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Abstract

This paper is concerned with the performance of multi-commodity capacitated networks
with continuous flows in a deterministic but time-dependent environment. For a given time-
dependent origin-destination (O-D) table, it asks if it is easy to find a way of regulating
the input flows into the network so as to avoid queues from growing in it. It is shown that
even if the network structure is very simple (unique O-D paths) finding a feasible regulation
scheme is a ‘hard’ problem. More specifically, it is shown that even if all input functions
are smooth, there are instances of the problem with a finite but possibly very large number
of solutions. Furthermore, finding whether a particular instance of the problem has one
feasible solution is an NP-hard problem because it is related to the Directed Hamiltonian
Path problem of graph theory by a polynomial transformation. It is also shown that the
discrete-time version of the problem is NP-complete.

1 Background

This paper examines the problem of regulating access to a multi-commodity capacitated network

with time-dependent demand so as to avoid internal queues. The idea is to serve every unit of

flow with as little delay as possible, while confining all the queues to the input points (externally

to the network) to prevent them from interfering with the network flows. Problems of this type

arise in a variety of contexts, including telecommunication networks, air space control (airport

to airport traffic), freeway networks (ramp metering), generalized polling systems, etc. Of

particular interest are applications where the flows moving through the network are so large

that they can be modeled by continuous variables, and where the input queues obey a FIFO
∗Department of Industrial Engineering and Operations Research, University of California, Berkeley
†Department of Civil and Environmental Engineering, University of California, Berkeley
‡Department of Civil Engineering, University of Maryland
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(first in first out) discipline. It will be shown that even when the networks have a very simple

structure with unique paths between each origin and destination (no route choice), the problem

of determining whether there is a control strategy that satisfies the capacity constraints is

NP -hard. The difficulty is caused by the combination of FIFO and time-dependence, for it

disappears if either one of these conditions is relaxed.

Network access control problems have been studied extensively in the context of freeway

systems with a literature that dates back to the early 60’s; see Wattleworth (1963), May (1964),

and the annotated review in Lovell (1997). It was soon found that this was rather easy in the

steady-state case for networks with unique O-D paths because the problem could then be cast as

a linear program (Wattleworth, 1967). With the advent of faster computing, real-time control

of large time-dependent systems became a possibility, and a variety of optimization methods

for real-time control were proposed to address the problem; see e.g., Yuan and Kreer (1968),

Stephanedes and Kwon (1993) and Papageorgiou (1995), among many others. However, the

difficulties introduced by the FIFO discipline have not been noted until recently (Lovell, 1997;

Lovell and Daganzo, 1999). These two references identified special cases that could be solved

easily such as networks with unique O-D paths that contained either a single origin, a single

destination or a single bottleneck. The references also noted, however, that removing the route

choice element from the problem was not sufficient to eliminate the non-linearity.

It was further stated in Lovell and Daganzo (1999) that the general FIFO capacitated net-

work access control problem without route choice could be formulated as a standard (non-linear)

problem in the theory of optimal control but that the FIFO non-linearity would preclude the

variational methods of control theory from being generally able to identify the global optimum.

Because control theory is widely accepted as a tool for addressing problems of this type (free-

way access problems in particular), this paper pursues this idea further. It shows that even

if the problem satisfies strict smoothness conditions, some instances of the problem are of a

combinatorial nature for which variational methods cannot be expected to yield global optima.

These combinatorial problems are shown to be “hard.” It appears thus that the best practi-

cal methodologies to solve general FIFO network access problems will be approximations with
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heuristic components that should exploit problem-specific features.

The problem in question consists of a network, which is characterized by finite sets of origins,

O = {oi}, destinations, E = {ej} and bottlenecks, B = {bk}, where I = |O|, J = |E|, and

K = |B|; and a time interval T = [tB, tE]. For every O-D pair there is a unique (used) path

which includes a subset of B. These data are summarized with 0-1 indicators, γijk, that are 1 if

bottleneck bk is on the path from oi to ej and zero otherwise. Given for each origin-destination

pair is a cumulative arrival function Aij : R → R+, which is continuous and non-decreasing

with piecewise-continuous derivatives, and set to zero (arbitrarily) at the beginning of the

interval, Aij(tB) = 0. As is conventional in fluid queueing approximations (see Newell, 1982),

this function denotes the number of vehicles with destination ej that would be ready to depart

oi by time t if unrestricted. (It is assumed that all the vehicles present at oi are embedded

in the same queue, and that the queue is FIFO.) Given for each bottleneck is a non-negative

capacity function ck : R → R+, which is piecewise-continuous. Finally, given for each (i, k)1

is a non-negative travel time from oi to bk, τik, along the unique path; this is the traffic flow

model of the problem.

The solution for this problem is specified in terms of piecewise-differentiable control func-

tions, di(t), that give the delay imparted to the vehicles released at time t from origin oi.

Because all of the vehicles entrapped in a queue share the same delay, the delay functions

suffice to determine cumulative departure curves Dij(t) by O-D pair, as follows:

Dij(t) = Aij(t− di(t)) ∀ i, j, t (1)

This is the FIFO condition. Clearly, the departure functions should be non-decreasing, and

should not exceed the arrival functions; therefore we also require:

Ḋij(t) ≥ 0 and Dij(t) ≤ Aij(t) ∀ i, j, t (2)

where an overdot is used to denote the derivative with respect to time. Here, and in Equation 3

below, the constraints are not considered for values of (i, j, t) where Ḋij(t) does not exist. The
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capacity condition is:

∑
i,j

γijkḊij(t− τik) ≤ ck(t) ∀ k, t (3)

The argument of Ḋij expresses the fact that the flows at bottleneck bk had to be released from

oi a trip time earlier. This constraint implies that the number of vehicles passing a bottleneck in

any time interval cannot exceed the integral of the capacity function over the interval, whether

or not the interval includes points of discontinuity. Finally, we require all queues to be cleared

outside a time interval of interest:

Dij(t) = Aij(t); ∀i, j, t /∈ (tB, tE) (4)

Equations (1)–(4) specify the feasibility of a control. Given a feasible solution to these

constraints, the ramp metering strategy is given by Ḋi·(t) =
∑

j Ḋij(t), which defines the

time-dependent rate at which vehicles should be released from each origin oi.

Equations (1)–(4) can be cast in the standard form of control theory including a differential

equation of state dynamics. This can be done in a variety of ways; e.g. by using {di(t),Dij(t)}

as the “state” and letting the derivative of the FIFO condition be part of the dynamic equation

with ḋi(t) (the reciprocal metering rates) as controls. Formulation (1)–(4) is retained, however,

because it is better suited for our purposes. The control theory formulation would be completed

by defining an objective function. This is not done here, however, because our goal is examining

the nature of the feasible region. Section 3 shows that even in cases where the input data are

smooth, there are instances where the feasible region defined by (1)–(4) consists of a finite, but

large number of “points.” This negates the usefulness of variational methods. Section 4 shows

that identifying where one such point exists is an NP -hard problem, and Section 5 that the

version of (1)–(4) formulated in discrete time is NP -complete.

2 A ramp metering feasibility problem

Consider the following decision problem which is a feasibility version of the access control

optimization problem. The problem as specified includes smoothness conditions on the input
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and output functions (n-differentiability, for any fixed n ≥ 1) that are sufficient to allow the

use of any variational solution method.

Capacitated Network Access Control Problem with FIFO (CNAP)

Instance: Given are finite sets O = {oi}, E = {ej}, and B = {bk}; and a real interval

T = [tB, tE ]. Given for each (oi, ej) ∈ O × E is a monotonic non-decreasing, (n + 1)-

differentiable function Aij : R → R+
0 where Aij(tB) = 0; and for each bk ∈ B is a

n-differentiable function ck : R→ R+
0 . Given for each (oi, ej , bk) ∈ O×E ×B is a binary

indicator γijk ∈ {0, 1}; and for each (oi, bk) ∈ O ×B is τik ∈ R+
0 .

Question: Does there exist piecewise 2-differentiable functions Dij : R → R+
0 for all (oi, ej) ∈

O × E and di : R→ R+
0 for oi ∈ O satisfying conditions (1)–(4)?

Thus, CNAP determines whether or not a feasible dynamic access control strategy exists for a

given system. It will now be shown that there is a subset of CNAP whose instances only admit

a finite number of feasible solutions.

3 CNAP instances with sequential release solutions

Certain instances of CNAP can be shown to have only sequential release solutions, i.e. solutions

that serve each origin in sequence, releasing all vehicles. This section describes a class of

instances, denoted USR, whose members have this property. Instances of type USR have periodic

demand and capacity.

The network structure for problems of type USR is depicted in Figure 1. Instances contain I

origins, O = {o1, o2, ..., oI}, each connected to two destinations, E = {e1, e2}. Each destination

is also associated with a bottleneck, B = {b1, b2}. Mathematically, the network connectivity is

given by

γijk =

{
1, j = k

0, otherwise
, ∀ i, j, k

All travel times between origins and bottlenecks are zero, τik = 0 ∀ i, k, and the time interval

T is defined by tB = −δ, tE = 2I + δ.
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The arrival and capacity functions for instances of type USR will be described using smooth

pulse functions; see Figure 2 and the following definition:

Definition 3.1 (Smooth Pulse Function) A smooth pulse function with parameter ∆, p∆ :

R→ [0, 1], is defined as follows (where ∆ ≥ 2δ and δ > 0 is a fixed constant):

p∆(t) n-differentiable (5)

p∆(t) = ṗ∆(t) = 0, t ≤ −δ, t ≥ ∆ + δ (6)

p∆(t) = 1, t ∈ [δ,∆− δ] (7)

p∆(t) monotonic increasing, t ∈ (−δ, δ) (8)

p∆(t) + p∆′(t−∆) = p∆+∆′(t) (9)

Note that as δ → 0, p∆ approximates a rectangular pulse of length ∆. Additionally, the

properties above imply that p∆(t) is symmetric about t = ∆
2 and that

∫
R p∆(t)dt = ∆. In the

descriptions to follow, assume that δ ¿ 1 and let p1(t) be abbreviated by p(t).

The cumulative arrival functions for each origin oi are identical and specified in terms of

the dynamic arrival rates:

Ȧi1(t) = p(t) ∀ i (10)

Ȧi2(t) = p(t− 1) ∀ i (11)

with Aij(tB) = 0 ∀ i, j. Thus, vehicle arrivals at each origin consist of a smooth pulse of arrivals

for destination (bottleneck) e1 (b1), followed by a pulse for destination (bottleneck) e2 (b2) with

some mixing in the interval [1− δ, 1 + δ](see Figure 3(a)). Figure 3(b) depicts the cumulative

arrival curves.

The bottleneck capacity functions for b1 and b2 are defined to be two periodic series of

pulses, identical except for a time shift:

c1(t) =
I∑

m=1

p(t− 2(m− 1)) (12)

c2(t) = c1(t− 1) (13)
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As shown in Figure 3(c), there are exactly I capacity pulses for each bottleneck; the maximum

number of vehicles that can be served by each is
∫
R c1(t)dt =

∫
R c2(t)dt = I .

It should be clear that all instances of type USR have feasible solutions and are thus “yes”

instances. One such solution is to serve origin 1 first without metering beginning at t = −δ,

holding all other origins until t = 2 − δ. At t = 2 − δ, origin 2 is also released while origins

oi, i > 2 are held, and so on. Mathematically, this is equivalent to setting di(t) = 2(i−1) ∀ i, t

so that the departure curves for each O-D pair consistent with (1) are just the arrival curves

translated in time by a non-negative, origin-specific delay. Clearly then, (2) is satisfied and since

the maximum delay is 2(I−1), we see from Figure 3(b) that Dij(t) = Aij(t) = 1 ∀ i, j, t > tE =

2I + δ and thus (4) is satisfied as well. To verify that the capacity condition is also satisfied,

note that the specified τik and γijk, and the constant time shifts imply that the LHS of (3) is:

∑
i,j

γijkḊij(t) =
∑
i

Ȧik(t− di(t)) =
∑
i

Ȧik(t− 2(i− 1)) ∀ k (14)

Substitution of (10) or (11) in (14) reduces it to (12) or (13) depending on k, i.e.:

∑
i,j

γijkḊij(t− τik) = ck(t), ∀ t, k = 1, 2 (15)

Thus, (3) is satisfied as an equality ∀ t.2 In this case, bottlenecks b1 and b2 are “saturated” from

t = −∞ to +∞. This concept is formalized below:

Definition 3.2 (Bottleneck Saturation/Undersaturation in an Interval) Bottleneck bk0

is said to be saturated in an interval (t0, t1] if (3) is satisfied (in the interval) for k = k0, and

if in addition: ∫ t1

t0

∑
i,j

γijk0Ḋij(t− τik0
)dt =

∫ t1

t0

ck0
(t)dt (16)

If (3) is satisfied but (16) is a strict inequality the bottleneck will be said to be undersaturated

in the interval; the difference between the two sides of the inequality will then be called the spare

capacity in the interval.
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Solutions such as the feasible solution just identified, where origins are released in sequence

and then remain unmetered will be called sequential release solutions. They are formally defined

below:

Definition 3.3 (Sequential Release Solutions) Let 〈vi〉 be a permutation of the origin in-

dices i = 1, 2, ..., I. Then, solution [di(t), Dij(t)] is a sequential release if the Dij(t) arise from

(1) with dvi(t) = 2(i− 1) ∀ i, t.

For the discussion that follows, it will be convenient to define a function Ck : R → R+
0 for

the cumulative capacity, Ck(t) =
∫ t
−∞ ck(x)dx, and the notation A·j (D·j) for

∑
iAij (

∑
iDij).

Consider now the following proposition:

Proposition 3.1 A solution to an instance of type USR is feasible if, and only if, it is a

sequential release.

Proof. The sufficiency of the condition clearly follows from symmetry; since each origin has an

identical arrival function, the arguments that were given earlier to show the feasibility of the

sequential release 〈vi = i〉 also apply to any permutation.

To show necessity, first note from (10)–(13) that:

I = A·j(tE) = Cj(tE) j = 1, 2 (17)

Further, it is claimed that:

D·j(t) = Cj(t) ∀ t, j = 1, 2. (18)

The proof of (18) is by contradiction. First note that insofar as τij = 0 ∀ i, j, integration of

condition (3) ensures both that:

D·j(t) ≤ Cj(t) ∀ t, j = 1, 2 (19)

and that:

D·j(tE)−D·j(t) ≤ Cj(tE)− Cj(t) ∀ t, j = 1, 2 (20)
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Therefore, if (18) were false, D·j(t) < Cj(t) for some j, t. This implies that D·j(tE)−D·j(t) >

D·j(tE) − Cj(t), which implies D·j(tE) − D·j(t) > Cj(tE) − Cj(t) since (4) and (17) ensure

D·j(tE) = A·j(tE) = Cj(tE). This is impossible, however, since it contradicts (20). Thus, (18)

holds.

To continue the necessity proof, suppose now that it is feasible to release from t = −δ

to 1 − δ a positive number of vehicles from more than one origin such that (18) is satisfied

in the interval. It is shown now that this would lead to a subsequent violation of (18) and

therefore that a single origin must be released from −δ to 1 − δ. Let o` be an origin which

has released the most vehicles by time 1 − δ, i.e. D`1(1 − δ) ≥ Di1(1 − δ) ∀ i, and define

ε ≡ C1(1− δ)−D`1(1− δ) > 0. The FIFO condition, therefore, implies that origin o` needs to

discharge ε > 0 vehicles for bottleneck b1 (and all other origins need to discharge more) before

any vehicles for bottleneck b2 could be released; such a discharge requires time tε > 0. Thus,

D·2(1−δ+tε)−D·2(1−δ) = 0. Since (18) is satisfied at t = 1−δ and C2(1−δ+tε)−C2(1−δ) > 0,

condition (18) is violated for j = 2 and t = 1− δ + tε. It follows, therefore, that a single origin

ov1 must be released from −δ to 1− δ. Similar arguments are now used to show that ov1 must

remain fully released until t = 2 + δ, thus saturating bottleneck b2 during the interval [1 − δ,

2 + δ]. If this were not true, there must exist a brief interval [t, t+ tε′ ] where for the first time

origin ov1 sends ε′ > 0 vehicles less than the maximum to b2. To satisfy (18), this deficit would

have to be made up by other origins. This is impossible, however, because for sufficiently small

tε′ origins other than ov1 can only release vehicles to b1. (Recall that each of these origins has

C1(1 − δ) vehicles destined through b1 at the head of its queue.) Therefore, ov1 must be fully

released from −δ to 2 + δ and Dv1j(t) will be the result of setting dvi = 2(i− 1) for i = 1.

Similar logic is now applied to the remaining origins. At time 2− δ, bottleneck b1 begins

another capacity pulse. Although origin ov1 remains unrestricted from 2−δ to 2+δ, it discharges

vehicles only to bottleneck b2 during this interval and releases no additional vehicles after this

interval. Thus, the problem of determining a feasible metering strategy for the remaining

origins O \ {ov1} from time 2 − δ onward is identical to the original with one fewer origin.

By induction, therefore, we conclude that exactly one origin must be fully released at times
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2− δ, 4− δ, ..., 2(I − 1)− δ, and thus every solution is a sequential release.

Proposition 3.1 shows that all problem instances of type USR have an arbitrarily large

but finite number of feasible solutions and therefore that the associated optimization problems

cannot be solved with variational methods. It will now be shown that CNAP is an NP -hard

problem through a polynomial transformation of the Directed Hamiltonian Path problem.

4 The continuous-time CNAP is NP -hard

A Hamiltonian path on a directed graph G = (V,A) with numbered vertices is a sequence

〈v1, v2, ..., v|V |〉 of distinct vertices from V such that (vi−1, vi) ∈ A for 1 < i ≤ |V |. Karp (1972)

shows that the problem of the existence of a Hamiltonian cycle in an undirected graph was

NP -complete, and Garey and Johnson (1979) extends this result to show that determining the

existence of a Hamiltonian path on a directed graph (problem DHP) is also NP -complete. In

this section, it is shown that every DHP instance, G, can be polynomially-transformed to an

instance of CNAP, denoted UHP (G).

Let G = (V,A) (where I = |V |) be an instance of DHP, and let A′ be the set of complement

arcs to A, i.e. if (i, j) /∈ A then (i, j) ∈ A′ and vice versa3. To create UHP (G), first a

pulse function p∆ is specified with the properties given in Definition 3.1, and additionally p∆ is

assumed to be piecewise-polynomial. For each node i ∈ V , a corresponding origin oi, destination

ei, and bottleneck bi are created. Two additional destinations and bottlenecks are also created.

Thus, O = {o1, o2, ..., oI}, E = {e1, e2, ..., eI , eI+1, eI+2} and B = {b1, b2, ..., bI , bI+1, bI+2}.

The network structure descriptors are specified as follows (see Figure 4 for a depiction):

γijk =

{
1, if j = k

0, otherwise
, ∀ i, j, k (21)

τik =

{
2, k ∈ {1, 2, ..., I}, i 6= k

0, otherwise
(22)

Thus, travel times are zero between all origins and bottlenecks bI+1 and bI+2, as well as from

origin oi to bottleneck bi for all i. The time interval T is given by tB = −δ and tE = 2(I+1)+δ.
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Next, bottleneck capacities are specified as follows:

ck(t) =


∑I

m=1 p(t− 2(m− 1)), k = I + 1
cI+1(t− 1), k = I + 2
1, otherwise

(23)

Thus, bottlenecks bI+1 and bI+2 have periodic capacities identical to those described for in-

stances of type USR, while the other bottlenecks have constant capacity.

Finally, the arrival functions are specified as follows:

Ȧij(t) =



p(t), j = I + 1
p(t− 1), j = I + 2
p2(t), j = i

p2(t), (i, j) ∈ A′

0, otherwise

, ∀ i (24)

with Aij(tB) = 0 ∀ i, j. Arrivals at each origin destined for eI+1 and eI+2 and their associated

bottlenecks are identical to those in USR. Additionally, a double-length pulse of vehicles arrives

at origin oi for destination ei. Finally, if (i, j) ∈ A′, a double-length pulse of vehicles arrives at

oi for ej .

To show that UHP (G) is a polynomial transformation of the Directed Hamiltonian Path

instance G, first consider the following proposition:

Proposition 4.1 A solution to UHP (G) is feasible only if it is a sequential release solution.

Proof. This is true since the constraints defining UHP (G) include a subset (pertaining to

destinations eI+1 and eI+2) that defines an instance of type USR as a subproblem. Thus, the

necessity claim of Proposition 3.1 holds.

Proposition 4.1 guarantees that every solution to UHP corresponds to an ordering of the

origin releases. Next, the permutations that satisfy the remaining constraints are characterized.

It is also easy to verify the following:

Proposition 4.2 The capacity constraints (3) for bottlenecks bI+1 and bI+2 are satisfied by all

sequential release solutions to UHP (G).

Now consider the following proposition:
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Proposition 4.3 Let 〈vi〉 be a permutation of the origin indices corresponding to a sequential

release solution to UHP (G). This solution is feasible if, and only if, (vi−1, vi) /∈ A′ for all

i = 2, ..., I.

Proof. First, Proposition 4.2 ensures that (3) are satisfied for bottlenecks bI+1 and bI+2 by

all sequential releases. Now consider the remaining bottlenecks. Note from (21)–(24) that the

capacity of a bottleneck bvi , 1 < i ≤ I will be violated if and only if flow from an origin other

than ovi is arriving at bvi when origin ovi is discharging flow. That is, the capacity constraint of

bvi is violated at some time if and only if the origin preceding ovi in the release sequence (ovi−1)

also sends flow to bvi . This is occurs if and only if (vi−1, vi) ∈ A′. (Note that the constraint

for bottleneck bv1 is always feasible.) Clearly then, (3) is satisfied for i = 2, ..., I if and only if

(vi−1, vi) /∈ A′.

Theorem 1

Every instance of DHP is polynomially-transformable to CNAP.

Proof. The instance of CNAP denoted UHP (G) can clearly be generated in a time bounded

by a polynomial function of the size of the DHP instance G = (V,A). Now it is shown that

G contains a directed Hamiltonian path if, and only if, there exists a feasible metering scheme

for UHP (G). First, let P = 〈v1, v2, ..., vn〉 be a directed Hamiltonian path in G. Then, dvi(t) =

2(i − 1), ∀ i, t is a feasible metering scheme. To see this, note that P is a Hamiltonian

path and therefore (vi−1, vi) ∈ A, (vi−1, vi) /∈ A′ for i = 2, ..., I. Thus, P is a permutation of

origins satisfying the conditions of Proposition 4.3 and its associated sequential release solution,

dvi(t) = 2(i−1), ∀ i, t, must be feasible. Second, suppose there exists a feasible metering scheme

for UHP (G). Proposition 4.1 guarantees that all solutions to UHP are sequential releases,

therefore let 〈vi〉 be the origin index permutation corresponding to a feasible metering scheme.

Proposition 4.3 guarantees that (vi−1, vi) /∈ A′ for i = 2, ..., I and therefore that (vi−1, vi) ∈ A.

Thus, 〈vi〉 is a directed Hamiltonian path in G.

As stated, CNAP is not a member of the problem class NP . For one, it deals with real

variables. Moreover, the restrictions placed on functions Aij and ck do not guarantee the
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existence of a reasonable encoding scheme for the inputs. Additionally, the solution functions

di and Dij may not be expressible in a size bounded by a polynomial function of the input

length.

Corollary 1.1

CNAP is NP -hard.

Proof. Since a known NP -complete problem is polynomially-transformable to CNAP, but

CNAP /∈ NP , the result follows.

5 The discrete-time CNAP is NP -complete

To this point, this paper has shown that the network access control problem is difficult to solve

by applying variational methods to a continuous formulation. Often, difficult control theory

problems are attacked by formulating a tractable mathematical program to solve a discretized

version of the control problem. This section completes the discussion of the hardness of optimal

access control by showing that the discrete-time version of CNAP is in the problem class NP -

complete.

The natural way to discretize the problems described in Section 1 is to partition the study

time period T into many small intervals of width ξ > 0 and then assume that the arrival

flows and bottleneck capacities are constant within each of these intervals. Additionally, it is

necessary to approximate the vehicle delays and trip times using integer multiples of ξ in order

to properly model the FIFO queues; all vehicles that arrive in an interval will depart together

and experience the same delay. Such an approximation can be refined arbitrarily by letting

ξ → 0.

These ideas are formalized below:

Discretized Capacitated Network Access Control Problem with FIFO (DNAP)

Instance: Given are finite sets O = {oi}, E = {ej}, and B = {bk}; rationals tE ∈ Q+
0 and

ξ ∈ Q+ such that tE = Nξ for some N ∈ Z+
0 . Let T ≡ {ξ, 2ξ, ..., Nξ}. Given for each

(oi, ej, t) ∈ O×E × T is aij(t) ∈ Q+
0 , and let Aij(t) ≡

∑ t
ξ

n=1 aij(nξ). Additionally, define
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Aij(t) ≡ 0 ∀ t ≤ 0. Given for each (bk, t) ∈ B × T is ck(t) ∈ Q+
0 . Given for each

(oi, ej, bk) ∈ O × E × B is a binary indicator γijk ∈ {0, 1}; and for each (oi, bk) ∈ O ×B

is ηik ∈ Z+
0 where τik ≡ ηikξ.

Question: Do there exist integers ni(t) ∈ Z+
0 for all (oi, t) ∈ O × T and rationals Dij(t) ∈ Q+

0

for all (oi, ej , t) ∈ O × E × T satisfying:

di(t) = ni(t)ξ ∀ t (25)

Dij(t) = Aij(t− di(t)) ∀ i, j, t (26)

Dij(t) ≥ Dij(t− ξ) and Dij(t) ≤ Aij(t) ∀ i, j, t (27)∑
i,j

γijk(Dij(t− τik)−Dij(t− τik − ξ)) ≤ ck(t) ∀ k, t (28)

Dij(Nξ) = Aij(Nξ) ∀ i, j (29)

where Dij(t) ≡ 0, t ≤ 0.

Theorem 2

DNAP is NP -complete.

Proof. Verifying that DNAP ∈ NP is straightforward. The instance can be encoded with a

length that is O(|O| · |E| · |B| ·N) since all data is integer or rational, and functions are defined

on finite sets. Furthermore, it is straightforward to see that a non-deterministic algorithm could

verify whether a “guess” assignment of integers di(t) satisfies (25)–(29) in timeO(|O|·|E|·|B|·N).

Parallel to the proof in Section 4, it is now shown that the Directed Hamiltonian Path

problem (DHP) is polynomially-transformable to DNAP. Given an instance of DHP, G = (V,A),

again let A′ be the set of complement arcs to A. To create an instance of DNAP, UHPD(G), that

can solve instance G, specify sets O, E, and B and network descriptors γ and τ identical to those

of CNAP instance UHP (G) described in Section 4. Further, let ξ = 1 and let tE = N = 2(I+1),

recalling that I = |O|; therefore, T = {1, 2, ..., 2(I+1)}. Specify bottleneck capacities as follows:

ck(t) =


1, k = I + 1, t ∈ {1, 3, ..., (2I − 1)}
1, k = I + 2, t ∈ {2, 4, ..., 2I}
1, k ≤ I, t ∈ T
0, otherwise

(30)
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and arrival patterns:

aij(t) =



1, j = I + 1, t = 1
1, j = I + 2, t = 2
1, j = i, t ∈ {1, 2}
1, (i, j) ∈ A′, t ∈ {1, 2}
0, otherwise

, ∀ i (31)

First, it is clear that UHPD(G) can be generated in polynomial time with respect to the size of

G. Reasoning parallel to that in Sections 3 and 4 shows that UHPD(G) is a transformation of

G. The minor differences in the logic are outlined below.

Note first that Definition 3.1 is not needed, and that Definition 3.2 needs to be modified

for discrete intervals4. In the new definition, the two sides of (16) are replaced by sums of the

two sides of (28). Definition 3.3 holds verbatim. It is now possible to show that Proposition

4.1 holds for instance UHPD(G). Informally, this can be seen since UHPD(G) is equivalent to

UHP (G) as δ → 0 and Proposition 3.1 holds for δ → 0; it can also be proven using parallel (but

simpler) logic to the proof of necessity of Proposition 3.1. As in the continuous case, it is easy

to verify that Proposition 4.2 holds for UHPD(G). Finally, Proposition 4.3 and Theorem 1 (and

their proofs) hold verbatim, with UHPD(G) substituted for UHP (G) and DNAP for CNAP.

Thus, DHP is polynomially-transformable to DNAP, and DNAP is NP -complete.

Notes

1In this paper, index variable i always refers to origins, j to destinations, k to bottlenecks,
and t to time. Unless otherwise stated, the generic notation ∀ i is equivalent to i = 1, 2, ..., I,
∀ j ≡ j = 1, 2, ..., J , ∀ k ≡ k = 1, 2, ...,K, and ∀ t ≡ ∀ t ∈ R. Furthermore, when the symbols∑

and
∫

are subscripted by one or more variables without specifying a range, it should be
understood that it is the full range for the variable in question; e.g. i = 1, ..., I, j = 1, ..., J , etc.

2Recall that in this context ∀ t means all points except those where the derivatives of Ḋij(t)
do not exist.

3A′ contains no arcs (i, j) where i = j

4Such that t0 and t1 are multiples of ξ.
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Figures

Figure 1: Network Structure for Instances of Type USR
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Figure 2: Smooth Pulse Function, p∆(t)

Figure 3: Arrival and Capacity Functions for Instances of Type USR
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Figure 4: Network Structure for Instances of Type UHP
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