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Abstract: Fragile X (FMR1) premutation is a common mutation that affects about 1 in 200 females
and 1 in 450 males and can lead to the development of fragile-X-associated tremor/ataxia syndrome
(FXTAS). Although there is no targeted, proven treatment for FXTAS, research suggests that sul-
foraphane, an antioxidant present in cruciferous vegetables, can enhance mitochondrial function
and maintain redox balance in the dermal fibroblasts of individuals with FXTAS, potentially leading
to improved cognitive function. In a 24-week open-label trial involving 15 adults aged 60–88 with
FXTAS, 11 participants successfully completed the study, demonstrating the safety and tolerability
of sulforaphane. Clinical outcomes and biomarkers were measured to elucidate the effects of sul-
foraphane. While there were nominal improvements in multiple clinical measures, they were not
significantly different after correction for multiple comparisons. PBMC energetic measures showed
that the level of citrate synthase was higher after sulforaphane treatment, resulting in lower ATP
production. The ratio of complex I to complex II showed positive correlations with the MoCA and
BDS scores. Several mitochondrial biomarkers showed increased activity and quantity and were
correlated with clinical improvements.

Keywords: FXTAS; FMR1; neurodegeneration; sulforaphane

1. Introduction

The fragile X (FMR1) premutation (55 to 200 CGG repeats) is a common mutation
occurring in approximately 1 in 200 females and 1 in 450 males [1,2]. Individuals with this
premutation often develop fragile-X-associated tremor/ataxia syndrome (FXTAS) with age,
one of the most common monogenic neurodegenerative disorders. The syndrome, first
reported in 2001, includes an intention tremor, cerebellar ataxia, cognitive decline, neu-
ropathy, and brain changes detected by magnetic resonance imaging (MRI) [3,4]. The MRI
changes include broadly distributed brain atrophy and white matter disease at specific
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locations, such as the middle cerebellar peduncles (MCPs), corpus callosum, insula, and
periventricular areas [5]. FXTAS can occur in up to 75% of males with the premutation by
the eighth decade of life [6] and in approximately 16% of females [7,8], with clinical signs
typically emerging in the early 60s [9]. Thus, FXTAS is a relatively common aging-related
syndrome that is underdiagnosed and understudied [10]. There is no specific, effective
treatment for FXTAS, although a variety of medications may improve psychiatric issues
(i.e., selective serotonin reuptake inhibitors; SSRIs) or the severity of tremor [11] (beta
blockers or primidone).

Both patients with FXTAS and animal models of the FMR1 premutation demonstrate
cellular calcium dysregulation, mitochondrial dysfunction, and oxidative stress. One of
the critical features of mitochondrial dysfunction in FXTAS is impaired oxidative phospho-
rylation (OXPHOS) [1–3]. The levels of mitochondrial complex I, III, and IV proteins, as
well as the activity of these complexes, are reduced in the brains of FXTAS patients, with
the cause of death being uncertain [12]. Studies have shown that individuals with FXTAS
have mitochondrial DNA (mtDNA) mutations and increased mtDNA deletions in their
brains, indicating impaired mitochondrial function. This leads to deficiencies in energy
production and increased oxidative stress [13].

Furthermore, a study of FXTAS skin fibroblasts showed that mitochondrial respiratory
capacity is compromised and the mitochondria morphology is altered, with the presence of
fragmented and swollen mitochondria [14]. This suggests that the regulation of mitochon-
drial dynamics is also disrupted in FXTAS, which can further contribute to mitochondria
dysfunction [13]. As neurons are highly dependent on the aerobic energy provided by mito-
chondria, oxidative stress and mitochondrial dysfunction can reduce neuronal viability [15].
Despite these various reports indicating mitochondrial abnormalities in individuals with
FXTAS, it is unclear whether mitochondrial dysfunction represents a cause or a contributor
to the pathogenesis of the condition.

Sulforaphane is an antioxidant, anti-inflammatory, and mitochondrial-protective agent
that has been studied in several animal models and humans with neurodegenerative
disorders [16]. Sulforaphane is found in cruciform vegetables, seeds, and plants, including
broccoli, cauliflower, and Brussels sprouts. Previous studies have shown that sulforaphane
activates and up-regulates the NFE2L2 (nuclear factor erythroid 2-related factor 2) pathway
by promoting the dissociation of NFE2L2 from its inhibitor, Kelch-like ECH-associated
protein 1 (KEAP1) [17]. NFE2L2, encoded by the NRF2/NFE2L2 gene, is a component of the
cellular defense mechanism that regulates the expression of antioxidant and detoxification
enzymes [18]. NFE2L2 exerts its effect by promoting the transcription of genes required
to control oxidative stress damage while restoring redox homeostasis [19]. In addition to
increasing mitochondrial biogenesis, NFE2L2 also plays a role in inhibiting autophagy and
mitophagy and inhibiting mitochondrial fission [20].

The effects of sulforaphane were studied in fibroblasts obtained from eight males with
FXTAS and four control lines without the premutation by analyzing the proteome pre-
and post-treatment with sulforaphane [21]. The study showed a significant up-regulation
of NFE2L2-mediated proteins essential for redox homeostasis, improved mitochondrial
function, and lowered immune dysfunction in fibroblasts from FXTAS-affected patients
at relatively high stages. This observation presents a compelling basis for evaluating both
the safety and potential in vivo effectiveness of sulforaphane in FXTAS patients. These
findings prompted us to investigate the effects of sulforaphane in an open-label 6-month
trial on biomarkers of mitochondrial dysfunction and clinical measures in the treatment of
those with FXTAS.

2. Materials and Methods
2.1. Study Protocol

This study was conducted at the Fragile X Treatment and Research Center at the
MIND Institute at the University of California, Davis Health, with the approval of the UC
Davis Institutional Review Board. It was registered at ClinialTrials.gov (NCT05233579).
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All participants gave signed, informed consent before enrollment. All patients had an FMR1
premutation allele documented via FMR1 DNA testing and a diagnosis of FXTAS (see
Tables 1 and 2 for the diagnostic criteria) [11,22]. A total of 15 participants were enrolled in
the trial from July 2021 to October 2022.

Table 1. Descriptive statistics of baseline characteristics of patients completed the trial (N = 11).

Variable N Mean (SD) or Frequency (%) Median (Q1, Q3) Range

Age (years) 11 73.47 (8.95) 74.37 (67.33, 78.2) 60.73–88.66
Gender 11

Male 6 (54.5%)
Female 5 (45.5%)

FXTAS diagnosis 11
Definite 6 (54.5%)
Probable 3 (27.3%)
Possible 2 (18.2%)

FXTAS stage 11 3.05 (0.79) 3 (2.5, 3.75) 2–4
2 3 (27.3%)
3 4 (36.4%)
3.5 1 (9.1%)
4 3 (27.3%)

Age of onset:
tremor 10 59.25 (7.31) 58.5 (53.38, 64.5) 49–73

Age of onset:
ataxia 8 66.38 (5.93) 66 (62.75, 70) 57–75

AGG interruptions 11 1.09 (0.54) 1 (1, 1) 0–2
0 1 (9.1%)
1 8 (72.7%)
2 2 (18.2%)

CGG repeats 11 85.27 (13.16) 87 (72, 92.5) 70–110
Activation ratio (in
females) 5 0.54 (0.14) 0.49 (0.46, 0.53) 0.44–0.78

FMR1 mRNA level 11 2.50 (0.34) 2.57 (2.19, 2.77) 1.99–2.94

Table 2. Efficacy of sulforaphane: changes in clinical outcomes following sulforaphane treatment.

Variable N

Pre-
Sulforaphane

Post-
Sulforaphane

Change from Baseline
(Pre-Post) Cohen’s d

Effect Size
p-Value * FDR #

Mean (SD) Mean (SD) Mean (SD)

CANTAB
SWM between errors 10 22.6 (4.74) 18.2 (6.37) −4.4 (6.08) −0.72 0.048 1 0.43
SST Stop Signal Reaction Time 7 303.7 (43.75) 283.58 (59.67) −20.11 (58.21) −0.35 0.396 1 0.713
RTI Mean Five-Choice Reaction Time 10 417.22 (68.97) 436.07 (89.78) 18.85 (73.97) 0.25 1 2 1
PAL Total Errors 8 16.88 (6.71) 17.12 (7.75) 0.25 (9.05) 0.03 0.94 1 1
RVP A’ signal detection 8 0.87 (0.04) 0.89 (0.03) 0.02 (0.03) 0.67 0.159 1 0.476
OTS Problems Solved on First Choice 7 8.71 (3.2) 7.43 (3.95) −1.29 (2.98) −0.43 0.2981 0.67

MoCA total score 8 25.5 (3.46) 27.25 (2.76) 1.75 (2.6) 0.67 0.099 1 0.446
SCL-90-R: Anxiety t-score 9 57.78 (9) 57.44 (8.22) −0.33 (4.53) −0.07 0.831 1 1
BDS-II total score 11 23.36 (2.38) 23.27 (2) −0.09 (3.14) −0.03 0.926 1 1

* p-value was obtained by paired t-test 1 or Wilcoxon’s signed-rank test 2 to test whether the mean or median
of the pre-sulforaphane scores was significantly different than the mean or median of their post-sulforaphane
scores, respectively. # FDR represents an adjusted p-value calculated by the Benjamini–Hochberg FDR procedure
in multiple hypothesis testing to control the expected proportion of false discoveries.

Eligibility criteria included ages between 50–85 years, documentation of the premuta-
tion with FMR1 DNA testing, and a previous diagnosis of probable FXTAS or definite FX-
TAS and FXTAS stages between 2 and 5 [4,23]. Critical exclusion criteria were as follows: hy-
persensitivity to cruciform vegetables; severe renal failure (GFR was <60 mL/min/1.73 m2);
significant substance abuse (6 or more symptoms of substance use disorder); any termi-
nal disease; and MRI contraindications such as ferrous metal in any part of the body.
Participants continued their regular medications during the treatment study.

The study consisted of 3 visits: baseline/start of sulforaphane treatment, 12 weeks,
and 24 weeks (Figure 1). Phone calls were made monthly to review adverse events (AEs) or
problems with the medication. The 12-week visit was conducted as a phone follow-up visit.
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Medical history, physical examination including vital signs, adverse events reporting, and
SCL-90R, ADLs, and CGI-I were performed at baseline and 24 weeks. Hematology (CBC
and differential), chemistry panel (CHEM12), and biomarkers were also obtained.
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Figure 1. Open-label sulforaphane trial design.

Administration of sulforaphane and protocol schedule: All enrolled participants
were provided capsules of Avmacol®, a sulforaphane-producing dietary supplement that
contains glucoraphanin, the precursor to sulforaphane, and active myrosinase enzyme
that catalyzes the reaction of glucoraphanin to sulforaphane. The supplements were
administered orally, starting with 1 tablet in the morning with breakfast. Then, every other
day, the dose was increased by 1 tablet to 6 tablets/day in the morning. If the maximum
amount was not tolerated because of bloating, gas, or indigestion, the highest dose was
continued throughout the 6-month study. Capsules were dispensed to participants in
sealed bottles provided by Nutrimax and kept at room temperature. Participants stopped
the supplementation after their 24-week visit.

Safety and tolerance: Adverse event monitoring and documentation by duration,
severity, and relatedness were performed at the 12-week follow-up visit and at 24 weeks
(end of study). Participants were requested to keep daily medication diaries, which they
utilized to record dosage information, timing of administration, and any side effects, such as
bloating, constipation, or diarrhea. The study drug was stopped if it was no longer tolerated
at the starting dose or if laboratory values were above study eligibility rules (which did not
happen). Compliance was ascertained by residual pill counts and medication diaries.

Primary and secondary outcomes: Our main aim and focus was on evaluating al-
terations in molecular biomarkers associated with mitochondrial dysfunction and ROS
(reactive oxygen species) on sulforaphane. Additionally, we aimed to assess the biomarker
correlations in conjunction with clinical measures and explore whether any enhancements
in clinical outcomes could be observed as secondary objectives.

Neuropsychological, psychopathological, and behavioral assessments: The assess-
ments were conducted by staff, including a psychologist and physician, and were overseen
by the PI (RJH). All had had extensive experience with patients with FXTAS. Except for the
intellectual assessment (IQ) that was carried out only at baseline, all the other tests listed
and described below were administered at baseline (T0) and after six months (T2).

Cambridge neuropsychological test automated battery (CANTAB) [24]: Originally
designed in the 1980s, the CANTAB is one of the most automated cognitive batteries
currently used. It effectively differentiates between normal populations and individuals
with clinical conditions such as dementia and cognitive impairment [25]. The battery
includes the following subtests: intra–extra dimension set shift, spatial working memory
strategy, spatial working memory test, within-search errors spatial span, rapid visual
information processing, paired-associates learning test (PAL), spatial recognition memory,
verbal recognition memory, and pattern recognition memory. The strength of the battery is
that it is language-independent and culturally neutral.

Symptom checklist-90-revised (SCL-90-R): This test battery aims to evaluate a broad
range of psychological problems in people aged 13 or older, and it was used at baseline
and during the last two weeks before testing [26]. The 90-item questionnaire measures nine
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primary symptom constructs: somatization, obsessive compulsive disorder, interpersonal
sensitivity, depression, anxiety, hostility, phobic anxiety, paranoid ideation, and psychoti-
cism. Each item has the five following response categories: 0 = not at all, 1 = little, 2 = some,
3 = very, and 4 = severe. The global severity index can be used as a summary of the test.

Behavioral dyscontrol scale, 2nd edition (BDS-II): The behavioral dyscontrol scale
(BDS) [27] is a 9-item measure of dynamic motor behavior, alphanumeric sequencing,
and insight, initially validated for geriatric individuals. Subsequently, the BDS-II scoring
system [28] was created to measure executive functioning in younger and high-functioning
individuals. In the BDS-II, a total score ranging from 0 to 27 is derived from the same
nine BDS items that can be scored from 0 to 3. Items 1 and 2 require the participant to
alternatingly tap once with one hand and twice with the other; item 3 is a go–no-go task; in
item 4, the respondent taps his hand once when the examiner taps twice, and vice versa;
items 5 and 6 measure motor procedural learning; in item 7 the participant is asked to mimic
the examiner’s movements; item 8 is an auditory alphanumeric sequencing task, similar to
trail making part B; finally, item 9 evaluates the patient’s insight regarding performance on
the test.

Montreal cognitive assessment (MoCA): The MoCA test is a short screening instrument
usually administered to people with cognitive loss [29]. It assesses different domains, which
include attention and concentration, memory, orientation, language, visuo-constructional
skills, conceptual thinking, calculations, and executive functions. A maximum of 30 points are
attainable, with a score of 26 being used as a cut-off score between normal and pathological.

2.2. Biomarkers

FMR1 genotyping and expression levels: Genomic DNA was isolated from peripheral
blood samples (3 mL) using a Gentra Puregene Blood Kit (Qiagen, Valencia, CA, USA).
CGG repeat size was obtained using PCR and Southern blot analysis, as previously de-
scribed [30,31]. Capillary electrophoresis (CE) was used to visualize and size the PCR
products. The methylation status of the FMR1 alleles was assessed by Southern blotting,
as detailed in [4,5,32]. FMR1 mRNA levels were measured using qRT-PCR using Assays-
On-Demand (Applied Biosystems, Foster City, CA, USA) and custom TaqMan primers and
probe assays, as reported in Tassone et al. (2000) [33].

FMRP expression levels: FMRP was quantified via the time-resolved fluorescence
resonance energy transfer (TR-FRET) method using a Cisbio Human FMRP assay kit (Cisbio
US, Bedford, MA, USA) according to the manufacturer’s recommendations except for the
following: (i) Protease inhibitors were added to frozen peripheral blood mononuclear cells
(PBMCs) during thawing. (ii) Cells were lysed in Cisbio lysis buffer supplemented with
Benzonase (MilliporeSigma, Burlington, MA, USA) in the presence of MgCl2 to reduce
viscoelasticity. Fluorescent antibody conjugates were incubated with cell lysates at room
temperature for 18 h. A control fibroblast fiducial line was used to generate a standard
curve to interpolate the percentage change in fluorescence (∆F%), as performed by Kim et al.
2019 [34]. A four-factor fit was used for ⊗F% > 65, while a linear fit was used for ⊗ F% < 65
to allow for the interpolation of negative replicate values. Interpolated FMRP values were
then corrected to total protein loaded, as determined by a BCA Protein Assay (Thermo
Fisher Scientific, Rockford, IL, USA). Finally, the relative FMRP level was calculated by
normalizing the historical mean of samples with control alleles.

Plasma neuron-derived extracellular vesicles (NDEV) isolation and mitochondrial
measures: EDTA plasma aliquots were received and processed blindly by investigators at
the National Institute on Aging, Baltimore, MD. NDEVs were isolated by immunoaffinity
capture targeting L1 Cell Adhesion Molecule (L1CAM), a transmembrane neuronal protein
sorted to EVs. The methodology followed has been described previously in detail [35,36].
Briefly, 250 µL of plasma was defibrinated with 100 µL of thrombin followed by the addi-
tion of 150 µL of Dulbecco’s PBS-1X (DPBS), supplemented with protease/phosphatase
inhibitors, and sedimented at 3000× g for 15 min at room temperature (RT). The super-
natant was transferred to a sterile 1.5 mL microtube, and particles were sedimented by
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incubation with 126 µL of ExoQuick™ followed by centrifugation at 1500× g for 30 min at
RT. Pelleted crude total EVs were resuspended by overnight gentle rotation mixing at 4 ◦C
in 350 µL of ultra-pure distilled water supplemented with protease/phosphatase inhibitors.
Resuspended crude total EVs were then incubated for 30 min at RT with 4 µg of biotiny-
lated anti-human L1CAM antibody. EV–antibody complexes were incubated with 25 µL of
washed Pierce™ Streptavidin Plus UltraLink™ Resin for 30 min at RT. After centrifugation
at 600× g for 10 min at 4 ◦C and removal of unbound EVs and soluble proteins in the
supernatant, NDEVs were eluted with 100 µL of 0.1 M glycine, followed promptly by pH
normalization. Beads were sedimented by centrifugation at 4000× g for 10 min at 4 ◦C, and
the supernatant containing immunoprecipitated NDEVs was transferred to a sterile tube.

Using a commercial assay, we measured mitochondrial complex IV in NDEVs (abcam;
ab109910). In this assay, complex IV was immunocaptured in the wells of an assay plate;
its catalytic activity was determined colorimetrically based on the oxidation of reduced
cytochrome c, and ELISA then measured its quantity in the same wells. The ratio of the
activity and quantity represents the specific activity of complex IV. We clarify that this
ratio of specific activity is referred to as “activity” throughout the manuscript. We lysed
intact NDEVs in the assay buffer containing 10% detergent (provided in the assay kit) on
ice for 30 min before loading the samples onto the assay plate. The plate was incubated
overnight with gentle rocking at 4 ◦C followed by measurement of complex IV activity,
quantity, and specific activity. All samples were run in duplicates. Using a commercial
assay, we measured ATP synthase (Complex V) in NDEVs (abcam; ab109716). In this assay,
ATP synthase was immunocaptured in the wells of an assay plate; its catalytic activity
was determined colorimetrically based on the conversion of NADH to NAD+, and its
quantity in the same sample wells was then measured by ELISA. The ratio of the activity
and quantity represents the specific activity of ATP synthase.

Similarly, to complex IV, we use “activity” to describe this ratio throughout the
manuscript. We lysed intact NDEVs in the assay buffer containing 10% detergent (both
provided in the assay kit) before loading the samples onto the assay plate. The plate was
incubated overnight with gentle rocking at 4 ◦C followed by measurement of ATP synthase
activity, quantity, and specific activity. All samples were run in duplicates.

2.3. Bioenergetics Assessment

PBMCs preparation for bioenergetics analyses: Blood (5–7 mL) was collected in BD
Vacutainer Cell Preparation TubesTM (Becton-Dickinson, Franklin Lakes, NJ, USA) accord-
ing to the manufacturer’s recommendation within less than 1 h from blood collection.
Most samples were collected between 9–11 a.m. Lymphocytes were isolated as previously
described [37].

Chemicals and biochemicals: EDTA, EGTA, sodium succinate, mannitol, sucrose, and
HEPES were all purchased from Sigma (St. Louis, MO, USA). Tris-HCl, glycine, sodium
chloride, and potassium chloride were purchased from Fisher (Pittsburg, PA, USA). Bovine
serum albumin (fatty-acid-free) was obtained from MP Biomedicals. All other reagents
were of analytical or higher grade.

All samples were evaluated blindly and labeled with a 9-digit identification num-
ber, for which the cross-reference was available to those at the MIND Institute and not
to the Giulivi team. The bioenergetic assessments followed essentially those described
before [38,39]. For the polarographic determination of ATP-linked oxygen uptake of in-
tact or permeabilized cells, we used a set-up of Clark-type oxygen electrodes with two
chambers [12,39–46]. The semipermeable membranes were changed the day before the
experiment was planned to avoid unwanted cell debris that may have become attached
to it. The membrane was hydrated a day before (for no less than 8 h) to facilitate oxygen
diffusion. Washes of the chamber were carried out with 70% ethanol and three washes of
double-distilled, deionized water (18 megaohms). The calibration of the electrode entailed
the recording of zero oxygen concentration (with dithionite) and air-saturate solution (used
for functional studies) warmed up at 21–22 ◦C, at which the experiments were run. The
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calibration was run in duplicates with <10% CV. The oxygen concentration in the calibrating
solution was calculated with the atmospheric pressure (barometer) and ambient tempera-
ture (thermometer). Additions to the chamber were carried out using Hamilton syringes to
avoid increasing oxygen concentrations throughout the evaluations. The chamber was con-
stantly stirred with a Teflon-coated minibar to ensure a homogenous diffusion of substrates
and oxygen. Washes with 70% ethanol were warranted after using rotenone, antimycin, or
FCCP, which tended to stick to the plastic walls of the chamber. ATP-driven oxygen uptake
was usually carried out in duplicates at a given cell concentration (which was calculated
before starting this protocol). All enzymatic assays were performed within the hour of
collecting the blood sample and were run in parallel with controls. Reproducibility was
ensured by running a subset of samples previously tested in parallel with new batches
of samples.

Activities of complexes I–V in digitonin-permeabilized lymphocytes were determined
by polarography essentially as described before [37,39]. Briefly, an aliquot (1.0–2.0 × 106)
of lymphocytes was added to the chamber equipped with a Clark-type Hansatech oxygen
electrode at 20–22 ◦C in 0.3 mL of buffer containing 0.22 M sucrose, 50 mM KCl, 1 mM
EDTA, 10 mM KH2PO4, and 10 mM HEPES, pH 7.4. Oxygen consumption rates were
evaluated in air-saturated solutions in the presence of (i) 1 mM ADP plus 1 mM malate-10
mM glutamate followed by the addition of 5 µM rotenone; (ii) 10 mM succinate followed
by the addition of 1 mM malonate; (iii) 1 mM α-glycerophosphate followed by the addition
of 3.6 µM antimycin A; and (iv) 10 mM ascorbate and 0.2 mM N,N,N′,N′-tetramethyl-
p-phenylenediamine followed by the addition of 1 mM KCN (activity of complex IV).
Activities of individual electron transport chain (ETC) segments were evaluated as the
difference in oxygen uptake recorded before and after the addition of specific inhibitors.
Most mitochondrial inhibitors and uncouplers were stored at −80 ◦C as concentrated stock
solutions (high mM) in DMSO to prevent unwanted oxidation or degradation. Quality
control checks were performed with beef heart submitochondrial particles, and the results
were compared to data collected over the years.

As previously described, oxygen consumption was also evaluated in intact cells using
a Clark-type oxygen electrode (Hansatech, King’s Lynn, Norfolk, UK) [47,48]. ATP-linked
oxygen uptake (or State-3-dependent oxygen uptake) was calculated as the difference
between basal and oligomycin-induced State 4 oxygen uptake rates; State 4o is the resid-
ual respiration after the inhibition of ATP synthesis with the ATPase-specific inhibitor
0.2 µM oligomycin; maximal respiratory capacity, or State 3u, is described as the oxygen
uptake rate in the presence of 2 µM of the uncoupler carbonyl cyanide-4-(trifluoromethoxy)
phenylhydrazone (FCCP); the respiratory control ratio (RCR) was calculated as the ratio
between States 3 and 4o; the index of respiratory capacity (IRC) was calculated as the
difference between State 3 and State 4o normalized by that of State 3u. Mitochondrial
proton leak (PL)/ROS production was calculated from the oligomycin-resistant oxygen con-
sumption rates and normalized by basal respiration in the presence of 10 mM glucose-2 mM
glutamine in RPMI-1640.

Citrate synthase activity was evaluated spectrophotometrically with a Tecan Infinite
M200 microplate reader at 412 nm, as described before, using 2.5 to 3× 105 cells [37]. All cell
pellets destined for this activity were tested within an hour following blood extraction.
If stored, the pellets were supplemented with proteolytic inhibitors (4-benzenesulfonyl
fluoride hydrochloride, EDTA, bestatin, E-64, leupeptin, and aprotinin, from Sigma) and
kinase and phosphatase inhibitors (sodium orthovanadate, sodium molybdate, sodium
tartrate, imidazole, cantharidin, (-)p-bromolevamisole oxalate, and calyculin A, from Sigma)
and stored at −80 ◦C.

2.4. Statistical Analysis

Statistical analyses of the data were performed with the open-source R software,
version 4.2.3. Results are expressed as mean ± standard deviation (SD) of the mean or
median (25th percentile, 75th percentile) for continuous variables and frequency (%) for
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categorical variables. For quantitative variables, the normality of the data was assessed
using Shapiro–Wilk’s test before statistical analysis. The change in quantitative variables
pre- and post-treatment was analyzed using a paired t-test or Wilcoxon’s signed-rank test as
appropriate. Spearman’s correlation analysis was conducted to calculate the magnitudes of
correlation between a pair of quantitative variables and their significance. Linear regression
was also used to describe relationships between two variables as appropriate. Two-tailed
p < 0.05 values were considered statistically significant. The Benjamini–Hochberg false
discovery rate (FDR) method was applied for bioenergetic data for multiple testing cor-
rections, and FDR-adjusted p-values were suggested for guidance of significance when
accounting for multiple testing given the small sample size of this pilot study with N = 11.

3. Results
3.1. Participants

A total of 15 participants aged 60–88 were enrolled from July 2021 to October 2022
Four participants did not complete the study; two were lost to follow-up, and two could
not tolerate the starting dose. All participants reported no adverse effects. However, among
the two individuals who could not tolerate the initial dose, they expressed complaints of
heightened bloating, constipation, and diarrhea. Eleven participants (six males and five
females) completed the study with data available both pre- and post-treatment, and their
details are included in Table 1. The 11 participants were 60–88 years old at enrollment
(median 74 years), with the FMR1 premutation confirmed via molecular studies (mean
CGG repeat size = 85) (Table 1). All participants were white and non-Hispanic.

3.2. Analysis of Outcome Measures

The changes in clinical outcome measures following the sulforaphane treatment were
limited and are highlighted in Table 2 Interestingly, the spatial working memory score
(SWM between errors) was significantly lower (improved) following the sulforaphane
treatment (p = 0.048, FDR adjusted p = 0.43). After receiving the treatment, an upward
trend was observed in the MoCA scores (p = 0.099, FDR adjusted p = 0.446). Figure 2 shows
the changes from pre- to post-sulforaphane in SWM between the errors and MoCA scores.
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Figure 2. Efficacy of sulforaphane: changes in SWM between error and MoCA scores. Blue represents
values/scores prior to sulforaphane treatment. Orange represents values/scores after sulforaphane
treatment. Green represents the change in values/scores prior to and following sulforaphane treat-
ment. * Significant at p-value < 0.05.

Table 3 presents the results of the molecular changes in mitochondria-derived vesicles
following the sulforaphane treatment. On average, the post-treatment measurements indi-
cated numerical increases in complex IV quantity, ATP synthase activity, and FMRP levels.
However, it is important to note that these changes did not reach statistical significance.
Figure 3 shows the relationships between increased FMRP levels and improvements in
spatial working memory errors (SWM between errors) and stop reaction time (SST). Al-
though these trends are visually presented, they did not achieve statistical significance
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after applying the false discovery rate (FDR) correction. Additionally, Figure 4 displays
the correlation between the increased complex IV quantity levels and increased paired-
associates learning (PAL) total errors as well as the SCL-90-R anxiety total scores. Once
again, despite these observed correlations, they did not maintain statistical significance
after the FDR correction.

Table 3. Efficacy of sulforaphane: molecular changes in mitochondria-derived vesicles following
sulforaphane treatment.

Variable N

Pre-
Sulforaphane

Post-
Sulforaphane

Change from
Baseline (Pre-Post) Cohen’s d

Effect Size
p-Value * FDR #

Mean (SD) Mean (SD) Mean (SD)

Complex IV quantity 11 29.2 (17.46) 39.77 (35.14) 10.57 (31.78) 0.33 0.52 2 0.866
Complex IV specific
activity 11 0.45 (0.2) 0.44 (0.32) −0.01 (0.34) −0.03 0.918 1 0.918

ATP synthase quantity 11 35.81 (11.98) 41.8 (17.35) 5.99 (15.05) 0.40 0.216 1 0.866
ATP synthase specific
activity 11 0.00225

(0.00128)
0.00262

(0.00246) 0.00037 (0.00251) 0.15 0.765 2 0.918

FMRP level 7 1.03 (0.445) 1.193 (0.715) 0.162 (0.569) 0.28 0.478 1 0.866

* p-value was obtained by paired t-test 1 or Wilcoxon’s signed-rank test 2 to test whether the mean or median of
the pre-sulforaphane scores is significantly different than the mean or median of their post-sulforaphane scores,
respectively. # FDR represents an adjusted p-value calculated by the Benjamini–Hochberg FDR procedure used in
multiple hypothesis testing to control the expected proportion of false discoveries.
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Figure 3. Correlations of post-sulforaphane changes in FMRP level with changes in SWM between
errors and SST stop signal reaction time. FDR indicates an FDR-adjusted p-value.
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Figure 4. Correlations of post-sulforaphane changes in complex IV quantity in mitochondria-derived
vesicles with changes in paired-associates learning (PAL) total errors and SCL-90-R anxiety scores.
FDR indicates an FDR-adjusted p-value.
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3.3. Bioenergetics Results in PBMC

The changes in the bioenergetics from PBMC following sulforaphane treatment are
summarized in Table 4. The volcano plot in Figure 5 displays the p-value versus the fold
change for each bioenergetic measure in the post-sulforaphane expression value relative to
the pre-sulforaphane expression value. On average, citrate synthase, a marker of mitochon-
drial mass, and the ratio of complex I to complex III were higher after the sulforaphane
treatment. As a result of the higher activity of citrate synthase, the ATP production (with
various substrates) normalized by this biomarker of mitochondrial mass was lower after
the sulforaphane treatment (i.e., nState 3, nCCO, nNOX, nSOX, nGP). Notably, the higher
ratio of complex I to complex III may indicate a decrease in complex III activity (as seen
by the marginally higher ratio of complex II to complex III) accompanied by increases in
complex I activity. This rearrangement of the complexes’ activities may indicate a more
suitable management of NADH- vs. FADH2-linked substrates while minimizing the ROS
production at complex III. Eight of the eleven subjects showed improvements (2 times the
experimental error or log2FC of +/−0.3) in the ratio of complexes, seven in the normal-
ized glycerophosphate-sustained ATP production, six in both citrate synthase activity and
normalized malate-glutamate-sustained ATP production, and four in the malate-glutamate-
sustained ATP production. Seven of the eleven subjects showed improvements in two or
more outcomes (four with four outcomes and three with two to three outcomes), with the
rest considered as not responsive to the treatment.
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Table 4. Efficacy of sulforaphane: changes in bioenergetic measures in PBMC following sul-
foraphane treatment.

Variable N

Pre-
Sulforaphane

Post-
Sulforaphane

Change from
Baseline (Pre-Post) log2 (Fold

Change) p-Value * FDR
Mean (SD) Mean (SD) Mean (SD)

CI-V 11 0.358 (0.197) 0.453 (0.206) 0.095 (0.248) 0.34 0.232 1 0.572
CII-V 11 0.455 (0.275) 0.507 (0.351) 0.052 (0.403) 0.16 0.678 1 0.771
CIII-V 11 0.42 (0.393) 0.388 (0.325) −0.032 (0.379) −0.11 0.966 2 0.966
CCO 11 0.998 (1.301) 0.887 (0.481) −0.11 (1.015) −0.17 0.32 2 0.572
Basal 11 0.686 (0.52) 0.558 (0.362) −0.128 (0.397) −0.30 0.31 1 0.572
RCRu 11 1.651 (0.813) 1.35 (0.733) −0.301 (1.054) −0.29 0.366 1 0.61
SRC 11 1.908 (1.257) 1.828 (1.335) −0.08 (1.493) −0.06 0.413 2 0.645
ROS/proton leak 11 1.327 (1.054) 1.281 (0.391) −0.046 (0.789) −0.05 0.465 2 0.684
State 3u 11 1.04 (0.571) 0.834 (0.542) −0.206 (0.653) −0.32 0.319 1 0.572
State 4 11 0.715 (0.413) 0.676 (0.437) −0.039 (0.47) −0.08 0.79 1 0.823
IRC 11 0.651 (0.234) 0.761 (0.35) 0.11 (0.303) 0.23 0.255 1 0.572
RCR 11 1.046 (0.617) 0.86 (0.238) −0.186 (0.583) −0.28 0.52 2 0.684
BHI 11 1.067 (0.75) 0.671 (0.46) −0.396 (0.661) −0.67 0.24 2 0.572
CI/CII 11 1.054 (0.82) 1.466 (1.426) 0.412 (1.695) 0.48 0.52 2 0.684
CI/CIII 11 1.435 (1.261) 2.28 (1.789) 0.846 (1.377) 0.67 0.069 1 0.572
CI/CIV 11 0.818 (0.881) 0.742 (0.78) −0.076 (0.528) −0.14 0.643 1 0.771
CII/CIII 11 1.431 (0.667) 2.199 (2.233) 0.768 (2.412) 0.62 0.765 2 0.823
CII/CIV 11 0.772 (0.727) 0.682 (0.391) −0.09 (0.672) −0.18 0.666 1 0.771
CIII/CIV 11 0.692 (0.624) 0.521 (0.415) −0.171 (0.391) −0.41 0.176 1 0.572
CS 11 2.003 (1.458) 2.879 (1.115) 0.876 (1.777) 0.52 0.133 1 0.572
nNOX 11 0.336 (0.346) 0.184 (0.109) −0.152 (0.315) −0.87 0.141 1 0.572
nSOX 11 0.352 (0.325) 0.196 (0.134) −0.156 (0.344) −0.84 0.164 1 0.572
nGP 11 0.356 (0.4) 0.175 (0.242) −0.181 (0.437) −1.02 0.201 1 0.572
nCCO 11 0.56 (0.397) 0.385 (0.326) −0.175 (0.308) −0.54 0.09 1 0.572
nState3 11 0.582 (0.677) 0.25 (0.298) −0.332 (0.64) −1.22 0.083 1 0.572

* p-value was obtained by paired t-test 1 or Wilcoxon’s signed-rank test 2 to test whether the mean or median of the
pre-sulforaphane scores were significantly different compared to the mean or median of their post-sulforaphane
scores, respectively. * FDR represents an adjusted p-value calculated by the Benjamini–Hochberg FDR procedure
used in multiple hypothesis testing to control the expected proportion of false discoveries.

The correlation heatmap plot in Figure 6 shows the magnitudes of the correlations
between the neuropsychiatric tests and PBMC bioenergetics (see Supplementary Table S1
for correlation coefficients and their p-values of significance). Three tests directly (positively)
correlated with PBMC mitochondrial outcomes. The MoCA and BDS scores with the ratio
of complex I to complex II and the SLC90-R anxiety t-score with the ratio of complex
I to complex IV suggest the relevance of increasing complex I activity and indicating
that a better management of NADH-linked substrates (such as glucose) improved these
scores. The RVP A’ signal detection was positively correlated with the normalized (by
citrate synthase activity) rate of ATP production sustained by glycerophosphate (nGP) and
glucose (nState 3).
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Four tests were negatively (indirectly) correlated with several PBMC mitochondrial
outcomes. The RTI mean five-choice reaction time test was significantly negatively corre-
lated with basal, State 4, CIII/CIV, nGP, and nState3, suggesting links to mitochondrial ROS
production (i.e., the lower the mitochondrial ROS production, the higher the test scores).
The BDS-2 total scores were inversely correlated with CII-V (correlation = −0.76; p = 0.007),
suggesting that a better management of NADH-linked substrates via complex I (and not
FADH2-linked via complex II) improved the ability of the patients to complete this test.
The RVP A’ signal detection was negatively correlated with mitochondrial mass in PBMCs
(citrate synthase biomarker (which explains the positive correlation with the normalized
rates of ATP production sustained by glycerophosphate (nGP) and glucose (nState 3); see
above)). The OTS problems solved on first choice scores were negatively correlated with
State 3u, suggesting that more uncoupling (less ATP production) was associated with lower
scores in this test.

None of the PBMC bioenergetic outcomes were significantly correlated with three of
the six tests included under the CANTAB, namely SWM between errors, STT stop signal
reaction time, and PAL total errors.

4. Discussion

Sulforaphane (SFN) is an isothiocyanate that stimulates antioxidant and cytopro-
tective effects by preventing the degradation of Nrf2 [49]. Nrf2, a leucine zipper (bZip)
transcription factor, induces antioxidant/electrophile response elements (ARE), which are
found in the promoter region of numerous genes involved in detoxification and cytoprotec-
tion [50,51]. We expected to see improvements in neuropsychiatric tests linked to measures
of oxidative stress and mitochondrial function since in vitro studies of sulforaphane treat-
ment have demonstrated this effect [21]. In this 6-month, open-label study of sulforaphane
in 11 patients with FXTAS who completed this study, there was an improvement in spatial
working memory (p = 0.048) compared to baseline. Additionally, increased FMRP levels
in this study were correlated with improved working memory (fewer SWM errors) and
decreased stop reaction time (SST). However, after the FDR adjustment, these were not
significant. There were no statistically significant effects of sulforaphane in improving
mitochondrial outcomes in mitochondria-derived vesicles, but there were near significant
ones in PBMCs. While mitochondria-derived vesicles are not considered “functional” or to
contribute to the cellular ATP budget, the bioenergetics of PBMCs showed improvements,
mainly in the ratios of complex I to complex III and citrate synthase activity (mitochon-
drial mass).

Although doses of sulforaphane have shown limited efficacy in ASD [52] and in some
cellular studies of neurodegenerative disorders [53–55], we did not expect sulforaphane to
make a difference in the main features of FXTAS (tremor and ataxia), especially with the
small cohort size and treatment window. Therefore, the improvement we found shows
promise in terms of sulforaphane being a potential modulator of oxidative stress and
neurocognitive features of FXTAS if studied in a larger population with a randomized
controlled trial to better understand any efficacy.

While this study may be underpowered to reliably detect significant efficacy, it is
worth noting that a positive trend in treatment effectiveness was observed with the MoCA
scores, although it did not reach conventional statistical significance (p = 0.099). This
is unusual for neurodegenerative diseases, as the MoCA score is known to be lowered
by 3 points per year in those with Alzheimer’s disease (AD) [56]. A recent longitudinal
study of MoCA scores in a cohort with major neurocognitive disorder/MCI decreased by
1.3 points over 1 year, which would equate to 0.6 points after 6 months [57]. Our cohort
showed stability and some improvement in scores after 6 months. Despite this result not
achieving significance, it suggests a significant improvement may be seen with a larger
cohort, perhaps adjusting for normal decreases in scores with age in control cohorts or
compared to other neurodegenerative diseases.
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In the analysis of biomarkers, there was a non-significant trend toward an increase in
the FMRP levels in PBMCs with treatment, an observation that would be consistent with
evidence that Nrf-2 is a positive regulator of FMR1 expression [58]; that is, stabilization of
Nrf-2 with sulforaphane would be predicted to increase FMRP levels. When analyzing the
increase in FMRP with clinical measures, we saw a significant positive correlation between
FMRP levels and spatial working memory and signal stop time scores (Figure 3).

In terms of the bioenergetics of PBMCs, a substantial increase in the ratio of com-
plex I to complex III activity and an improvement trend in two other outcomes (higher
citrate synthase, lower complex III activity) were consistent with our previous study on
FXTAS [21] and with other reports on neurodegenerative diseases [59,60] or other medical
conditions [61–63]. The direct correlation of BDS2 with the ratio of complex I to complex III
and the negative one with succinate-sustained ATP production underlines the link between
NADH-generating substrates managed at complex I and improvements in executive func-
tion and dynamic motor behaviors. For the six tests included under CANTAB, only three
(RTI, OTS, RVP A) showed correlations with PBMC bioenergetic outcomes. Taken together,
the direct (with normalized rates of ATP production sustained by glucose and glycerophos-
phate) and indirect (with, e.g., citrate synthase, State 3u, complex III/complex IV, State 4)
may point to minimizing uncoupling between electron transport and ATP production
and mitochondrial ROS production. Thus, increasing mitochondrial mass and improving
substrate management (NADH- vs. FADH2-linked substrates such as glucose vs. fat) while
minimizing mitochondrial ROS production (and oxidative stress) seemed to improve some
of the tests within CANTAB. Extending this conclusion, the BDS2 and MoCA scores were
directly correlated with the ratios of complex I to complex II and negatively with the rates
of ATP production that involved the primary use of FADH2-linked substrates via complex
II (BDS only). Conversely, the SCL-90 test, which evaluates anxiety, was directly correlated
with the ratios of complex I to complex IV. As no correlations were observed for this test
and complex IV activity or complex-I-mediated ATP production, the implication of this
finding in the context of anxiety is not clear.

While most subjects (seven of the eleven) showed some improvement in terms of
PBMC bioenergetics, consistent with our previous study on the use of antioxidants [6],
the lack of beneficial effects of this nutraceutical on all subjects can be understood by the
concept of precision medicine, further exacerbated by the subject-dependent bioavailability
of this compound, which is influenced by the microflora and diet [64].

4.1. Limitations

This study employed an open-label exploratory design, which lacks the controls of a
randomized, double-blind trial. Additionally, the study utilized a relatively small sample
size of patients, and it may not be representative of the broader FXTAS patient population.
Since all the patients were white and non-Hispanic, this study does not represent ethnic
and racial diversity, which we are now improving in current studies of FXTAS. The small
and non-randomized sample size restricts the generalizability of the findings observed in
this study and may not accurately represent the diversity of FXTAS patients in terms of age,
disease severity, and other factors. While this study provides valuable preliminary insights
and potentially hints at clinical significance for the future, its findings should warrant
further investigation in larger, placebo-controlled clinical trials to establish the efficacy and
safety of sulforaphane for FXTAS patients.

4.2. Sulforaphane in Neurogenerative Disorders

Sulforaphane has been shown to have neuroprotective effects through its influence
on the NFEL2L pathway. In mice, the removal of NFEL2L or the combination of SFN
with gamma-glutamylcysteine synthetase inhibitors resulted in the loss of the neuropro-
tective effects of SFN, indicating that SFN specifically targets NFEL2L. In addition to its
neuroprotective effects, SFN also has anti-inflammatory properties. It can reduce inflam-
matory mediators such as TNF-α, and IL-6 and can decrease the activity of MAPKs like
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p38 and ERK 1/2. Sulforaphane can also lessen the cleavage of caspase-1 and caspase-3,
which are involved in inflammation and apoptosis, and it can increase the release of anti-
inflammatory cytokines like IL-4 and IL-10. Sulforaphane has also been found to promote
autophagy in neurons through a mechanism that may involve NFEL2L or ERK and to
improve mitochondrial function by activating genes that support mitochondrial biogenesis
and preserve the production of ATP. Additionally, sulforaphane can enhance neurogenesis
by increasing BDNF levels and activating the WNT signaling pathway [65].

A new compound was recently approved for treating Friedreich’s ataxia (FA), specifi-
cally omaveloxolone, which improves mitochondrial function, restores redox balance, and
reduces inflammation. Omaveloxolone achieves this by activating NFEL2L. In a 48-week
controlled trial of 150 mg per day in 103 patients with FA, there was a significant improve-
ment in motor function as measured by the revised Friedreich ataxia rating scale [66]. This
exciting breakthrough in treating a neurodegenerative disorder demonstrates the power of
activating NFEL2L, so such trials should continue in FXTAS.

5. Conclusions

Our study offers valuable insights into the potential therapeutic benefits of sul-
foraphane for individuals afflicted by FXTAS. Although our open-label trial observed
modest improvements in some clinical measures, these findings lend additional support to
the promising role of sulforaphane in the treatment and management of FXTAS. This un-
derscores the significance of ongoing research into sulforaphane as a therapeutic agent and
its potential to enhance cognitive and mitochondrial outcomes. Further investigations are
warranted to validate and refine these initial results and to explore the broader potential of
sulforaphane and other NFEL2L activators in addressing the challenges posed by FXTAS.
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