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Fundamental Limits of Information Dissemination
in Wireless Ad Hoc Networks–Part II:

Multi-Packet Reception
Zheng Wang, Student Member, IEEE, Hamid R. Sadjadpour, Senior Member, IEEE,

and J. J. Garcia-Luna-Aceves, Fellow, IEEE

Abstract—We present capacity and delay scaling laws for
random wireless ad hoc networks under all information dis-
semination modalities (unicast, multicast, broadcast and anycast)
when nodes are endowed with multi-packet reception (MPR)
capabilities. Information dissemination modalities are modeled
with an (!, ", #)-cast formulation, where !, ", and # denote
the number of nodes in the network, the number of destinations
for each communication group, and the actual number of
communication group members that receives the information (i.
e., # ≤ " ≤ !), respectively. We show that Θ($(!)

√
"/#),

Θ(1/#), and Θ
(
$2(!)

)
bits per second constitute a tight

bound for the throughput capacity of random wireless ad hoc
networks under the protocol model when " = &

(
$−2(!)

)
,

Ω(#) = $−2(!) = &("), and # = Ω
(
$−2(!)

)
, respectively.

$(!) denotes the receiver range which depends on the decoding
complexity of the nodes. For the minimum receiver range of
Θ
(√

log !/!
)

to guarantee network connectivity, a gain of
Θ(log !) for (!, ", #)-casting is attained with MPR compared
to the capacity attained when receivers can decode at most
one transmission at a time in [1]. Furthermore, we derive the
capacity-delay tradeoff of (!,", #)-casting when MPR is used.
We show that the use of MPR can lead to both increased network
capacity and reduced delays in wireless ad hoc networks.

Index Terms—Scaling laws, network information theory, multi-
packet reception.

I. INTRODUCTION

THE seminal work by Gupta and Kumar [2] on the scaling
laws of wireless ad hoc networks for unicasting with

multi-hop communication demonstrated that when nodes can
receive successfully only a single packet at a time, which we
call single-packet reception or SPR, the capacity decreases
as the number of nodes in the network increases. This result
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has motivated many studies focusing on techniques aimed at
improving the unicast capacity of wireless networks (e.g., see
[3], [4]), as well as the computation of the scaling laws under
SPR for multicasting [5] and broadcasting [6] in wireless ad
hoc networks.

Increasing the capacity of wireless networks requires in-
creasing the concurrency with which shared channels are
accessed or increasing the amount of information sent with
each transmission. Multi-packet reception (MPR) [7] consists
of the ability of allowing multiple nodes to transmit their
packets simultaneously to the same receiver node, which can
in turn decode all such packets successfully. In practice,
MPR can be achieved with a variety of techniques. For
example, MPR can be implemented by allowing a node to
decode multiple concurrent packets using multiuser detection
(MUD) or directional antennas, provided that the number
of the concurrent transmissions is restricted in practice by
the complexity of the nodes [8], [9]. However, practical
implementation of MPR requires more realistic interference
models. Recently, there has been a very useful contribution
[10] on MPR. This work assumes that each node can decode
at most ! simultaneous transmission within node’s receiver
range. Such model is called k-MPR model which is a very
useful contribution in considering the practical limitations of
MPR and provides a good perspective on the limitations of our
results in this paper. MPR has been shown [4] to increase the
capacity regions of ad hoc wireless networks subject to multi-
pair unicast trafc; however, no capacity results have been
reported on the benets of MPR in wireless networks subject
to information dissemination classes other than unicasting.

Ahlswede, Ning, Li and Yeung [11] introduced the concept
of network coding (NC) and showed that it achieves the
optimal capacity for single-source multicasting in directed
graphs corresponding to wired networks in which nodes are
connected by point-to-point links. As a result of this work,
many attempts have been made to use NC as a complementary
approach to increasing the capacity of wireless networks by
increasing the amount of information sent per transmission.
Liu et al. [12] have shown that NC cannot increase the order
capacity of wireless ad hoc networks for multi-pair unicast
trafc; however, recent works [13]–[17] have shown promising
results on the advantage of NC in wireless ad hoc networks
subject to multicast trafc. Ramamoorthy et al. [15] proved
that the throughput capacity of single source multicast is
("−1−#)$[% ] with high probability, where # and "−1−#

1536-1276/11$25.00 c⃝ 2011 IEEE
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are the number of destinations and relays respectively and
% denotes the i.i.d. distribution of the link capacity between
any two nodes in the network. Aly et al. [16] and Kong
et al. [17] extended the result by Ramamoorthy et al. to
more general protocol and physical models, respectively, and
derived similar results. Recently, Zhang et al. [13] and Katti
et al. [14] proposed analog network coding and physical-layer
network coding, respectively, as ways to embrace interference.
Interestingly, a careful review of these contributions reveals
that ANC and PNC consist of the integration of NC with a
form of MPR, in that receivers must be allowed to decode
successfully concurrent transmissions from multiple senders
by taking advantage of the modulation scheme used at the
physical layer (e.g., MSK modulation in ANC [14]).

The motivation for the work presented in this paper is three-
fold. First, while it is clear from recent work on NC that MPR
may contribute to the capacity increase observed when NC is
applied to wireless networks with multicast trafc, prior work
does not decouple the performance gains due to NC from those
resulting from MPR. Second, although Garcia-Luna-Aceves et
al. [4] have shown that the order capacity of wireless ad hoc
networks subject to multi-pair unicast trafc is increased with
MPR, no results have been reported on the order capacity of
networks with MPR subject to broadcast, multicast or anycast
trafc. Third, no studies have been reported on the capacity-
delay tradeoffs of wireless ad hoc networks subject to different
types of information dissemination. The exception is the case
of unicast trafc, for which El Gamal et al. [18] characterized
the fundamental throughput-delay tradeoff for both static and
mobile networks.

This paper presents a unifying approach for the compu-
tation of the order throughput of wireless networks subject
to different information dissemination modalities (unicast,
multicast, broadcast and anycast) and such that the nodes of
the network can perform MPR. This paper extends the results
we introduced in Part 1 of this work [1] for the case in which
nodes perform SPR. In addition, we study the capacity-delay
tradeoff in wireless ad hoc networks for different information
dissemination modalities when nodes perform MPR.

Sections III presents the rst results on the capacity of ad
hoc networks with MPR under different forms of information
dissemination other than unicast trafc based on the models in
Section II. We show that the per source-destination (",#, !)-
cast throughput capacity '!,#(") of a wireless random ad
hoc network with MPR is tight bounded (upper and lower
bounds) by Θ (((")

√
#/!), Θ (1/!) and Θ

(
(2(")

)
w.h.p.1

when # = *
(
(−2(")

)
, Ω(!) = (−2(") = *(#), and

! = Ω
(
(−2(")

)
, respectively. ", #, and ! denote the number

of nodes in the network, the number of destinations for each
communication group, and the number of communication
group members that receive the information, respectively. For
comparison purposes, we also show the (", #, !)-cast capacity
result for SPR in the rst part of this work [1].

Section IV describes the capacity-delay tradeoff of wireless
ad hoc networks with MPR. Section V discusses the behavior
of the capacity of an ad hoc network with MPR as a function

1An event occurs with high probability (w.h.p.) if its probability tends to
one as ! goes to innity. Θ, Ω and " are the standard order bounds.

of the (",#, !)-cast parameters and as a function of the
receiver range. For the minimum value of the receiver range
(((") = Ω

(√
log"/"

)
) required to guarantee network

connectivity [2], the (",#, !)-cast throughput capacity with
MPR is shown to have a gain of Θ(log") compared to the
throughput attained with SPR [1]. Furthermore, the capacity-
delay tradeoff with MPR is fundamentally different than the
tradeoff with SPR [1].

The paper is organized as follows. Section II describes
the assumptions and denitions that we use throughout the
paper. Section III computes a tight bound for the capacity of
wireless ad hoc networks with MPR. Section IV describes
the delay computation together with capacity-delay tradeoff
for all information dissemination modalities when nodes are
endowed with MPR. Section V discusses the results derived
in the previous sections and their implications. Section VI
presents our conclusions.

II. NETWORK MODEL AND PRELIMINARIES

Our capacity analysis is based on the protocol model for
dense networks introduced by Gupta and Kumar [2]. What
we call SPR corresponds to this original protocol model, and
we make an extension to account for MPR capability at the
receivers.

In the model by Gupta and Kumar (i.e., SPR in our general-
ized model), a common transmission range +(") for all nodes
is dened. Node , at position %$ can successfully transmit to
node - at position %% if for any node ! at position %#, ! ∕= ,,
that transmits at the same time as ,, then ∣%$ − %% ∣ ≤ +(")
and ∣%# −%% ∣ ≥ (1+Δ)+("), where %$, %% and %# are the
cartesian position in the unit square network for these nodes.
We need to dene the protocol model for MPR, and in doing
so we extend the MPR protocol model we rst introduced in
[4].

Denition 2.1: The Protocol Model for MPR: All nodes
use a common transmission range ((") for all their com-
munications. In wireless networks with MPR capability, the
protocol model assumption allows simultaneous decoding of
packets for all nodes as long as they are within a radius of
((") from the receiver and all other transmitting nodes have
a distance larger than (1 + Δ)((").

Note that some transmitters outside ((") can be very strong
and interfere with MPR communications, therefore it is natural
to select a guard zone of (1 + Δ)((") around each receiver
such that nodes in this region are silent during transmission.
The value of Δ depends on the sensitivity of the receiver nodes
and the wireless channel. It is common knowledge that once
the transmitters are far from a receiver more than a certain
distance, then the interference from these transmitters are so
weak that can be treated as noise.

The difference between the protocol model for SPR [1], [2]
and MPR is that we allow the receiver node to receive multiple
packets simultaneously from different nodes within its disk of
radius ((") [4]. We assume that nodes cannot transmit and
receive at the same time, which is equivalent to half-duplex
communication [2]. The data rate for each transmitter-receiver
pair is a constant value of . bits/second and does not depend
on ". Given that . does not change the order capacity of the
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Fig. 1. MPR protocol model.

network, we normalize its value to one. The MPR protocol
model is shown in Fig. 1.

We assume that the receiver range ((") of MPR is equal to
transmission range +(") in SPR and to guarantee connectivity
for all the nodes in the network, the communication range is
dened as

((") = +(") = Ω
(√

(log ")/"
)

. (1)

We assume a random wireless ad hoc network with " nodes
distributed uniformly in the network where the area of the
network is a square of unit value2. Our analysis is based on
dense network where density of nodes is ". Hence, in our
model, as " goes to innity, the density of the network also
goes to innity.

In this paper, we study the case in which each of the "
nodes in a network acts as a source for a communication
group of # receivers (with # ≤ "), with ! (where ! ≤ #)
closest receivers being selected to obtain the information
from the source reliably. We call this characterization of
information dissemination from sources to receivers (",#, !)-
casting, and use it to model all forms of one-to-one, one-to-
many and many-to-many information dissemination in wire-
less networks. Based on the above denition of an (",#, !)-
casting, the throughput capacity for an (",#, !)-cast simply
extrapolates the original denition of feasible throughput
capacity for unicasting given by Gupta and Kumar [2].

We follow the same denitions of feasible through-
put capacity of (",#, !)-cast, order of throughput capac-
ity, (",#, !)-cast tree, Euclidean minimum spanning tree
(EMST), minimum Euclidean (",#, !)− 0123 tree, minimum
area (",#, !) − 0123 tree, delay in (",#, !)-cast communi-
cation from part I of the paper [1]. For completeness of the
paper, we present these denitions again here.

Denition 2.2: Feasible throughput capacity of (",#, !)-
cast: A throughput of 4(") bits per second for each node
is feasible if we can dene a scheduling transmission scheme
that allows each node in the network to transmit 4(") bits per
second on average to its ! out of # destinations.

The per-node feasible throughput capacity of the network
is dened as the number of bits per second that every node
can transmit to its destination.

2The unit square of the network simplies the analysis. For different shape
of the network area, the result can be extended similarly.

Denition 2.3: Order of throughput capacity: 4(") is
said to be of order Θ(5(")) bits per second if there exist
deterministic positive constants 0 and 0′ such that

{
lim
&→∞

Prob (4(") = 05(") is feasible) = 1

lim inf&→∞ Prob (4(") = 0′5(") is feasible) < 1.
(2)

Computing the throughput capacity of a network of "
nodes requires us to consider the minimum Euclidean dis-
tance (",#, !)-cast trees between sources and their intended
receivers. Furthermore, the selection of ! out of # receivers is
based on choosing the closest destinations in the (",#, !)-cast
tree to the source. The rest of this section introduces additional
concepts necessary for the computation of the throughput
capacity of a random ad hoc network.

Denition 2.4: (",#, !)-Cast Tree: An (",#, !)-cast tree
is a minimum set of nodes that connect a source node of an
(",#, !)-cast with all its intended # receivers in order for
the source to send information to ! of those receivers.

The construction of (",#, !)-cast tree starts with connect-
ing the source to # destinations using minimum number of
relays or hops. After constructing this tree, we pick ! out
of # nodes in this tree that have minimum total Euclidean
distance to the source. We refer to this selection of ! nodes as
”optimum” because it results in maximum throughput capacity
for the network. Note that there are

(!
#

)
choices for selecting

! nodes and in this paper, we have selected the above criterion
for this selection.

When communicating over a broadcast channel, a transmis-
sion from a source or relay in an (",#, !)-cast may interfere
with other transmissions in the same or different (",#, !)-
casts. For a given (",#, !)-cast to succeed, the packet from
the source must reach ! of the # receivers in the group reliably
at least once. Furthermore, any given relay forwards a packet
only once. Accordingly, one or multiple (",#, !)-cast trees
can be dened by the set of transmissions that reach each
relay and destination of a given (",#, !)-cast for the rst
time. When # = !, the resulting (",#,#)-cast tree is also
called a multicast tree. For the case in which ! ≤ #, the
selection of the subset of ! receivers that correctly receive the
packet from the source is such that each of them is reached
through a branch of the (",#, !)-cast tree.

Given the distribution of nodes in the plane and the protocol
model we assume, the possible (",#, !)-cast trees we need to
consider include only those that render the minimum number
of transmissions for a packet from the source to reach all the
intended receivers (! or #) at least once. Because transmis-
sions occur over a common broadcast channel, this implies
that the (",#, !)-cast trees in which we are interested are
those that involve the minimum number of relay nodes needed
to connect the source and intended receivers of an (",#, !)-
cast in order to maximize the total throughput capacity. That
is, we focus on (",#, !)-cast trees built by the aggregation
of shortest paths (minimum-hop paths) between a source and
all of its intended destinations. Accordingly, we adopt the
following denition for (",#, !)-cast trees in the rest of this
paper.

Denition 2.5: Euclidean Minimum Spanning Tree
(EMST): [19] Consider a connected undirected graph
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Fig. 2. Area coverage by one multicast tree.

7 = (8,$), where 8 and $ are the sets of vertices and
edges in the graph 7, respectively. The EMST of 7 is
a spanning tree of 7 with the total minimum Euclidean
distance of the edges of the tree.

An (",#, !)-cast tree is a function of the receiver range
(("). Therefore, the optimum tree that has the minimum
Euclidean distance is a function of (("). For this reason,
changing the transmission range will change the optimum
(",#, !)-cast tree.

Denition 2.6: Minimum Euclidean (",#, !)-Cast Tree
(MEMKT((("))): The MEMKT(((")) of an (",#, !)-cast
is an (",#, !)-cast tree in which the ! destinations that receive
information from the source among the # receivers of the
(",#, !)-cast have the minimum total Euclidean distance.

Denition 2.7: Minimum Area (",#, !)-cast Tree
(MAMKT((("))): The MAMKT(((")) in a (",#, !)-cast
tree with ! out of # destinations for each source is a
(",#, !)-cast tree that has minimum total area. The area of
a (",#, !)-cast tree is dened as the total area covered by
the circles centered around each source or relay with radius
((").

Note that EMST is spanning tree that consider only the
source and destinations, while MEMKT and MAMKT are
related to a real routing tree that includes the relays needed
to connect the source with the destinations.

In our delay analysis, we assume that the delay associated
with packet transmission is negligible and the delay is es-
sentially proportional to the number of hops from source to
destination. When the packet size is large, then the transmis-
sion delay is considerable and we no longer can ignore this
delay. Our analysis does not consider this case and this is the
subject of future study.

Denition 2.8: Delay of an (",#, !)-Cast: In an
(",#, !)-cast, the delay of a packet in a network is the time
it takes the packet to reach all ! destinations after it leaves
the source.

We do not take queuing delay at the source into account,
because our interest is in the network delay. The average
packet delay for a network with " nodes, 9!,#("), is obtained
by averaging over all packets, all source-destination pairs, and

all random network congurations.
Denition 2.9: Total Active Area (TAA (Δ, (("))):

The TAA(Δ, ((")) is the total area of the network multiplied
by the average maximum order of simultaneous transmissions
inside a communication region of Θ((2(")).

It will be shown that this value has an upper bound of *(1)
and *("(2(")) for SPR and MPR, respectively. In the rest of
this paper, ∥:∥ denotes the total Euclidean distance of a tree
:; ∥:∥ is used for the statistical average Euclidean distance
of the tree :.

Given that the distribution of nodes in a random network is
uniform, if there are " nodes in a unit square, then the density
of nodes is equal to ". Hence, if ∣:∣ denotes the area of space
region S, the expected number of the nodes, $(;'), in this
area is given by $(;') = "∣:∣. Let ;% be a random variable
dening the number of nodes in :% . Then, for each random
variable ;% , we have the following standard results known as
the Chernoff bounds [20]:

Lemma 2.10: Chernoff bound For any 0 < < < 1, we have

= [∣;% − "∣:% ∣∣ > <"∣:% ∣] < ?−(&∣'!∣, (3)

where @ is a variable function of <.
Therefore, for any @ > 0, there exist constants such that

deviations from the mean by more than these constants occur
with probability approaching zero as " → ∞. It then follows
that, w.h.p., a very sharp concentration on the number of nodes
in an area is obtained, and the achievable lower bound can be
found w.h.p., provided that the upper bound (mean) is given. In
the next section, we rst derive the upper bound, and then use
the Chernoff bound to prove the lower bound that is achievable
w.h.p.

III. THE THROUGHPUT CAPACITY OF (",#, !)-CAST

WITH MPR

A. Upper Bound

The following lemma provides an upper bound for the
per-session capacity as a function of TAA(Δ, ((")) and
: (MAMKT((("))). Essentially, : (MAMKT((("))) equals
the minimum area needed to (",#, !)-cast a packet to !
destinations out of # choices (see Fig. 2), and TAA(Δ, (("))
represents the maximum area that can be supported when MPR
is used by nodes.

Lemma 3.1: In random dense wireless ad hoc networks, the
per-node throughput capacity of (",#, !)-cast with MPR is
given by *

(
1
& × TAA(Δ,)(&))

'(MAMKT()(&)))

)
.

Proof: With MPR, we observe that : (MAMKT(((")))
represents the total area required to transmit information
from a multicast source to all its # destinations. The ra-
tio between average total active area, TAA(Δ, ((")), and
: (MAMKT((("))) represents the number of simultaneous
(",#, !)-cast communications that can occur in the network.
Normalizing this ratio by " provides per-node capacity, which
proves the lemma.

Lemma 3.1 provides the upper bound for the (",#, !)-
cast throughput capacity with MPR as a function of
: (MAMKT((("))) and TAA(Δ, ((")). In order to compute
the upper bound, we derive the upper bound of TAA(Δ, (("))
and the lower bound of : (MAMKT((("))). Combining
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Fig. 3. Upper bound of total available area based on protocol model with
MPR.

these results provides an upper bound for the (",#, !)-cast
throughput capacity with MPR. To compute the lower bound
for : (MAMKT((("))), we nd the relationship between
: (MAMKT((("))) and the total length of Euclidean Min-
imum Spanning Tree (EMST), ∥EMST∥.

Lemma 3.2: In (",#, !)-cast applications, the area of an
(",#, !)-cast tree with nodes having transmission range
(("), : (MAMKT((("))) has the following lower bound

( (MAMKT($(!))) =

⎧
⎨

⎩

Ω
(
#$(!)/

√
"
)
," = &

(
$−2(!)

)

Ω
(
#$2(!)

)
,Ω(#) = $−2(!) = &(")

Ω (1) , # = Ω
(
$−2(!)

)
.

(4)

Proof: Note that : (MAMKT((("))) is the same value
for MPR and SPR [1] and they only depend on the communi-
cation range in the network. The proof follows by substituting
+(") in Lemma 4.1 in [1] with ((").

The next lemma states the upper bound for TAA(Δ, (("))
for a network using MPR.

Lemma 3.3: The total active area, TAA(Δ, ((")), has the
following upper bound in networks with MPR.

TAA(Δ, ((")) = *
(
"(2(")

)
(5)

Proof: As discussed earlier, TAA(Δ, ((")) for SPR
equals 1, because there is only a single pair of transmitter-
receiver nodes for each circle of radius ((") (see Fig. 3(a)).
On the other hand, for the case of MPR, the number of
transmitters in a circle of radius ((") is upper bounded by
*("(2(")). The upper bound for TAA(Δ, ((")) is achieved
when the maximum number of transmitters are employed in
this circle. Fig. 3(b) shows an example that this upper bound
can be attained simultaneously for transmitters. Given the
fact that this value also is the maximum possible number of
transmitter and receiver nodes, the result follows immediately.

Lemma 3.3 implies that the total active area with MPR is
upper bounded by Θ

(
"(2(")

)
. By contrast, for the case of

SPR in [1], it is only Θ(1). Combining Lemmas 3.1, 3.2, and
3.3, proves the following theorem, which establishes the upper
bound of (",#, !)-cast capacity for MPR.

Theorem 3.4: In wireless ad hoc networks with MPR, the
upper bound on the per-node throughput capacity of (",#, !)-

( )R n

( )
2

R nL !

1

O ( )
2

R n
( )
2

R n

Receiver CircleReceivers in MPR Simultaneous Transmission Cell

Fig. 4. Cell construction used to derive a lower bound on capacity.

cast is

'!,#(") =

⎧
⎨

⎩

*
(
!−1√#((")

)
,# = *

(
(−2(")

)

*
(
!−1

)
,Ω(!) = (−2(") = *(#)

*
(
(2(")

)
, ! = Ω

(
(−2(")

)
, (6)

B. Lower Bound

To derive an achievable lower bound, we use a TDMA
scheme for random dense wireless ad hoc networks similar
to the approach used in the rst part of this work [1]. The
difference is that we change the transmission range +(") to
be the receiver range ((").

To satisfy the MPR protocol model, similarly, let A =⌈
1 + )(&)+(1+Δ))(&)

)(&)/
√
2

⌉
= ⌈1 +

√
2(2 + Δ)⌉ represent the

minimum number of cell separations in each group of cells
that communicate simultaneously. If we divide time into A2

time slots and assign each time slot to a single group of cells,
interference is avoided and the protocol model is satised. The
separation example can be shown for the upper two receiver
circles in Fig. 4. For the MPR protocol model, the distance
between two adjacent receiving nodes is (2+Δ)(("). Because
this distance is smaller than (A−1)(("), this organization of
cells guarantees that the MPR protocol model is satised. Fig.
4 represents one of these groups with a cross sign inside those
cells for A = 4. The capacity reduction caused by the TDMA
scheme is a constant factor and does not change the order
capacity of the network.

Next we prove that, when " nodes are distributed uniformly
over a unit square area and MPR is used by nodes, we have
simultaneously at least

⌈
1

(+)(&)/
√
2)2

⌉
circular regions (see

Fig. 4), each one containing Θ("(2(")) nodes w.h.p.. The
objective is to nd an achievable lower bound using the Cher-
noff bound, such that the distribution of the number of edges
in this unit space is sharply concentrated around its mean,
and hence the actual number of simultaneous transmissions
occurring in the unit space in a randomly chosen network is
indeed Θ(") w.h.p..
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Lemma 3.5: The circular area of radius ((") correspond-
ing to the receiver range of a receiver - contains Θ("(2("))

nodes w.h.p. for all values of -, 1 ≤ - ≤
⌈

1
(+)(&)/

√
2)2

⌉
.

Proof: The statement of this lemma can be expressed as

lim
&→∞

=

⎡

⎢⎣

⌈
1

("#($)/
√

2)2

⌉

∩

%=1

∣;% − $(;%)∣ < <$(;%)

⎤

⎥⎦ = 1, (7)

where ;% and $ (;%) are the random variables representing
the number of nodes in the receiver circle of radius ((")
centered around node - and the expected value of this random
variable respectively, and < is a positive arbitrarily small value
close to zero.

From the Chernoff bound in Eq. (3), for any given 0 < < <
1, we can nd @ > 0 such that = [∣;% − $(;%)∣ > <$(;%)] <
?−(,(-!). Thus, we can conclude that the probability that
the value of the random variable ;% deviates by an arbi-
trarily small constant value from the mean tends to zero
as " → ∞. This is a key step in showing that, when all

the events
∩

⌈
1

("#($)/
√

2)2

⌉

%=1 ∣;% − $(;%)∣ < <$(;%) occur
simultaneously, then all the variables ;%’s converge uniformly
to their expected values. Utilizing the union bound, we arrive
at

=

⎡

⎢⎣

⌈
1

("#($)/
√

2)2

⌉

∩

%=1

∣;% − $(;%)∣ < <$(;%)

⎤

⎥⎦

= 1− =

⎡

⎢⎣

⌈
1

("#($)/
√

2)2

⌉

∪

%=1

∣;% − $(;%)∣ > <$(;%)

⎤

⎥⎦

≥ 1−

⌈
1

("#($)/
√

2)2

⌉

∑

%=1

= [∣;% − $(;%)∣ > <$(;%)]

> 1−
⌈

1

(A((")/
√
2)2

⌉
?−(,(-!). (8)

Given that $(;%) = B"(2("), then we have

lim
&→∞

=

⎡

⎢⎣

⌈
1

("#($)/
√

2)2

⌉

∩

%=1

∣;% − $(;%)∣ < <$(;%)

⎤

⎥⎦

≥ 1− lim
&→∞

⌈
1

(A((")/
√
2)2

⌉
?−(.&)2(&) (9)

Utilizing the connectivity criterion in Eq. (1), we have
lim&→∞

/−&'$#2($)

)2(&) → 0, which completes the proof.
The previous lemma proves that, w.h.p., there are in-

deed Θ(") simultaneous potential transmitters that are in⌈
1

(+)(&)/
√
2)2

⌉
circles of radius ((") around the receivers,

who can transmit simultaneously, as shown in Fig. 4. With
Lemmas 3.5, we have completed the preparation for the
following achievable lower bound.

Let us dene #MEMKTC(((")) as the average total
number of cells that contain all the nodes in an (",#, !)-
cast group. Also, #MEMTC(((")) is dened as the aver-
age total number of cells that contain all the nodes in an

(",#,#)-cast group. The following lemma establishes the
achievable lower bound for the (",#, !)-cast throughput ca-
pacity of MPR as a function of #MEMKTC(((")). Note that
#MEMKTC(((")) only depends on the (",#, !)-cast net-
work parameters regardless of using MPR techniques. The fol-
lowing lemma provides a tight bound for #MEMKTC(((")).

Lemma 3.6: The average number of cells covered by the
nodes in MEMKTC(((")), is tight bounded w.h.p. as follows:

#MEMKTC($(!)) =

⎧
⎨

⎩

Θ
(
#
(√

"$(!)
)−1

)
," = &

(
$−2(!)

)

Θ(#) ,Ω(#) = $−2(!) = &(")

Θ
(
$−2(!)

)
, # = Ω

(
$−2(!)

)

(10)
Proof: The proof is similar to Lemma 4.5 in the rst part

[1] of this two-part series. The difference is that we substitute
transmission range +(") with receiver range ((").

Next we discuss the routing scheme needed to achieve the
lower bound capacity, which is similar to the scheme used
in [21]. According to our model, each (",#, !)-cast session
creates a (",#, !)-cast tree MEMKT(((")) to connect the
source and destinations. The trees are denoted as C$s, where
, = 1, 2, ⋅ ⋅ ⋅ , ". The routing scheme between source and
destination is such that packets are forwarded by using cells
that are intersected only by C$. There is a bound on the number
of trees that each cell needs to serve, which means that we
can bound the probability that the trees intersects a particular
cell.

Lemma 3.7: For any ((") = Ω
(√

log"/"
)
, we have

(11).
Proof: For every tree C$ and cell :#0,%0 ,

D = Prob{Tree C$ intersects :#0,%0}

= Θ
(
(2(")#MEMKTC((("))

)
(12)

First we bound the number of trees served by one particular
cell :#0,%0 . Dene i.i.d. random variables E$, 1 ≤ , ≤ ", as
follows:

E$ =

{
1, if C$ intersects :#0,%0

0, if not
(13)

Then Prob(E$ = 1) = D, ∀,, where D is dened in Eq. (12).
Denote by F& the total number of trees served by :#0,%0 . Then
F& := E1 + E2 + ⋅ ⋅ ⋅+ E&. By using the Chernoff bounds [20]
we have, Prob(F& > G) ≤ ,[/()$ ]

/(* for all positive values of G
and 1. Furthermore,

$
[
?01$

]
= (1 + (?0 − 1)D)& ≤ exp("(?0 − 1)D)

= Θ
(
exp

(
(?0 − 1)"(2(")#MEMKTC((("))

))
.

(14)

Let us dene G = Θ
(
"(2(")#MEMKTC((("))

)
, then if

1 is small enough, we have

Prob
(
F& = Ω

(
"(−2(")#MEMKTC((("))

))

= *
(
exp

(
−"(2(")#MEMKTC((("))

))
. (15)

Thus, by the union bound, we have (16)
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lim
&→∞

Prob

(
sup
(#,%)

{Number of trees C$s intersecting :#,%} = *
(
"(2(")#MEMKTC((("))

))
= 1 (11)

Prob
(
Some cell intersects Ω("(2(")#MEMKTC((("))) trees

)

≤
∑

#,%

Prob (Cell :%# intersects Ω("((")) trees )

= *

(
1

(2(")
exp

(
−"(2(")#MEMKTC((("))

))
(16)

The right hand side tends to zero for ((") =

Ω
(√

log"/"
)

as " goes to innity for all three different

regions of #MEMKTC(((")) from Eq. (10).
There exists a transmitting schedule such that in every

A2 slots (A is constant), each cell transmits at a rate .
bits/second with a maximum transmission distance ((").
Therefore, the rate for each cell is Θ

(
"(2(")

)
./A2.

From Lemma 3.7, each cell needs to transmit at a
rate *

(
'!,#(")"(2(")#MEMKTC((("))

)
, with probabil-

ity approaching one. In order to accommodate this requirement
by all cells, we need

'!,#(")"(2(")#MEMKTC(((")) = Ω
((

"(2(")
)
./A2

)

(17)
Thus, we have proven the achievable throughput for Lemma

3.8 needed to guarantee that each cell can support this capac-
ity.

Lemma 3.8: The achievable lower bound for the (",#, !)-
cast capacity is given by

'!,#(") = Ω

((
#MEMKTC((("))

)−1
)

. (18)

Proof: There are (((")/
√
2)−2 cells in the unit square

network area. With Lemma 3.7 and the fact that our TDMA
scheme does not change the order capacity, it is clear
that there are at most in the order of #MEMKTC((("))
interfering cells for any (",#, !)-cast communication. For
each cell, the order of nodes in each cell is Θ

(
B(2(")"

)
.

Accordingly, the total lower bound capacity is given by

Ω

(
(((")/

√
2)−2 ×

(
B(2(")"

)
×
(
#MEMKTC((("))

)−1
)

.

Normalizing this value by total number of nodes in the
network, ", proves the lemma.

Combining Lemmas 3.6 and 3.8, we arrive at the achievable
lower bound of the (",#, !)-cast throughput capacity in dense
random wireless ad hoc networks with MPR.

Theorem 3.9: The achievable lower bound of the (",#, !)-
cast throughput capacity with MPR is

*!,#(!) =

⎧
⎨

⎩

Ω
(
#−1√"$(!)

)
for " = &

(
$−2(!)

)
,

Ω
(
#−1) for Ω(#) = $−2(!) = &(")

Ω
(
$2(!)

)
for # = Ω

(
$−2(!)

)
,

(19)
Proof: There are (((")/

√
2)−2 cells in the unit square

network area and only (A((")/
√
2)−2 of these cells

can communicate simultaneously because of the TDMA
scheme that we described earlier. From the denition of

#MEMKTC(((")), it is clear that there are in the order of
#MEMKTC(((")) transmissions required in order to transfer
a packet from source to all its destinations in any (",#, !)-
cast communication scheme. It is clear from Lemma 3.5
that for each of (A((")/

√
2)−2 simultaneous transmitting

cells, there are Θ
(
B(2(")"

)
nodes transmitting packets to

their respected receiver nodes using MPR. Since each one
of (",#, !)-cast group requires #MEMKTC(((")) trans-
missions, the total throughput capacity lower bound for the
network is equal to Ω

(
()(&)/

√
2)−2×(.)2(&)&)

#MEMKTC()(&))

)
. If we divide

this value by the total number of nodes in the network, ", and
substitute #MEMKTC(((")) with the results from Lemma
3.6, then the proof follows.

We have proved there is no congestion in relay nodes.
Furthermore, we will prove there is not any congestion at the
destinations. Assume that each source selects a destination
randomly and independently, then we will prove that, w.h.p.,
a node can be the destination for at most 3 log&

log log& sources. This
problem is similar to the “ bins and balls problems” in [22].

Lemma 3.10: The probability of having a particular desti-
nation selected by ! sources is

lim
&→∞

Prob[destination , has at least ! sources] ≤
( ?

!

)#

(20)

Proof: If we look at any subset of sources of size !,
then the probability that the subset of sources select des-
tination , is ( 1

& )
#. We then take a union bound of these

probabilities over all
(&
#

)
subsets of size !. The events we

are summing over, though, are not disjoint. Therefore, we can
only show that the probability of a destination having at least
! balls is at most

(&
#

)(&
1

)#
. Using Stirling’s approximation

lim&→∞
&!√

2.&($
+ )

$ = 1, we have

lim
&→∞

(
&
#

)(
&
1

)#
(
/
#

)# = 1, (21)

which proves the lemma.

Lemma 3.11: There exists at most 3 log&
log log& sources for each

destination w.h.p.
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Proof: Let ! = 3 log&
log log& . From Lemma 3.10, we have

lim
&→∞

Prob[destination , has at least ! sources]

≤
( ?

!

)#
=

(
? log log"

3 log"

) 3 log $
log log $

≤ exp

(
3 log"

log log"
(log log log" − log log")

)

= exp

(
−3 log" +

3 log" log log log"

log log"

)

≤ exp(−2 log") =
1

"2
(22)

Using the union bound, we have
lim&→∞ Prob[any destination has at least ! sources] ≤
" 1

&2 = 1
& , which implies that

lim&→∞ Prob[all destinations have at most ! sources] ≥
1− 1

& .
For MPR (",#, !)-cast, we require that none of the des-

tinations has a trafc load congestion larger than the total
throughput it can support. This means that the maximum
throughput for each destination should always be greater than
the total trafc load. In the MPR case, the total throughput
of each destination is "(2("). The trafc load congestion for
each destination is the multiplication of throughput per node
of '!,#(") and the maximum possible sources that select a
node, i.e., 3 log&

log log& . Hence,

"(2(") ≥ '!,#(")
3 log"

log log"
, (23)

As long as ((") = Ω

(√
log&
&

)
, it can be easily veried that,

for all three capacity regions, '!,#(") can achieve the lower
bound of Theorem 3.9.

IV. CAPACITY AND DELAY TRADEOFF WITH MPR

A. The Capacity of (",#, !)-Cast with MPR

From Theorems 3.4 and 3.9, we can provide the tight bound
for the throughput capacity of the (",#, !)-cast when the
nodes have MPR capability in dense random wireless ad hoc
networks as follows.

Theorem 4.1: The throughput capacity of (",#, !)-cast in
a random dense wireless ad hoc network with MPR is

*!,#(!) =

⎧
⎨

⎩

Θ
(
#−1√"$(!)

)
for " = &

(
$−2(!)

)

Θ
(
#−1) for Ω(#) = $−2(!) = &(")

Θ
(
$2(!)

)
for # = Ω

(
$−2(!)

)
.

(24)

The receiver range of MPR should satisfy ((") =

Ω
(√

log"/"
)
. Note that the thresholds for different values

for # and ! provide various capacities for (",#, !)-cast with
MPR.

B. The Delay of (",#, !)-Cast with MPR and its Relationship
with The Capacity

In this section, we present the tradeoff between delay and
capacity. As we dened in [1], packet delay is proportional to
the total number of hops required from each source to reach

TABLE I
RELATIONSHIP BETWEEN CAPACITY AND DELAY WITH MPR

#!,#(!) $!,#(!)

% = "
(
&−2(!)

)
Θ

(
#√

!$(%)

)
Θ

(√
!$(%)

#

)

Ω(') = &−2(!) = "(%) Θ (') Θ
( 1
#

)

' = Ω
(
&−2(!)

)
Θ

(
&−2(!)

)
Θ
(
&2(!)

)

all its destinations. In order to compute this delay, we rst
prove the following lemma.

Lemma 4.2: The delay of (",#, !)-cast in a random dense
wireless ad hoc network with MPR is

9!,#(") = Θ
(
#MEMKTC((("))

)
(25)

Proof: From the denition of #MEMKTC(((")) and
Lemma 3.6, we conclude that #MEMKTC(((")) is propor-
tional to the minimum number of hops in which the informa-
tion is routed from source to all its destinations. Given that we
are using a TDMA scheme to achieve the lower bound for the
capacity, it is clear that in order to transport the information
from one cell to the next adjacent cell, we need between one
to two hops (see Fig. 4). Therefore, #MEMKTC(((")) is
also in the same order as the total number of hops. Based on
the denition of delay, it is clear that #MEMKTC(((")) is
also the same order bound as the total delay which proves the
Lemma.

Theorem 4.3: The relationship between capacity and delay
for (",#, !)-cast with MPR is given below and shown in
Table I.

'!,#(")9!,#(") = Θ(1) (26)

Proof: The results can be easily derived by comparing
Theorem 4.1 with Lemmas 4.2.

The relationship between capacity and delay in (",#, !)-
cast with SPR is presented in [1].

V. DISCUSSION OF RESULTS

Theorems 4.1 provides capacity results for MPR whose
fundamental difference from the SPR in [1] is the fact that the
MPR scheme embraces interference, while SPR is based on
avoiding interference by limiting transmission range. Below
we will discuss the ramications of these two strategies in
terms of the capacity-delay tradeoff.

A. '!,#(") as a Function of Group Size (#)

Comparing the capacities attained with MPR and SPR for
unicast capacity region (see Fig. 5 for H = ! case), the
ratio is equal to Θ

(
((")

√
" log"

)
. The same ratio is equal to

Θ
(
(2(")"

)
in the broadcasting capacity region. By consid-

ering the connectivity criterion, i.e., ((") = Ω
(√

log"/"
)
,

then it is easy to show that the capacity gain for MPR
compared to SPR is larger in broadcast capacity region than
in the unicast region. The larger gains attained with MPR
for the broadcast region are a consequence of the fact that,
as the number of destinations increases, more copies of the
same packets must be sent to a larger number of nodes. In a
network using MPR, concurrent broadcast transmissions can
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Fig. 5. Order throughput capacity of (!, %, %)-cast with SPR and MPR as
a function of number of destinations % and receiver range &(!).
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Fig. 6. Order throughput capacity of (!, %, ')-cast with SPR and MPR.

be decoded by the receivers while at most one broadcast
transmission can succeed when SPR is used.

Fig. 6 compares the throughput capacity of MPR to that
of SPR [1]. Comparing the results for both cases when
the number of destinations for each session is smaller than
Θ
(
(−2(")

)
, it appears that they both have the same term as√

#/!. However, for MPR this term is multiplied by (("),
while for SPR this term is divided by +("). If we assume
((") = +("), it appears that increasing the receiver range
increases the capacity for the MPR scheme, while it decreases
the capacity for SPR. This fundamental difference is due to
the fact that the MPR scheme embraces interference, while
SPR is based on avoiding it by limiting transmissions around
receivers.

We note that the capacity of anycast or manycast is greater
than the capacity of unicast for ! = * (

√
#), even if each

node requires to transmit its packets to more than one destina-
tion. This result shows that, as long as ! = * (

√
#), the total

number of hops required to transmit packet to ! destinations is
always, on average, less than sending the packet from the same
source to a single randomly selected destination in unicast
communications. Equivalently, the total Euclidean distance
for a manycast tree is on average less than the Euclidean
distance between any randomly selected source and destination
in unicast communication. However, these Euclidean distances
become the same, on average, when ! = Θ (

√
#). As it can

be seen from this gure, the total Euclidean distance in a

manycast tree increases as ! increase and for ! = Ω(
√

#),
the capacity of manycast becomes less than that of unicast
because of the total Euclidean distance in the manycast tree
is larger than the Euclidean distance between any randomly
selected source and destination in unicast communication.

B. '!,#(") as a Function of Receiver Range ((("))

Eq. (24) show that the throughput capacity of wireless ad
hoc networks do increase with the increase in the receiver
range ((") when the receivers decode more than one packet
at a time. Similar result for MPR was shown in [4] for the case
of unicasting. This result is in sharp contrast to results attained
with SPR in [1], with which increasing the communication
range decreases the capacity. In networks with MPR, by
increasing the receiver range in the network we actually
increase the total number of simultaneous transmissions at
any given time. In contrast, for networks with SPR, a larger
transmission range leads to increased interference at larger
number of nodes, which forces these nodes to be silent during
a communication session.

Clearly, the capacity of the network is maximized if we
maximize the number of simultaneous transmissions in the
network. Ideally, if the receiver range can be made Θ(1), then
a network using MPR can scale linearly with ". Obviously,
the receiver range is restricted in practice by the complexity of
the nodes. However, even with the receiver range is assumed
to have the minimum value, which is the connectivity criterion
in Eq. (1), MPR still renders a capacity gain compared to SPR.
Furthermore, this gain is still an order gain equal to Θ(log")
compared to the capacity attained with SPR for (",#, !)-
casting. Our result corroborates and extends the capacity gain
result reported in [4] for unicast.

C. Capacity-Delay Tradeoff

Theorem 4.1 presents the capacity information for MPR.
There are three different capacity regions depending on the
values of ! and # in (",#, !)-cast. Figs. 7(a), 7(b) and 7(c)
compare the tradeoff between throughput capacity and delay
for MPR (SPR results are reported in [1]) for all these three
regions of capacity. By observing the capacity for MPR and
SPR, we notice that the receiver range ((") is multiplied for
capacity computation in MPR in two regions in Eq. (24) and
in one region is independent of ((") while the transmission
range +(") is divided for capacity computation in SPR in the
rst two regions of capacity. These behaviors are shown in
Figs. 7(a), 7(b) and 7(c). This fundamental difference is due
to the fact that the MPR scheme embraces interference, while
SPR is based on avoiding interference by limiting transmission
range.

The above result indicates that large capacity increases
can be attained by embracing interference with MPR and
embracing opportunism by appropriate use of in-network
storage and information dissemination from the nearest site(s)
of a communication group, rather than from pre-dened ori-
gins hosting the content. If the communication group is the
entire network (# = "), information ows from the closest
neighbor(s) to each node and the maximum capacity gain is
attained. If the group size is independent of the size of the
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Fig. 7. The tradeoff between capacity and delay with MPR.

network (# = Θ(1)), the order capacity is the same as for
unicast.

Fig. 7(a) is the rst region in capacity for MPR. Interesting
observation is the fact that unlike SPR in [1] that increasing
capacity results in increasing delay, we can increase capacity
and decrease delay simultaneously with MPR. This is a
signicant advantage of using MPR and stems from the fact
that MPR embraces interference and consequently, we do
not need to sacrice capacity or delay to improve the other
parameter.

Fig. 7(b) shows the capacity-delay tradeoff in the second
capacity region. For the case of MPR, the capacity or delay
is not a function of ((") and therefore, there is no tradeoff.
For this case in SPR, increasing +(") decreases capacity but
has no effect on the delay as shown in [1].

Fig. 7(c) is the third region of capacity for MPR. This is
the broadcasting region of capacity and it is clear that SPR
does not provide any tradeoff [1]. In general, by increasing the
transmission range we can decrease delay while the capacity
remains constant. The reason for this behavior is the fact that
all nodes in broadcasting region are receiving the packet and
increasing transmission range does not create any interference.
On the other hand, when we use MPR and increase the receiver
range, again both capacity and delay are improved similar to
the rst case. Clearly, the capacity of the network with MPR
is maximized if we maximize the number of simultaneous
transmissions in the network. Ideally, if the receiver range
can be made Θ(1), then a network using MPR can scale
linearly with ". Obviously, the receiver range is restricted in
practice by the complexity of the receivers. However, even
with the minimum value for the receiver range, which is
the connectivity criterion, MPR still renders a capacity gain
compared to SPR. Furthermore, this gain is still an order gain
equal to Θ(log") compared to the capacity attained with SPR
for (",#, !)-casting.

In summary, the tradeoff between capacity '!,#(") and
delay 9!,#(") with MPR is in sharp contrast to SPR [1]. The
results in this paper provide new directions and opportunities
for future research activities in wireless ad hoc networks.
Another important aspect that we did not discuss in this paper
is related to practical limitations and decoding complexity that
we can have with MPR scheme. This aspect is important and
its investigation is the subject of future studies.

VI. CONCLUSION

We showed that the throughput capacity of (",#, !)-cast
with multi-packet reception/transmission is Θ (((")

√
#/!)

when # = *
(
(−2(")

)
, Θ (1/!) when Ω(!) = (−2(") =

*(#) and Θ
(
(2(")

)
when ! = Ω

(
(−2(")

)
. When ((") =

Ω
(√

log"/"
)

to satisfy the connectivity criterion, MPR
leads to the minimum throughput capacity gain of at least
Θ(log") compared to the (",#, !)-cast throughput capacity
with SPR. When ((") = Θ(1), which is the maximum
receiver range for MPR, the network is linearly scalable. How-
ever, this case is not practical in real systems, and simply pro-
vides a guideline for designing networks. It suggests that, in
order to increase the capacity of wireless ad hoc networks, we
must embrace interference at the physical layer by using MPR.
This result is in sharp contrast with traditional interference-
dominated networks based on SPR. Finally, when the number
of destinations is greater than Θ

(
(−2(")

)
, or equivalently

when the receiver range is larger than Θ
(√

log"/"
)
, there

are higher throughput capacity gains with MPR. This is the
case in broadcasting or multicasting with larger numbers of
destinations, because MPR schemes can inhibit the negative
effects of interference compared to SPR [1].

We can decrease the average concurrent transmissions with
MPR by a factor of 5("). Therefore, the total number of simul-
taneous transmissions in a circle of radius ((") reduces into
.&)2(&)

2(&) . The reduction in capacity as a result of decreasing
the average concurrent transmissions with MPR for each node
is straightforward. It is important in the future work to study
practical constraints for MPR and derive the constant capacity
gain utilizing this approach when the decoding complexity of
nodes only allows a nite number of packets to be decoded.
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