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Abstract In the study of differential equations on [−1, 1] subject to linear
homogeneous boundary conditions of finite order, it is often expedient to
represent the solution in a Galerkin expansion, that is, as a sum of basis
functions, each of which satisfies the given boundary conditions. In order that
the functions be maximally distinct, one can use the Gram-Schmidt method to
generate a set orthogonal with respect to a particular weight function. Here
we consider all such sets associated with the Jacobi weight function, w(x) =
(1 − x)α(1 + x)β . However, this procedure is not only cumbersome for sets
of large degree, but does not provide any intrinsic means to characterize the
functions that result. We show here that each basis function can be written as
the sum of a small number of Jacobi polynomials, whose coefficients are found
by imposing the boundary conditions and orthogonality to the first few basis
functions only. That orthogonality of the entire set follows—a property we
term “auto-orthogonality”—is remarkable. Additionally, these basis functions
are shown to behave asymptotically like individual Jacobi polynomials and
share many of the latter’s useful properties. Of particular note is that these
basis sets retain the exponential convergence characteristic of Jacobi expan-
sions for expansion of an arbitrary function satisfying the boundary conditions
imposed. Further, the associated error is asymptotically minimized in an Lp(α)

norm given the appropriate choice of α = β. The rich algebraic structure
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underlying these properties remains partially obscured by the rather difficult
form of the non-standard weighted integrals of Jacobi polynomials upon which
our analysis rests. Nevertheless, we are able to prove most of these results in
specific cases and certain of the results in the general case. However a proof
that such expansions can satisfy linear boundary conditions of arbitrary order
and form appears extremely difficult.

Keywords Orthogonal polynomial · Galerkin expansion · Jacobi polynomial ·
Spectral method · Exponential convergence

1 Introduction

Spectral methods are an extremely efficient way of solving many numerical
problems since, if the function for which one is solving is smooth, only a few
terms are typically required to represent it to high accuracy. This efficiency
rests on the spectral coefficients, fn, tending to zero faster than any algebraic
power of n. Orthogonal polynomials (see Ismail [9] for a thorough review)
offer an attractive and widely used framework on which to build such methods.
One such class, the Jacobi polynomials, converges at an exponential rate on
the interval [−1, 1], of which particular well-known examples are Chebyshev
polynomials of the first and second kinds and Legendre polynomials. These
latter families have the additional property of asymptotically minimizing the
error between an arbitrary function and its projection as measured in the L∞,
L1 and L2 norms respectively [15]. For the Chebyshev polynomials of the
first and second kinds, these properties are manifested respectively by equal-
ripple, i.e. they oscillate uniformly, and equal-area, i.e. the area under the curve
between any two consecutive zeros is constant.

It is often the case that certain linear homogeneous boundary conditions
must be satisfied by the unknown solution.1 In this event, it is often expedient
to use an expansion in spectral functions that individually satisfy these condi-
tions explicitly, for then their sum must also; we then need solve only for the
spectral coefficients in ensuing analysis, effectively disregarding the boundary
conditions from that point on. An arbitrary sum of Jacobi polynomials satisfies
no particular condition at x = ±1; nonetheless, a tailor-made basis set can be
fashioned by taking particular linear combinations of these polynomials [3].
However, the property of orthogonality is in general immediately lost and
there is no guarantee that the resulting set of functions, although formally
useful, is numerically well-conditioned. This is easily illustrated by combining
Chebyshev polynomials of the first kind, Tn(x), of various degrees to fit the

1If the given boundary conditions are not homogeneous they can always be made so with the
addition of an appropriate function to the unknown solution, with the associated modification of
the differential equation.
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boundary condition f (1) + f ′(1) = 0. Two possible sets of basis functions are
{ψ(1)

n } and {ψ(2)
n }, each formally spanning the same function space, where

ψ(1)
n (x) = Tn(x) − (n2 + 1)T0(x),

ψ(2)
n (x) = (

(n − 1)2 + 1
)

Tn(x) − (n2 + 1)Tn−1(x).

We note that ψ(1)
n becomes increasingly ill-conditioned as n increases, as when

normalized, ψ(1)
n (x) ∼ T0, which is independent of n. The second case, ψ(2)

n ,
is better conditioned but is neither an orthogonal set, nor close to equal-
ripple. An alternative approach is to use a Gram-Schmidt procedure [5] with
the boundary condition to generate an orthogonal set, by writing ψ(3)

n =
∑n

i=0 an P(α,β)
n (x), where the ai are determined from imposing orthogonality

(with weight function w(x) = (1 − x)α(1 + x)β) to ψ
(3)

i , i = 1, . . . , n − 1, the
boundary condition and some normalization condition.2 Although guaranteed
to produce an orthogonal set, this algorithm is cumbersome for large n and
provides no means to prove any asymptotic, or other, properties of the
functions.

In this paper, we show that a drastically truncated Gram-Schmidt method
suffices for constructing orthogonal basis sets on [−1, 1] that satisfy any
number of linear boundary conditions at x = ±1. For the particular case of a
single first-order boundary condition at x = 1, we will show that the following
representation generates an orthogonal set:

�n(x) =
3∑

i=1

ci P(α+2,β)

n−i+1 (x), n ≥ 2

where �1(x) is the unique polynomial of degree one satisfying the boundary
condition. The three values of ci are determined by imposing the single condi-
tion of orthogonality to �1(x), the boundary condition, and a normalization. It
is far from evident that such a procedure will yield the same set of functions as
the full Gram-Schmidt process, which explicitly enforces mutual orthogonality;
yet it does. Additionally, as we later indicate, �n(x) ∼ P(α,β)

n as n → ∞ and the
expansion coefficients converge exponentially whenever those of the associ-
ated expansion in P(α,β)

n do so. Hence by choosing α = β = −1/2, α = β = 1/2,
or α = β = 0, we thus determine basis sets that are asymptotically similar
to the Chebyshev polynomials of the first or second kinds, or the Legendre
polynomials, respectively and the asymptotic error between a given function
and its truncated Galerkin expansion is consequently minimized in the L∞,
L1, or L2 norms. The provenance of this result could only be obscured by
brute-force application of the usual Gram-Schmidt algorithm.

We begin with a simple motivational example that illustrates some of
the key issues presented subsequently in more detail. Suppose that we wish

2Using the natural polynomials xn in place of Jacobi polynomials is formally equivalent but leads
to severe numerical problems as the an grow exponentially with n and accuracy is rapidly lost in
finite precision.
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to construct a basis set capable of representing a function on [−1, 1] that
satisfies the homogeneous boundary condition f (1) = 0, and for which all
members are mutually orthogonal with respect to the weight function w(x) =
(1 − x)α(1 + x)β . This may be written as

�n(x) = (1 − x) P(α+2,β)

n−1 (x), n ≥ 1 (1)

since �n(1) clearly vanishes and applying the standard orthogonality relation
of Jacobi polynomials we see that
∫

�n(x)�m(x)w(x) dx =
∫ 1

−1
P(α+2,β)

n−1 P(α+2,β)

m−1 (1 − x)2+α (1 + x)β dx = hn δnm

for some constants hn.
Using the standard index recurrence relations (64) and (66), we can write

�n(x) = c1(n)P(α+2,β)
n + c2(n)P(α+2,β)

n−1 + c3(n)P(α+2,β)

n−2 , n ≥ 2 (2)

for coefficients ci(n), which take the (unnormalized) form

c1(n)=n (β + α + 2 n) (α + β + n + 2) , (3)

c2(n)=− (β+1+2 n+α)
(
2 n2+2 nβ+2 n+2 nα+β α+α2+3 α+2+β

)
, (4)

c3(n)= (α + n + 1) (β + n − 1) (β + α + 2 n + 2) , (5)

for n ≥ 2 and �1(x) = 1 − x. Note that the ci take on the ratio [1, −2, 1] as
n → ∞, a property that has great significance since the same asymptotic
behavior arises from writing P(α,β)

n (x) in the form of (2) by applying (66)
twice. It follows that �n(x) ∼ P(α,β)

n (x) for large n (except possibly in boundary
layers).

Suppose now we consider constructing a second basis set that satisfies
f (1) = 0 of the form (2) in a truncated-Gram-Schmidt method, where the three
coefficients ci are found by imposing the boundary condition, some normaliza-
tion condition (which for the moment we ignore) and orthogonality only to the
first polynomial element (1 − x). It is clear that such a scheme must reconstruct
the mutually orthogonal basis set that we first thought of; however, in contrast
with a typical Gram-Schmidt construction, we only impose orthogonality with
respect to one polynomial rather than all the polynomials of lesser degree.

We now extend this simple case to one where we cannot write down the
explicit form of the basis as in (1), by considering the single boundary condition
f ′(1) = 0. We attempt to find an unnormalized basis set of the form (2) for
n ≥ 2 by using only the boundary condition and orthogonality with respect
to the first element of the basis set. The lowest degree function is the unique
polynomial of degree one that satisfies the boundary condition: �1(x) = 1.

Using the boundary condition relation (69) we find that the three coef-
ficients ci(n) are polynomials of degree five, which we do not list here for
brevity, but are given as a special case of the more general boundary condition
μf ′(1) + (1 − μ) f (1) in Appendix B. In fact the ci are in the ratio of [1, −2, 1]
as n → ∞, thus again �n(x) ∼ P(α,β)

n (x) for any value of μ and in this sense
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the basis functions become asymptotically independent of particular boundary
conditions. It is far from apparent that the �n resulting from this construction
should prove to be mutually orthogonal, since we have only imposed or-
thogonality to �1(x). We term this remarkable property ‘auto-orthogonality’.
Although one can prove the property after the fact by integrating the product
of basis functions �n and �m, this fails to do more than simply to confirm
orthogonality. A more illuminating method is taken up in Section 4 where we
extend this construction to boundary conditions of any order at x = ±1.

Before embarking on anything further, however, we provide the reader with
some plots that illustrate the structure of the generated functions. Figure 1
shows �n for n = 5, 10, 15 for two sets of boundary conditions: �n(−1) =
� ′

n(1) = 0 in (a) and � ′′
n(1) = �n(1) = 0 in (b). The distinction between these

examples, that the boundary conditions are imposed on two sides rather than
just one, is important only in what we are able to prove in later sections; it
is apparent that the algorithm works in all cases. To illustrate the asymp-
totic behavior as n → ∞, the functions in (a) have α = β = −1/2, whilst in
(b) α = β = 1/2. It is striking how closely the equal-ripple result is achieved
in (a) and similarly the equal-area property in (b).

The remainder of the paper is arranged as follows. In the next section,
we provide a construction that defines an auto-orthogonal set for any linear
boundary conditions involving derivatives of finite degree. The construction
simplifies considerably in the case that the boundary conditions are imposed
only on one side (that is, at x = 1 or x = −1, but not both). In subsequent
sections, we lay out various results and machinery that we use to prove auto-
orthogonality in specific cases. The starting point, supplied in Section 3, is
an appropriate analytic expression for the weighted integral of products of
Jacobi polynomials. Given a specific set of boundary conditions, one can simply
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Fig. 1 Plots of basis functions for n = 5, 10, 15. In a, α = β = −1/2 and the functions satisfy the
two-sided boundary conditions �n(−1) = � ′

n(1) = 0; in b, α = β = 1/2 and the functions satisfy
the one-sided boundary condition � ′′

n (1) = �n(1) = 0. Note the quasi-equal-area property of the
functions in b and the quasi-equal-ripple property in a. The functions are normalized by relation
(26). In this normalization �n(1) tends to a constant only for n → ∞. In a the transient is simply
too small to be seen for the values of n plotted
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accept the construction we give, compute the basis set and, as commented
above, prove mutual orthogonality a posteriori. A more insightful approach in
Section 4 is to investigate the space of auto-orthogonal polynomials and show
that it contains sufficient degrees of freedom to satisfy boundary conditions up
to a given order. This attack relies on the fact that the matrix whose elements
represent the inner product of pairs of basis functions can be written as a sum
of special outer products, whose form we give. In simple cases we are able to
prove auto-orthogonality, in particular, for arbitrary second-order (one-sided)
boundary conditions. Additionally, we suggest a possible approach to the
general case. In Section 5 we indicate the asymptotic character of the basis
sets and lastly we provide an extension of the construction in Section 6.1. We
conclude with a summary of our findings and discuss the immediate extensions
of this study to numerical schemes in spherical and cylindrical geometries.
In an accompanying article [11] we provide further numerical details related
to the implementation of the Galerkin basis sets; a listing of basis functions
satisfying a comprehensive set of physically motivated boundary conditions
can be found at [12].

2 Construction of an auto-orthogonal basis set for arbitrary
boundary conditions

2.1 One-sided boundary conditions

As motivated above, we consider a set of M boundary conditions involving
derivatives of the function at x = 1 only and of degree at most N − 1. The
imposition of boundary conditions at x = −1 will be considered shortly. Note
that M cannot exceed N or the problem is overspecified (unless the conditions
are degenerate) and there is no solution. An appropriate representation
involves a sum of N + 1 Jacobi polynomials of neighboring degree, whose
coefficients are determined by the M boundary conditions, one normalization
condition, (which we ignore) and N − M orthogonality conditions. Thus

�n(x) =
N+1∑

i=1

ci(n)P(α+N,β)

M+n−i (x) , n ≥ N − M + 1 . (6)

For n ≤ N − M, the above form breaks down (as the degree of the constituent
Jacobi polynomials must be non-negative) and the first few basis functions
must instead be found by using the standard Gram-Schmidt process, by
determining the coefficients ci in

�n(x) =
M+n∑

i=1

ci(n)P(α+N,β)

i−1 (x) , n ≤ N − M (7)

and imposing the M boundary conditions, one normalization condition, and
orthogonality to �m with weight w(x) for 1 ≤ m < n. One example of this is the
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basis set discussed in the introduction, satisfying μf ′(1) + (1 − μ) f (1), which
is of the above form with N = 2, M = 1. It is also noteworthy that increasing
M does not change the essential structure of the basis, but merely increases
the degree of all the polynomials; this is caused by providing each �n with
the degrees of freedom it needs to satisfy the extra boundary conditions. The
functions �n have the property that

∫ 1

−1
�n(x)�m(x) (1 − x)α(1 + x)βdx = kn δnm, (8)

for some kn determined by the choice of normalization. A proof of this is
provided for N = 2, 3 in Sections 4.1 and 4.2 respectively. We observe that
�n ∼ P(α,β)

n+M−1(x), a result discussed further in Section 5.
A similar result holds if the boundary conditions are imposed only at

x = −1; the roles of α and β reverse leading to

�n(x) =

⎧
⎪⎪⎨

⎪⎪⎩

∑M+n

i=1
ci(n)P(α,β+N)

i−1 (x), 1 ≤ n ≤ N − M,

∑N+1

i=1
ci(n)P(α,β+N)

M+n−i (x), n ≥ N − M + 1.

(9)

A peculiar case arises in the determination of ci, for n ≤ N − M, when
the boundary conditions do not supply enough constraints on the function.
For instance, �1(x) = c1 + c2 P(α+N,β)

1 (x) is not determined (even up to a nor-
malization) by the condition � ′′

n(1) = 0. Indeed, imposing this same condition
on �2(x) = c1 + c2 P(α+N,β)

1 (x) + c3 P(α+N,β)

2 (x) requires only that c3 = 0, while
orthogonality with respect to �1 still leaves three degrees of freedom among �1

and �2. While we could leave the undetermined ci arbitrary, we note that the
space of linear combinations of these functions is also spanned by �1(x) = 1,
�2(x) = P(α,β)

1 (x), which are also orthogonal in the required manner of (8). It is
therefore evident how one should proceed in the construction of an orthogonal
basis set for such boundary conditions.

2.2 Generalization

By making use of the recurrence relation (67), (6) can be written in the sym-
metric form

�n(x) =
2N+1∑

i=1

ci P
(α+N,β+N)

M+n−i (x), n ≥ 2N − M + 1 (10)

where we solve for the 2N + 1 coefficients using the M boundary conditions,
one normalization condition, and 2N − M orthogonality conditions. The first
2N − M functions are “hard-wired” to be orthogonal and as before forced
to satisfy the boundary conditions by using the standard Gram-Schmidt
procedure.
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It is also apparent that the one-sided form of (9) with boundary conditions
imposed only at x = −1 can be written in precisely the same way. It is therefore
unsurprising (but not yet proven) that (10) is the most general representation
required for any combination of M boundary conditions of degree N − 1 acting
at either (or both) of the endpoints. In practice we find this to be the case.

3 Integrals of Jacobi polynomials

To discuss orthogonality of these generalized expansion sets we need integrals
of various products of Jacobi polynomials of the form

∫ 1

−1
P(α+μ,β+ν)

n (x) P(α+μ,β+ν)
m (x) (1 + x)β (1 − x)α dx (11)

where ν = 0 in the one-sided case, and ν = μ in the two-sided case. For the
purposes of this paper, we need only consider positive integer values for ν

and μ, although we indicate the results that do hold for general (real) values.
We begin by covering the one-sided case, whose associated integrals can be
written in a simple closed form. We then turn to the two-sided case, where we
have been unable to find a similarly simple expression, but results are found
for specific cases.

Substituting

P(α,β)
n (x) =

(
n + α

α

)

2 F1

( [−n, 1 + n + α + β]
[α + 1] ; 1

2
(1 − x)

)
(12)

directly into (11), the integral immediately reduces to

2α+β+1 �(α + 1) �(β + 1)

�(α + β + 2)

(
m + α + μ

m

)(
n + α + μ

n

)

×
m∑

j=0

(−m) j (α + 1) j (1 + m + α + β + μ + ν) j

�( j + 1) (α + β + 2) j (α + μ + 1) j

× 3 F2

( [α + j + 1, −n, 1 + n + α + β + μ + ν]
[α + β + j + 2, α + μ + 1] ; 1

)
. (13)

In this case the Weber-Erdelyi transformation [17], gives

3 F2

( [α + j + 1, −n, 1 + n + α + β + μ + ν]
[α + β + j + 2, α + μ + 1] ; 1

)

= �( j + α + β + 2) �(μ + α + 1) �(β + 1 + n) �(− j + μ + n)

�(μ + α + 1 + n) �( j + α + β + 2 + n) �(β + 1) �(μ − j)

× 3 F2

( [α + j + 1, −n, ν]
[−β − ν, 1 + j − μ − n] ; 1

)
.
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For ν = 0, the hypergeometric function is unity. Collecting terms in j in that
case yields

2α+β+1

(
m + α + μ

m

)
(μ)n

�(n + 1)

�(α + 1) �(β + 1 + n)

�(α + β + n + 2)

× 4 F3

( [−m, 1 − μ, 1 + α, 1 + m + α + β + μ]
[1 + μ + α, α + β + n + 2, 1 − μ − n] ; 1

)
, m ≤ n . (14)

Alternately, using Whipple’s transformation [2] this can be rewritten as

2α+β+1� (α + 1) � (n − m + μ) � (2 μ + α + m) � (n + β + 1)

� (2 μ + α) � (μ) � (n − m + 1) � (m + 1) � (n + β + 2 + α)

× 4 F3

( [−m, 1 − μ, n + β + 1, −μ + n − m + 1]
[n − m + 1, −m − 2 μ + 1 − α, n + β + 2 + α] ; 1

)
, m ≤ n . (15)

The symmetric identity follows as:

∫ 1

−1
P(α,β+μ)

n P(α,β+μ)
m (1 − x)α(1 + x)βdx

= (−1)n−m 2α+β+1� (β + 1) � (n − m + μ) � (2 μ + β + m) � (n + α + 1)

� (2 μ + β)� (μ) � (n − m + 1) � (m + 1) � (n + β + 2 + α)

× 4 F3

( [−m, 1 − μ, n + α + 1, −μ + n − m + 1]
[n − m + 1, −m − 2 μ + 1 − β, n + β + 2 + α] ; 1

)
. (16)

For applications here μ = M ∈ Z>0 hence the 4 F3 can be written as a finite sum
over k = 1, . . . M with m and n left as general arguments, although (14)–(16)
all continue to hold for general μ.

For the two-sided case, (13) cannot be evaluated in the same manner and
we take a different tack, akin to the linearization of products of orthogonal
polynomials (see e.g. [1]). By finding the coefficients cm in

P(α+μ,β+ν)
n (x) =

n∑

m=0

cm P(α,β)
m (x) , (17)

direct substitution into (11) and invoking orthogonality of the standard Jacobi
polynomials reduce the result to a single sum which, on assuming integer values
for μ and ν, turns out to be in a form that may be immediately evaluated with
Gosper’s algorithm [6].

Using the hypergeometric expansion (12) in

∫ 1

−1
P(α+μ,β+ν)

n (x) P(α,β)
m (x) (1 − x)α (1 + x)β dx , (18)
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produces a double sum over indices j = 0 . . . m and k = 0 . . . n, with the
integral over x generating a factor

21+α+β �(β + 1) �( j + k + α + 1)

�( j + k + α + β + 2)
.

The sum on j then generates

3 F2

( [−m, m + α + β + 1, k + α + 1]
[α + 1, k + α + β + 2] ; 1

)
.

We next use the Weber-Erdelyi transformation, reducing this balanced form
to obtain

�(k + α + β + 2) �(α + 1) �(k + 1) �(−β)

�(m + α + 1) �(m + k + α + β + 2) �(m + k − 1) �(−m − β)

for k ≥ m, and zero otherwise. Collecting all the factors for (18) we obtain

21+α+β � (1 + m + β) � (n + α + μ + 1) � (α + 1 + m) � (m + n + ν + μ + 1 + α + β)

� (1 + n + α + β + μ + ν) � (1 + m) � (m + α + μ + 1) � (2 m + α + β + 2) � (n − m + 1)

× 3 F2

( [−n + m, m + α + 1, m + n + ν + μ + α + β + 1]
[2m + α + β + 2, m + α + μ + 1] ; 1

)
.

We apply the Weber-Erdelyi transformation once more to reexpress this as

21+α+β � (n − m + μ) � (n + β + 1) � (m + α + 1) � (m + n + ν + μ + 1 + α + β)

� (n + m + α + β + 2) � (μ) � (n + α + β + μ + ν + 1) � (m + 1) � (n − m + 1)

× 3 F2

( [ν, m − n, m + α + 1]
[−n − β, m − n − μ + 1] ; 1

)
. (19)

Taking account of the Jacobi normalization,

∫ 1

−1

(
P(α,β)

m (x)
)2

(1 − x)α (1 + x)β dx

= 21+α+β� (α + 1 + m) � (1 + m + β)

(2 m + α + β + 1) � (1 + m) � (m + α + β + 1)
,

it follows that the cm of (17) are

cm = �(n + β + 1) �(n + m + α + β + μ + ν + 1) �(m + α + β + 1) �(n − m + μ)

�(m + β + 1) �(n + α + β + μ + ν + 1) �(n + m + α + β + 2) �(n − m + 1) �(μ)

× (2 m + α + β + 1) 3 F2

( [ν, m − n, m + α + 1]
[−n − β, m − n − μ + 1] ; 1

)
.
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The key to progress here is that once we restrict (μ, ν) = (M, N) ∈ Z
2
>0, the

3 F2 can be summed in closed form by Gosper’s algorithm [6], producing a
polynomial form in m multiplied by a quotient composed of gamma functions.

Returning to the evaluation of (11) with (μ, ν) = (M, N), we see that on
substituting (17), the resulting sum terminates at the lesser of n and m and
in the following we use the convention that the indices are ordered with
m ≤ n. (This is the reason that, although the integral itself is symmetric under
interchange of the indices, the formulas that follow are not.)

It is therefore possible to find a closed form expression for (11) for general
(α, β) and any given pair (μ, ν) = (M, N) but, guided by present need, we focus
on the symmetric case of β = α and N = M. Then

cm = 4N−1
(
1 + (−1)m+n) (2 m + 2 α + 1

) �
(
(n + m + 1)/2 + α + N

)

�
(
(n + m + 3)/2 + α

)

× �
(
(n − m)/2 + N

)
�
(
m + 2 α + 1

)
�
(
n + α + N + 1

)

�
(
(n − m)/2 + 1

)
�
(
m + α + 1

)
�
(
n + 2 α + 2 N + 1

)
�(N)

.

(The expression for the one-sided cm with μ = N, ν = 0, is trivial from the
previous expression as the 3 F2 simply drops out.) Note that, for any positive
integers j and k,

∫ 1

−1
P(α+N,α+N)

2 j+1 (x) P(α+N,α+N)

2k (x) (1 − x2)α dx = 0 , (20)

as follows from noting the parity of the polynomials [16, p. 59]. It is therefore
to be understood the formulas that follow hold for mod (n + m, 2) = 0,
otherwise the integral is zero.

For N = M = 2 this prescription yields for (11)

22α+2 � (m + α + 3) � (n + α + 3)

(α + 1)3 � (m + 1) � (n + 2 α + 5)

[
(α + 3) n2 − (α + 1) m2

− (α + 1) (2 α + 5) m + (α + 3) (2 α + 5) n + 2 (α + 3) (2 α + 3)
]

, (21)

(where we use the Pochhammer notation (a)n = a(a + 1) . . . (a + n − 1)) and
for N = M = 3,

22α+1� (m + α + 4) � (n + α + 4)

(α + 1)5 � (m + 1) � (n + 2 α + 7)

× [
n4 (α + 5) (α + 4) − 2 n2 m2 (α + 5) (α + 1) + m4 (α + 2) (α + 1)

+ 2 n3 (α + 5)(α + 4)(2 α + 7) − 2
(
n2 m + n m2

)
(α + 5)(α + 1)(2 α + 7)

+ 2 m3 (α + 2) (α + 1) (2 α + 7) + n2 (α + 5) (α + 4)
(
4 α2 + 40 α + 71

)

− 2 n m (α + 5) (α + 1) (2 α + 7)2 + m2 (α + 1)
(
4 α3 + 24 α2 + 19 α − 38

)

+ 2 n (α + 5) (α + 4) (2 α + 7) (6 α + 11) − 2 m (α + 1) (2 α + 7)

× (
6 α2 + 43 α + 68

)+ 8 (α + 5) (α + 4) (2 α + 3) (2 α + 5)
]
. (22)
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Finally for N = M = 4 the result for general α is too involved to warrant
reproducing here. Instead we provide only the reduced forms for the common
cases of α = −1/2, 0, 1/2, namely

16

135135

� (m + 9/2) � (n + 9/2)

� (n + 8) � (m + 1)

× [
429 n6 − 143 m2 n4 + 39 m4 n2 − 5 m6 + 10296 n5 − 1144 n4 m

− 2288 n3 m2 + 624 n2 m3 + 312 n m4 − 120 m5 + 99528 n4 − 18304 n3 m

− 11440 n2 m2 + 4992 n m3 − 152 m4 + 494208 n3 − 111488 n2 m

− 18304 n m2 + 10368 m3 + 1324752 n2 − 306176 n m + 10096 m2

+ 1812096 n − 332928 m + 988416
]

(23)

1

1260

(m + 1)4

(n + 5)4

× [
35 n6−21 n4 m2+7 n2 m4−m6+945 n5−189 n4 m−378 n3 m2

+ 126 n2 m3+63 n m4−27 m5+10325 n4−3402 n3 m−2002 n2 m2

+ 1134 n m3−71 m4+58275 n3−23121 n2 m−2709 n m2+2367 m3

+ 178640 n2−70308 n m+4752 m2+280980 n−82620 m+176400
]

(24)

64

405405

� (m + 11/2) � (n + 11/2)

� (n + 10) � (m + 1)

× [
143 n6 − 117 n4 m2 + 45 n2 m4 − 7 m6 + 4290 n5

− 1170 n4 m − 2340 n3 m2 + 900 n2 m3 + 450 n m4 − 210 m5 + 52052 n4

− 23400 n3 m − 12960 n2 m2 + 9000 n m3 − 820 m4 + 326040 n3

− 174600 n2 m − 12600 n m2 + 18600 m3 + 1107392 n2 − 576000 n m

+ 56384 m2 + 1921920 n − 716160 m + 1317888
]

(25)

respectively.
Gosper’s algorithm is quite general and therein lies its power. But for the

same reason, our results for the two-sided case above stand in sharp contrast to
the terse general result in (14) and it is not reasonable to expect a comparable
economy could emerge from our approach thus far. Nonetheless the two-
sided answer for (11) must reflect all the recurrence properties of the Jacobi
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polynomials and this implies constraints on form. In Section 4.3 we point
out salient properties of the matrix whose entries are defined by (11) with
(μ, ν) = (M, N) that clarify the algebraic structure of the integral, which leads
us to a suitable generalization of (14).

A final comment: So far we have deemed it expedient (mainly for typo-
graphical purposes) to leave the ci defined only up to a multiplicative constant,
equivalent to leaving the resulting basis set unnormalized. However, the
natural normalization for the basis set is

∫ 1

−1

[
�n(x)

]2
(1 − x)α (1 + x)β dx = 1 , (26)

which is easily enough implemented, although the resulting expressions for
general n are extremely lengthy and are hence omitted throughout.

4 Auto-orthogonality

We are now in a position to prove the validity of the construction given
in Section 2. Our approach is to look within the space of auto-orthogonal
polynomials and show that there are sufficient degrees of freedom in order that
we can satisfy the required boundary conditions. In the following two sections,
we prove the two simplest cases of one-sided boundary conditions of first and
second order. Lastly we indicate how a general proof for arbitrary boundary
conditions for both the one-sided and two sided constructions might proceed.

4.1 One-sided first order boundary conditions

Let us begin by taking the simplest possible (nontrivial) case, that of a one-
sided construction with first order boundary conditions, corresponding to
N = 2. We will prove here that the construction of Section 2.1, involving
just three Jacobi polynomials, suffices to generate an auto-orthogonal set.
Without loss of generality, we may assume that we have only a single boundary
condition (M = 1), since M = 2 amounts to the simple mapping n → n + 1,
m → m + 1 in the following analysis. Defining the vector c(n) = [c1(n),

c2(n), c3(n)]T , showing the existence of an auto-orthogonal set amounts to
finding the solutions of

cT(m) A(2,0)
3 c(n) = 0, (27)

where A(2,0)
3 is a matrix (whose superscripts indicate (μ, ν) from Section 3) with

entries ai, j defined by

ai, j =
∫ 1

−1
P(α+2,β)

n+1−i (x) P(α+2,β)

m+1− j (x) (1 − x)α (1 + x)β dx i, j = 1, 2, 3.
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Given the form of the integral derived from (14), the matrix A(2,0)
3 can be

written as the sum of two outer products

A(2,0)
3 = − 2α+β+1

(α + 1) (α + 2) (α + 3)

�(m + 1 + α)�(n − 1 + β)

�(m + 1) �(n + 3 + α + β)

× [
(u0 ∗ u1) vT

0 + u0 (v0 ∗ v1)
T] (28)

where

u0 = [
(2 + α + m) (1 + α + m) , m (1 + α + m) , m (m − 1)

]T
,

v0 = [
(n + β) (n − 1 + β) , (n − 1 + β) (n + β + 2 + α) ,

(n + β + 2 + α) (n + β + 1 + α)
]T

,

u1 = (α + 1)
[
m (α + β + m + 3) , (m − 1) (α + β + m + 2) ,

(m − 2) (α + β + m + 1)
]T − (α + 3)[1, 1, 1]T ,

v1 = (α + 3)
[
(−n) (n + 3 + α + β) , (1 − n) (n + 2 + α + β) ,

(2 − n) (n + 1 + α + β)
]T

.

and we use ∗ to denote the element-by-element product of vectors. Since A(2,0)
3

is rank deficient by one, it has determinant zero.
Although Eq. 27 is quadratic, because of the separation in n and m depen-

dence, solutions lie in one of three classes of linear equations. These take the
form of: left singular vectors, c = l, right singular vectors, c = r, and “general”
mixed solutions.

The simplest solution is the right singular vector, which is a function of
n only, and effects the cancellation needed in (27) purely from the right. It
corresponds to the homogeneous system

vT
0 (n) c(n) = 0, (v0 ∗ v1)

T c(n) = 0 ,

which has unnormalized solution r with components given by

r1 = (2n + α + β) (n + β + 2 + α) (n + β + 1 + α), (29)

r2 = −2 (n + β) (n + β + 1 + α) (2n + 1 + α + β),

r3 = (n + β) (n − 1 + β) (2n + α + 2 + β) . (30)

In fact, by inspecting (66), this is simply P(α,β)
n (x). It follows that no particular

boundary condition is satisfied at x = 1, a property that may be verified by
evaluating f (1) and f ′(1) and noting that they are incommensurate functions
of n so that no linear combination, independent of n, can be made to vanish.
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Defining �1 = 1, �2 = P(α,β)

1 (x), we complete the orthogonal family, which is
simply the standard Jacobi polynomials themselves.

The left singular vector, being a function of m only and effecting the
required cancellation from the left, satisfies

c(m)T u0(m) = 0, c(m)T (u0 ∗ u1) = 0 ,

leading to the unnormalized solution l where

l1 = m (−1 + m) (2m + α + β),

l2 = −2 (−1 + m) (m + 2 + α) (2m + α + 1 + β),

l3 = (m + 2 + α) (m + 1 + α) (2m + α + 2 + β) . (31)

In contrast to the right singular vector that satisfies no boundary conditions, the
left singular vector satisfies two: f (1) = f ′(1) = 0. This family of orthogonal
solutions can alternatively be written as �n = (1 − x)2 P(α+4,β)

n−2 (x).
In addition to these rather special right and left solutions, (28) also admits

solutions with one degree of freedom:

vT
0 (n) c(n) = μ (v0(n) ∗ v1(n))T c(n) , (32)

c(m)T u0(m) = −μ c(m)T (u0(m) ∗ u1(m)). (33)

The lowest order polynomial that allows for arbitrary μ is degree seven, with
the corresponding components of c given by

c1 = n (n + 2 + α + β) (2n + α + β) p(1)
4 (n; α, β, μ),

c2 = −(2n + 1 + α + β) p6(n; α, β, μ), (34)

c3 = (n − 1 + β) (n + 1 + α) (2n + 2 + α + β) p(2)
4 (n; α, β, μ) ,

where we use pk(n; α, β, μ) to denote an irreducible polynomial in n of
degree k.3

The expansion in (34) satisfies

2 (α + 1) (α + 3) μ f ′(1) + (
μ (α + 2 + β) (α + 3) − 1

)
f (1) = 0 ,

and hence allows for a boundary condition with an arbitrary linear combina-
tion of the function and its first derivative for any α, β > −1. The first element
in the set is

1 + 1 − μ (α + 3) (α + 2 + β)

μ (α + 3) (3 α + 4 + β) − 1
x .

3Note the identical form to that derived in Appendix B.
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Thus the general solution can deal with any single boundary condition in-
volving the function and its first derivative at x = 1. If instead two non-
degenerate conditions are specified, these must reduce to f (1) = f ′(1) = 0 that
is associated with the left singular vector. It is not possible to specify more
than two non-degenerate such boundary conditions. It is of interest to see
whether the general solution allows for boundary conditions of higher order.
Using (69), one finds that there is no simple relation of the second derivative
of the general solution to either the function or its first derivative, so boundary
conditions for an expansion of this order may not include f ′′. Moreover the
result for f ′′ cannot be made to vanish for any value of μ independent of n,
and hence even f ′′(1) = 0 is disallowed. This is consistent with the construction
given in Section 2.1 that a second-order boundary conditions requires N = 3.

The careful reader may have observed that there are, ostensibly, more than
three solutions of (27). For instance, one possibility is a right singular vector
for the first outer product and left for the second,

vT
0 (n) c(n) = 0 , c(m)T u0(m) = 0 .

However, this corresponds to μ = 0 (i.e., f (1) = 0), while the reverse relation

(v0 ∗ v1)
T(n) c(n) = 0 , c(m)T (u0 ∗ u1)(m) = 0 ,

satisfies (α + β + 2) f = 2(α + 1) f ′ = 0 and corresponds to μ → ±∞.
We lastly comment on the asymptotic behavior of these three distinct types

of solution. As n → ∞, the ratio of the coefficients in both (31) and (30) is
[1, −2, 1]. Additionally, it transpires that the same ratio applies to (34). Thus
in each case, �n ∼ P(α,β)

n (x), as indicated in the introduction. Higher order
corrections, which bear on the distinction between uniform convergence of
this limit in the interior and the nonuniform limit as x → 1, are discussed in
Section 5.

4.2 One-sided second-order boundary conditions

Paralleling the development above rapidly becomes algebraically involved but
wholly unexceptional insofar as the dependence on general (α, β) is concerned.
Consequently we restrict attention in this section to the Chebyshev case,
α = β = −1/2, since the main point here is the extension of general solutions
to higher order outer products and their relation to boundary conditions.

Second order boundary conditions correspond to N = 3, and the outer
product for the one-sided problem (boundary conditions only at x = 1) can
be written as:

A(3,0)
4 = 2

�(n − 5/2) �(m + 1/2)

�(n + 3) �(m + 1)

× [
(u0 ∗ u1) vT

0 + u0 (v0 ∗ v1)
T + (u0 ∗ u2) (v0 ∗ v2)

T] (35)
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where

ai, j =
∫ 1

−1
P(5/2,−1/2)

n+1−i (x) P(5/2,−1/2)

m+1− j (x) (1 − x2)−1/2 dx, i, j = 1, 2, 3, 4,

and, as before, we have assumed that there is only one boundary condition
(M = 1). The components are given by

u0 = 1

8
[(2 m + 5) (2 m + 3) (2 m + 1) , 2 m (2 m + 3) (2 m + 1) ,

4 m (2 m + 1) (m − 1) , 8 (m − 2) (m − 1) m]T ,

v0 = 1

1260
[(2 n − 5) (2 n − 3) (2 n − 1) , 2 (2 n − 5) (n + 2) (2 n − 3) ,

4 (2 n − 5) (n + 2) (n + 1) , 8 n (n + 1) (n + 2)]T ,

u1 = [m (m − 1) (m + 4) (m + 3) , (m − 1) (m − 2) (m + 3) (m + 2) ,

u2
1(−n), u1

1(−n) ]T ,

v1 = 21n [(n + 3) (n + 2) (n + 1) , (n − 1) (n + 2) (n + 1) , v2
1(−n), v1

1(−n) ]T ,

u2 = [42 − 18 m − 6 m2, 54 − 6 m − 6 m2, u2
2(−n), u1

2(−n) ]T ,

v2 = [(n + 2) (n + 1) , n (n + 1) , v2
2(−n), v1

2(−n) ]T ,

where u1, u2, v1 and v2 have the symmetry property that their individual
components satisfy wk(n) = w5−k(−n) for k = 1, 2, 3, 4. We use this for con-
cision in the expressions above. As in the previous case, there are right and
left singular vectors that correspond to, respectively, the Jacobi polynomials
P(−1/2,−1/2)

n (x) (satisfying no boundary condition) and (1 − x)3 P(11/2,−1/2)

n−3 (x)

(satisfying f (1) = f ′(1) = f ′′(1) = 0).
The general solutions admit two free parameters and fall into two categories

that we term “full” and “partial”. The former solutions are those satisfying

(u0 ∗ u1)
T c1(m) = μ1 uT

0 c1(m) ,

(u0 ∗ u2)
T c1(m) = μ2 uT

0 c1(m) ,

(v0 ∗ (v1 + μ2 v2))
T c1(n) = −μ1 vT

0 c1(n) , (36)

while the partial solutions satisfy

(v0 ∗ v1)
T c2(n) = μ1 vT

0 c2(n) ,

(v0 ∗ v2)
T c2(n) = μ2 vT

0 c2(n) ,

(u0 ∗ (u1 + μ2 u2))
T c2(m) = −μ1 uT

0 c2(m) .
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The distinction between these sets will shortly become apparent. They have
auto-orthogonal solutions

c1 =

⎛

⎜⎜
⎝

(2n − 5) (2n + 1)2 (2n + 3) (n + 1) p8(n)

−2 (2n − 1) (2n + 3) (n + 1) p10(n)

4 (2n + 1) (n − 1)2 p10(−n)

−8 n (2n − 1) (n + 2) (n − 1)2 p8(−n)

⎞

⎟⎟
⎠

c2 =

⎛

⎜
⎜
⎝

(2n − 5) (2n + 1)2 (2n − 3) p̃8(n)

−2 (2n − 1) (2n − 3) p̃10(n)

4 (2n + 1) (n − 1) p̃10(−n)

−8 n (2n − 1) (n + 2) (n − 1) p̃8(−n)

⎞

⎟
⎟
⎠

where the full solutions are listed on the left and the partial solutions on
the right. Note the antisymmetric pairing of the irreducible factors of degree
k denoted pk or p̃k, which depend on the two unknown parameters μ1, μ2.
Additionally, both c1 and c2 have coefficient ratios given by [1, −3, 3, −1] as
n → ∞. For the full solutions, we impose a second-order boundary condition
of the form

f (1) + λ1 f ′(1) + λ2 f ′′(1) = 0 , (37)

which results in the condition

2λ2 μ1 − 3λ1 μ2 + 126 (λ1 + 1) = 0 .

We can impose a second boundary condition of the same form, with constants
λ3, λ4, and are then led to

μ1 = 63(λ1 − λ3)

λ2λ3 − λ4λ1
, μ2 = 42

[
1 + λ2 − λ4

λ2λ3 − λ4λ1

]
. (38)

We write the first basis vector as 1 + c1 (1 − x) + c2 (1 − x)2 and enforce the
same boundary conditions hence

c1 = λ2 − λ4

λ2λ3 − λ4λ1
, c2 = λ1 − λ3

2(λ2λ3 − λ4λ1)
.

Lastly, we confirm that the general element is orthogonal to this, for which we
can use the simple result that
∫ 1

−1
(1 − x)k P(5/2,−1/2)

n (x)
dx√

1 − x2
= 2k �(k + 1/2) �(n + 1/2) �(n − k + 3)

�(3 − k) �(n + 1) �(n + 1 + k)
,

and indeed the orthogonality holds. It is notable that the four degrees of free-
dom in the boundary conditions given by λ1,2,3,4 collapse to just two parameters
μ1 and μ2 in (38), and means that any given basis function satisfies an infinite
number of conditions. However, this degeneracy only reflects that an arbitrary
linear combination of the given homogeneous boundary conditions must also
be satisfied and does not impose any additional constraints on the basis set.
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Turning now to the second class of solutions, those that we have termed
partial, in contrast with the full solutions, only one second order boundary
condition is satisfied, namely

f (1) − 42 μ2

μ1 + 42μ2
f ′(1) + 63

μ1 + 42μ2
f ′′(1) = 0.

Note here that only the trilinear combination vanishes in contrast with the
full solution where, because two linearly independent second order bound-
ary conditions are satisfied, we have the two independent relations f (1) =
42 f ′(1)/(42 − μ2) = 63 f ′′(1)/μ1.

The full and partial solutions augmented by the left singular vector span
every possible choice of boundary conditions at x = 1 up to and including
second order; additionally an expansion in any of these solutions converges
exponentially, as we discuss in Section 5.2.

4.3 The general case

We now remark on some general properties of the outer product representa-
tion for the one-sided case, and indicate how the proof of auto-orthogonality
for the cases N = 2, 3 might be extended to arbitrary N. We determine a
structure for the associated outer product representation and argue that an
understanding of how the outer product is composed is intimately linked to
the algebraic form of the one- and two-sided integrals.

4.3.1 The one-sided outer product

We begin by pointing out that, in the one-sided case, the right and left singular
vectors generalize in an obvious manner:

P(α,β)
n (x), (1 − x)N P(α+2N,β)

n−N (x). (39)

We show this in two stages: by demonstrating that such polynomials are
particular auto-orthogonal cases of (6), and then showing that each is, in
the relevant sense, a singular vector. The first property follows because both
define functions that are orthogonal with respect to the weight function
(1 − x)α(1 + x)β , and additionally may be expanded in terms of N + 1 coef-
ficients of Jacobi polynomials P(α+N,β)

i (x) of neighboring degree by using (64)
and (66). Additionally, they satisfy two additional identities:

∫ 1

−1
P(α+N,β)

m (x) P(α,β)
n (x)(1 − x)α(1 + x)βdx = 0, m < n, (40)

∫ 1

−1
(1 − x)N P(α+2N,β)

m−N (x) P(N+α,β)
n (x)(1 − x)α(1 + x)βdx = 0,

m − N < n. (41)
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To prove these, we note that in (40), P(N+α,β)
m (x) is a polynomial of degree m,

which can be expanded using (17) and the result follows by standard orthogo-
nality. In (41), we similarly expand P(α+2N,β)

m−N (x) as a sum over P(α+N,β)

i (x). An
immediate consequence is that, with m < n:

∫ 1

−1

⎛

⎝
N+1∑

j=1

c j P
(α+N,β)

m+1− j (x)

⎞

⎠ P(α,β)
n (x) (1 − x)α (1 + x)β dx = 0 ,

∫ 1

−1
(1 − x)N P(α+2N,β)

m−N (x)

(
N+1∑

i=1

ci P
(α+N,β)

n+1−i (x)

)

(1 − x)α (1 + x)β dx = 0 ,

so that the two sets of functions, represented in coefficient space as c = r or
c = l, do indeed effect the cancellation required in

cT(m) A(N,0)

N+1 c(n) = 0, (42)

and so define right and left singular vectors respectively. It follows that A(N,0)

N+1
must always be rank defective by one. Note that the asymmetric relation m < n
is consistent with that required in (14).

It is helpful at this point to slightly alter the notation of the preceding
sections in suggesting that the outer product expansion for the one-sided case
can be put in the general form

A(N,0)

N+1 = 
(m, n)

N−1∑

k=0

u(k)(m) v(N−1−k) T(n) (43)

where the vectors u and v must be representable in terms of “annihilators” of
l and r respectively, defined by

ũ(k) T l = 0 and ṽ(k) T r = 0, k = 0 . . . (N − 1),

respectively. We have already seen this in the preceding sections where (in
the former notation) both u(0)T and (u0 ∗ uk)T annihilate l and both v(0)T and
(v0 ∗ vk)T annihilate r, for k = 1, 2. With regard to notation, u and v are not to
be confused with the standard singular value decomposition. In particular, the
matrices are not unitary; it is readily confirmed from the forms in the previous
two sections that the vectors are not orthogonal.

For general N, we find a natural form for components of the first set of
annihilators with α = β = −1/2 to be:

ũ(k)

N+1− j = � (m + j + 1/2) � (m + j + σ) � (m + j + k − σ − N + 1)

� (m − N + j + 1) � (m + j + σ − k) � (m + j − σ − N + 1)

{
j = 0 . . . N,

k = 0 . . . (N − 1),
(44)
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for arbitrary σ . We argue that, up to an overall scale factor, each vector
u(k) in the outer product decomposition is composed of a particular linear
combination of these ũ(k). Though it is easy enough to recover the particular
results of the two preceding sections, this prescription must ultimately derive
from the properties of (14) but we have been unable to establish such a general
relation (except for u(0), which is found by setting k = σ = 0). Nonetheless,
this line of development does suggest the intimate relation between the index
recurrence relation (66) and the consequent form that the integral of the
product of the corresponding Jacobi polynomials must take, as we examine
next.

4.3.2 The two-sided outer product

In the two-sided case, the right and left singular vectors are the requisite
representations of

P(α,β)
n (x), (1 − x)N(1 + x)N P(α+2N,β+2N)

n−2N (x)

a fact that is easily proven by applying similar arguments as those for the one-
sided case above. As before, it follows that the matrix A(N,N)

2N+1 is rank defective
by one.

Similarly, (44) generalizes to

ũ(k)

2(N− j)+1

= �(m + 2 j + σ) �(m + 2 j + 2 N + k + 1 − σ) �(m + 2 j + N + 1/2)

�(m + 2 j + σ − k) �(m + 2 j + 2 N + 1 − σ) �(m + 2 j + 1)
,(45)

ṽ
(k)

2(N− j)+1

= � (n + 2 j + 2N + τ) � (n + 2 j + 1 − τ + k) � (n + 2 j + N + 1/2)

� (n + 2 j + 2N + τ − k) � (n + 2 j + 1 − τ) � (n + 2 j + 2N)
, (46)

ũ(k)

2 j = ṽ
(k)

2 j = 0,

{
j = 0 . . . N,

k = 0 . . . (N − 1),

again for arbitrary σ and τ . Note that the case of α = β is special in that each
of the left and right singular vectors has a definite symmetry and so in addition
to the above there is a complementary set of N vectors, for which the elements
with subscript 2 j are nonzero and those with 2 j + 1 vanish. Whichever set
is adopted, the matrix A(N,N)

2N+1 has a checkerboard pattern: alternate entries
are zero based on symmetry properties of the integral noted previously in
Section 3.

If mod (n + m, 2) = 0 we can partition the outer product expansion into
N products of linear combinations of the above and N products of linear
combinations of the complementary set. Alternately, if mod (n + m, 2) = 1,
then we have 2N mixed products, each with one vector a combination of
(45) or (46) and the companion a combination of the complementary set.
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But, while these annihilators appear to span the space containing the outer
products, here again we lack an algorithm that generates the appropriate linear
combinations.4 This is closely linked of course to the character of integrals in
Section 3, there deduced by Gosper’s general algorithm in lieu of an algebra
specific to Jacobi polynomials. A first step in this direction is to make use
of (45) and (46) with j = σ = τ = 0, from which it can be confirmed for
N = 2 . . . 5 that

∫ 1

−1
P(N−1/2,N−1/2)

m (x) P(N−1/2,N−1/2)
n (x)

dx√
1 − x2

= � (m + N + 1/2) � (n + N + 1/2)

m � (m + 2 N + 1) � (n + 1)

N−1∑

k=1

k∑

j=0

(−1) j+k

× ck, j� (m + k − j + 2 N + 1) � (n + j + 1)

� (m − k + j) � (n − j + 2 N)
(47)

for certain ck, j > 0, all of which have an elementary small prime factorization.
For k = N − 1 we find

cN−1, j = 2 �(N − j − 1/2)

�(N − j) �( j + 1) �(2 N − j − 1/2)
,

and we have therefore at last a partial analog of (14) in the statement

∫ 1

−1
P(N−1/2,N−1/2)

m (x) P(N−1/2,N−1/2)
n (x)

dx√
1 − x2

∼ 2 (−1)N−1

× � (m + N + 1/2) � (n + N + 1/2) � (m + 3 N) � (N − 1/2)

m� (m + 1 + 2 N) � (m − N + 1) � (2 N + n) � (N) � (−1/2 + 2 N)

× 4 F3

( [1 − N, n + 1, 1 − n − 2 N, 3/2 − 2 N]
[1 − m − 3 N, 3/2 − N, m − N + 1] ; 1

)
, (48)

valid as the leading order approximation for large m and n (and exact for N =
2). Evidently these results extend to all N. We hope to have a characterization
of the remaining ck, j in the near future and a proof that (13) reduces to (47) for
M = N and α = β = −1/2.

In the solution of (33) and (36), and the equivalent for v, it will be clear
that these linear equations partition into a homogeneous set independent of
μk and the remainder, consisting in coefficients of m from zero up to a degree
M given by the sum of the maximal degrees of c and u(0). The consequence

4Also one needs to extend the forms above to general (α, β) but this is probably not difficult.
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of this structure is that the highest powers of m in c are determined by a set
of linear equations without reference to boundary conditions. We can use this
fact in concert with the leading term in m from each of the outer products,
paralleling (36), to solve

n∑

j=0

�(m + 2 j) �(m + 2 j + 2 N + 1 + k)

�(m + 2 j − k) �(m + 2 j + 2 N + 1)
c2(N− j)+1 = 0, k = 1, . . . , N − 1 ,

(49)
as these must be satisfied by the full solution no matter what linear combi-
nations of (45) arise. This system determines a polynomial solution of degree
N − 1 given by

c2(N− j)+1 = c0 (−1) j (m + 2 j + N) �(m + 3 N) �(m + j + N) �(N + 1)

�( j + 1) �(N − j + 1) �(m + j + 2 N + 1) �(m + N + 1)
.

Multiplying out these factors gives

c2(N− j)+1 = c0 (−1) j
(

N
j

)
[
mN−1 + (N − 1) (5 N/2 − j) mN−2 + . . .

]
(50)

and from this �n ∼ P(−1/2,−1/2)
n in the interior is shown to hold for arbi-

trary N (see also the discussion in the next section). This solution has the
much stronger property that the sum of all of its coefficients vanish, that is∑N

j=0 c2(N− j)+1 = 0, but only the first two remain unchanged by additional
contributions from lower order terms appearing in the outer product. One
may reasonably anticipate that this result can be extended to all the partial
solutions, by using combinations of (45) and (46), and to arbitrary (α, β) by
generalizing these expressions for the annihilators. That is to say, a proof
of all the asymptotic aspects of these generalized orthogonal expansions for
arbitrary N appears within reach. But a proof that the solutions satisfy the
expected families of boundary conditions seems to require that we find first
the complete general outer product expansion and then the exact general
solution for c as a function of the μk, and this appears incomparably harder.
(By construction, of course, such solutions would be auto-orthogonal.)

Sidestepping the issue of outer product representation, for N = 2 we
used (21) directly to verify that the polynomials satisfying K1 f ′(1) +
f (1) = K2 f ′(−1) + f (−1) = 0 for α = β = −1/2 are auto-orthogonal. We
did the same for N = 3 for the set satisfying K1 f ′′(1) + K2 f ′(1) + f (1) =
K3 f ′′(−1) + K4 f ′(−1) + f (−1) = 0 again for α = β = −1/2 and using (22).5

We omit a fuller discussion of N = 2, 3 paralleling that in Sections 4.1 and 4.2
as no new features emerge in the two-sided case.

5The details of these sets are given in [12].
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5 The asymptotic properties of the basis sets

So far we have only mentioned the asymptotic properties of some of the exam-
ple basis sets in passing; here we expand on some of the general properties and,
in particular, make the link to the “quasi-Lp norm” part of the title. We start
by remarking that expansions in the Jacobi polynomials themselves, P(α,β)

n (x),
have the property of exponential convergence, so the difference between an
arbitrary function f and its spectral representation is given by the asymptotic
relation

∣
∣ f −

N∑

i=0

an P(α,β)
n (x)

∣
∣ ∼ aN+1 P(α,β)

N+1 (x), N → ∞. (51)

For special values of α = β the polynomials take on certain well-known
optimal properties. For α = β = −1/2 the right hand side is exactly equal
ripple and thus the representation of f in Chebyshev polynomials of the first
kind minimizes the L∞ error for N → ∞. Similar results hold for α = β = 1/2
and α = β = 0, which minimize the error in the L1 and L2 norms respectively.
We conjecture that all basis sets �n of Section 2 share the same asymptotic
property, i.e., they minimize the Lp error for the appropriate choices of α = β.
To show this requires that: (a) �n → P(α,β)

n (suitably normalized); and (b)
the spectral coefficients in the expansion of any suitable test function (that
is, one satisfying the same boundary conditions as the �n) converge to zero
exponentially. Given the latter result, we can substitute � for P in (51) and
then appealing to (a), the minimization in the Lp norm follows. We discuss
these two properties in turn.

5.1 The asymptotic form of �n

In the simplest two-sided case where the boundary conditions impose
that f (1) = f ′(1) = · · · = f (a−1)(1) = f (−1) = f ′(−1) = · · · = f (b−1)(−1) = 0
for given integers a, b , the associated orthogonal basis set and asymptotic
behavior is given by

(1 − x)a(1 + x)b P(α+2a,β+2b)
n ∼ c (−1)a2a+b P(α,β)

n+a+b (x). (52)

This result follows from [16, p. 194], Theorem 8.21.8 using the substitution x =
cos θ , thus demonstrating (a). For generalized boundary conditions we need a
specific value of N and for simplicity we use N = 2. Additionally, we fix α =
β = −1/2 although what follows generalizes easily to any α = β. The following
identity (easily proven by appeal to the Jacobi recurrence relation) is pivotal:

P(3/2, 3/2)
n (x) = 4 �(n + 5/2)√

π �(n + 4)

x Un+1(x) − (n + 2) Tn+2(x)

1 − x2
, (53)
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where Un and Tn denote Chebyshev polynomials respectively of the first and
second kinds. The most general boundary conditions for this set are

μ1 f ′(1) + (1 − μ1) f (1) = μ2 f ′(−1) + (1 − μ2) f (−1) = 0 .

The associated auto-orthogonal basis for n ≥ 3 is

�n(x) =
5∑

i=1

ci P(3/2,3/2)

n+2−i (x),

which is reasonably approximated in the interior by a two-term expansion of
the ci in n. Normalizing the coefficients so that c1 ∼ 1 as n → ∞, the expansion
assumes the form

�n ∼ 4√
π (1 − x2)

×
[(

1 + 12

n

)
(xUn+2(x) − (n + 3) Tn+3(x))

�(n + 7/2)

�(n + 5)

−
(

2 + 30

n

)
(xUn(x) − (n + 1) Tn+1(x))

�(n + 3/2)

�(n + 3)

+
(

1 + 18

n

)
(xUn−2(x) − (n − 1) Tn−1(x))

�(n − 1/2)

�(n + 5)

]
, (54)

and we remark that the boundary parameters μ1,2 do not appear until O(n−2).
Using the trigonometric form for the Chebyshev polynomials, it is easy to show
that terms from the above, up to and including order n−1, lead finally to

�n(x) ∼ 16 n5 �(n − 1/2)√
π �(n + 5)

[(
1 + 23

n
+ 16

n2

)
Tn+1(x) +

(
7

n
− 16

n2

)
x Un(x)

]
,

in which form the leading order departure from equal ripple behavior in the
interior is now explicit (thus (a) follows immediately) and this holds for all
boundary conditions within this set. Note that the reduction to two Chebyshev
polynomials free of the denominator of (1 − x2) only occurs if the sum of the
coefficients in (54) vanishes. This is true of the first two terms of the expansion
in n—thus relying on a sum identity satisfied by the expansion coefficients
beyond the leading binomial identity remarked earlier—but not thereafter, so
higher order corrections lack a correspondingly simple expression.

Near x = ±1, Un approaches (±1)n (n + 1), so the second term is then of
the same order as the first, consequently there is an order one departure from
equal ripple, which manifests itself as a Gibbs-type overshoot (as illustrated
in Fig. 1), which we do not analyze here. (This is easily done via local
expansions about each of x = ±1 by means of the 2 F1 representation of the
Jacobi polynomials, which brings the boundary conditions in immediately. A
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typical result is an overshoot of 1.0863 at x ≈ 1 − 14.1055/n2 for the basis set in
Appendix B with α = β = −1/2.) Intuitively, that the difference as x → ±1 is
O(1) is not surprising as �n satisfies boundary conditions there whereas P(α,β)

n+1
(in this case Tn+1) does not. The nonuniform limit for x → ±1 is the reason for
terming these expansions quasi-Lp norm.

Given c, the above analysis can be extended using the appropriate general-
ization of (53) (similar forms for specific N in the one-sided case are provided
in the appendix). The key is that, as in (50), elements of c always satisfy

ck+1 ∼ (−1)k
(

K
k

)
, k = 0 . . . K , (55)

where K = N + 1 or 2N + 1 for the one- or two-sided cases respectively,
and with a similar form for terms of order n−1. Property (a) then follows
immediately for the interior since the same asymptotic relations hold for
the expansion coefficients in the series that results after N iterations of the
index recurrence relation (66) for the one-sided case, or additionally with N
iterations of (67) in the two-sided case, to P(α,β)

n (x).

5.2 On exponential convergence

The basic argument for exponential convergence is elementary. We outline it
here using the “full” one-sided solution of Section 4.2, but again omit minor
technical considerations in the interest of brevity. Additionally we do not at-
tempt to find the sharpest classification of all functions for which the expansion
coefficients decay faster than algebraically but rather for the sake of simplicity
restrict the discussion to functions that have an absolutely convergent power
series about x = 1 with a radius of convergence rc > 2. While this excludes
some admissible functions, the gain in economy of exposition is worth it.

Assume we seek the expansion of a function f (x) that satisfies two arbitrary
second-order boundary conditions of the form (37):

f (x) =
∞∑

n=1

fn �̂(1)
n (x) ,

where we use the hat to denote a basis normalized according to (26). Using

fn =
∫ 1

−1
f (x) �̂(1)

n
dx√

1 − x2
(56)

we now introduce

f (x) = g(x) +
n−2∑

k=1

ak �̂
(1)

k , (57)
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where

g(x) ≡
(

f (x) −
n−2∑

k=1

ak �̂
(1)

k

)

,

a =

⎡

⎢
⎢
⎢
⎣

�̂1 �̂2 . . . �̂n−2

�̂ ′
1 �̂ ′

2 . . . �̂ ′
n−2

...

�̂
(n−1)
1 �̂

(n−1)
2 . . . �̂

(n−1)
n−2

⎤

⎥
⎥
⎥
⎦

−1 ⎡

⎢⎢
⎣

f (1)

f ′(1)

. . .

f (n−1)

⎤

⎥⎥
⎦ , (58)

(Matrix entries have their superscript label (1) suppressed to make room
for the derivative order.) While the matrix in (58) is n × (n − 2) and thus
apparently overdetermined, because we consider only functions f that satisfy
the same boundary conditions, we are assured that the second expression in
(58) in fact represents a consistent system with a unique solution.

Putting the second term in (57) in the integral in (56), the integral of the
product with �̂(1)

n vanishes by auto-orthogonality. Now we observe that the
first term in (57) has an expansion about x = 1 of the form

g =
∞∑

k=n

f (k)(1)

k! (x − 1)k . (59)

We interchange the order of summation and integration obtaining

fn =
∞∑

k=n

f (k)(1)

k!
∫ 1

−1
(x − 1)k �̂(1)

n
dx√

1 − x2
. (60)

To evaluate the integral we use the expansion

�̂(1)
n (x) ∼

√
2

π

[
Tn(x) − 7

n
(1 + x) Un−1(x)

]
(61)

valid away from x = ±1 (see Section 5), derived from c1 and (72), and the
integral formulae that

∫ 1

−1
(x − 1)k Tn(x)

dx√
1 − x2

= k
n

∫ 1

−1
(x − 1)k−1 Un−1(x)

√
1 − x2 dx

= π

2k

(−1)n+k �(2k + 1)

�(k − n + 1) �(k + n + 1)

∼ (−1)n+k 2k
[√

π

k
+ O(k−3/2)

]
(62)

for k ≥ n and zero otherwise. If �̂(1)
n were replaced by T̂n in (60), we would

be computing the Chebyshev expansion coefficients. This is readily verified
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using f (x) = 1/(x − 3) and therefore f (k)(1)/k! = −1/2k+1, along with (62),
which together then yield the correct (unnormalized) Chebyshev coefficients
of fn = −(1 + √

2)−2n/
√

2.
The key point is that while (61) is inaccurate at leading order for x → 1, the

factor of (x − 1)k in the integral turns this into an exponentially small error.
Using (61) in (60) then incurs only an algebraically small relative error in the
evaluation of fn. From this two term approximation we have

fn ≈
∞∑

k=n

f (k)(1)

k!
(

1 + 7

k

)
π

2k

(−1)n+k �(2k + 1)

�(k − n + 1) �(k + n + 1)
(63)

and here we see that the difference between the (normalized) Chebyshev
coefficients and those in the basis with �(1)

n amounts in leading order to simply
the correction factor of 7/k in the sum. So exponential convergence of the
latter expansion really derives from the same argument as that for coefficients
of the Chebyshev expansion of the same function. That is, by our initial
restriction of f , we know that f (k)(1)/k! is bounded by a constant times r−k

c
with rc > 2. Appealing to the asymptotic result in (62), the sum of the infinite
series has a controlling factor of at most exp(n ln(2/rc)). (As one can see from
the simple example above, this is generally too pessimistic an estimate, realized
only for a function f with a singularity on the real axis at x = 1 − rc.)

Lastly we remark that we have not addressed completeness of the basis
sets {�(1)

n }n=1,...,L. While they manifestly span the set of polynomials of any
specified finite degree that satisfy the given boundary conditions, a proof that
this continues to hold in the limit of infinite degree lies outside the scope of
this paper.

6 Extensions of auto-orthogonality

6.1 Orthogonality of polynomial derivatives

Making the functions orthogonal, as we have done, is transparently helpful
for expansions of many kinds. But this is not always the best way to approach
solutions of a differential equation, for which the resulting matrices involve
inner products of derivatives and may be full and poorly conditioned. Such
matrices, being defined by a Sobolev-type inner product, may be rendered
diagonal by using a modification of the canonical orthogonal polynomials (e.g.
[14]). However, the imposition of boundary conditions remains unaddressed
by the existing literature and we briefly discuss it here.

In [7] it is noted that an equation of order 2k in which the function and
its first k − 1 derivatives vanish at the endpoints, the boundary conditions are
automatically enforced by using

(
1 − x2

)k
P(k,k)

n (x)
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as the basis functions. This choice enjoys the further property that, owing to
the identity

dk

dxk

((
1 − x2

)k
P(k,k)

n (x)
)

= (−2)k �(n + 1 + k)

�(n + 1)
P(0,0)

n+k (x) ,

the “natural” projection of the equation leads to well-conditioned banded
matrices of width 2(k − j) + 1 for derivative terms of order 2 j, with j = 0 . . . k.
Moreover the explicit matrix entries are relatively easy to find, in the form of
rational polynomials in (k, n).

An extension of this given in [8] for a fourth-order operator satisfying

y(±1) = 0

β y′(±1) + (1 − β) y′′(±1) = 0 ,

is to use

(1 − x2) (1 − γ jx2) P(1,1)

j (x)

where

γ j = (1 − β) ( j2 + 3 j) + 2

(1 − β) ( j2 + 3 j + 8) + 2
.

While similar in spirit to the above, here the bandwidth is 2(k − j) + 3. Still, the
matrices remain well-conditioned for solutions carried to degree 1800 (where
the full problem involves two fields, one with the previous expansion and the
other with this last form). Again the matrix elements can all be determined
in closed rational form. (Useful details are given in Ierley and Worthing
(unpublished manuscript) where the same expansions are used for a two-
dimensional problem and resulting sparse matrices up to 8000 × 8000 pose no
roundoff problems.)

But, given the developments in this paper so far, it is natural to ask if
our algorithm can be extended, so that we impose orthogonality between
(d/dx)k �n(x) in place of that between �n, rendering the bandwidth of the
derivative operators again 2(k − j) + 1 rather than 2(k − j) + 3. The short
answer is yes, but seemingly only for the case α = β = 0. Additionally, as
the problems above will suggest, we have in mind here instances where a
differential equation of order 2N can, via repeated integration by parts, result
in projection matrices with derivatives up to order N appearing symmetrically.
This considerably restricts the class of admissible boundary conditions and also
is the reason for requiring that w(x) = 1. Ideally we might define orthogonality
(for a fourth order problem) by

∫ 1

−1
�(4)

n �m dx = 0

for n = m, rendering the projection of the highest derivative terms diagonal.
However, for generalized boundary conditions this does not generate an
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auto-orthogonal set. In spite of these restrictions, applications for (partial)
differential equations of this sort are common.

Consider a fourth order problem satisfying y(±1) = y′′(±1) = 0, where we
attempt to construct a basis set whose second derivatives are orthogonal.
According to Section 2.2 we require the sum of seven Jacobi polynomials for
each basis function. However let us assume, like the boundary conditions, that
the solutions have definite parity. Since P(α+N,α+N)

n (x) shares the same parity
as n, the even solution may then be written

4∑

k=1

ck P(1,1)

2(n+1−k)
(x),

where we are required to use y(1) = y′′(1) = 0 along with a single orthogonal-
ity condition to determine the four unnormalized ci. The construction above,
using N = 1 (rather than N = 3 given in Section 2.2) for the �n, ensures that
its second derivative is an equivalent sum with N = 3 (using 68) and thus in a
suitable form for auto-orthogonality. By extension, we may also ask for a basis
set whose third derivatives are orthogonal by setting N = 0, but it is clear that
we can go no higher than this. The (unnormalized) first basis element is

(1 − x2) (5 − x2) ,

and the auto-orthogonal solutions are given by

c1 = −(n + 1) (n − 1) (2n − 3) (4n − 7) (4n − 5) ,

c2 = n (6n2 − 11n + 10) (4n − 7) (4n − 1) ,

c3 = −(n − 1) (6n2 − 7n + 7) (4n − 5) (4n + 1) ,

c4 = n (n − 2) (2n − 1) (4n − 1) (4n + 1) .

In this instance it happens that the result can be reduced (modulo an overall
scaling factor) to

n (4n − 1) (2n − 1) P2n−4(x) − (4n − 3) (4n2 − 6n + 5) P2n−2(x)

+(4n − 5) (n − 1) (2n − 3) P2n(x) .

While all of the material in the preceding sections can be exploited consider-
ably more in this direction, we leave the matter here in the interest of brevity.

6.2 Infinite domains

On the Laguerre interval [0, ∞] one also encounters auto-orthogonality, e.g.
for the one-sided boundary condition ψn(0) = 0, we have for ψ1 = x and,
appealing to the associated Laguerre polynomials to define

ψn(x) = n L2
n(x) − (n + 2) L2

n−1(x) ,
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that
∫ ∞

0
ψn ψm x e−x dx = δn,m ,

where the kernel is that for L1
n(x). Similar results extend to the general

Laguerre kernel of argument xk.
As with all the earlier examples in this paper, so too here it is immediate

that the coefficients assume the limiting Pascal form (of [1, −1]) and it follows
that the asymptotic limit of ψn(x) as defined above is nL1

n(x) as expected.
Moreover, this generalizes immediately to, e.g., a Robin boundary condition
of

(1 − μ)ψn(0) + μψ ′
n(0) = 0,

with an associated three-term expansion of the form

ψn(x) =
2∑

k=0

ck(n; μ, α) L2+α
n−k(x),

for an orthogonality relation
∫ ∞

0
ψn ψm xα e−x dx = δn,m .

While for limitations of space we do not explore this any further, it is evident
that the auto-orthogonality principle is equally applicable and hence, although
our prior approach to the proof by means of annilator algebra might have
appeared confined to the specific case of 2 F1, it is perhaps not surprising it
should apply to the confluent (Laguerre) case of 1 F1. By the same token, one
can reasonably anticipate that auto-orthogonality extends upward to the case
of the “little q-Jacobi” polynomials

pn(x; α, β | q) = 2φ1

(
q−n, αβ qn+1

αq

∣
∣
∣∣q; qx

)

[10]. A necessary first step is establishing the equivalents of (14) and (48) in
terms of 4φ3.

7 Discussion

The results of this paper may be summarized in two observations. First, the
Gram-Schmidt procedure with weight (1 − x)α (1 + x)β generates orthogonal
polynomials with leading order asymptotic properties for the interior appar-
ently independent of the linear homogenous boundary conditions imposed.
Absent any boundary conditions, the conventional basis set {P(α,β)

n } provides
exponentially convergent spectral expansions. Based on the proof of this
property for the one-sided solution in Section 5.2, we suggest that the Galerkin



564 Numer Algor (2010) 54:533–569

basis, {�n}, always exhibits exponential convergence in the quasi-Lp norm for
expansion of an arbitrary function satisfying the requisite boundary conditions,
where p = 1, 2, ∞ when α = β take the values 1/2, 0, and −1/2 respectively.
Second, the �n may be written as a sum of a small number of Jacobi polyno-
mials (the precise number dictated by the form of the boundary conditions)
whose coefficients are determined by requiring orthogonality to only the first
few basis functions, with auto-orthogonality following.

We have been able to prove auto-orthogonality and the admissible class of
boundary conditions only for specific cases. But if one accepts the method pro-
vided in Section 2, given any α, β, a basis set satisfying any linear homogeneous
boundary conditions can be constructed. One can always check, a posteriori
that the set is orthogonal and has the expected asymptotic properties. While
the lack of a more general result thus makes little difference for practical
application, yet there is apparently a deep algebraic structure associated with
the weighted integrals of products of Jacobi polynomials that underlies the
results in this paper, but whose most general expression has eluded us. In the
one-sided case, we have a suitable form for the integral (14) and one requires
only to relate this to the construction of the general outer product. From
that result one should be able to prove (55) holds for the associated proper
solution vector. For the two-sided problem we lack a complete equivalent to
(14) beyond the leading order result provided in (48).

In a companion paper [11], we supply further numerical results on the use
and implementation of Galerkin basis functions, with numerous specific cases
of auto-orthogonal basis sets that satisfy a variety of physically motivated
boundary conditions given in [12]. From a numerical perspective, there re-
mains the issue of the accurate computation of �n, whose value particularly
near x ± 1 is effected, for instance in the two sided case, by a delicate cancel-
lation between the P(α+N,β+N)

n (x), which are individually O(nα+N). However,
notwithstanding any better algorithm, the basis functions and any associated
derivatives may be computed on any discrete set of grid points using computer
algebra at high precision and saved to disk. This simply replaces the precompu-
tation of basis functions in the numerical code itself that is required to perform
“slow” matrix-vector multiplications, a necessity of the current lack of a fast
(stable) Jacobi transform.

That we are the first (to our knowledge) to describe the construction and
analysis of auto-orthogonal polynomials, given their obvious utility, is on the
one hand unexpected. However, given the reliance of the proof on rather
obscure non-canonical weighted integrals of products of Jacobi polynomials,
it is perhaps not entirely surprising. Given this, the reader may wonder how
we embarked upon this study. Our starting point was the construction of
orthogonal functions with weight (1 − r2)−1/2 on the domain r ∈ [0, 1] that
satisfied boundary conditions only at r = 1 and that were of the form �n(r) =
rl p(2r2 − 1) where p is some polynomial and l is a given positive integer. Such
functions are relevant to the representation of functions in the radial variable
r both in cylindrical and spherical polar coordinate systems [3]. Such a basis
set is obtained from the general one-sided construction with x = 2r2 − 1 and
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α = −1/2, β = l − 1/2, and is probably the most obvious application of the
one-sided case.

The issue of conditioning of these basis sets is of not only considerable
theoretical interest, but also of practical significance. For a discretisation of,
e.g., a second-order differential equation, of primary importance is the scaling
(with n, the truncation) of the condition number of the matrix A defined by
the elements

Ai, j =
∫ 1

−1
ψ ′′

i (x) ψ j(x) (1 + x)β (1 − x)α dx.

For Galerkin basis sets that are orthogonal (as described in Section 2) this
matrix is dense and, based on empirical tests, has a (2 norm) condition
number that typically scales as O(n4). Though one finds the same for a
naive Galerkin basis set of recombined Chebyshev polynomials, similar to
the examples in Section 1, this simple comparison should not be taken as
a definitive statement on relative accuracy of the two approaches; a simple
model problem considered in [11] illustrates that the Jacobi basis proposed
here may still yield significantly greater accuracy. Nonetheless, the generic
scaling with n4 does point to the desirability of other orthogonal formulations.
Minimally, one would prefer where possible that the matrix A be symmetric
for optimal conditioning. While this is quite restrictive, it does include some
very important practical cases, of particular note the diagonal form of the
Laplacian in spherical coordinates, as discussed in detail in [11].

A more robust prospect of improved conditioning is some form of derivative
orthogonality, as in Section 6, yielding not necessarily symmetric, but at least
sparse, matrices of minimal bandwidth. A glimpse of what may be possible
in that direction can be seen in [4], who show that, in the case of a biharmonic
operator subject to f (±1) = f ′(±1) = 0, a very remarkable advance is possible
also using linear combinations of Jacobi polynomials (Eq. 3.4 in their paper).
With the restriction α = β these polynomials are quasi-orthogonal where the
matrix with elements defined by

Bi, j =
∫ 1

−1
ψ ′

i (x) ψ ′
j(x) (1 + x)α (1 − x)α dx

is tridiagonal. This formulation leads to an amazing result that, by a judicious
choice of preconditioner, the condition number for the problem remains
O(N) and the complexity of the solver is O(Nd+1) in d dimensions. How
far generalization of this to what we might term “quasi-auto-orthogonality”
for arbitrary boundary conditions and order may be possible is a fascinating
prospect, but one necessarily the subject of future work.
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Appendix A: Properties of Jacobi polynomials

We make use of the following identities satisfied by Jacobi polynomials (see
[13], p. 276)

(2n + α + β + 2)(1 − x)P(α+1,β)
n = 2(n + α + 1)P(α,β)

n − 2(n + 1)P(α,β)

n+1 , (64)

(2n + α + β + 2)(1 + x)P(α,β+1)
n = 2(n + β + 1)P(α,β)

n + 2(n + 1)P(α,β)

n+1 , (65)

(2n + α + β)P(α−1,β)
n = (n + α + β)P(α,β)

n − (n + β)P(α,β)

n−1 , (66)

(2n + α + β)P(α,β−1)
n = (n + α + β)P(α,β)

n + (n + α)P(α,β)

n−1 , (67)

dk

dxk
P(α,β)

n (x) = �(α + β + n + 1 + k)

2k �(α + β + n + 1)
P(α+k,β+k)

n−k (x) . (68)

For imposing boundary conditions, we make use of the following:

dk

dxk
P(α,β)

n (x) |x=1 = 2−k �(n + k + α + β + 1) �(n + α + 1)

�(n + α + β + 1) �(k + α + 1) �(n − k + 1)
, (69)

dk

dxk
P(α,β)

n (x) |x=−1 = (−1)n−k 2−k �(n + k + α + β + 1) �(n + β + 1)

�(n + α + β + 1) �(k + β + 1) �(n − k + 1)
.

(70)

Lastly, the following identities are helpful in verifying the asymptotic equal
ripple interior of the one-sided solutions for α = β = −1/2

(1 − x) P(3/2,−1/2)
n (x) = �(n + 1/2)√

π �(n + 2)

× [−2 (n + 1) Tn+1(x) + Tn(x) + x (Un(x) + Un−1(x))
]

(71)

(1 − x)2 P(5/2,−1/2)
n (x) = �(n + 1/2)√

π �(n + 3)

× [
(2 n − 1) (n + 2) Tn+2(x)−(2 n + 7) (n + 1) Tn+1(x)

+3 x (Un+1(x) + Un(x))
]

. (72)
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Appendix B: A simple generalized basis set

We present the full details of a basis set for [−1, 1] satisfying the boundary
condition μf ′(1) + (1 − μ) f (1) = 0. The first element of the basis set is the
lowest order polynomial that can satisfy the boundary condition:

�1 = 1 + x(μ − 1) = −μ(2 + α − β) − 2α − 6

4 + α + β
+ 2(μ − 1)

4 + α + β
P(α+2,β)

1 (x). (73)

By assuming �n is of the form

�n(x) = c1(n)P(α+2,β)
n + c2(n)P(α+2,β)

n−1 + c3(n)P(α+2,β)

n−2 , n ≥ 2 (74)

we may find {c1, c2, c3} up to a multiplicative constant using (15) to impose

∫ 1

−1
�1 �n(x) (1 − x)α (1 + x)β dx = 0,

and (69) to impose the boundary condition in n-space. The solution is

c1(n) = n (n + 2 + α + β) (2n + β + α) p(1)
4 (n), (75)

c2(n) = −(2n + 1 + β + α) p6(n), (76)

c3(n) = (n − 1 + β) (n + α + 1) (2n + 2 + β + α) p(2)
4 (n). (77)

where pi(n) are polynomials in n of degree i given by

p(1)
4 (n) = (α + 1)

(
9 μ2α2 + 4 α2−12 α2μ − 56 μα + 6 μ2α β + 39 μ2α − 4μβ α

+ 20 α + 24 − 12 μβ + 38 μ2 − 60 μ + 15 μ2β + μ2β2
)− nμ (α + β)

× (−4 α2 + 6 α2μ + 2 μβ α + 22 μα − 16 α − 12 + 16 μ + 3 μβ
)

+ n2μ
(−3 μβ + 2 μβ α − 22 μα + 2 α2μβ + α3μ + 2 μβ2 − 16 μ

− 4 α2μ + 16 α + μβ2α + 4 α2 + 12
)

+ 2 n3μ2 (α + 2) (α + β) + n4μ2 (α + 2)

p6(n) = 2 (−1 + μ) (α + 3) (α + 2) (α + 1) (2 + α + β)

× (3 μα − 2 α + μβ + 2 μ − 2)

− n (α + β + 1) (5 μ2α4 − 4 α4μ − 8 α3μ − 4 α3μβ + 23 μ2α3

+ 6 μ2α3β − 8 α3 + μ2β2α2 + 26 μ2α2β − 48 α2 − 16 α2μβ

+ 12 μ2α2 + 52 α2μ + 3 μ2β2α − 88 α − 52 μ2α + 152 μα − 12 μβ α

+ 28 μ2α β + 96 μ − 48 − 48 μ2 + 4 μ2β2 + 8 μ2β)
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+ n2(48 − 66 μ2α3 + 88 α − 72 μ − 72 μα + 48 μβ + 124 μβ α

+ 32 μβ2α − 46 μ2α − 8 μ2α4 + μ2β3α + 48 α2

− 11 μ2α3β + μ2β3α2 − 72 μ2β + 12 α4μ − 36 μ2β2 + μ2α5

+ 20 α3μβ + 3 μ2β2α3 + 56 α3μ + 96 α2μβ − 35 μ2β2α

− 2 μ2β2α2 + 44 α2μ + 16 μ2 − 117 μ2α2 + 3 μ2α4β + 24 μβ2

−101 μ2α2β − 159 μ2α β + 8 α3 + 8 μβ2α2)

+2 n3μ (α + β + 1)
(
2 α3μ + 8 α2 − α2μ + 3 α2μβ + 7 μβ α

− 29 μα + 32 α + μβ2α − 30 μ + 2 μβ2 + 4 μβ + 24
)

+ n4μ
(
13 α2μβ + 24 + 37 μβ α + 7 α3μ + 8 α2 + 6 μβ2α + 32 α

+ 12 μβ2 − 4 μα + 19 α2μ − 20 μ + 24 μβ
)

+ 6 n5μ2 (α + 2) (α + β + 1) + 2 n6μ2 (α + 2)

p(2)
4 (n) = 4 (−1 + μ)2 (α + 3) (α + 2) (α + 1) − nμ (2 + α + β)

× (
4 α2μ − 4 α2 − 16 α + 16 μα − μβ − 12 + 12 μ

)

+ n2μ
(
12 + μβ2α + 2 α2μβ + 8 μβ α + 4 α2 + 2 μβ2 + 16 α

− 4 μα + 2 α2μ − 4 μ + α3μ + 9 μβ
)

+ 2 n3μ2 (α + 2) (2 + α + β) + n4μ2 (α + 2)

Orthogonality can be proven by making use of (15) assisted by computer
algebra. Note also that the ci take on the ratio [1, −2, 1] as n → ∞. In the
particular case of μ = 0, both p(1)

4 and p(2)
4 reduce to a constant and p6 reduces

to a polynomial of degree two. When μ = 1, each ci has a common factor of
n (n + 2 + α + β), which can be removed, leaving the resulting expressions as
polynomials of degree five.
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