP (n � 16 –21).
H, In neuropathic rats, bilateral morphine administration into the rACC elicited NAc DA release (n � 9 –10). E, CPP induced by bilateral rACC morphine was abolished by pretreatment in the NAc with
bilateral �-flupenthixol (3 �g, 10 min before; n � 15–16). *p � 0.05, **p � 0.01, ***p � 0.001. Data are means � SEMs.
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the difference between groups did not reach significance by two-
way ANOVA. In addition, 4 mg/kg morphine increased DA levels
in the NAc in both sham and SNL groups of rats, whereas 0.5
mg/kg morphine elicited NAc DA release only in SNL animals
but not in sham-operated controls (Fig. 4D). Two-way ANOVA
with Bonferroni’s post hoc test demonstrated a significant effect of
the morphine dose in sham animals (n � 10 –11, F(1,37) � 7.188,
p � 0.0109; Bonferroni’s comparison: 0.5 vs 4 mg/kg morphine
in sham rats, *p � 0.05). These results suggest that doses of mor-
phine (0.5 mg/kg) that are not rewarding in sham-operated rats
become rewarding in injured rats, presumably because of pain relief.

The anti-aversive effects of morphine are abolished by
pharmacological blockade of opioid receptors in the rACC
Subsequently, we investigated the possibility that opioid recep-
tors within the rACC mediate the effects of systemic morphine on
the affective/motivational dimension of pain. SNL or sham ani-
mals were pretreated with bilateral rACC microinjections of the
irreversible MOR antagonist �-funaltrexamine (�-FNA; 3 �g,
24 h before testing), and mechanical allodynia, CPP, and NAc
microdialysis in response to intravenous morphine administra-
tion were evaluated. The anti-allodynic dose response of mor-
phine did not differ between SNL animals receiving rACC �-FNA
or saline (Fig. 4F). Morphine at 4 mg/kg significantly elevated
paw-withdrawal thresholds in both groups (Fig. 4E). Two-way
ANOVA showed a significant time effect of intravenous mor-
phine treatment but no significant difference between ACC pre-
treatment groups (n � 10 –11; time: F(5,95) � 155.4, p � 0.0001;
Fig. 4E). SNL animals receiving rACC saline demonstrated CPP
to the sub-analgesic (0.5 mg/kg) dose of morphine, which was
significantly attenuated in rACC �-FNA-pretreated rats (n �
20 –27, *p � 0.0478, t(45) � 2.035; Fig. 4G). Likewise, in SNL
animals receiving 0.5 mg/kg morphine, pretreatment with rACC
�-FNA, but not saline, abolished DA release (n � 11, **p � 0.005,
t(20) � 3.128; Fig. 4H). This suggests that blockade of opioid
signaling in the rACC prevented the anti-aversive effects of mor-
phine in SNL rats. However, in sham animals, rACC pretreatment

with �-FNA had no effect on DA release elicited by a 4 mg/kg dose of
morphine (Fig. 4I), indicating that the intrinsically rewarding effects
of morphine are not dependent on MORs in the rACC.

Discussion
In this study, we investigated the hypothesis that opioid activity
in the rACC is necessary for the negative reinforcement produced
by relief of ongoing pain. We showed that microinjection of nal-
oxone, a selective opioid antagonist that acts at multiple opioid
receptor subtypes, in the rACC prevented CPP to non-opioid
analgesic treatments, including PNB in incised rats or intrathecal
clonidine in neuropathic rats. In contrast, naloxone pretreatment
in the rACC had no effect on the ability of these treatments to
reverse mechanical allodynia seen in the injured rats. Selective
ablation of MOR-expressing neurons in the rACC also inhibited
behavioral manifestations of pain relief without altering evoked
responses. Thus, altogether, our CPP results using two rat pain
models and two different approaches to inhibit opioid signaling
in the ACC provide strong evidence for the requirement of en-
dogenous opioid signaling and MOR-expressing neurons in the
rACC for relief of ongoing pain. Conversely, administration of
morphine in the rACC showed that these circuits can be engaged
to elicit CPP without altering allodynia. The results are consistent
with human data indicating the role of the ACC opioids in mod-
ulation of aversive features of pain. Activation of endogenous
opioid systems in the ACC has been observed during placebo
analgesia (Wager et al., 2007; Zubieta and Stohler, 2009) and
during sustained experimental pain (Zubieta et al., 2001). Hu-
man neuroimaging demonstrates engagement of ACC circuits
and reduction of the affective component of pain without change
in pain intensity after hypnotic suggestions (Rainville, 2002) and
during positive emotional states (Villemure and Bushnell, 2009).
A previous study in neuropathic rats showed that ACC microin-
jection of morphine is sufficient to decrease aversiveness of
evoked stimuli without modulation of evoked responses (La-
Graize et al., 2006). Our study now demonstrates that opioid

Figure 4. ACC �-FNA pretreatment blocks the effects of morphine on affective but not sensory aspects of pain. A, Intravenous administration of morphine time and dose dependently reversed
tactile hypersensitivity (n � 5–7): 4.0 mg/kg morphine significantly attenuated tactile hypersensitivity at all time points (n � 5–7), whereas 0.5 mg/kg morphine had no significant effect on
paw-withdrawal thresholds. B, The dose–response curve was calculated at 20 min after morphine. C, Morphine at 0.5 mg/kg produced CPP only in SNL but not sham rats; 4.0 mg/kg morphine
produced CPP in both sham rats (n � 21–30). D, Morphine at 0.5 mg/kg elicited NAc DA release in SNL animals but not in sham-operated controls, whereas 4.0 mg/kg morphine produced NAc DA
release in both sham and SNL animals (n � 10 –11). E, SNL rats were pretreated 20 –24 h before testing with bilateral �-FNA (3 �g) or saline in the rACC. Morphine at 4 mg/kg significantly elevated
paw-withdrawal thresholds in both groups (n�5– 6). F, The dose–response curves were calculated at 20 min after morphine. G, In SNL animals pretreated with rACC saline, 0.5 mg/kg morphine elicited CPP,
which was significantly attenuated in rACC�-FNA pretreated rats (n�20 –27). H, In SNL animals receiving 0.5 mg/kg morphine, pretreatment with rACC�-FNA, but not saline, abolished DA release (n�11).
I, In sham-operated rats morphine (4 mg/kg) mediated DA efflux was not affected by pretreatment with either saline or �-FNA (n � 7–9). *p � 0.05, **p � 0.01. Data are means � SEMs.
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signaling in the ACC is also necessary for negative reinforcement
attributable to relief of ongoing pain.

Previous investigations in our laboratory established that ac-
tivation of the DA mesolimbic reward system is required for pain
relief-induced CPP (Navratilova et al., 2012; Xie et al., 2014).
Here, we demonstrate that, in the setting of pain, multiple rACC
manipulations that block (naloxone, Derm-SAP) or elicit (mor-
phine) CPP also block or elicit NAc DA release. Therefore, opioid
signaling in the rACC is essential for NAc DA release and conse-
quent pain relief-induced negative reinforcement. This conclu-
sion is consistent with PET studies of placebo analgesia in
humans revealing a positive correlation between endogenous
opioid activity in the rACC and DA activity in the NAc (Scott et
al., 2008). The finding that blockade of DA receptors in the NAc
with flupenthixol precludes rACC morphine-elicited CPP estab-
lishes directionality of the modulatory control of behavior from
the rACC to NAc. Strong direct neuronal projections from the
ACC to the NAc have been demonstrated anatomically (Gorelova
and Yang, 1997); additional indirect pathways may support a
functional link between these two regions. In the present study,
rACC morphine-induced DA release and CPP was specific to the
tonic aversive pain state and was not observed in pain-free con-
ditions. This is in sharp contrast to the effects of microinjections
into the ventral tegmental area (VTA), the origin of mesolimbic
dopaminergic neurons, in which morphine causes CPP in naive
animals (Olmstead and Franklin, 1997). In pain states, pharma-
cological or endogenous opioid signaling in the rACC activates
DA reward circuitry and promotes reward.

We additionally examined whether systemically administered
opioids use the same mechanisms to alleviate pain unpleasant-
ness and subsequently elicit reward from pain relief. Opiates have
been shown to preferentially reduce affective but not sensory
visual analog scale responses to either acute noxious stimulus in
subjects or chronic neuropathic pain in patients (Price et al.,
1985; Kupers et al., 1991). Moreover, low doses of opiates inhibit
pain-related BOLD–fMRI activations in brain areas associated
with affective pain processing, whereas higher doses are required
for complete inhibition in areas processing sensory dimensions
of pain (Oertel et al., 2008). Differential effects of morphine on
the affective and sensory dimensions of pain have been suggested
previously in preclinical studies (Hummel et al., 2008; van der
Kam et al., 2008; Cahill et al., 2013), but the underlying mecha-
nisms are not known. We found that, in rats with neuropathic
pain, morphine at a dose that did not alleviate tactile allodynia
elicited CPP and NAc DA release, suggesting selective modula-
tion of affective features of pain to elicit reward. Critically, the
same dose was not rewarding in uninjured animals, demonstrat-
ing a separation of the rewarding effects of pain relief from in-
trinsically rewarding effects of morphine. Morphine, like other
addictive drugs, is rewarding in the normal state, in part, because
of its ability to directly activate the mesolimbic DA reward path-
way from the VTA to the NAc. Opioid receptors in this pathway
are required for the rewarding effects of morphine (Olmstead
and Franklin, 1997; Cui et al., 2014). Here, using blockade of
opioid receptors with intra-rACC �-FNA, we demonstrate that
the anti-aversive effects of morphine (e.g., reward from pain re-
lief) are mediated by opioid circuits in the rACC. In contrast, we
show that opioid signaling in the rACC is not required for reward
elicited by high doses of morphine that mediate reward in the
non-painful state. Therefore, anti-aversive and rewarding effects
of morphine can be dissociated both pharmacologically and an-
atomically. The anti-aversive effects of low doses of morphine
depend on the engagement of opioid receptors in the rACC,

whereas rewarding effects that require almost an order of magni-
tude higher dose do not involve opioid receptors in this circuit.

The precise mechanisms by which endogenous opioids regu-
late nociceptive activity within the ACC is not clear. Opioid pep-
tides and receptors are highly expressed in the ACC, and opioid
signaling in this region is implicated in modulating affective as-
pects of pain. Enkephalinergic neurons are distributed broadly
within all laminae in the ACC (Mukamel et al., 2005). Likewise,
both MORs and � opioid receptors (DORs) are present through-
out the cingulate cortex, with increased expression of the MOR in
the superficial layer (Vogt et al., 1995). Although virtually all
DORs are expressed by cortical neurons, MORs are expressed by
both cortical neurons and afferent axons from subcortical re-
gions. Presynaptic MORs have been found primarily on thalamic
axonal projections to the ACC (Vogt et al., 1995). Hence, it may
be reasonable to suggest that endogenous opioids could regulate
nociceptive activity in the ACC by inhibiting glutamate release
from thalamocortical afferents or by modulating the activity of cor-
tical interneurons and efferent projection neurons. Additional ex-
perimentation will be required to explore these possibilities.

Our data demonstrate the essential role of ACC opioid activity
for relief of ongoing pain produced by local non-opioid treat-
ments. This conclusion is supported by behavioral and neuro-
chemical measures using several different approaches and is
consistent with findings from human neuroimaging. We show
that endogenous opioid release in the rACC is not only sufficient
but necessary for relief of the ongoing aversive state associated
with pain. Additionally, our findings suggest that ACC opioid
signaling elicits NAc DA efflux, promoting reward of pain relief.
Moreover, doses of systemically administered opioids that are not
reinforcing in naive animals act in the ACC to relieve pain aversive-
ness and facilitate reward. These findings anatomically and pharma-
cologically separate opioid mechanisms promoting pain relief and
addiction. Opioid signaling in the ACC may represent a general
mechanism of pain modulation that can serve as a biomarker of
analgesic efficacy and facilitate drug discovery for pain therapeutics.
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