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New Approaches
to Diagnosing Sleep-

Disordered Breathing

Scott A. Sands, PhDa,b,*, Robert L. Owens, MDc,
Atul Malhotra, MDc
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KEY POINTS

� Home sleep testing is now widely used.

� Advanced analysis of respiratory sounds, electrocardiogram, and body movements will likely
enable widespread screening for sleep-disordered breathing.

� Semi-automated scoring algorithms will reduce the resources required and improve consistency of
diagnoses.

� Personalized sleep medicine will approach actuality as noninvasive methods reveal sleep apnea
mechanisms, allowing clinicians to determine what options are best suited for individual patients.
DETECTING THE PRESENCE OF EVENTS:
DIAGNOSTIC AND SCREENING TECHNOLOGY

In-laboratory diagnostic polysomnography has
traditionally been the gold standard for obstruc-
tive sleep apnea (OSA) diagnosis, but the high
prevalence of disease and the massive number
of patients at risk of disease cannot reasonably
be diagnosed at in-laboratory facilities. Peppard
and colleagues1 conservatively estimated that
10% of the US population has clinically important
OSA, suggesting more than 30 million people
afflicted with OSA in the United States alone.
Clearly, many more are at risk of OSA or have
more mild disease. Heinzer and colleagues2
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used gold-standard techniques in Switzerland
and estimated up to 50% of men had some
degree of clinically important apnea. Thus, the
use of new technology to detect respiratory
events (without the need for cumbersome and
expensive in-laboratory testing) is an important
step forward. Home sleep testing (HST) provides
acceptable diagnostic sensitivity and specificity,
although most technologies cannot distinguish
wake from sleep, non-rapid eye movement
(NREM) from rapid eye movement (REM) sleep,
or supine from lateral posture. As a result,
clinicians get only partial information when deter-
mining therapy.
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Home Sleep Testing

HST has been used widely around the world and
has recently increased in popularity in the United
States. The factors driving home testing are
primarily financial given the realization of the
massive numbers of patients who may need to
undergo testing and the data suggesting a satis-
factory clinical result can be obtained using a
HST approach. Several randomized trials were
completed that compared the results of HST plus
in home auto-titration positive airway pressure
(PAP) therapy versus usual care via in-laboratory
polysomnography or split night testing.3–9

Although still the topic of debate,10,11 the data in
aggregate support a home testing approach
suggesting equal if not better outcomes using
home testing as compared with the traditional
approach. An important caveat, however, is that
most studies have carefully screened for patients
at risk for moderate to severe OSA and studied pa-
tients without comorbid medical disorders (eg,
chronic obstructive pulmonary disease, heart fail-
ure, obesity-hypoventilation, opioids for chronic
pain).
A variety of devices are available for HST, each

with potential strengths and weaknesses. In gen-
eral, simple equipment provides fewer channels
and potentially less data to interpret, whereas
more complex equipment can record multiple
channels but can be more cumbersome to use
and interpret. The authors think that the number
of channels on a given device is less relevant
than the sensitivity and specificity of the device
and the clinical outcomes that a given device can
achieve. Thus, the classification system based
on number of channels, for example, level 2 versus
level 3, is not particularly helpful.
Given the appropriate reliance on home testing,

many subtleties are worth mentioning:

a. Given that home testing rarely monitors body
position in a robust manner, positional therapy
becomes hard to implement in the HST era.
Positional therapy can be useful for patients
who are intolerant of continuous positive airway
pressure (CPAP) or as an adjunctive therapy in
patients with partial response to therapies such
as weight loss or oral appliance therapy. Thus,
in-laboratory testing or other methods of posi-
tion monitoring may have a role for select
patients.

b. Respiratory events may have varying impact
depending on whether they occur during REM
sleep versus NREM sleep. Because REM sleep
is characterized by physiologic variability,
some have argued that respiratory fluctuations
during REM sleep may not have major
consequences. On the other hand, some
recent data do support clinically important
impact of respiratory events during REM
sleep.12,13 Moreover, some patients experi-
ence profound desaturations during REM
sleep, presumably as a result of skeletal muscle
atonia in accessory respiratory muscles. These
profound desaturations are unlikely to be phys-
iologic and thus likely require therapy. As a
result, CPAP therapy is often prescribed for
both REM and NREM events, making the
distinction during diagnostic testing between
these 2 states less important clinically.

c. Because most HST devices do not monitor
sleep, the devices work on the assumption
that the total recording time is actually the
total sleep time, that is, that the patient sleeps
100% of the night. As a result, the apnea
hypopnea index (AHI) as judged by HST can
underestimate the actual AHI, particularly
among patients with reduced sleep efficiency.
For example, a patient with 50% sleep effi-
ciency who has an AHI of 4/h may actually
have an AHI 5 8/h if the impact of poor sleep
quality was addressed. Thus, the interpreta-
tion of HST must be made cautiously in pa-
tients with comorbid insomnia or in patients
who report poor sleep quality during the
recording.

d. When sleep is not monitored, the HST-reported
AHI may underestimate hypopneas that termi-
nate as arousals from sleep. In particular,
younger and leaner patients who have normal
cardiopulmonary function (ie, normal lung
volume, alveolar-arterial gradient), and thus
less prone to oxygen desaturation for any given
reduction in airflow, may not exhibit frequent
(eg, >3%) desaturation events but may still
have sleep fragmentation. These events may
not meet criteria because arousals cannot be
scored on most home devices. Home devices
that do assess sleep stages and arousals may
thus have additional value over those that
ignore sleep staging.
Novel Approaches to Screening and
Monitoring Sleep Apnea

For the large-scale screening for sleep apnea,
even the most accurate HST is limited because
of the availability of equipment. For longer-term
monitoring of sleep apnea, in the era of patient-
directed health management, the requirement
for sensors to be placed on the body is an
additional limitation. Novel screening ap-
proaches typically do not measure directly the
key features of sleep apnea (airflow, oxygen
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levels, electroencephalogram [EEG] arousal) but
instead rely on surrogate measurements with a
reduction in accuracy as a tradeoff for broader
applicability.

Snoring and breathing sounds
Many patients with OSA present initially with
witnessed abnormal breathing sounds such as
snoring and gasping at night. On the basis that
OSA is audible, researchers suspect that sleep ap-
nea might be identifiable by listening to at-risk pa-
tients breathe during sleep. Evidence to date
suggests that indeed sleep apnea may be distin-
guished from nonapneic snoring by variations in
snoring sound intensity with cyclic apneas and
hypopneas. Harnessing this information with the
recording and advanced analysis of respiratory
sounds is arguably the most promising approach
to large-scale screening for sleep apnea. Given
the broad availability of mobile telephone devices
with sufficient computational power and micro-
phones, the current challenge lies in the develop-
ment, implementation, and validation of robust
tools to screen for sleep apnea that are applicable
in the home and effective across device platforms.
Although no such validated approach currently ex-
ists, investigators are enthusiastically developing
this technology.

A popular approach has been to examine
several candidate features of snoring/respiratory
sounds across the night and use these in statistical
models to select the most useful features to pre-
dict (yes or no) whether a patient has sleep apnea
(based on concurrent gold-standard polysomnog-
raphy recordings).14 A potential limitation of this
approach is that apneas/hypopneas are not iden-
tified on an event-by-event basis, but by global
features that correlate with OSA. A more powerful
approach may be to identify which features specif-
ically relate to individual respiratory events. In this
context, a relatively simple approach to event
detection, used by Nakano and colleagues,15

made use of the concept that apneas/hypopneas
are generally accompanied by relative dips and
surges in sound power. Using a mobile smart-
phone placed on the chest, the frequency of
3-dB dips in time-averaged sound power
(50–2000 Hz, 20-second averaging time) were
counted and compared with the frequency of
OSA events, yielding a relatively accurate means
to screen patients for sleep apnea (r 5 0.94,
receiver operating characteristic area 5 0.92).
Importantly, this accuracy was achieved in a sleep
laboratory, without the influence of sounds from a
bed partner or the home environment. Although
the challenges of unsupervised use outside the
laboratory setting have not yet been overcome,
the use of snoring sounds as a screening tool
has tremendous potential. Central apneas are
likely to represent a separate challenge because
their sound characteristics are presumably quite
different from those of OSA. Future methods may
use multiple sound features to identify individual
respiratory events more accurately.

Electrocardiogram
The recording of electrocardiograms (EKG) via
Holter monitors or implantable cardiac devices is
used extensively in the diagnosis and monitoring
of cardiovascular diseases. Given that sleep
apnea promotes cardiovascular disease, and
vice versa, screening for sleep apnea in this at-
risk population is of major interest. Fifteen years
ago, Physionet and Computers in Cardiology
proposed a challenge to the field to develop tech-
niques to detect sleep apnea on an epoch-
by-epoch basis, and to classify individuals as
apneic or nonapneic using EKG alone.16 The
resulting methods, and those developed there-
after, have illustrated that the EKG provides a
rich source of information for the identification of
individuals with likely sleep apnea.

The EKG signal varies with respiration in 2
primary ways. Tidal respiration increases lung
volume and the increased thoracic gas volume,
thereby raising the thoracic electrical impedance,
and in turn, reducing the amplitude of the EKG
signal; alterations in the axis of the heart relative
to the electrodes may play a further role. Thus,
tracking the amplitude of the QRS complex across
breaths (EKG-derived respiration) provides a
means to observe the cyclic changes in tidal
volume that characterize sleep apnea.17 Heart
rate also varies in a cyclic manner in concert with
the sleep apnea cycle and provides additional in-
formation that can be used for sleep apnea
screening18,19; day-night differences in heart rate
variability may also be of utility.20 Combined fluc-
tuations in heart rate and EKG amplitude can yield
surprisingly accurate classification of sleep
apnea.17,19,21,22 Further research is required, how-
ever, because it remains uncertain whether the
available methods have utility across patients
with a variety of cardiovascular comorbidities
and accompanying differences in cardiac rhythm
(eg, ectopic beats), heart rate variability, or the
presence of paced beats (eg, in heart failure).23

Motion detection
The use of accelerometers to quantify motion has
becomewidespread in the last decade acrossmul-
tiple fields. Since the 1990s, motion detection in the
form of an actigraph worn most commonly on the
wrist has been used to assess rest periods
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(presumed sleep) in the field of sleep.24 For the pur-
pose of sleep apnea diagnosis, however, actigraph
determination of sleep duration may not provide
much additional accuracy when coupled with HST
devices (number of events per hour of sleep),25,26

possibly given difficulties detecting arousals or
wakefulness within an extended sleep period.27

Nevertheless, motion detection may be applied to
assess the dynamic respiratory movements and
screen for sleep-disordered breathing.28,29

AUTOMATED AND COMPUTER-ASSISTED
SCORING TECHNOLOGY

Sleep technicians have generally scored
in-laboratory polysomnographic recordings manu-
ally. With the move toward home testing, there is
less of a need for sleep technicians to perform
manual scoring of sleep. Home testing devices
have automated algorithms in some cases that
are reasonably accurate, although review of raw
data can often be revealing in the context of arti-
facts. Efforts to make in-laboratory polysomnogra-
phy more useful have included attempts to garner
more information than just the AHI and have
involved efforts to automate or partially automate
scoring of the data.
The automated versus manual approaches have

associated risks and benefits. Proponents of the
automated approach cite data regarding reproduc-
ibility of computer algorithms versus human judg-
ment. In addition, human fatigue during scoring is
not an issue with automated approaches. More-
over, automated systems can be considerably
faster and cheaper than human technicians, allow-
ing scalable approaches to be applied to large
numbers of patients. Proponents of manual
approaches point to the existing gold standards,
which have been used to develop current guide-
lines. In addition, human experience can be valu-
able because artifacts that can be identified easily
by inspection may “fool” computer algorithms if
not adequately trained. Some have also argued
that loss of employment for sleep technicians may
have a major detrimental effect on the field, even
though their efforts could perhaps be redirected
to assisting with follow-up and PAP adherence. As
the automated algorithms improve, they are being
gradually adopted clinically, although the utility of
human judgment and experience is still valued.
Thus, semi-automated or computer-assisted tech-
niques for scoring sleep studies are likely to
become the standard in the future.

Sleep State and Arousals

Computational measurement of EEG has long
been used to stage sleep and detect arousals.
Most commonly, methods have used EEG
spectral analysis. Here two papers are briefly high-
lighted. In a small number of participants, Asyali
and colleagues30 demonstrated that arousals
from sleep could be detected automatically using
absolute beta power (16–25 Hz), an EEG fre-
quency range that was preferable in comparison
to lower frequency bands (delta, theta, alpha).
Recently, Younes and colleagues31 quantified
EEG power in 3-second epochs and assigned
each epoch 4 values based on the delta, theta,
alpha, and beta powers (in deciles). For each com-
bination of EEG power deciles (from [0, 0, 0, 0]
to [9, 9, 9, 9], lookup tables are proprietary,
not provided), the likelihood of occurring
during technician-scored wake was calculated.
These values have been validated to predict sleep
or wake with high accuracy versus traditional
30-second technician-scored epochs. The
method has been incorporated into a system to
both stage polysomnographic studies and score
respiratory events.32 A potential weakness of
both approaches is the reliance on absolute EEG
power, such that a smaller amplitude signal, for
example, due to electrical properties of the scalp
or lead impedances, will reduce the EEG power
in all bands and thereby affect the estimated sleep
stage. The authors expect further development of
proprietary and publicly available techniques to
robustly quantify sleep using computational anal-
ysis of the EEG in the coming years.
Respiratory Events

Compared with the detection of sleep stage, auto-
mated assessment of respiratory events appears
relatively straightforward. However, several major
impediments remain. First, apneas and hypo-
pneas are defined typically as a 30% and 90%
reduction in airflow from a preceding baseline level
(noting that signal amplitude may drift overnight if
airflow sensors are not maintained precisely
in place). Nevertheless, during cyclic breathing,
there is no clear baseline level. Thus, manual
scorers and automated systems will vary simply
because of the use of different definitions of base-
line respiration. Novel approaches are needed to
ascertain what baseline eupneic ventilation is
(eg, the ventilation that maintains normal arterial
blood gases). Second, respiratory events are usu-
ally assessed using nasal pressure rather than true
airflow via a pneumotachograph and full facemask
(or nasal mask with the mouth confirmed to be
closed). Nasal pressure (Pnasal) is related to true
ventilation (Vflow) via an approximately square
relationship (Pnasal z k.Vflow2) with different
coefficients for inspiration and expiration.33
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Some systems use a square-root transform of
nasal pressure to approximately linearize the
signal to better relate to the relative changes in
Vflow. This approach, however, may overestimate
the flow signal at small amplitudes such that
further improvement is warranted. Third, the clas-
sification of apneas and hypopneas as either
obstructive (flow is reduced due primarily to upper
airway narrowing) or central (due to reduced neural
drive) remains a major challenge. In the absence of
measures of diaphragm electromyogram or
esophageal/epiglottic pressure, manual scorers
rely on nuances in nasal pressure flow morphology
(flattening, scooping, flutter, increase in inspiratory
time), or phase shifts or paradox seen between the
thoracic and abdominal belts, to determine
whether a hypopnea is obstructive rather than
central. Automation of these methods is still in its
infancy.34
APPROACHES TO DIAGNOSING SLEEP APNEA
PATHOPHYSIOLOGY FOR GUIDING
TREATMENT DECISIONS

Personalized medicine has become a major
source of discussion for many diseases, including
OSA. Recent evidence has supported the notion
that many mechanisms underlie OSA and that
identification of these underlying endotypes can
help to individualize therapy for a given individual.
OSA is now recognized to be a disease of
anatomic compromise with variable underlying
pathophysiological mechanisms, including
compromised upper airway dilator muscle activity,
unstable ventilatory control (elevated loop gain),
and low arousal threshold, among others. At least
in theory, therapies to address these underlying
mechanisms may be particularly effective in
resolving apnea. Some patients may have multiple
underlying mechanisms, in which case combina-
tion therapies would be predicted to eliminate ap-
nea. For example, patients that compromise
primarily at the level of the velopharynx would be
predicted to respond well to uvulopalatopharyng-
oplasty. Similarly, patients with dysfunction in the
upper airway dilator muscles may be particularly
good candidates for hypoglossal nerve stimula-
tion. Currently, OSA diagnostics yield only an AHI
as an imperfect measure of sleep apnea severity
but make little attempt to provide pathophysiolog-
ical insight.

Here the literature knowledge is summarized,
relating 4 key pathophysiological phenotypes of
sleep apnea to the clinical manifestation of this
disease. Overall, there is considerable evidence
that pathophysiological phenotypes manifest
clinically in recognizable ways. Novel methods to
noninvasively quantify these phenotypes are
needed to enable judicious matching of patients
to emerging therapies.

Upper Airway Collapsibility: Severity

The gold-standard functional assessment of upper
airway collapsibility is the critical collapsing pres-
sure (Pcrit) measured in the anesthetized state,
or during sleep when the upper airway dilator mus-
cles are minimally active. Pcrit is defined as the
level of nasal (upstream) pressure at which the up-
per airway collapses and is the X-intercept of a
peak-flow versus nasal pressure plot. Alterna-
tively, collapsibility can be assessed by calculating
the Y-intercept of such a plot, providing the level of
peak flow (or ventilation, Vpassive) at atmospheric
pressure under maximally passive conditions.

Several investigators have attempted to esti-
mate collapsibility using simpler andmore clinically
relevant measures, generally during wakefulness.
These measures include, but are not limited to,
measures of body habitus (neck circumference,
body mass index), visual assessment of the upper
airway (Mallampati/Friedman scores), and mea-
sures of patency/collapsibility during wakefulness
(acoustic pharyngometry,35 negative pressure
pulses during expiration36).

The potential utility of several polysomnographic
indicators of a more collapsible passive upper
airway are highlighted:

� In comparison to NREM sleep, upper airway
dilator muscles are less active during REM
sleep.37 The severity of REM sleep apnea
(AHI) is more closely related to passive
collapsibility than the severity of sleep apnea
during NREM.38–40 Likewise, at the other end
of the spectrum, patients with primarily central
sleep apnea (and presumably minimal
collapsibility) typically exhibit a low AHI in
REM. REM AHI may therefore be a marker of
passive collapsibility.

� A greater therapeutic CPAP requirement is
also expected to indicate a more collapsible
upper airway. On CPAP, upper airway muscle
activity is minimal. The therapeutic CPAP
therefore reflects the level that slightly
exceeds the value on the passive pressure
flow curve that yields flow limitation.

� Patients whose sleep apnea resolves with
lateral positioning (supine predominant) have
a less collapsible upper airway than those
with sleep apnea in both the supine and the
lateral positions.41 Indeed, supine predomi-
nance, as an indicator of milder collapsibility,
is modestly predictive of successful oral appli-
ance therapy.
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A severely compromised passive collapsibility
has been found previously to explain the failures
of nonanatomical therapies targeting loop gain.42

Upper Airway Muscle Compensation

During sleep, increased upper airway resistance
leads to an increase in ventilatory drive, which
stimulates the upper airway dilator muscles to
respond. In some individuals, these muscles effec-
tively yield collapsibility (active collapsibility vs
passive collapsibility) seen as an improvement in
ventilation. The active collapsibility is actually a
complex variable that is determined not only by
the passive collapsibility but also by (1) the in-
crease in muscle activity for a given increase in
neural ventilatory drive (muscle responsiveness);
(2) the ability of muscle activity to stiffen the airway
and improve ventilation; and finally, (3) the ventila-
tory drive stimulus that can be provided without
arousal from sleep (arousal threshold). Also, if the
airway is not maximally activated (ie, just before
arousal), the measurement may also be affected
by loop gain (higher loop gain will yield more drive
and thus more activation for any given drop in
airflow).
Putative measures of active collapsibility or

muscle compensation include the following:

� Apneas versus hypopneas. Compared with
patients exhibiting hypopneas, those who
consistently exhibit apneas (zero airflow at at-
mospheric pressure), even when the upper
airway dilator muscles are maximally acti-
vated (just before arousal), by definition,
have a severely compromised active collaps-
ibility (active Pcrit >0).43 The relative propor-
tion of obstructive apneas versus obstructive
hypopneas may therefore reflect the active
collapsibility.

� REM predominant sleep apnea, where sleep
apnea is more severe in REM versus NREM,
is likely to be an indicator of effective upper
airway compensation.40

� Rather than an a compensatory improvement
in ventilation, some individuals exhibit a para-
doxic reduction in airflow when ventilatory
drive is increased, presumably a combined
result of insufficient dilator muscle activation
and a highly compliant upper airway. This
behavior is referred to as negative effort
dependence44–47 (more effort yields less
airflow), and this tendency may be detected
within-breaths as a substantial reduction in
airflow at mid-inspiration versus the peak
flow. Therapies that increase ventilatory drive
(eg, acetazolamide) are likely to be counteref-
fective in this patient subgroup.
Evidence for the predictive utility of active
collapsibility includes the recent finding that a
greater active anatomy is a strong predictor of
the response to nonanatomical therapy (loop
gain, arousal threshold).48 In principle, increasing
the arousal threshold will have a maximally benefi-
cial effect when the upper airway muscles are
effective. Reducing loop gain will also have
maximal utility in patients that are able to sustain
a reasonable level of airflow.

Upper Airway Collapsibility: Site

Alongside the severity of pharyngeal collapse,
there is an increasing awareness of the heteroge-
neity of the sites and structures involved. These
structures include the velum or soft palate, the
lateral walls, the base of the tongue, and the
epiglottis.
Evidence is accumulating that the site of

collapse is important for determining the effective-
ness of non-CPAP anatomic therapies. Based on
gold-standard upper airway visualization, avail-
able data indicate that oral appliances work
most effectively in patients with tongue-base
collapse,49 but not those with isolated velum or
epiglottic collapse.50,51 Patients with isolated
velum collapse may have better outcomes
following uvulopalatopharyngoplasty.
Here 2 noninvasive approaches to detecting the

site of collapse are highlighted. First, snoring
sound analysis has been used to distinguish
between velum and tongue-base collapse. Velum
involvement exhibits a characteristic large-
amplitude, low-frequency, narrow-band fluttering,
whereas tongue-based collapse yields a high-
frequency broad-band signal.52,53 Second, the
intrabreath flow shape may also consist of useful
information on the site of collapse. For example,
patients whose inspiratory flow pattern appears
as a simple flat-top (Starling resistor) tend to
exhibit tongue-base collapse (a larger, noncompli-
ant structure), whereas those with a substantial
reduction from peak flow to midinspiratory flow
(degree of negative effort dependence) tend to
exhibit collapse of highly compliant structures
(velum, lateral wall, or epiglottis).54

High Loop Gain

Beyond upper airway physiology, a key trait
causing sleep apnea is the sensitivity and stability
of the ventilatory control system, a feedback loop
that acts to maintain ventilation and arterial blood
gases near an equilibrium. This sensitivity/stability
is typically quantified by the loop gain, which
reflects the increase in ventilatory drive that occurs
due to a reduction in ventilation. In the absence of
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a collapsible upper airway, an excessive loop gain
results in central sleep apnea. However,
increasing loop gain can cause OSA in those
with a collapsible airway.55–58

The authors recently developed a method to
measure loop gain from the overshoot-
undershoot ventilatory pattern observed in routine
polysomnography. In essence, the method fits a
simplified ventilatory control system model to the
available data. For any given patient, the best
model is that which most accurately converts the
reduction in ventilation during apneas/hypopneas
to the observed ventilatory drive overshoot seen
after each apnea/hypopnea. The method showed
a promising ability to detect a high loop gain and
predict responses to oxygen and acetazolamide.59

Further work is needed to (1) more accurately
define baseline ventilation, flow-limited breathing,
and effects of arousals on ventilatory drive; (2) vali-
date estimated ventilatory drive with respect to
gold-standard drive measured with diaphragm
muscle activity; and (3) to extend the approach
to estimate the remaining traits.

There are several additional indicators of a high
loop gain:

� The presence of central or mixed events60

� Shorter events and faster cycling between
events59

� NREM dominant sleep apnea (NREM
AHI > REM AHI)

� Relative hypocapnia61

In patients with central sleep apnea, the duration
of central apneas as a fraction of the cycle period
(time from the start of one event to the next) is a
direct reflection of the underlying loop gain.62

This approach has been used to detect those
with extremely high loop gain and predict the
acute failure of CPAP in patients with heart fail-
ure,62 and the persistence of central events
despite 4 weeks of therapy in OSA patients with
complex sleep apnea.63

Arousal Threshold, Sleep State Instability

Most patients, even those with severe sleep
apnea, exhibit stable breathing for some period
of the night. Stable breathing often occurs in
slow-wave sleep, likely due in part to an increase
in the ventilatory drive that can be tolerated before
arousal (increased arousal threshold compared
with stage N2). In fact, there is a subset of patients
with a low arousal threshold or sleep instability,
whose sleep apnea may be ameliorated with
hypnotics/sedatives to increase the arousal
threshold.64 In principle, raising the arousal
threshold has 2 effects on sleep apnea
physiology: (1) it allows a lower level of ventilation
(eg, more severe collapsibility) to be tolerated,
and (2) it allows a greater level of ventilatory drive
to build up, providing a greater stimulus for upper
airway muscle activation.56,65 It is also likely that
this treatment approach will be most successful
in those with a relatively good active collapsibility.
Drugs that promote slow-wave sleep may also be
advantageous in these patients.

The authors recently developed a clinical score
to identify patients with a low arousal threshold,
which incorporates just 3 readily available
parameters. One point is given for each of nadir
saturation greater than 82.5%, the fraction of
hypopneas (vs total respiratory events) greater
than 58.3%, and AHI less than 30 events per
hour; a score of 2 or greater correctly predicted
a low- or high-arousal threshold in 84% of
patients.66 Further investigation is needed to test
whether this approach helps to explain responses
to therapies that increase the arousal threshold
and stabilize sleep in patients with sleep apnea.
SUMMARY

Ahost of new ideas andadvances in technologyhas
the potential to reshape the way clinical sleepmed-
icine is practiced. Advances in analysis of respira-
tory sounds and EKG will likely enable widespread
screening for sleep-disordered breathing. The use
of automated scoring algorithms seeks to improve
the resources required and consistency of diagno-
ses. Personalized medicine is one step closer:
methods are rapidly being developed to determine
the mechanisms of sleep apnea and determine
what options are best suited for individual patients.
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