Lawrence Berkeley National Laboratory

Recent Work

Title

OPTICAL PROPERTIES OF MATRIX- ISOLATED TRI- AND POLYATOMIC MOLECULES

Permalink

https://escholarship.org/uc/item/4cq4g3c7

Author Smith, Jerry.

Publication Date 1970-03-01

Section of a chapter in "Low Temperature Spectroscopy: Optical Properties of Molecules in Matrices, Glasses, and Mixed Crystals," American Elsevier, New York, 1970.

UCR L-19180 Preprint

C.2

OPTICAL PROPERTIES OF MATRIX-ISOLATED TRI- AND POLYATOMIC MOLECULES

Jerry Smith

March 1970

AEC Contract No. W-7405-eng-48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

LAWRENCE RADIATION LABORATORY UNIVERSITY of CALIFORNIA BERKELEY

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Optical Properties of Matrix-Isolated Tri- and Polyatomic Molecules

-1-

Jerry J. Smith

Inorganic Materials Research Division, Lawrence Radiation Laboratory, University of California, Berkeley, California Chemistry Department, University of Washington, Seattle

ABSTRACT

This report presents a summary of the results of ultraviolet, visible, and infrared investigations of matrix-isolated tri- and small polyatomic radicals and molecules. The data is compiled from the literature through January 1969. Selected references appearing later than this date are also included. An attempt was made to make the report as comprehensive as possible, but it is almost certain that some data has been omitted, particularly for the polyatomic species. No effort was made to include organic species beyond single carbon containing molecules. Data on organics is contained elsewhere (B. Meyer, 70). Furthermore, data on pure solids are omitted.

This report consists of two parts. In the first, a written description of each triatomic species is presented. In the second, data for each molecule are presented in tabular form. Data for polyatomics are presented in tabular form

* Present address: Department of Chemistry, Drexel University, Philadelphia, Pennsylvania

only.

This report is a preliminary section of a chapter to be published in a book entitled "Low Temperature Spectroscopy; Optical Properties of Molecules in Matrices, Glasses, and Mixed Crystals," by B. Meyer and J. J. Smith, Elsevier, New York, 1970.

-2-

This work was performed at the University of Washington, Seattle as a part of a project related to the interests of the Inorganic Materials Research Division, University of California Lawrence Radiation Laboratory, Berkeley. A portion of the work contained herein was performed under the auspices of the U. S. Atomic Energy Commission.

The author wishes to thank Prof. C. B. Meyer for support and for comments. In addition, Maj. G. D. Brabson read and commented on the manuscript. Mr. S. Currie, Miss L. Williamson and Miss D. Young assisted in collecting some of the data. The molecules covered in this report are listed alphabetically by formula. Triatomics with C_{2v} symmetry are, with few exceptions, written with the central atom first. Carbon containing molecules, also with a few exceptions, are written with the carbon atoms first. Where the possibility of ambiguity exists, the formulae are written to indicate the atomic arrangement. The following is a list of the molecules reviewed in the order presented in both the text and tables:

-3-

TRIATOMICS

			· · ·		
	Al ₂ 0	CdI ₂	HgBr ₂	ScF ₂	CH2F
	BO ₂	Cl ₃	HgCl	Se02	CH2N
	BaF ₂	CICO	HgF2	si ₃	сн ₂ о
	BeBr ₂	ClClO	HgI2	SiCC	CH3
	BeCl ₂	C10 ₂	KrF ₂	SiCSi	co
	BeF ₂	C100	Li ₂ 0	SiCl ₂	(C10) ₂
	BeI ₂	CoCl2	LION	SiF ₂	FNCN
	c ₃	CrCl ₂	Lio2	SrF ₂	(HBr) ₂
	C ₂ H	FCO	MgF2	TaO ₂	(HC1) ₂
	CCO	FNC	MnCl ₂	wo2	HNCO
	CBr ₂	CINC	N ₃	XeCl ₂	HNCS
	CClBr	BrNC	NCN	XeF ₂	HNF ₂
	cci ²	FeCl ₂	NCO	ZnBr ₂	^{HN} 3
	CF ₂	GeF ₂	NH2	ZnCl ₂	H202
	CHCl	HCN	N2O	ZnF ₂	Li2F2
	CHF	н ₂ 0	NO2	ZnI2	NH ₃
	CH ₂	HC12	NiCl ₂		(NO ₂)
•	СНО	HNC	NiF ₂ TEI	RATOMICS	NO3
	CNN	HNF	°3	Alf ₃	N2H2
	COS	HNO	0012	(BO) ₂	02F2
	cs ₂	HNSi	OF ₂	CBr ₃	SiCl ₃
	CaF ₂	HOBr	OOF	CC13	(SiC) ₂
	CdBr ₂	HOCL	PH ₂	CF3	SiF ₃
	CaC1 ₂	HOF	so ₂	CF ₂ N	WO3
	CdF ₂	HOO	s ₂ 0	CF ₂ 0)

PENTATOMICS	OTHERS
B ₂ O ₃	CH ₃ LiBr
CBr ₃ Li	СНЗОН
CCl ₃ Li	C ₂ Br ₄
CHC13	(hcn) ₂
CH ₂ CO	N2 ^H 4
CH2N2	^N 2 ⁰ 4
CH3CI	NbCl ₅
CH3F	CH ₂ (CN) ₂
CH3Li	N205
CH ₄	Al ₂ F6
°3°2	(BF ₃)2
NF ₂ CN	(CH) N 3 3
N ₂ 03	(CH ₃) ₂ SiH ₃ N
N ₃ CN	CH ₃ (SiH ₃) ₂ N
SiH ₂ Cl ₂	$(SiH_3)_3^N$
SiH ₂ F ₂	$Fe(C_{5}^{H})_{2}$
SIH ₃ UL 3	^{ни (С} ^н 5 ³ 3
SIL3L	

XeF

),

3

Part I

Linevsky et al. (64) have reported the infrared spectrum of Al_2^0 in argon and krypton matrices at 4.2°K. In dilute samples, only one prominent absorption is observed, but in more concentrated samples several bands appear. The former appears at 994 cm⁻¹ in argon and 988 cm⁻¹ in krypton and is assigned to v_3 . Bands at 715 cm⁻¹ in argon and 709 cm⁻¹ in krypton are assigned to v_1 . Results with ¹⁸0 substitution are consistent with the assignments. The observed shifts suggest a molecular bond angle of near 150° and a v_2 bending frequency of 238 cm⁻¹. Also observed in the spectrum is a band near 1870 cm⁻¹ which is assigned to an overtone of v_2 .

-5-

Al₂0

^{B0}2

Boron dioxide has been prepared for observation in matrices by Sommer, 1963, through the oxidation of B_2O_3 with ZnO. Mass spectroscopic analysis, however, shows BO_2 to be a minor constituent $(BO_2^+/B_2O_3^+ = 0.10)$ so that spectral observation is limited to those regions unmasked by B_2O_3 . The visible absorption spectrum of BO_2 in argon consists of a series of bands in the 380+580 nm region. The majority of these bands can be assigned to the transition $A^2\Pi_u + X^2\Pi_g$ through comparison with the gas phase high resolution work of Johns (61). The gas to matrix shift is about 400 cm⁻¹ and all but three bands appear to originate from the $^{2}\Pi_{3/2}$ sublevel. Two bands near 410 nm cannot be fitted to the Π - Π transition, but correlate closely with the (0,0) transition of the B state, the $B^2\Sigma_u^+ + X^2\Pi_g$. These bands, along with three from the II-II transition, appear to originate in the $2I_{1/2}$ sublevel.

-6-

The infrared spectrum of the molecule shows absorptions at 1276 and 1323 cm⁻¹. These bands are assigned to the asymmetric stretching frequency, v_3 , of the species ${}^{11}BO_2$ and ${}^{10}BO_2$ respectively. The additional fundamental frequencies were not observed because of overlap from the spectrum of B_2O_3 .

^{BaF}2

The infrared spectrum of matrix-isolated barium fluoride at 4.2° K in the region from 4000-200 cm⁻¹ was reported by Snelson in 1966, and more recently, by Calder <u>et al.</u> (69) in krypton at 20°K. The observation of an infrared absorption attributable to the symmetric stretching frequency substantiates the bent C_{2v} structure. Bands assigned to v_3 and v_1 appear in krypton at 413 and 390 cm⁻¹ respectively. Assignments are based on the relative intensities. The bending mode was not observed but is calculated to be 64 cm⁻¹. A weak band at about 325 cm⁻¹ appears in neon and argon matrices and is assigned to polymeric or agglomerate material. As the matrix is changed from neon to argon to krypton, the external heavy atom effect on both vibrational frequencies causes increasing red shifts. The appear angle is estimated to be 100°.

BeBr,

BeBr₂ has been deposited directly from the solid into neon and argon matrices at 4.2°K by Snelson (68). The vapor is superheated to 975°K to reduce polymer concentrations. Infrared observations give two bands in neon at 993 and 207 cm⁻¹, but only one in argon, 985 cm⁻¹. The band near 990 cm⁻¹ is assigned to v_3 and the low frequency band to v_2 . The latter is presumably shifted below the detection limit of 200 cm⁺¹ in argon. The frequencies are consistent with a linear structure for the molecule. A calculation of v_1 using the valence force field approximation gives a value of 230 cm⁻¹.

-7-

BeC12

Beryllium chloride in the rare gases at 4.2°K, shows infrared absorption bands at approximately 1120 and 240 cm⁻¹ (Snelson, 66, 68). These bands are assigned to the asymmetric stretching vibration, v_3 and the bending mode, v_2 , respectively. The former correlates closely with the gas phase v_3 value of 1113 cm⁻¹ (Büchler, 58). The gas phase band at 482 cm⁻¹ previously assigned to v_2 is not observed at low temperatures and is probably in error. Estimation of v_1 suggests a value of 390 cm⁻¹ (Snelson, 68). The absence of v_1 is consistent with a linear structure for BeCl₂. Force constants are also reported.

BeF₂

Monomeric beryllium fluoride shows two strong infrared absorption features (Snelson, 66). These bands, at 1542 and 330 cm⁻¹ in mean at 4.2° K, are assigned to v_3 and v_2 , respectively. No bands corresponding to v_1 are observed and the molecule is presumably linear. Additional weak bands at 830, 790, and 1250 cm⁻¹ are attributable to dimers and polymers of BeF₂. Mass spectroscopic data (Hildenbrand, 64) indicates that up to one mole per cent of dimers may be present in the vapor at 600° C. Gas phase values for v_3 and v_2 are reported to be 1520 and 825 cm⁻¹ respectively (Büchler, 58). The value for v_3 in the gas phase and in matrices are consistent, however the results for v_2 are in disagreement. It is possible that the gas phase band at 825 cm⁻¹ is due to a polymeric species. Force constants and the symmetric stretching vibration, $v_1 = 680$ cm⁻¹, have been calculated using a valence force field method.

Bel

Only one vibrational fundamental of Bel_2 has been observed in matrices following vaporization of the solid (Snelson, 68). In both neon and argon at 4.2°K a band of multiplet structure appears near 870 cm⁻¹. The fine structure is presumed to be due to matrix effects. The band is assigned to v_3 of the molecule. A calculated value of 160 cm⁻¹ for v_1 is obtained using the valence force field approximation.

с<u>з</u>

The molecule C_3 has been studied extensively by several workers (Barger, 62, 64, 65; Brabson, 65; Weltner, 62b, 64a,b, 66) in a variety of solids. All workers have used trapped carbon vapor as the C_3 source. The vapor concentration of C_3 depends on the nature of the source. A tantalum Knudsen furnace has been reported by Weltner(64a) to give $50\% C_3$, $7\% C_2$, 38% C and 4% Ta at 2700°K. Langmuir sources at 2500°K give a composition of about $25\% C_3$, $25\% C_2$ and 50% C atoms.

The gas phase "4050 Å system" of C_3 , assignable to the $A^{1}\Pi_{u} \leftarrow X^{1}\Sigma_{g}^{+}$ has recently been analyzed by Gausset <u>et al</u>. (63,65). The molecule has a very low ground state bending frequency (63 cm⁻¹) and a large Renner

-8-

effect in the excited Π_u state ($\epsilon = +0.537$). The gas phase analysis indicates that the upper state is also linear and that Franck-Condon factors allow transitions involving v_1' , $2v_2'$, and $2v_3'$, if observed in this system.

-9-

The matrix absorption spectrum of C_3 also consists of the $A^{1}\Pi_{u} \leftarrow X^{1}\Sigma_{g}^{+}$ system. Table I gives the origins as well as other pertinent data on this system in each of the matrices studied.

Table	Ι.
-------	----

		· · ·	<u> </u>	u g ĭ	
Matrix) (nm)	µm-1	Half- width (cm ⁻¹)	Gas to matrix shift ^c (cm-l)	References
c0 ₂	398.5	2.5085	500	-410	Barger 62, 64, 65
Nea	405.7	2.4642	12-30	33	Weltner 62b, 64a,b, 66
N ₂	405.8 ^b	2.4635	250	40	Barger, Brabson 65
SF6	407.0	2.4565	200	110	Barger
Ar	410.2	2.4370	11-50	305	Barger, Brabson, Weltner
02	410.2	2.4370	40	305	Barger
Kr	410.6	2.4350	200	325	Barger, Brabson
Хе	423.4	2.3610	100	1065	Barger

Characteristics of the C₃, $A^{l}\Pi_{u} \leftarrow X^{l}\Sigma_{g}^{+}$ System in Various Matrices

^a After annealing.

^b Brabson reports a value of 419.9 nm for the (0,0,0) band in N₂. ^c Gas phase value 404.98 nm = 2.4675 μ m⁻¹.

The appearance of the bands, as evidenced by the half-widths, depends on the matrix. Neon, argon and oxygen were all observed to give sharp structure. Neon and argon apparently give additional multiple sites on initial condensation. Weltner (66) reports that annealing of the C_3 neon system at ll-l2°K for 0.5 hr leads to considerable simplification of the spectrum. It is noteworthy that, before annealing, the first strong band in neon occurs at 407.2 nm with the multiplet structure extending to about 405.0 nm and includes the strong band at 405.7 nm. Emission of this system (discussed below) also shows the first band at 407.2 nm, but the band structure is not a mirror image of the absorption (0,0,0) band and little other structure is present. Annealing leads to a loss of all structure with only the 405.7 nm band remaining. The annealing effect on emission is, unfortunately, not reported. It is not clear why the multiple sites are observed in absorption, but not in emission.

The absorption bands show progressions in v_1' and weakly $2v_2'$ in line with expectations. The values of v_1' and v_2' depend to a certain extent, on the matrix environment. Values reported for v_1' are 1125 cm⁻¹ in neon and 1095 cm⁻¹ in argon. The upper state bending frequency v_2' varies between 302 and 314 cm⁻¹. The values of v_2' are less clear because the large Renner effect leads to uneven spacing of the vibrational levels in the upper state. Renner parameters, calculated from the observed band positions, are +0.52 by Brabson, 0.566 by Weltner, and 0.55 by Barger.

-10-

Assignments are made by considering this splitting; (v_1', v_2') $v_2^{+'}$,0) and $(v_1^{+}, v_2^{-'}, 0)$ bands are tabulated in the original references. The agreement between authors is excellent except for the assignment of the (0, 6^+ , 0) band in argon for which Brabson and Weltner disagree. The value of the latter appears more probable. The assignments correlate well with calculated wavelengths based on the gas phase Renner parameter $\epsilon = +0.537$ and upper state bending mode $v_2' = 307.9 \text{ cm}^{-1}$. Although bands involving 2v3' are not forbidden, transitions involving this vibration are either not present or very weak. Welther does, however, report two bands in neon at 379.8 and 364.7 nm which seem related but do not fit into the assignment scheme. These are proposed to involve v_2 ' with the 379.8 nm band (0,0,2) and the 364.7 nm band (1,0.2). This yields a value of 840 cm⁻¹ for the v_3 ' vibration. This value is extraordinarily low and is rationalized on the basis of similar anomalies in like molecules such as BO_{2} , CO_{2}^{+} , and CNN where large interaction force constants are observed. In addition, Douglas' (51) measurements of ¹³C isotope shifts of the (0,0,0), (0,0,0) C_3 band in the gas phase requires a value for ν_3 ' of about 900 cm⁻¹.

-11-

When C_3 in Ne or Ar is excited with light of 405 nm or 365 nm wavelength, two distinct emissions are obtained (Weltner, 64a; Brabson, 65). The bluest emission has its origin near 407.2 nm and is assigned to the fluorescence associated with the ${}^{1}\Pi_{u} - X^{1}\Sigma_{g}^{+}$ transition. This emission is characterized by a short progression with frequency differences of about 170 cm⁻¹, a second series of bands located about 1230 cm⁻¹ away, and a third weak band 4046 cm⁻¹ away. The difference of 1230 cm⁻¹ is assigned to v_1 ", the 170 cm⁻¹ difference represents $2v_2$ " giving a v_2 " value of

85 cm⁻¹, and the 4046 cm⁻¹ difference belongs to $2v_3^{"}$ giving $v_3^{"}$ the value 2023 cm⁻¹. Direct infrared observations give a $v_3^{"}$ value of 2042 cm⁻¹ thereby giving weight to the $2v_3^{"}$ assignment.

The second emission originates at 585.6 nm in neon and 590.5 nm in argon. It shows progressions almost identical with the $A \rightarrow X$ system. The low frequency differences are 158, 164, 178, and 191 cm⁻¹, and the higher frequency is 1223 cm⁻¹. It is therefore likely that this system terminates in the C_3 ground state. Weltner determined a lifetime of 0.02 sec for this emission in neon. This value indicates that the transition is forbidden. The upper state is proposed to be the $a^3 \Pi_u$ state, associated with the electronic configuration of the ${}^1\Pi_u$ state. Population of ${}^3\Pi_u$, because of excitation conditions, presumably results from intersystem crossing from the ${}^1\Pi_u$ state.

Although attempts were made to observe other transitions in the molecule, in particular, the ${}^{1}\Sigma_{u}^{+} \leftarrow {}^{1}\Sigma_{g}^{+}$, none were found at least in the region down to 195 nm. Barger and Weltner have computed oscillator strengths for the ${}^{1}\Pi_{u} \leftarrow {}^{1}\Sigma_{g}^{+}$ system. The values of 6 x 10⁻² and 10⁻³, respectively are reported for the 410.2 nm band in argon. In view of the inherent difficulty involved in measurements of this type in matrices, the agreement is excellent.

Barger and Broida (65) suggested the possibility of the presence of excited ground state vibrational levels of v_2 ", in particular, levels 3, 4, and possibly 7. The suggestion is based on the presence of unassigned bands which fit the difference (0,3,0), (0,0,0); (0,7,0), (0,3,0) and (0,4,0), (0,0,0).

-12-

UCRL-19 .80

C₂H (HC₂)

The species C_2H has been shown by ESR to be produced when acetylene is photolyzed with vacuum ultraviolet radiation in an argon matrix (Cochran, 64). Very little, however, is known about the optical spectrum of the species. Milligan <u>et al.</u> (67a) have reported one vibrational fundamental of 1848 cm⁻¹ when mixtures of acetylene and argon or nitrogen are photolyzed using H₂ or Kr discharge lamps. These sources are rich in vacuum UV light. Deuterium and ¹³C substitution confirmed the assignment of the IR band at 1848 cm⁻¹ to C₂H. Observations on the band indicate that C₂H is stable to further photolysis with waveleng hs greater than 200 nm. Brabson, (65), suggested that a band at 405.4 nm, observed when carbon vapors are trapped in argon, may be due to C₂H.

-13-

CCO

The free radical CCO has been prepared in sufficient concentration for direct spectroscopic observation in two ways (Jacox, 65b). Carbon atoms, produced in the photolysis of matrix-isolated cyanogen azide at wavelengths shorter than 280 nm, were observed to react with carbon monoxide in the matrix with little or no activation energy, yieldin_€ directly CCO. The exact mechanism of CCO formation is not known, but several deductions can be made regarding it. Milligan (65d) showed that NCN is the initial photolysis product of N₃CN with radiation of wavelengths greater than 280 nm. Subsequent photolysis of NCN at wavelengths shorter than 280 nm yields N₂ and carbon atoms. The electronic state of the carbon atoms is not known although it is rationalized that ³P and ¹D atoms may be produced, depending on the energy of the incident radiation. Either is capable of reacting with CO to form CCO. Because of the nature of the CCO synthesis, this system also contains undesired imp rities. Other species known to be present include: NCN, N_2 , CO, N_3 CN and $C_3'_2$. The latter is apparently formed through direct reaction of CCO with 'O with little or no activation energy. The half-life of CCO in CO is about 3 minutes.

Vacuum ultraviolet photolysis of C_{30}^{0} also produces observable quantities of the radical CCO. Photolysis is effected using a xenon resonance lamp and wavelengths below 280 nm. This system has the ad antage of fewer impurities than the above system; however, CO and unphotoly ed C_{30}^{0} as well as CCO are known to be present.

The CCO radical shows three distinct absorptions in the infraret. The three vibrational fundamentals attributable to CCO in an argon m trix occur at 381, 1074, and 1978 cm⁻¹. The use of carbon and oxygen iso opes confirm the identification. The data are consistent with a linear structure, as proposed by Walsh (53a,b). The ground state is probably ${}^{3}\Sigma$.

A continuous absorption assigned to CCO occurs in the visible region near 500 nm. The absorption appears as a broad structureless band and evidently results in the photodissociation of CCO:

 $\operatorname{CCO}(^{3}\Sigma) + \underline{h}\nu \longrightarrow \operatorname{C}(^{3}P) + \operatorname{CO}.$

$^{CBr}2$

Andrews and Carver (68c) have reported two of the three vibrational fundamentals of CBr_2 in argon matrices at 15°K following the simultaneous deposition of lithium and CBr_4 . Infrared absorptions at 641 and 595 cm⁻¹ are assigned to v_3 and v_1 respectively of the dibromocarbene radical.

UCRL-19_80

Warming of the matrix leads to the formation of C_2Br_4 thereby giving chemical evidence for the assignment. In analogy with CF_2 and CCl_2 , the bond angle is assumed to be about 100°. The bending mode, v_2 , is not observed but presumably occurs below 200 cm⁻¹.

-15-

CClBr

This mixed dihalocarbene has been observed in the infrared following the reaction of lithium atoms with CClBr_3 and CCl_3 Br in argon at 15°K (Andrews, 68c). The two stretching fundamentals appear at 739 and 612 cm⁻¹. The former is the C-Cl frequency while the latter is the C-Br frequency. The species disappears on warming of the matrix to 40°K.

cc12

Milligan (67c) and Andrews (68b,e) used two different methods for preparing CCl_2 in matrices for spectroscopic observation. Milligan reacted carbon atoms produced by the photolysis of cyanogen azide with chlorine in argon and nitrogen matrices at 14°K to form directly CCl_2 . This method has the disadvantage that several unwanted species are simultaneously produced, thereby limiting the useful spectral range to those areas where overlap does not occur. The experiments consist of simultaneous depositions of $Ar:Cl_2$ and $Ar:N_3CN$ samples. The resulting solid is photolyzed with the entire spectrum of a cadmium lamp, with glass envelope removed. This treatment is known to result in the formation of excellent yields of the free radical NCN. The carbon atoms, used to form CCl_2 through reaction with Cl_2 , are then produced through photolysis of the intermediate NCN with the full spectrum of a medium pressure mercury arc.

Andrews reported a more direct, but not less sophisticated, method involving the reaction of lithium atoms with carbon tetrachloride in argon matrices at 15° K. Lithium is deposited from a Knudsen cell while the carbon tetrachloride-argon mixture is deposited through a second jet. The reaction yields CCL₃ and LiCl as primary products. The CCL₂ is formed by secondary reaction of CCL₃ with excess lithium. This method also suffers from the presence of intermediates and impurities, which are inevitably present in a lithium beam.

Two infrared absorptions are reported for CCl_2 . Andrews' assignments are based on isotope shifts and normal coordinate calculations. The bands at 746 cm⁻¹ and 720 cm⁻¹ are assigned to v_3 and v_1 , respectively, of the ${}^{12}\text{C}{}^{35}\text{Cl}_2$ species in argon. These frequencies shift to 754 and 725 cm⁻¹ in N₂. The assignment of v_3 to the highest frequency band is consistent with previous observations for OCl_2 , HBCl₂, and H₂CCl₂, where v_3 is also higher than v_1 . It should be noted that $v_1 > v_3$ occurs in CF₂ and OF₂. The appearance of v_1 in the infrared requires a bent structure for the molecule, with an almost certain C₂v symmetry. The calculation of the valence bond angle using v_3 for ${}^{12}\text{CCl}_2$ and ${}^{13}\text{CCl}_2$ gives a value of 100° ± 9. From his data, Milligan estimated the angle to be 90° - 110°. The v_2 bending mode is not observed. In the visible region, 16 bands occurring between 440 and 560 nm are observed in absorption. These bands, because of analogous behavior with that of the infrared absorptions, are also assigned to CCl_2 . The average spacing between bands is 305 cm⁻¹, and the system probably is a progression in v_2 '. By analogy with CF_2 , the lower state is concluded to be the ${}^{1}A_{1}$ ground state; the upper state is probably the first excited electronic configuration and presumably ${}^{1}B_{1}$, although ${}^{1}A_{1}$ is also possible. Herzberg (67) tentatively lists ${}^{1}A_{1}$ for the iso-valent CF_2 .

CF2

Photolysis of CF_2N_2 in matrices, reactions of carbon atoms from the photolytic decomposition of NCN₃ with molecular fluorine, and condensation of the products of a microwave discharge through $C_4F_8/argon$ mixtures have all yielded sufficient quantities of the CF_2 radical for low temperature spectroscopic observation (Bass, 62; Milligan, 64c, 68a).

Only one absorption system of CF_2 is observed in the region 190 -540 nm. This system, which corresponds to the gas phase transition $A({}^{1}A_{1}) \leftarrow X^{1}A_{1}$, originates at 3.739 μ m⁻¹ and consists of at least 16 distinct bands. The transition consists of a single progression in v_2 with a vibrational spacing of 500 cm⁻¹ and resembles the gas phase spectrum quite closely. The Franck-Condon maximum occurs near 248 nm, at the seventh band. Intensity in the origin region is sufficent to allow clear

-17-

observation of the (0,0,0) band. Only in the case of the NCN₃/F₂/Ar system is the spectrum overlapped. This is due to the CNN absorption in the same region.

The ground state vibrational frequencies of the radical have been observed directly in the infrared. All these vibrational modes appear as is consistent with the C_{2V} structure. Frequencies for ${}^{12}CF_2$ in argon are: $v_1 = 1222 \text{ cm}^{-1}$, $v_2 = 668 \text{ cm}^{-1}$, and $v_3 = 1102 \text{ cm}^{-1}$. Yields of the radical are sufficient to allow observations of v_1 and v_3 at 1191 and 1073 cm⁻¹, respectively, for the ${}^{13}CF_2$ species from ${}^{13}C$ natural abundance. These assignments have been confirmed using ${}^{13}C$ enriched samples. The frequencies are virtually identical in N₂ matrices. The 1222 cm⁻¹ v_1 band appears as a doublet in argon. The doubling is not totally clear although it may be due to multiple sites.

Results in CO and CO₂ matrices are essentially the same, indicating that CF_2 does not react with either under these conditions. Warm-up leads to the formation of C_2F_4 . The dimerization of CF_2 to C_2F_4 is apparently accompanied by chemiluminescence because a "straw-yellow" glow is observed when diffusion becomes important.

Impurities or unwanted products depend on the preparative method; they include CF_3 , C_2F_4 , C_2F_6 , $(CF_2N)_2$, and $CH_2N_2CF_2$, which is called perfluoroformadezine.

A bond angle of 108° is calculated from the observed $^{13}CF_2$ isotope shifts. This agrees favorably with Walsh's (53a,b) prediction that the molecule be strongly bent. CF_2 , like several other halogencontaining species, has the asymmetric stretching fundamental at a lower frequency than the symmetric stretching fundamental. Force constants and thermodynamic functions are tabulated in the original references. CHCl

Ц,

The $A({}^{1}A'') \leftarrow X({}^{1}A')$ transition of the radical CHCl (HCCl) in the gas phase at 550 - 820 nm has been reported by Merer and Travis (66a). Jacox and Milligan (67b) have prepared CHCl in argon and nitrogen matrices at 14°K through the reaction of carbon atoms with HCl. The carbon atoms are produced by the photolysis of N_2CN .

-19-

The A \leftarrow X absorption system is also observed in the solid, appearing as a series of bands between 560 and 750 nm. This observation confirms that the gas phase lower state is the ground state. These bands are relatively broad and weak and appear, in argon, to be blue shifted with respect to the gas phase by about 250 cm⁻¹. A red shift of 640 cm⁻¹ could also explain the results if the gas phase numbering is wrong. Six of the bands can be correlated closely with the gas phase values. At 1.50 μ m⁻¹, unassigned features appear between the principal bands. The bands show vibrational perturbations, as in the gas phase. The observed frequency is ~ 860 cm⁻¹ corresponding most likely to ν_0 '.

In the infrared, two fundamental vibrational modes are observed. These occur at 815 cm⁻¹ for v_3 and 1201 cm⁻¹ for v_2 in argon. The results of ¹³C and D isotope substitutions are consistent with the assignment of these bands to CHC1. In addition to CHC1, bands at 753 and 1270 cm⁻¹ attributable to CH₂Cl₂ are observed. These bands undergo considerable increases in intensity when diffusion is allowed to occur. The CH₂Cl₂ presumably results from the reaction of CHC1 and HC1 with little or no activation energy.

CHF

Vacuum ultraviolet photolysis of $Ar:CH_3F$ or $N_2:CH_3F$ mixtures yields CHF (Jacox, 69a). Four related bands between 470 and 546 nm correspond well with the most prominent gas phase band heads reported for CHF (Merer, 66b). The argon matrix shifts are approximately + 30 cm⁻¹ from the gas phase bands of the $A(^{l}A'') - X(^{l}A')$ transition. The bands are assigned to the progression $(0, v_2^{\prime}, 0)$, (0,0,0) and yield a v_{p} ' value of about 1010 cm⁻¹. Satellite bands approximately 110 cm⁻¹ to the blue of the two strongest bands are attributed to site effects. In argon, CHF shows an infrared band at 1182 cm⁻¹ which can be assigned to v_3 on the basis of ¹³C and D substitution. A band at 1405 cm⁻¹ is assigned to v_2 ". The latter is based on the known v_2 " derived from the gas phase by Merer (66b). Additional absorptions at 2918 and 3262 cm⁻¹, both in the C-H stretching region, show behavior expected for a fundamental of CHF but an assignment is not possible on the basis of the data. Force constant calculations indicate a C-F band stronger than normal, approaching the strength observed for CF.

-20-

сн⁵

Numerous attempts have been made to prepare and stabilize the methylene radical in low temperature matrices for spectroscopic studies (Milligan, 58, 62a, 67d; Goldfarb, 60a,b; DeMore, 58; Moore, 64b, 65; Robinson, 60a, Jacox, 63a). Most of these attempts have utilized the photolysis of diazomethane CH_2N_2 , which was expected to fragment into CH_2 and N_2 . It was hoped that the back reaction between methylene and nitrogen would proceed slowly or not occur at 20°K or below. No unambiguous

optical spectral observations on trapped CH_2 have been made. There are, however, several observations on reactions at low temperatures which indicate the formation of CH_2 from some photolytic processes. The CH_2 radical apparently has a very high reactivity in all systems yet studied.

CHO

The formyl radical, CHO has been produced via the photolysis of HI, HBr, or H_2S in CO matrices at 14-20°K, (Ewing, 60; Milligan, 64e) by condensation of the products of a discharge through methane-argon-oxygen mixtures (Robinson, 58b) or by condensation of the products of the reaction of atomic oxygen with C_2H_2 (McCarty,59b). The corresponding DCO can be produced using the appropriately deuterated precursor. More recently, Milligan and Jacox (69a) have succeeded in preparing HCO in argon matrices by reaction of H atoms with CO using as precursors HC1, H_2O , and CH_4 , all of which photolyze in the vacuum ultraviolet to produce H atoms.

The UV and visible spectrum consists of a series of broad bands between 510 and 670 nm corresponding to the ${}^{2}A''II - {}^{2}A'$ gas phase system (Johns,63; Ramsay, 53; Herzberg, 55) and a complicated series of absorptions between 210 and 260 nm corresponding to the hydrocarbon flame bands (see Vaidya, 64; Dixon, 67). The former spectrum consists of a progression in v_{2}' with a vibrational spacing of about 800 cm⁻¹. It involves the ground state, in which HCO is bent, and a linear upper state. The matrix bands, in CO, are shifted by about +220 cm⁻¹ from the gas phase bands. The shift is about +400 cm⁻¹ in Kr. The origin is not observed, so the assignments

-21-

can be considered tentative. The lowest energy band reported in the matrix corresponds to the (0,8,0), (0,0,0) band. The "hydrocarbon flame bands" show simultaneous progressions in the upper state bending and C-O stretching vibrations in line with expectation from the gas phase rotational analysis by Dixon. The matrix spectrum leads to a new value for the origin of the transition of $3.867 \ \mu m^{-1}$ as compared to $3.948 \ \mu m^{-1}$ as originally suggested. The CO to Ar shifts are very small, of the order 10 cm⁻¹ or less. The upper state vibrational frequencies determined from the spectrum are $1375 \ cm^{-1}$ for v_2 ', the bending mode and $1035 \ cm^{-1}$ for v_3 ' the C-O stretching frequency. Using the new origin, the vibrational frequencies, and matrix shifts, a new tentative assignment of the gas phase bands has been made (Milligan, 69a).

The ground state vibrational fundamentals have all been directly observed. For HCO these are the C-H stretching mode, v_1 , at 2488 cm⁻¹, the C=0 stretch, v_3 , at 1861 cm⁻¹ and the HCO bending mode, v_2 , at 1090 cm⁻¹. The frequencies in Ar are shifted to 2481, 1863, and 1087 cm⁻¹ respectively. All assignments are consistent with the ¹³C and ¹⁸O substitution results. The corresponding values for DCO are 1937, 1800, and 852 cm⁻¹. The results, except for the DCO C=0 frequency, were reported by each group, although Ewing <u>et al</u>. did not make the C-H assignments. The C-H and C-D frequencies are lower than expected, but in line with ESR measurements (Adrian, 62). Intensity anomalies that occur in the DCO spectrum may be due to Fermi resonance interaction between the D-C and C=0 stretching modes. In the CH₄ - 0₂ - Ar system the bands as assigned (Robinson, 58) are shifted about -50 cm⁻¹. This implies that the "heavy atom effect" is violated, that the spectrum is perturbed by the presence of other species such as unreacted CH_h or 0_h or that the assignment is wrong.

-22-

UCRL-19180

UCRL-1918C

Robinson and McCarty, (60) made the first tentative spectroscopic identification of the radical CNN, when they suggested that bands at 424.8 and 423.4 nm produced in the photolysis of diazomethane in a krypton matrix might be due to CN2 or HCN2. Goldfarb and Pimentel (60a,b) at the same time studied the photolysis of diazomethane in nitrogen matrices and reported unassigned bands at 396.8 and 418.2 m. Warm-up behavior suggested that these bands were due to a reactive species and it was proposed that the methylene radical could be responsible for one or both. The 418.2 nm band presumably correlated with Robinson's 423.4 nm band. The 396.8 nm feature, however, could only be correlated to a band at 317.4 nm in krypton which Robinson assigned to CH. Milligan, et al (65d), in a study of the photolysis of N_2CN in N_p , reported bands at 418.9 and 396.4 nm. These corresponded very closely with those of Goldfarb and Pimentel, but a tentative assignment to CNN was made. A conclusive assignment could not be made on the basis of the In a subsequent investigation of the photolysis of N_3^{CN} , aimed data. specifically at the identification of CNN, Milligan (66a) confirmed the assignment of the 396.4 and 418.9 nm features to CNN. The spacing between the bands corresponds to 1355 cm⁻¹, v_3 of the upper state. The considerable intensity of the 396.4 nm band suggests that only a small change in bond length occurs in the transition. Weltner (64b) reported the presence of bands near 420 nm containing carbon and associated with depositions of carbon in neon and argon matrices. These bands were later (Weltner, 66) shown to be due to CNN formed through the reaction of carbon atoms, from vaporized carbon, with No which had entered the system

through a vacuum leak. Bands occur at 421.0-419.6 nm and 398.8-397.5 nm

-23-

CNN

in neon and argon containing N₂. Weltner (66) reported an upper state vibrational frequency of 1325 cm⁻¹. ESR observations have led to the conclusion that the radical CNN is linear and that the ground state is triplet $({}^{3}\Sigma^{-})$ (Wasserman, 65).

Milligan and Jacox (66a) have assigned all three fundamentals of the radical. Frequencies observed in an argon matrix and their assignments are $v_3'' = 1241 \text{ cm}^{-1}$, $v_2'' = 393 \text{ cm}^{-1}$, and $v_1'' = 2847 \text{ cm}^{-1}$ for the 12_{C} N⁻¹ N species. A frequency of 1235 cm⁻¹ was observed in fluorescence in neon by Weltner (66) and correlates well with the ν_3 ". This frequency is a counterpart of the 1325 cm⁻¹ upper state frequency, therefore strengthening the latter's assignment as v_3' . Identification of the absorber and the assignments are consistent with the observed isotope shifts on substitution of ${}^{13}C$ and ${}^{15}N$ atoms. A comparison of band structure on ¹⁵N substitution in argon with substitution in nitrogen leads to the conclusion that CNN is formed from the reaction of carbon atoms with N_2 . The asymmetric stretching frequency of 2847 cm⁻¹ is anomalously high. This leads to the conclusion that the carbon-nitrogen bond has substantial triple bond character. Overtones or combination bands are ruled out as being responsible for this band by isotope substitution.

CNN is also observed in the vacuum ultraviolet photolysis of $C_{3}O_{2}$ in nitrogen matrices (Milligan, 66a; Moll, 66). The latter reports infrared absorptions of 2858, 1252 and 394 cm⁻¹ for the species.

Carbonyl sulfide has been studied in several matrices in the infrared (Venderame, 66; J. Smith, 68c) and in the vacuum ultraviolet (Roncin, 69).

The vibrational frequencies observed directly in the infrared are v_1 " = 2050, v_2 " = 518 and v_3 " = 857 cm⁻¹. The former is in krypton and the latter two are for the pure solid, but the v lues in CO are essentially the same.

-25-

The vacuum ultraviolet absorption spectrum appears to consist of three separate transitions, two in the region 160-18(nm, and the third between 115 and 145 nm, with origins at 5.54, 5.96 and 6.75 μ m⁻¹. The vibrational intervals for the three are 760, 495 and 511 cm⁻¹ respectively. The transition at 6.74 μ m⁻¹ appears R dberg-like; the other two are assigned to valence transitions. The bands are diffuse in neon, but sharpen on going to argon or krypton.

cs₂

The electronic spectrum of CS_2 is complex and not well understood in the gas phase. Furthermore, the matrix spectrum has not completely clarified the situation. CS_2 has been studied in the rare gases, and in nitrogen and methane, between about 2° and 20°K (Roncin, 69; Bajema, 70). Observations in the vacuum ultraviolet reveal a series of bands between 135 and 152 nm with an origin at 6.60 μ m⁻¹. The best spectra are obtained in argon and krypton. The bands in neon are broadened to the point that they are nearly inseparable and xenon shows only one band. A vibrational spacing of 540 cm⁻¹ occurs in neon and argon at the red end of the system. The assignment of the frequency has not been made. The Rydberg series appears to be suppressed.

A complex series of about six absorption bands is observed in the 290 to 330 nm region. Each band exhibits multiplet structure. The spectrum is interpreted as simultaneous progressions in v_1 and v_2 of the ${}^1B_2 \leftarrow {}^1\Sigma_g$ electronic system. Both matrix-isolated molecules and aggregates contribute to the observed absorption. The multiplet structure of the bands and the irregular spacings are attributed to a Renner-Teller effect. In emission, a weak broad phosphorescence excited at 250 nm appears between 360 and 550 nm. The lifetime has components, $\tau_1 = 0.8$ msec and $\tau_2 = 2.6$ msec in argon. This transition appears near 1.82 μ m⁻¹ and is tentatively assigned as ${}^{3}B_{2}$ or ${}^{3}A_{2}$, populated via intersystem crossing from ${}^{1}B_{2}$.

Snelson studied calcium fluoride in neon, argon, and krypton at 4.2° K and reported only one absorption in the infrared which could unambiguously be assigned to the monomeric species. This band appeared at 581 cm⁻¹ in neon, 561 cm⁻¹ in argon, and 565 cm⁻¹ in krypton. Other bands appeared in argon at 370, 489, and 528 cm⁻¹. These bands were significantly weaker than the absorption at 561 cm⁻¹. The relative intensities at 370 and 528 cm⁻¹ depended on deposition conditions and the bands were attributed to aggregates. More recently, <u>Calder et al. (69</u>) have examined CaF₂ in krypton at 20°K and observed all three vibrational fundamentals. These, for ⁴⁰CaF₂ appear at 485, 163, and 554 cm⁻¹ for v_1 , v_2 , and v_3 , respectively. Calcium-44 substitution results

in red shifts of 2 to 12 cm⁻¹. The bands appearing n ar 520 and 370 cm⁻¹ are assigned to the dimeric species. An apex angle o 140° is calculated from the isotope shifts and anharmonicities. The angle is in close agreement with the 145° suggested by Snelson.

-27-

CdBr₂, CdCl₂, CdF₂, CdI₂

The infrared spectra of the cadmium halides have been investigated in krypton at 4.2 and 20°K by Loewenschuss <u>et al.</u> (69 . In addition, McNamee (62) has studied CdCl₂ in argon, krypton and 2 enon at 20°K. All can be conveniently vaporized from Knudsen furnaces. All are linear symmetric molecules (Büchler, 64) and thus are expected to have two infrared active fundamentals.

 CdF_2 in krypton exhibits five bands in the infrared at 662, 475, 384, 377, and 123 cm⁻¹. The bands at 662 and 123 cm⁻¹ are assigned to v_3 and v_2 respectively of the matrix-isolated mononer. The remaining three bands are attributed to polymers. The intensities of the latter bands relative to the monomer absorptions are dependent on deposition conditions.

 $CdCl_2$ in krypton shows infrared absorptions due to the isolated monomer at 420 and 89 cm⁻¹ and dimer bands at 371, 364, and 357 cm⁻¹. The former are assigned to v_3 and v_2 respectively. The v_3 band appears as a multiplet due to isotopic splittings with components at 420, 419, 417, and 416 cm⁻¹. The dimer bands are assigned on the basis of "double-oven" experiments. These bands appear broader than the fundamental absorptions. The v_3 and v_2 fundamentals of CdBr₂ appear at 319 and 62 cm⁻¹ in krypton. A band at 270 cm⁻¹ is assigned to the dimer and bands at 190 and 163 cm⁻¹ to polymers.

Only the asymmetric stretching mode, v_3 , of CdI₂ is observed. This band appears at 270 cm⁻¹ in krypton. Bands at 222 and 21′ cm⁻¹ are assigned to dimers and bands at 140 and 127 cm⁻¹ to polymers.

The intensity of the dimer and polymer bands are reduced by "superheating". Polymer formation is proposed to occur due to incomplete isolation rather than to the presence of molecular vapor phase species. Dimer bands are tentatively assigned as a stretching mode, possibly a b_{3u} mode associated with a D_{2h} symmetric halogen-bridged species. Calculated symmetric stretching frequencies, v_1 , are: CdF₂, 572 cm⁻¹; CdCl₂, 327 cm⁻¹; CdBr₂, 205 cm⁻¹; and CdI₂, 150 cm⁻¹.

Force constants and thermodynamic data have been calculated from the observed frequencies (Loewenschuss, 69).

$C1_3$

Nelson and Pimentel,(967b), have proposed that bands occurring between 365 and 375 cm⁻¹ in the infrared spectra of samples of Kr:Cl₂ mixtures (Kr/Cl₂ = 50 to 100) subjected to a microwave discharge before deposition are due to the radical Cl₃. The bands are explained as the v_3 fundamental of a linear but slightly asymmetric (C_{∞v}) species.

CICO

12

Chlorine atoms produced through the photolysis of a suitable precursor are found to react with CO in argon matrices with little or no activation energy to give the radical C1CO (Jacox, 65a). Sources of Cl atoms reported, were HCl, Cl₂, Cl₂CO and (ClCO)₂. Hydrogen chloride was observed to give the most satisfactory yield of ClCO. Infrared spectra of the solids show the presence of CHO when HCl is used, and phosgene and oxalyl chloride when the other Cl precursors are used. The vibrational fundamentals of ClCO are observed at 281, 570 and 1880 cm⁻¹. The use of ¹³CO, and identical results with and without hydrogen present confirm the assignment to ClCO. Cl¹³CO frequencies in agreement with observed values have been computed using a valence angle of 120° or 135° and bond lengths of $r_{C-C1} = 1.75 \text{Å}$ and $r_{C=0} = 1.17 \text{Å}$ based on the values for phosgene. The computed force constant for the C=0 stretching mode is significantly greater than that for phosgene. This leads to the conclusion that the carbonyl bond possesses some triple bond character. Similar behavior is observed in the radical CHO. Thermodynamic properties of the radical have been calculated using the vibrational fundamentals and the estimated structural parameters. No ultraviolet absorption for ClCO was observed in the region between 250 - 450 nm.

-29.

<u>C1C10</u>

When OCl₂ is photolyzed in N₂ or argon matrices at 20°K, sev ral new bands near 960 cm⁻¹ and 375 cm⁻¹ appear (Rochkind, 67b). Growth plots of these bands indicate that three different molecules are produced. One species proposed to account for some of the bands between 952 and 962 cm⁻¹ and 368 and 377 cm⁻¹ is the ClClO molecule, with the nitrosyl halide type structure. The multiplet structure of the absorptions is presumably due to the 35Cl and 37Cl isotopic natural abundance. The magnitudes of isotopic shifts as well as relative intensities are consistent with the assignment to ClClO. The bands near 370 cm⁻¹ are assigned to the C1-C1 stretching vibration and the bands near 960 $\rm cm^{-1}$ to the C1-O stretching frequency. The bonding in the molecule is apparently quite weak and resembles that in similar molecules, such as OpF, FNO, and (NO)2. The assignments must be considered tentative at best, because ClClO as well as the other species present are as yet uncharacterized. As in most photolysis experiments, several "impurities" are present in addition to the desired product. Definitely identified as being present are the molecules: N_20 , 0_3 , and unphotolyzed Cl_20 . In addition, the presence of (C10), is suggested to account for other observed spectral features.

-30-

The ground state vibrational frequencies for symmetrical chlorine dioxide, OClO, have been reported in argon and nitrogen matrices at 4.2 and 20°K, respectively, by Arkell (67) and Rochkind (67b) as parts of photolysis studies. The observed infrared absorptions are very close to the gas phase values determined from electronic spectra (Herzberg, 67). v_1 is 940 cm⁻¹, v_2 is 448 cm⁻¹, and v_3 is 1100 cm⁻¹ in argon at 4.2°K. The v_1 and v_3 bands appear as quartets, and v_2 is a single band. In N₂, v_3 , is shifted to 1105 cm⁻¹ at 20°K; the other frequencies, although presumably observed, were not reported. The corresponding gas phase frequencies are 946, 447, and 1111 cm⁻¹.

-31-

C10₂

No report of the <u>UV</u>-visible spectrum of chlorine dioxide was made in the above studies. Norman and Porter (55) did, however, report an <u>UV</u> absorption in an isopentane, methyl cyclohexane glass at 77°K. In the liquid solution, the absorption consisted of distinct sharp bands between about 430 and 300 nm at 77°K. The structure of the absorption is retained on freezing but appeared almost entirely diffuse. Warmup and melting of the solvent again led to the original structure. The transition observed is probably $A \leftarrow X^2B_1$. Herzberg lists the symmetry of the upper state as 2A_2 . Because the purpose of the work was to look for C10 from the photolysis of ClO₂, no specific optical data on ClO₂ were presented.

C100

Asymmetric chlorine dioxide, ClOO, has beer proposed as a precursor in the formation of ClO from Cl_2 and O_2 in the fas phase by Porter (53); but only later trapping experiments provided evidence for the existence of the ClOO molecule. Benson and Anderson (59) reported indirect and inconclusive evidence for ClOO. Mixtures of measured amounts of Cl_2 and O_2 were subjected to neon <u>UV</u> radiation and then trapped at 77°K. The amount of "trapped" oxygen over and above residual amounts was considered to exist as chlorine oxides. This amount of O_2 was determined by warming the sample to room temperature followed by direct measurement. Oxygen in amounts of 6 to 8 times of the blank runs were observed. Calculations based on estimated rate constants and activation energies seemingly rule out Cl_2O and OClO as being responsible for the "trapped" oxygen. The results can be interpreted in terms of either ClOO or ClO.

-32-

More recently (Arkell, 67), an infrared study of the photolysis of Cl_2 and O_2 mixtures and photolysis of OC10 has resulted in direct observation of vibrational frequencies assignable to the fundamentals of C100. The photolysis of Cl_2 , O_2 mixtures alone and in argon matrices at 4.2°K gave a band near 1440 cm⁻¹ showing ${}^{16}O$, ${}^{18}O$ isotope shifts appropriate for a 0-0 stretching vibration. Other fundamentals were too weak for observation in this system. Greater amounts of the desired species are obtained through photolysis of OC10 in argon, nitrogen, or oxygen at 4.2°K. Intensity versus temperature characteristics of the
observed peaks led to the assignment of bands at 373, 407, and 1441 cm⁻¹, at 4.2°K, in argon as the three fundamentals of Cl00, v_3 , v_2 , and v_1 , respectively. The assignments are strengthened by observation of isotope shifts and normal coordinate calculations. The low frequency, 407 cm⁻¹, for v_2 , and the Cl-0 stretching frequency confirm the earlier suggestion of a weak Cl-0 bond (Benson, 57). In addition to the absorptions assigned to Cl00, unassigned bands at 1415 cm⁻¹ and 435 cm⁻¹ in argon appear during the early part of the photolysis. Isotopic and decay-growth data led to the assignment of these bands to an intermediate designated Cl00* in the formation of Cl00. Cl00* is proposed to be a structural isomer of Cl00, which, because of the solid environment, is prevented from assuming its stable configuration.

-33-

Rochkind and Pimentel (67b) while studying the photolysis products of Cl_2O in N_2 , photolyzed OC10 as an impurity in the Cl_2O . Two bands that could be correlated to ClO_2 photolysis appeared at 1438 and 1428 cm⁻¹. These were tentatively assigned to the 0-0 stretching frequency in ClOO. These can be compared to the bands reported by Arkell (67) in N_2 at 1445 and 1424 cm⁻¹. A band at 1438 cm⁻¹ observed by Arkell in argon, however, was not seen in N_2 . The two results are therefore not in agreement on this point. The cause of discrepancy is difficult to determine because of the complexity of the systems on which the observations were made. Both studies report absorptions which cannot be unambiguously assigned. Furthermore, several "impurities" resulting from photolysis fragments and secondary reactions are present. Identified impurities include O_3 , N_2O , α - O_2 , Cl_2 . It appears unlikely that experimental errors are to blame for the differences. It is conceivable that differences in photolytic procedures, wavelengths and temperatures result in the formation of different products. Also not totally ruled out are site effects.

CoCl₂

Matrix isolation spectra of Cocl_2 in the ultraviolet, visible and infrared regions have been reported (Clifton, 69; DeKock, 68; K. Thompson, 68; Jacox, 69). The molecule can be deposited by direct vaporization of the solid. The ligand field model gives a ${}^4\phi_g$ ground state for the gaseous species. Strong transitions at 3.08, 3.20, 3.37, 3.50 and 3.64 μ m⁻¹ and weaker transitions at 3.95, 4.20, and 4.58 μ m⁻¹ were reported by DeKock and Gruen at 4.2°K, but only the 3.37 region, the 3.50 band and the weak absorption at 4.20 μ m⁻¹ were observed by Jacox and Milligan at 14°K. The 3.37 μ m⁻¹ system appears as a series of bands with a vibrational spacing of about 230 cm⁻¹ and is assigned to a progression in v₁ of the upper state. The number of transitions observed is not consistent with the number expected from the ligand field model for a ${}^4\phi_g$ ground state. Therefore, either the model, or the state designation or both may be in error. Clifton and Gruen (69) have obtained fluroescence spectra in argon and nitrogen.

 CoCl_2 gives two bands in the infrared. A multiplet feature at 490 cm⁻¹ corresponds to the asymmetric stretching vibration, v_3 , with the strongest component corresponding to ${}^{59}\operatorname{Co}_2{}^{35}\operatorname{Cl}_2$ at 493 cm⁻¹ in argon. The bending mode, v_2 , occurs at 95 cm⁻¹ in argon. The frequency v_3 shows a heavy atom effect, shifting from 493 to 484 to 468 cm⁻¹ from Ar to Kr to Xe.

-34-

CrCl

The ultraviolet and infrared spectra of $CrCl_2$ isolated in argon at 14°K have been reported by Jacox and Milligan (69b). Samples of $CrCl_2$ can be obtained by either direct vaporization of the solid or via the reaction of chlorine with a chromium surface at 1035-1095°K immediately prior to deposition. Samples were observed to be strongly absorbing at wavelengths shorter than about 260 nm. Thick deposits show, in addition, a weak absorption near 307 nm. Both absorptions appear unstructured. The gas phase systems reported at 3.623 and 4.960 μm^{-1} (DeKock, 66) do not appear in the matrix.

-35-

The infrared spectrum, down to 250 cm⁻¹, shows a strong complex group of bands near 490 cm⁻¹ and several weak absorptions near 470 cm⁻¹. The former agree well with the spectrum expected from the natural isotopic abundance for the asymmetric stretching frequency v_3 of linear CrCl₂. The latter bands are attributed to site effects. No evidence for a frequency assignable to v_1 was obtained.

FeCl₂ can be isolated in matrices by either direct vaporization of the solid, or by the reaction of chlorine with iron metal surfaces at 1085°K, followed by condensation on a cooled target (DeKock, 68; K. Thompson, 68; Jacox, 69b).

FeC12

-38-

In the spectral range 200-550 nm several broad, structureless bands have been observed. In argon, 4.2°K, band maxima occur at 3.75, 3.98 (shoulder), 4.16, 4.41 (shoulder) and 4.76 μ m⁻¹ (DeKock, 68). At 14°K the bands are apparently less well resolved and the spectrum appears as a broad peak at 4.17 μ m⁻¹ superimposed on an increasing absorption below 4.00 μ m⁻¹. Ligand field models predict a ${}^{5}\Delta_{g}$ ground state for FeCl₂ and five allowed one-electron transitions to ${}^{5}\Pi_{u}$, ${}^{5}\Delta_{u}$, and ${}^{5}\Phi_{u}$ states (DeKock, 68). Assignments to transitions is not, however, possible on the basis of the data.

Infrared observations yield directly 88 and 493 cm⁻¹ for the v_2 and v_3 frequencies of the molecule. The asymmetric stretching frequency, v_3 , shifts to 447 cm⁻¹ in N₂, an unexpectedly large shift. This has been rationalized in terms of N₂-FeCl₂ interactions. All evidence favors a linear ground state.

Infrared vibrational spectra of GeF_2 have been observed in neon and argon at 4.2°K following direct deposition of the vapor from a Knudsen furnace (Hastie, 68). The molecule can be prepared from GeF_4 and Ge at 575°K. The spectrum shows several groups of bands between 500 and 850 cm⁻¹. The general appearance is the same in neon and argon, however, the bandwidths in neon are less than in argon. Two vibrational fundamentals are observed; v_1 at 685 cm⁻¹ and v_3 at 655 cm⁻¹ in neon. These bands shift to 676 and 648 cm⁻¹ in argon. The bands both show fine structure due to the germanium isotopes and the above frequencies are for the strongest component. Matrix bands are shifted from the gas phase by about -8 cm⁻¹ and -15 cm⁻¹ in neon and argon, respectively. The assignments are based on relative intensities and the computed band angle for the molecule, 94°.

-39

GeF2

Other bands near 600 cm⁻¹ and 670 cm⁻¹ are assigned to dimeric and polymeric species. A group of bands near 800 cm⁻¹ is assigned to unreacted GeF₄. Since dimers and polymers exist in equilibrium with the monomer in the vapor phase, their appearance does not necessarily result from poor isolation. HCN

C. King and Nixon (68) have examined the infrared and far infrared spectra of HCN in argon, nitrogen and CO matrices at 4.2 and 20°K. HCN forms aggregates in the gas phase and the spectra exhibit bands due to dimers and polymers as well as monomers. In general, the monomer peaks are sharper than the aggregate bands. The fundamental vibrational frequencies are observed at 3303, 720, and 2093 cm⁻¹ in argon. These values are consistent with earlier results in nitrogen (Becker, 56; Moore, 65). The v_2 band appears as a single peak in argon, but is a doublet in both nitrogen and carbon monoxide. Dimer peaks appear at 3301, 3202, 2114, 2090, 797, 792, and 732 cm⁻¹. The relative intensity of these and polymer peaks are lower in nitrogen than argon, presumably indicating a greater degree of isolation in the former.

-40-

н_О

Infrared studies on matrix-isolated water have been made by several workers because of apparent free or nearly free rotation, even at 4.2°K (Catalano, 59; Glasel, 60; Harvey, 68; Hopkins, 68; Jacox, 61; Redington, 62, 63; D. Robinson, 63; Van Thiel, 57b). Van Thiel, Becker and Pimentel, in 1957, studied the hydrogen bonding of water in nitrogen at 20°K and reported the vibrational fundamentals of the monomer as well as bands attributable to dimers and polymers. The three fundamentals appeared at 3627, 1600, and 3725 cm⁻¹ for v_1 , v_2 , and v_3 , respectively. Later Catalano and Milligan studied the v_2 absorption band in argon, krypton, and xenon between 4.2 and 20°K as a function of temperature and concentration. This band appeared as a complex multiplet with six to

eight sub-bands. The complexity was proposed to be due to rotation. Analysis of the v_3 region by Glasel further supported rotation. High resolution studies have led to rotational assignments of the matrix spectra to low-J levels closely correlating with the gas phase values (Redington 62,63). The spectra exhibited bands due to both <u>ortho</u> and <u>para</u> spins. The presence of oxygen catalyzed <u>ortho-para</u> spin conversion. Several rotational levels were observed to be populated in spite of negligible Boltzman factors. This population has been explained using an ideal particle in a spherical box model and substitutional sites. The observed frequencies for the rotating molecule in argon are 3619, 1590, and 3733 cm⁻¹. D. Robinson has observed similar levels in the pure rotation region as Redington and Milligan in the vibration-rotation region thereby presenting support for the latter's assignments.

-41-

Similar results have been obtained for D_0^0 and HDO.

HC12

Condensation at 14°K of the products of a glow discharge through HCl, chlorine, argon mixtures led to infrared absorptions at 956 and 696 cm⁻¹ which have been assigned to $(v_1 + v_3)$ and v_3 , respectively of the radical HCl₂ (Noble, 68a). These peaks showed parallel warm-up behavior and both disappeared at about 40°K. The 956 cm⁻¹ absorption appears as a triplet with relative intensities consistent with chlorine isotopic splittings expected for a band involving v_1 for a $D_{\infty h}$ ClHCl species. Results on deuterium substitution were also consistent. The 696 cm⁻¹ band does not exhibit chlorine isotopic splittings, presumably because of the small magnitude, 0.19 cm⁻¹, expected. A value for the v_1 fundamental of 260 cm⁻¹ is obtained from the observed $(v_1 + v_3)$ and v_3 bands. The bending frequency, v_2 , is probably below the limit of detection, 200 cm⁻¹. No evidence for HCl₂ formation was obtained when HCl, Cl₂, or HI, Cl₂ samples were photolyzed in nitrogen or argon at 20°K.

HNC

Milligan and Jacox (63c, 67b) have reported the infrared spectrum of the HNC molecule prepared by the vacuum ultraviolet photolysis of HCN in argon and nitrogen at 14°K and from the prolonged photolysis of methyl azide, CH_2N_2 , in argon at 4.2°K.

The three fundamental vibrations of the molecule are observed at 477, 2029, and 3620 cm⁻¹ in argon at high dilution. The presence of nitrogen in neighboring lattice sites apparently perturbs the (N-H) stretching frequency and the bending mode of the molecule. Frequencies obtained at low M/R's or in N₂ matrices are shifted significantly varying between 478 and 538 cm⁻¹ for the bending mode and 3567 and 3620 for the (N-H) stretching frequency.

Isotope shifts for 13 C, D, and 15 N substituted species are consistent with the assignments. HNC is predicted (Walsh, 53a,b) to have a linear ground state and the computed isotope shifts suggest such a geometry. The computed force constants indicate that the carbon-nitrogen bond is a triple bond.

-42-

No ultraviolet-visible transitions have been observed. The photolysis of HCN, however, lead to sufficient CN concentrations for the observation of the (0,0) and (0,1) bands of the CN $B^2\Sigma^+ - X^2\Sigma^+$ system at 385 nm.

-43-

HNF

Jacox and Milligan (67a) have produced the radical HNF by the reaction of fluorine atoms with NH in argon matrices at 14°K. Fluorine atoms can be produced by the photolysis of F_2 or N_2F_2 and NH is prepared by the photolysis of HN₃. Photolytic production of both F and NH are required for HNF formation. Other species known to be present include NF, NF₂, NF₃, HNF₂, HF, NH, N_2H_2 , as well as precursors.

HNF shows an electronic transition between 390 and 500 nm consisting of a progression of six bands in v_2' with a frequency of 1033 cm⁻¹. Walsh (53a,b) suggested that the progression is in the bending mode of the transition ${}^{2}A' - {}^{2}A''$. The origin of the system appears at 2.034 μ m⁻¹. The same system for DNF originates at 2.036 μ m⁻¹ and shows a progression with a frequency of 798 cm⁻¹.

Two vibrational fundamentals for HNF are observed in the infrared. The N-F stretching mode occurs at 1000 cm⁻¹ and the HNF bending mode at 1432 cm⁻¹. The N-H stretching mode should occur between 2700 and 4000 cm⁻¹, but it is not observed. Presumably this mode is very weak. Deuterium and 15 N isotope shifts confirmed the identification. The HNF bond angle is about 105°, in analogy with NH₂ and NF₂. Force constants and thermodynamic properties have been computed.

The HNO molecule was among the first trapped free radicals (Robinson, 57a, 58a,b,d). It was obtained as a by-product following condensation of the products of a discharge through hydrazine, argon mixtures containing water as an impurity. Shortly thereafter, the sustained photolysis of nitromethane and methyl nitrite in argon was also found to give observable amounts of HNO (H. Brown, 58). Subsequently, HNO has appeared in other systems often as the result of impurities (McCarty, 59b; Harvey, 59; Baldeschwieler, 60; Milligan 62c). Of particular note is its formation in the photolysis of HN₃ in CO₂ (Milligan, 62c) via the reaction of NH with CO₂. This system gives a moderately clean sample, spectroscopically.

-44

Eight bands of HNO are observed in the visible spectrum originating at 1.312 μ m⁻¹ and extending to 1.740 μ m⁻¹. Only the first three have significant intensity. These bands correlate well with the gas phase bands initially reported by Dalby (58). The bands are assigned to the transition ¹A" \longrightarrow X¹A' and involve simultaneous progressions in v'₂ and v'₃. The observed frequencies are $\nu'_2 = 1422 \text{ cm}^{-1}$ and $\nu'_3 = 982 \text{ cm}^{-1}$. The matrix bands are shifted from the gas phase bands by about -54 cm⁻¹.

The infrared spectrum of matrix-isolated HNO has been reported by several worker (H. Brown, 58; Harvey, 59; Milligan, 62c). Agreement as regards the v_2 and v_3 fundamentals, the molecular bending mode and the N = 0 stretching frequencies among workers is excellent and the values observed in argon are: $v_2 = 1570 \text{ cm}^{-1}$ and $v_3 = 1110 \text{ cm}^{-1}$. The use of deuterium and oxygen isotopes confirm these assignments. There is,

HNO

however, a discrepancy regarding the value for v_1 , the H-N stretching mode. Brown and Pimentel (58) observed a band at 3300 cm⁻¹ which they tentatively assigned to HCO; Milligan, et al. (62c) report a value of 3380 cm⁻¹ in CO₂ and N₂O; whereas Harvey and Brown (59) report a value of 3592 cm⁻¹ in argon. In all cases, deuterium substitution has been used. Deuterium shifts are all within reasonable limits. There is no aspect in any of the experiments that would tend to reject the observations. All systems are, however, complex, and contain species other than HNO. The value reported by Harvey and Brown of 3592 cm⁻¹ does correlate best with the gas phase value, 3596 cm⁻¹ (see Herzberg, 67).

-45-

The high frequency observed for v_2 indicates a molecular ingle of 110°. This is in good agreement with the 109° from the gas phase data (see Herzberg, 67).

HNSi

Irradiation of SiH₃N₃ in argon near 4°K with a high pressure mercury lamp is reported to produce infrared observable quantities of the species HNSI (Ogilvie, 66). Frequencies assigned to the molecule are $v_1 = 3583$ cm⁻¹, $v_2 = 523$ cm⁻¹ and $v_3 = 1198$ cm⁻¹. Calculated and observed isotope shifts with deuterium are consistent. The structure is linear and a large k_2 force constant is taken as an indication of a singlet ground state. The (N-H) stretching frequency, v_1 , is identical with the equivalent mode in the species HNC in argon containing nitrogen (Milligan, 63c, 67b).

-46-

HOBr

Photolysis of argon, HBr, ozone mixtures at 4.2°K are observed to produce HOBr (Schwager, 67) presumably by the reaction $0_3 + HBr + h\nu =$ HOBr + 0_2 . No evidence for intermediates such as OH is obtained so that a detailed mechanism is not available.

All three fundamental vibrational frequencies are observed. For H¹⁶OBr these appear at: $v_1 = 3590 \text{ cm}^{-1}$, $v_2 = 1164 \text{ cm}^{-1}$ and $v_3 = 626 \text{ cm}^{-1}$. The DOBr counterpart bands appear at 2153, 854 and 621 respectively. ¹⁸O isotopic substitution in both HOBr and DOBr has been used to assist in the assignments. The molecular bond angle was estimated to be 110° for the calculation of force constants and isotopic frequencies.

HOCL

Similar to HOBr, HOCl has been prepared in argon matrices via the photolysis of Ar, HCl, 0_3 mixtures at 4.2°K (Schwager, 67). The vibrational fundamentals of HOCl, v_1 , v_2 , and v_3 , appear at 3581, 1239 and 729 cm⁻¹ respectively. ¹⁸0 isotopic substitution was used to verify assignments and to calculate force constants. The molecular bond angle is 113° as determined from the gas phase data (see Herzberg, 67).

The photolysis of condensed mixtures of water, fluorine, and nitrogen at 20 or 14°K has led to infrared observable quantities of the radical HOF (Noble 68b). Bands attributable to the three fundamentals were observed at 3483, 1393, and 884 cm⁻¹ for v_1 , v_2 , and v_3 , respectively. Similar, but more complex bands were obtained when argon was substituted for nitrogen. An additional band in the hydrogen stretching region at 3772 cm⁻¹ was assigned to HOF hydrogen bonded to an adjacent HF. A normal coordinate analysis based on structural parameters from H₂O and OF₂ verified the assignment. Experiments with D_2O and $H_2^{-18}O$ were also consistent with the identification of HOF and the frequency assignments. Thermodynamic properties have been calculated. The bonding in the molecule is apparently similar to the bonding in H_2O and OF_2 .

-47-

HOF

H00

Milligan and Jacox (63b, 64a) have succeeded in observing the vibrational fundamentals of the species HO₂ following the reaction of H atoms, produced in photolysis of HBr or HI, with oxygen in argon matrices at 4.2°K. Yields of the radical are apparently greater with HI than HBr. Bands attributable to HO₂ are observed at 1101, 1389, and 3414 cm⁻¹. The use of ¹⁸O and D isotopes as well as comparisons with spectra of H₂O₂ lead to the assignments $v_1 = 3414$, $v_2 = 1389$, and $v_3 = 1101$ cm⁻¹. The spectrum indicates that the oxygen atoms are non-equivalent casting doubt on an isosceles triangle structure. The data is insufficient to permit calculation of an accurate value for the molecular angle. At wavelengths < 220 nm, HO₂ appears to also undergo photolysis.

-48-

Giguere (54) had earlier assigned a band observed at 1305 cm⁻¹ to HO₂ following condensation of the products of a discharge through water vapor. He subsequently showed (56) that the band was due to N_2O_3 produced from nitrogen as an impurity.

UCRI.-19180

HgBr₂, HgCl₂, HgF₂, HgI₂

The infrared spectra of the mercury di-halides in krypton at 4.2 and 20°K have been reported by Loewenschuss <u>et al.</u> (69). The chloride, HgCl₂, has also been investigated in argon, krypton, and xenon at 20°K by McNamee (62). All are prepared by vaporization of the solids. Monomer yields are greatest with a double-oven arrangement. The spectra are consistent with linear structures (Büchler, 64) with only two fundamentals appearing in the infrared for the matrix-isolated monomers. Spectra of each species also show additional bands attributable to dimers, polymers, or other species. Table II summarizes the observed frequencies for the monomers.

-49-

Table II

Infrared Frequencies of Mercury Di-halides in Krypton (cm⁻¹)

	` 3	2
^{HgF} 2	642, 639	172
HgCl ₂	407, 403, 398	107
HgBr ₂	294	73
HgI	238	63

The multiplet appearance of the HgCl_2 ν_3 band is apparently due to isotopic splittings.

Dimer bands appear at 586 cm⁻¹ for the fluoride, 286 cm⁻¹ for the bromide, and 229 cm⁻¹ for the iodide. These are tentatively assigned to a stretching mode of a D_{2h} halogen-bridged species. Other bands appearing and due to polymers or other unidentified species are at 660 and 384 cm⁻¹ for HgF₂, 412 cm⁻¹ for HgCl₂, 261 cm⁻¹ for HgBr₂, and 220 and 234 cm⁻¹ for HgI.

Calculated symmetric stretching frequencies, v_1 , are: HgF₂, 588 cm⁻¹; HgCl₂, 348 cm⁻¹; HgBr₂, 219 cm⁻¹, and HgI₂, 158 cm⁻¹. Force constants and thermodynamic functions have been computed from the data (Loewenschuss, 69).

-50-

KrF₂

Infrared absorptions at 580 cm⁻¹ and 236 cm⁻¹ occurring when 1:70:220 mixtures of F_2 :Kr:Ar are condensed at 20°K and photolyzed with an AH-4 medium pressure mercury lamp, have been assigned to v_3 and v_2 respectively of the molecule KrF₂ (Turner, 63a,b). At higher F_2 :Kr ratios, these bands shifts to 575 and 245 cm⁻¹. The shifts are believed to be due to aggregations. Force constants derived for the molecule indicate that the bond energies are similar to those in XeF₂.

Condensation of the vapors from solid Li_2^0 with krypton under conditions where the vapor consists of predominately Li_2^0 , yields, infrared bands at 112 and 987 cm⁻¹ assignable to v_2 and v_3 of the molecule (Seshadri, 66; White, 63b). Substitution of ⁶Li in the molecule shifts the bands to 118 cm⁻¹ and 1029 cm⁻¹ respectively. Isotope ratios are consistent with a linear structure, but the accuracy of measurements are not sufficient to make the conclusion unambiguous. They are, however, sufficient to exclude large deviations from linearity. On the basis of force constant data, a value for v_1 of 685 cm⁻¹ is calculated.

-51.

LiON

Ii2⁰

Andrews and Pimentel (66a) report the appearance of new infrared bands when co-depositions of lithium, nitric oxide and argon are made at 15° and 4.2°K. The isotope shifts with ⁶Li, ¹⁸O and ¹⁵N are consistent with their assignment to a triatomic species containing one each Li, O, and N atoms. The observed isotope shifts and a normal coordinate analysis favor the molecular arrangement LiON in which the molecule is bent with an angle of $100^{\circ} \pm 10^{\circ}$. The observed frequencies for the natural isotopic species, assuming the structure LiON, are: v_1 , the NO stretching motion, 1352 cm⁻¹, v_2 , the bending mode, 333 cm⁻¹ and v_3 , the LiO stretching frequency, 650 cm⁻¹. The latter is the strongest of the three bands. The NO stretching frequency suggests a bond order of about 1.7. The bonding of the species is not clear. The molecular arrangement is not unambiguous and must be considered tentative. -52-

Li0₂

Low frequency infrared bands at 231 and 685 cm⁻¹ appearing in the spectrum of matrix-isolated Li_2^0 vapors under conditions where the predominant vapor species is $\text{Li}_2^0_2$ have been assigned to the v_2 and v_3 fundamentals of the species Li_2 (White, 63b; Seshadri, 66). Isotope substitution indicates the presence of only one Li atom in the species and calculated isotope ratios are consistent with the assignment to Li_2 . Best fit is obtained when a symmetrical molecule with an angle of 170° is assumed. It is conceivable that the molecule is linear. A calculated value for v_1 of 340 cm⁻¹ is reported.

MgF2

Magnesium difluoride can be deposited by direct vaporization from a Knudsen furnace at temperatures in the range 1500 - 1575°K (Calder, 69; Mann, 67; Snelson, 66). The infrared spectrum of MgF₂ in krypton shows several bands between 200 and 900 cm⁻¹. Bands at 478, 242, and 837 cm⁻¹ are assigned to v_1 , v_2 , and v_3 respectively of the most abundant species of the molecule. Isotope shifts for ²⁴Mg and ²⁶Mg are in agreement with the assignments. The direct observation of v_1 requires that the molecule be bent. The apex angle giving the closest agreement between observed and calculated isotope shifts is 158° (Calder, 69). Spectra in neon and argon appear essentially the same, but the frequencies are shifted as expected.

Other bands occurring in the spectrum are assigned to other species. A band at 740 cm⁻¹ is assigned to MgF and bands near 450 and 480 cm⁻¹ are assigned to polymeric species.

UCRL 19180

MnCl₂

MnCl₂ can be deposited for matrix spectral studies by either direct vaporization of the solid or via the reaction of chlorine with manganese metal surfaces at 995 - 1085°K. (DeKock, 68; K. Thompson, 68; Jacox, 69b).

-53-

The ultraviolet-visible spectrum of MnCl₂ in argon gives three broad unstructured bands at 4.39, 4.57, and 5.00 μ m⁻¹. MnCl₂ is linear and is suggested to have a ${}^{6}\Sigma^{+}_{u}$ ground state (DeKock, 68). The transitions may involve upper ${}^{6}\Sigma^{+}_{u}$ and ${}^{6}\Pi_{u}$ states, but no definite assignments have been made. The asymmetric stretching frequency, ν_{3} , and the bending mode, ν_{2} , appear in an argon matrix at 477 and 83 cm⁻¹ respectively.

UCRI-19180

Milligan <u>et al.</u> (56) assigned a band appearing at 2150 cm⁻¹ in condensed films of discharged nitrogen, at 20°K, to the asymmetric stretch of a linear N₃ radical. ¹⁵N enriched samples gave additional bands confirming that the absorbing species contained nitrogen. Bands appearing at 962 and 737 cm⁻¹ in the same samples were assigned to polymeric species greater than N₃. All these bands disappeared on warming to 35°K as expected for a reactive species. Becker <u>et al</u>. (57) observed a band at 2140 cm⁻¹ in argon following the photolysis of HN₃ which they correlated to the N₃ radical. Harvey and Brown (59), however, failed to duplicate the results using discharged nitrogen condensed at 4.2°K. Both systems are complex and often contain impurities.

-54-

^N3

Peyron <u>et al</u>. (59b,c) have proposed a different type of N_3 species to account for the observed emission features in condensed, discharged nitrogen. This species is proposed to be a loosely bound N-N₂ complex in which the observed emission is viewed as simple combinations of electronic transitions of the nitrogen atoms and vibrational transitions of the N₂ molecules. Results of isotopic experiments with ¹⁵N are consistent with this interpretation. This N₃ species is not the same molecule as that proposed by Milligan <u>et al</u>. in spite of the fact that the observed vibrational frequency of about 2200 cm⁻¹ is similar.

UCRI -19180

The free radical NCN has been prepared by the photolysis of cyanogen azide, N_3^{CN} , in a variety of different solvents. Infrared observations yielded two of the three vibrational fundamentals. The third was deduced from the first two. The gas phase bands at 329 nm (Herzberg, 64) and a new UV absorption system between 240 and 300 nm were observed by Milligan, <u>et al</u>. (65c,b, 66c, 69c).

The gas phase rotational analysis of the (0,0,0) band of the 329 nm system shows the molecule to be linear and symmetric with a $3\Sigma^{-}_{g}$ ground state (Herzberg, 64).

Cyanogen azide has two distinct UV absorptions at 275 nm ($\epsilon = 103$) and 220 nm ($\epsilon = 2157$) (Marsh, 64), and irradiation of the molecule in either band leads to photolytic cleavage to give NCN and N₂. Because of the characteristics of the absorption, the 228.8 nm line of a cadmium lamp has proved to be the best photolysis source for the production of NCN. Its yield is, for all practical purposes, quantitative. If light of 250 nm is used, NCN itself will also photolyze, but photolysis apparently does not occur with the 228.8 nm cadmium line.

The 329 nm gas phase ${}^{3}\Pi_{u} - {}^{3}\Sigma_{g}^{-}$ absorption system is, in the solid, shifted to 330.4 nm in nitrogen and to 334.4 nm in argon. This system normally appears as a single broad unstructured band. In solids containing large amounts of NCN an additional band appears about 1140 cm⁻¹ toward the blue. Assuming this band belongs to the transition, the frequency of 1140 cm⁻¹ is assigned to ν_{1} of the ${}^{3}\Pi_{u}$ state. In addition to the ${}^{3}\Pi_{u} - {}^{3}\Sigma_{g}^{-}$ transition, a second and previously unreported transition appears. This system consists of a series of bands extending from 300 nm to 240 nm and separated by about 1040 cm⁻¹. Each major absorption is accompanied by a weaker second component located 35 cm⁻¹ toward the blue in argon, or 50 cm⁻¹ toward the blue in M_{2} . The exact cause of the substructure is not known. The 1040 cm⁻¹ vibrational frequency, assignable to v_{1} ', and the number of vibrational bands observed, about 10, suggests that the upper state is also linear and involves an appreciable change in the carbon-nitrogen bond length. Using the arguments of Walsh (53a,b) the transition is assigned to $B^{3}\Sigma_{1}^{-} \leftarrow X^{3}\Sigma_{p}^{-}$.

-56-

Schoen(66) has employed flash photolysis of N_3CN , N_2 mixtures at 20°K to study the photolytic process. He observed an absorption band at 335 nm which he assigned to the NCN ${}^{1}\Pi_{u} + {}^{1}\Delta_{g}$ system. This band appears as the only absorption attributable to NCN immediately following the flash. Delay time measurements indicate a mean lifetime of about 500 µsec for the ${}^{1}\Delta_{g}$ state. Subsequently, the ${}^{3}\Pi_{u} + {}^{3}\Sigma_{g}^{-}$ absorption appears as the NCN (${}^{1}\Delta_{g}$) decays to the ground state.

Infrared observations give directly the frequencies 423 cm⁻¹ for v_2'' and 1475 cm⁻¹ for v_3'' . Samples containing large amounts of NCN also show a band at 2672 cm⁻¹ which is assigned to the combination band $(v_1 + v_3)$. This then gives a value of v_1'' equal to 1197 cm⁻¹. The use of the isotopes ¹³C and ¹⁵N supports all assignments. Force constants and thermodynamics data for the species have been calculated. The C-N stretching force constant is near that of a carbon-nitrogen double bond.

Small amounts of NCN have also been produced during the vacuum ultraviolet photolysis of C_0O_0 in N₀ (Moll, 66).

Robinson (58b) and McCarty (59b) tentatively observed a band near 440 nm in the condensation products of a methane, argon discharge containing nitrogen and oxygen impurities. They assigned it as the $(0,0,0) \leftarrow (0,0,0)$ band of the $A^2\Sigma^+ \leftarrow X^2\Pi$ transition of NCO. This band was shifted by about +70 cm⁻¹ from the gas phase band (Holland, 58). In light of more recent work (Milligan, 67e), this assignment of Robinson and McCarty is questionable. However, there is no doubt now that NCO has been isolated in low **tem**perature matrices.

-57-

Two transitions of the radical have been observed (Milligan, 67e) in neon, argon, nitrogen, and carbon monoxide matrices at 4.2 and 14°K. The first of these is the $A^{2}\Sigma^{+} - X^{2}\Pi$ transition originating near 2.28 μm^{-1} . The bands correlate with the more recent gas phase data of Dixon (60a,b). The matrix spectra are shifted with respect to the gas phase with neon showing a -38 cm⁻¹ shift, argon -64 cm⁻¹, N_{p} + 156 cm⁻¹, and CO + 119 cm⁻¹ for the (0,0) band. Band half-widths vary from 40 cm⁻¹ in neon to 500 cm⁻¹ in CO. All three frequencies for the upper state $(A^2\Sigma^+)$ can be derived from the spectra. They are, in neon, $v_1' = 2325 \text{ cm}^{-1}$, $v_2' = 687 \text{ cm}^{-1}$ and $v_3' = 1270 \text{ cm}^{-1}$. The second system observed is the $^{2}_{B}\Pi \rightarrow X^{2}\Pi$ system with its origin near 3.16 μ m⁻¹. The matrix bands are shifted from the gas phase bands by -122 cm⁻¹, -301 cm⁻¹, -400 cm⁻¹ and -768 cm⁻¹ in neon, argon, nitrogen and CO, respectively. Vibrational frequencies observed for the B²II state are approximately 2300 for v_1 ' and 1040 cm⁻¹ for ν_3' . The B - X transition is a much more extensive band system than the A - X transition. Nearly 40 bands are observed in neon for $B \leftarrow X$ vs. 5 bands for the $A \leftarrow X$ system.

NCO

Analysis of the spectra is complicated by an appreciable Renner effect for the NCO-ground state. In addition, the molecule has a large spin splitting (Dixon, 60a). As a result, transitions are expected from the ${}^{2}\Pi_{3/2}$ level only at 14°K when paramagnetic impurities are present to depopulate the ${}^{2}\Pi_{1/2}$ level.

-58

Infrared observation on NCO produced by several reactions has led to the assignment of all three vibrational fundamentals of the ground state. These appear at 1922, 487, and 1275 cm⁻¹, respectively, for v_1 , v_2 , and v_3 . The assignments are consistent with ¹³C and ¹⁵N isotopic substitution. Force constant calculations indicate that the CO bond is somewhat stronger than the CN band.

Continued photolysis of NCO at wavelengths near 254 nm led to disappearance of the molecule. It is concluded that NCO photolyzes to give N atoms and CO. No evidence for the species with atomic arrangement CNO was obtained. The electronic spectrum of the radical NH₂ has been carefully investigated in argon matrices at 4.2 and 14°K and to a lesser extent in Kr and N₂ (Milligan, 65e; Keyser, 60; Robinson, 58a,b,c, 59, 62c). NH₂ appears following discharges through nearly any system containing nitrogen and hydrogen, for example, N₂H₄ in argon, following vacuum ultraviolet photolysis of NH₃ in argon, or via photolysis of HN₃ in matrices. The spectrum in argon appears as an extensive series of 67 sharp bands between 345 nm and 790 nm. The bandwidth of many of the "lines" is less than 3 cm⁻¹, suggesting that the radicals are situated in equivalent, and possibly, well ordered lattice sites. In N₂ the absorption appears as a series of broad features with bandwidths of nearly 100 cm⁻¹. The principal transition involved is $A^2A_1(II) - X^2B_1$.

-59-

NH₂

Clearly visible in the spectrum in argon are transitions involving rotational levels as well as vibrational levels. This has led to the conclusion that M_2 undergoes nearly free end-over-end rotation in the matrix. In the ground state the four lowest rotational levels are: $0"_0$ at 0.00 cm⁻¹; $1"_{-1}$ at 21.11 cm⁻¹; $1"_0$ at 31.87 cm⁻¹, and $1"_{+1}$ at 36.65 cm⁻¹. At 4.2°K, approximately 99,9% of the molecules are in the lowest rotational level, $0"_0$. As a result, the strongest features in the absorption spectrum involve transitions from this level (Ramsay, 57). The matrix spectrum correlates very closely with the gas phase spectrum (Ramsay, 57; Dressler, 59) and shows a progression in the excited state bending mode, $(0, v_2', 0) \leftarrow (0, 0, 0)$. Only those bands where v_2' is even are observed with significant intensity, and the first strong band is assigned to (0,4,0). The alternating appearance of the spectrum results from the fact that odd v_3 ' levels cannot combine with $0''_0$.

-60-

The upper state of NH_2 apparently consists of vibronic levels with I vibronic bands for even v_2' and Δ subbands for odd v_2' . Robinson (59) has given a tentative rotational assignment for the strongest bands. The results of Milligan and Jacox (65e) are in excellent agreement with the results of Robinson. Many of the weaker lines can be attributed to transitions from excited ground state rotational levels such as l'_0 . The observed intensities are somewhat greater than expected on the basis of thermal distribution alone. The excess population can be rationalized in terms of optical pumping via either absorption followed by emissions to beyond rotational levels.

In addition to the principal progression, bands attributable to (1,6,0), (0,0,0) and (1,8,0), (0,0,0) transitions are observed. These transitions arise via Fermi resonance with the (0,10,0) and (0,12,0) bands, respectively. Measurements of the relative intensities have led to calculated values for the interaction constants of $W_{(1,6,0)} = 72 \text{ cm}^{-1}$ and $W_{(1,8,0)} = 76 \text{ cm}^{-1}$. These values are in excellent agreement with the gas phase values of Dressler (59).

An extrapolated origin of about 1.02 μ m⁻¹ is obtained, and a vibrational frequency v'_2 of 680 cm⁻¹; because the origin region is not observed, these values are highly tentative.

Two of the three ground state vibrational fundamentals of NH_2 have been directly measured by Milligan and Jacox (65e). The use of ^{15}N and D isotopes confirmed the assignment of bands appearing at 1499 cm⁻¹ and 3220 cm⁻¹ in argon following the vacuum uv photolysis of NH_3 to v_2 and v_3 , respectively, of NH_2 . These results contradict an earlier tentative assignment of 1290 cm⁻¹ for v_2 (Becker, 57). The complexity of the absorption pattern near 1499 cm⁻¹ is consistent with the conclusion that NH_2 is free to rotate in the solid.

-61-

Several ultraviolet absorption systems of N_2^{0} have been reported, both for the pure solid and in neon, argon and krypton matrices over the temperature range 1.5 - 63°K, (Sibleyras, 68; Romand, 52; Granier-Mayence, 53). The A system, appearing in the gas phase near 3.85 μ m⁻¹ appears in the solid at 20°K also as a broad, structureless feature, half-width of 3000 cm⁻¹, but reportedly shifted by +1500 cm⁻¹. The gas phase system B at 5.954 μ m⁻¹ appears in the solid shifted by +2500 cm⁻¹. This system shows vibrational structure; however, the origin is not observed, and the upper state vibrational frequency cannot be deduced with accuracy. An average spacing of 590 cm⁻¹ is observed for those bands appearing in the solid. The progression appears to be in **v**'_o.

-62-

No

The B bands as well as four other systems further in the vacuum ultraviolet are observed in matrices (Sibleyras, 68). The B system shows more extensive vibrational structure than in the pure solid. Fifteen bands are reported in argon. As in the pure solid all transitions are reported to have very large gas to matrix shifts varying from 2000 to 5400 cm⁻¹. The transitions can be correlated to the gas phase systems B, C, D, E, and F (Herman, 67) appearing at 5.959, 6.895, 7.790, 8.490, and 8.680 μ m⁻¹, respectively. Bands C and D are both continua.

Infrared spectra give the values for v_1 and v_3 of the ground state molecules as 2222 and 1290 cm⁻¹, respectively, in nitrogen (DeMore, 59a).

The radical NO₂ has been studied on several occassions and under a variety of conditions (Bass, 56; Becker, 56; Broida, 57b, 58c; DeMore, 59a; Fateley, 59; Harvey, 58; Peyron, 59a; Robinson, 57a).

-63-

NO2

It is one of the earliest radicals to be studied by matrix-isolation methods. Bass and Broida (56) observed a series of diffuse bands in the region 300-470 nm following the trapping of nitrogen discharges at 4.2°C which they assigned as NO_o bands. These bands were later observed in the warm-up glow by Broida and Peyron (57b) and found to depend on the presence of small amounts of oxygen impurity (Broida, 58c). Experiments using 18 O isotope confirmed the assignment to NO₂ (Peyron, 59a). Robinson et al. (57a) studied argon, NO2 mixtures at 4.2 and 1.5°K and reported a complex series of bands in the region 340-700 nm. These bands correlated with the corresponding gas phase bands but exhibited shifts of +55-70 cm⁻¹. A sharp decrease in intensity above 620 nm may indicate the presence of more than one transition. The complexity of the low temperature spectrum at both 4.2 and 1.5°K is interpreted as evidence that the excited state structure leading to the bands below 620 nm is non-linear.

An accurate vibrational analysis was not given, but frequency differences of 620 cm⁻¹, presumably corresponding to v_2 commonly occur.

Infrared studies have been made on NO_2 in O_2 , N_2 , Ar, H_2 , CO_2 , and N_2O at 4.2 and 20°K. Both monomeric and dimeric NO_2 are observed. The number of bands observed depends on the degree of isolation. Fateley <u>et al</u>. (59), for example, report three types of dimers and 16 absorption bands.

Vibrational fundamentals are observed at 1611 and 750 cm⁻¹ in oxygen at 4.2°K. These correlate with the v_3 and v_2 gas phase fundamentals of 1616 and 750 cm⁻¹, respectively (see Herzberg, 67). The v_1 gas phase frequency of 1320 cm⁻¹ is not observed. The v_2 fundamental varies from 1608 cm⁻¹ in $N_2^{0}_4$, to 1624 cm⁻¹ in CO_2 with the order being $N_2^{0}_4 < Ar < O_2 < N_2 < H_2 < N_2^{0} < CO_2$. Dimerization occurs readily upon warming of the matrix.

NiCl₂

The matrix spectrum of NiCl₂ in argon consists of at least six distinct electronic transitions in the region from 260 to 500 nm (DeKock, 68; Gruen, 68; Jacox, 69b; Milligan, 65a, K. Thompson, 68). Structured progressions are observed with origins near 2.02, 2.13 3.05, 3.35, and 3.69 μ m⁻¹ as well as a broad unstructured band at 2.12 μ m⁻¹. In addition a very weak structureless feature at 4.15 μ m⁻¹ has been reported by DeKock and Gruen (68). The system appearing at 3.05 μ m⁻¹ is the most intense, with the bands at 3.35 and 3.69 μ m⁻¹ somewhat weaker. The bands at 2.02, 2.13 and 2.12 μ m⁻¹ are observed only after long depositions. The observed vibrational frequencies for each of the three bands, 3.05, 3.35, and 3.69 μ m⁻¹, are near 250 cm⁻¹, the individual average values being 256, 249 and 283 cm⁻¹ respectively. These values are assigned to ν_1 of the excited state. The system at 2.02 μ m⁻¹ shows four bands with an average spacing of 114 cm⁻¹. This frequency is unassigned.

-64-

The band at 2.13 μ m⁻¹ shows a vibrational spacing of 350 cm⁻¹, also assigned as a v_1 frequency. This transition also shows fine structure, with three apparent parallel progressions. The second-most intense features are shifted with respect to the strongest by -95 cm⁻¹, while the least intense bands appear at approximately 55 cm⁻¹ higher energy than the strong bands. The exact reason for this is not clear, but it may be due to multiple sites, overlap of transitions, or Renner splitting in a linear degenerate upper state.

-65-

A detailed assignment of the absorption spectrum of NiCl, is not possible, even in the gas phase work (DeKock, 67). Previously, the observed matrix spectrum (DeKock, 68) had been interpreted in terms of an axial ligand field model including spin-orbit coupling. The transitions of 3.05, 3.35, 3.69, and 4.15 μ m⁻¹ were believed to correspond to the four lowest allowed one-electron allowed transitions to the ${}^{3}\Sigma_{u}^{+}$, ${}^{3}\Sigma_{u}^{-}$, ${}^{3}\Pi_{u}$ and $^{3}\Delta$ molecular states. The observation by Jacox and Milligan (69b) of the bands at 2.02, 2.13, and 2.12 μ m⁻¹ cannot be interpreted easily with this model. Consequently, Jacox and Milligan (69b) have proposed a revised energy relationship between the orbitals on the nickel and chlorine atoms in a molecular orbital treatment based on a covalent NiCl₂. This treatment results in four low lying allowed transitions not involving charge-transfer and therefore likely to show structure $({}^{3}\pi_{u}, {}^{3}\Sigma_{u}^{+}, {}^{3}\Sigma_{u}^{-},$ and ${}^{3}\Delta_{u}$). Two of these states, ${}^{3}\Pi_{u}$ and ${}^{2}\Delta_{u}$ might be expected to show Renner splittings. The transitions at 2.02, 2.13 and 2.12 μ m⁻¹ presumably involve these states. Two higher energy transitions are also predicted, these being ${}^{3}\Sigma_{u}^{+}$ and ${}^{3}\Pi_{u}$ states. The model falls short, however, because four transitions are observed. Expansion to include all the transitions,

involve other possible levels due to different electron configurations and possible spin forbidden transitions.

Irradiation of NiCl₂ in argon at 3.20 or 2.70 μ m⁻¹ is observed, to result in green emission from the molecule. Three band systems have been reported (Gruen, 68) although only two could be reproduced (Jacox, 69b). These band systems originate near 2.13 and 1.95 μ m⁻¹ with a very weak one near 1.72 μ m⁻¹. The first two show clear vibrational frequencies of 360 cm⁻¹, very close to the expected ground state frequency ν''_1 . The appearance of three absorption systems in this region, particularly the two at 2.02 and 2.13 μ m⁻¹ suggests that the two stronger emission systems may be the corresponding fluorescences. Gruen (68) postulated that all but four of the observed bands resulted from emission from a ${}^{3}\Sigma_{\rho}^{+}$ upper state to various lower lying states.

Infrared observations have yielded directly two of the three ground state vibrational frequencies. The band attributable to v_3 of the most abundant species appears at 521 cm⁻¹. The bending mode, v_2 is at 85 cm⁻¹. Additional bands near 440 cm⁻¹ have been assigned to the dimer (NiCl₂)₂. Calculations of v_1 based on the values for v_2 , v_3 and the isotope spacings give a value of 351 cm⁻¹ in good agreement with the 360 cm⁻¹ observed in the emission spectrum.

-66-

NiF₂

°<u>3</u>

The asymmetric stretching fundamental of the molecule NiF₂ appears near 780 cm⁻¹ in argon at 14°K, with the most intense component at 780 cm⁻¹ corresponding to the most abundant isotopic species (Milligan, 65a). The failure to observe v_1 along with the correlation between observed spacings to those calculated tend to support the hypothesis that NiF₂ is linear. A group of bands near 715 cm⁻¹ is tentatively assigned to dimers. A calculated value for v_1 of 606 cm⁻¹ of obtained from v_3 .

-67-

No absorption in the region 220 - 500 nm attributable to NiF_2 have yet been observed in matrices.

Ozone has been studied in nitrogen, oxygen, and carbon dioxide matrices and as a solid film at 4.2° K and 20° K (Bass, 58; DeMore, 58; Harvey, 58; and Moll, 66). It can be produced by a discharge through purified molecular oxygen or prepared conventionally and deposited directly. Ozone shows a visible absorption extending from 400 to 670 nm, with the first band near $1.90 \ \mu m^{-1}$. When produced by condensation of an oxygen discharge, the spectrum is overlaid with bands due to a-oxygen. Also observed is an infrared band at 3030 cm⁻¹, which has been assigned as $3\nu_3$ (Bass, 58).

Infrared studies of the pure solid and in oxygen and carbon dioxide yield the three fundamental frequencies: $v_1 = 1120$, $v_2 = 705$, and $v_3 = 1050 \text{ cm}^{-1}$, in oxygen. These values are shifted toward slightly higher frequencies in nitrogen at 20°K. Overtone or combination bands are observed at 3060, 2800, 2150, 2110, and 2060 cm⁻¹.

-68-

0012

The species OCL, has been investigated in the infrared at low temperatures by Rochkind.⁽⁶⁵⁾ Spectra have been recorded in N_2 and argon matrices at 20°K and in the pure solid at 77°K. The pure solid shows all three normal modes; v_1 , v_2 are observed in \mathbb{N}_2 matrices. The values reported for the fundamentals are: $v_1 = 631 \text{ cm}^{-1}$, $v_2 = 296 \text{ cm}^{-1}$, and $v_3 = 671 \text{ cm}^{-1}$. Under high resolution, the v_3 band is observed to be a triplet. In a nitrogen matrix, v_1 occurs at 640 cm⁻¹ and v_3 at 680 cm⁻¹, v_1 is shifted to 639 cm⁻¹ in argon. The bands are sufficiently sharp in matrices to reveal isotope shifts. In addition to the fundamental frequencies, overtone bands are observed in pure OCl_{p} at 965 cm⁻¹ $(v_2 + v_3)$, 1294 cm⁻¹ $(v_1 + v_3)$, 1328 cm⁻¹ $(2v_3)$, and 1976 cm⁻¹ $(3v_3)$. All of these bands show multiplet structure. The assignments are based upon isotope shifts, band contours, intensity and separate observations on rotational structure in the gas phase. The assignments differ from earlier references quoted by Rochkind, particularly as relates to v_2 . The band at 972 cm⁻¹ previously assigned as v_3 is calculated to be due to the combination $v_3 + v_2$. This reassignment results in a lower value for the force constant associated with the Cl-O stretching mode. This force constant correlates with the relatively long C1-0 bond length of 170 nm. As a further result, revision of the calculated thermodynamic functions has been carried out.

The molecule OF_2 has been studied in nitrogen, argon and oxygen at 4.2 and 20°K in connection with production of the O_2F radical (Arkell, 65a,b; Spratley, 66a,b). Samples were prepared by direct deposition or by photolysis of oxygen fluorine mixtures. Two of the three vibrational fundamentals are reported. The asymmetric stretching fundamental, v_3 , appears as a doublet at 926 and 915 cm⁻¹ in nitrogen; the symmetric stretching frequency, v_1 , is 812 cm⁻¹. The latter is reportedly shifted to 822 cm⁻¹ in argon; other frequencies are not reported in this matrix. The bending fundamental, v_2 , is not observed, but from the gas phase value of 461 cm⁻¹ (Harmony, 62) should appear at or near this frequency.

OOF

OF2

The infrared spectrum of the radical 0_2F has been observed following photolysis of $0F_2$, 0_2 or F_2 , 0_2 mixtures in N_2 , Ar, or 0_2 at 4.2° and 20°K (Arkell, 65b; Noble, 66; Spratley, 66a,b). All three vibrational fundamentals have been reported. All observations give essentially the same results of 1495 cm⁻¹ for v_1 , 858cm⁻¹ for v_2 and 376 cm⁻¹ for v_3 . The early interpretation of the spectral features was complicated by unexpected results on ${}^{18}O$ substitution. Instead of a quartet feature, the v_1 band near 1500 cm⁻¹ was a triplet whereas the v_2 mode at 585 cm⁻¹ was a doublet. Normal coordinate analysis showed that the observed bandwidths could exceed the isotope splitting thereby leading to unresolved structure. Later experiments (Noble, 66) confirmed this behavior. The bonding of 0_2F apparently is the same as in 0_2F_2 . The 0-F bond length is unusually long, as in 0_2F_2 , and the bond angle is 109.5°.

McCarty and Robinson (59b) have reported five bands in the spectrum of condensed products from a discharge through argon phosphine mixtures which correlate well with the gas phase bands of PH_2 (Ramsay, 56; Herzberg, 67) These bands show matrix shifts of about -80 cm⁻¹ with regard to the gas phase. They have been assigned to a progression in v'_2 with the first band observed at 1.91 μ m⁻¹ corresponding to (0,1,0), (0,0,0) of the A ${}^2A_1 - X^2B_1$ transition. The observed vibrational frequency is 930 cm⁻¹. They have estimated v'_1 as 2320 cm⁻¹ from a force constant calculation. The data indicates an upper state angle of approximately 125° and a ground state angle of 97°.

-70-

so₂

 \mathbb{PH}_2

Sulfur dioxide has been studied in a wide variety of matrices and in a solid film over the temperature range of 4.2° to 110°K. Infrared observations on SO₂ in krypton matrices give the three ground state vibrational fundamentals as: $v_1 = 1150$, $v_2 = 519$ and $v_3 = 1351$ cm⁻¹. Isotopic substitution with ³⁴S and ¹⁸O verify the assignments (Allavena, 69). The v_1 and v_2 frequencies are also observed in the phosphorescence spectrum (Meyer, 68; Phillips, 69a,b).

The ultraviolet absorption spectrum consists of several bands attributable to the A ${}^{1}B_{1} \leftarrow X {}^{1}A_{1}$ transition in the region 280 to 310 nm (Phillips, 69). The origin of the system is not observed; the first band corresponds to (2,4,0), (0,0,0). The system consists of overlapping progressions in v'_{1} and v'_{2} . The frequency differences are 720 and 220 cm⁻¹ respectively for the first bands, but because of the failure to observe the origin,
these cannot be compared to the gas phase ${}^{L}B_{l}$ frequencies. The origin is estimated to occur at about 2.96 μ m⁻¹. In addition, estimates for the origins of the C and D systems are 4.15 and 4.23 μ m⁻¹ respectively.

Excitation of SO₂ with ultraviolet light into the systems A, C or D and with x-rays leads to strong phosphorescence, a ${}^{3}B_{1} \rightarrow {}^{1}A_{1}$, in the region 390 to 470 nm. The lifetime of this phosphorescence varies from 0.55 msec in 0_{0} , where strong quenching occurs, to 17.5 msec in neon. The lifetime is relatively independent of temperature over the range of 4.2° to 110°K, but the phosphorescent intensity decreases by a factor of up to 100 over the equivalent range. This intensity decrease is interpreted in terms of a temperature dependent intersystem crossing rate (Meyer, 68). A completely analogous behavior is observed with 3^{4} s¹⁸o₂ (Phillips, 69b). The emission bands are well resolved in SF₆ and can be assigned to progressions in v''_1 and v''_2 with differences equal to 1126 and 518 cm⁻¹, respectively. Other matrices do not yield separation of the two frequencies. Synthesized spectra based on the observed values of ν''_1 and ν''_2 shift from matrix to matrix, but the shifts do not show the same trend. The origin of the system appears at 2.56 μm^{-1} . The intensity and lifetime measurements lead to the conclusion that rediationless processes in SO_{0} are very small under the conditions of the experiments. Even pure SO_2 and SO_2 in oxygen show phosphorescence.

Zeeman experiments on the phosphorescence of SO₂ produce two lifetimes and a broadening of several emission bands (Conway, 69). At fields greater than 20kG, a second, about 15% longer lifetime component representing 20-30% of the total intensity appears. The contribution of

-71-

this component is independent of field up to 90kG, however at about 80kG a Paschen-Back effect occurs. The results are believed to be due to a combination of factors, including spin lattice relaxation, kT imbalance and triplet level splitting.

•72**-**

s₂0

The ultraviolet absorption spectrum of the molecule S_2^0 has been observed in argon, krypton, xenon, and nitrogen matrices at 20°K, and the infrared spectrum in a solid film at 77°K (Phillips, 69a; Blukis, 64). S_2^0 can be prepared by passing a mixture of SOCl₂ in rare gas through a column of Ag_2S heated to 160°C. In absorption, only one transition of S_2^0 is observed. The spectrum consists of a progression of 18 bands originating near 2.90 μm^{-1} with a vibrational spacing of 415 cm⁻¹. All 18 bands fit the formula

$$G(\mathbf{v'_3}) = 29.070 + 426 (\mathbf{v'_3} + 1/2) - 4.80 (\mathbf{v'_3} + 1/2)^2 + 0.075 (\mathbf{v'_3} + 1/2)^3$$

The matrix spectrum is very similar to that of the gas phase (see Herzberg, 67). The predissociation limit, however, is suppressed in the solid. Two bands to the red of the reported gas phase origin are observed indicating that the gas phase numbering is incorrect, if the heavy atom effect holds. A reevaluation of the gas phase data in light of the matrix observations leads to estimated excited state frequencies $v_1 \sim 720$ and $v_2 \sim 286$ cm⁻¹. In addition some previously unassigned bands are accounted for.

Infrared observations in solid films of S_2^0 give directly values for the three vibrational fundamentals in the solid at 77°K. These values are $v_1 = 1165 \text{ cm}^{-1}$, $v_2 = 388$, and $v_3 = 679 \text{ cm}^{-1}$.

-73-

ScF₂

McLeod and Weltner (66) have reported the observation of a series of ultraviolet absorption bands and several infrared bands, following condensation of vaporized ScF₃ into a neon matrix at 4.2°K, which they have tentatively assigned to ScF₂, ScF₃ or both. The UV band system extends from 280 to 320 nm with the origin at 318 nm and a vibrational frequency of 580 cm⁻¹. Five infrared bands appear at 726, 709, 661, 482 and 446 cm⁻¹. It is proposed that the bands at 726, 482 and 446 might be due to ScF₃(D_{3h}) and the bands at 709 and 661 cm⁻¹ to v_3 and v_1 , respectively, of a slightly bent ScF₂.

Se0₂

The UV visible spectrum of selenium dioxide has been reported by Voigt et al. (Voigt, 70) in argon, krypton, xenon, SF_6 , CH_4 and C_4F_8 matrices at 20°K. Two absorption regions are observed. A strong absorption originating at about 3.10 μ m⁻¹ shows fine structure in argon and xenon, but appears as a broad, unresolved system in SF_6 , CH_4 and $C_{L}F_{R}$. The resolved spectrum consists of vibrational bands forming an extended Franck-Condon curve with two close lying maxima. The absorption could result from two different progressions or from overlap of bands. Site effects are ruled out because the structure is identical in all matrices. If the spectrum consists of two progressions, it can be due to absorption in two electronic transitions, both with progressions in v'_1 , or a single transition involving progressions in (v', 0, 0) and (v',1,0). The data does not allow distinction, but the latter is preferred. The spacing between adjacent bands averages 310 cm^{-1} and between alternate bands 620 cm⁻¹. These are reasonable values for ν'_2 and ν'_1 , respectively. This transition is assigned to the gas phase B state (see Herzberg, 67) which is analogous to the C state of the isovalent molecule SO_{2} .

-74-

A second, considerably weaker absorption appears in the region between 320-410 nm as a broad system with no distinct Franck-Condon maximum. This transition is tentatively assigned to $S_1 \leftarrow S_0$, where S_0 represents the ground state, and S_1 , the first excited singlet state in the molecule. The latter state is, in all likelihood, analogous to the A^1B_1 state of SO_2 . It is also believed that the lowest triplet state, T_1 , may contribute to the absorption in this region. The weak intensity of this absorption leads to the conclusion that S_1 and T_1 are very strongly mixed. Depending on the wavelength of excitation, two emissions from SeO₂ are observed. With excitation into the strong absorption near 275 nm, or with X-rays, a weak, blue, generally structureless emission originating at 3.10 μ m⁻¹ appears. This emission is interpreted as resonance fluorescence of the strong absorption. With light of 365 nm wavelength, a strong yellow emission with origin at 2.20 μ m⁻¹ is obtained. The system appears as an extensive progression in v"₂ with vibrational spacing of 365 cm⁻¹. The lifetime of this transition has been measured in Xe, SF₆ and C₄F₈ and found to be < 0.2, 2.5 and 2.0 msec respectively. This transition is assigned to the phosphorescence T₁ \rightarrow S₀ with T₁ corresponding to the gas phase C state and analogous to the a³B₁ state of SO₂. Population of T₁ occurs either via direct excitation through T₁ \leftarrow S₀ or by intersystem crossing following the weak S₁ \leftarrow S₀ absorption. S₃ \leftarrow T₁ intersystem crossing is apparently absent.

-75-

si₃

Trapping of silicon vapors in a neon matrix at 4.2°K has given a series of 7 weak bands between 420 and 470 nm which do not fit the scheme of Si₂ absorptions. These bands have been tentatively assigned to a ${}^{3}\Sigma_{u}^{-} - {}^{3}\Sigma_{g}^{-}$ transition of Si₃(Weltner, 64c). The bands appear in groups of three, separated by 310 cm⁻¹. The separation of individual components in a group is 110 cm⁻¹. The ll0 cm⁻¹ splitting within groups has been attributed to site effects. The frequency of 310 cm⁻¹ is suggested to be ν'_{1} . This value is not unreasonable when compared with a value for the ground state ν'_{1} of 358 cm⁻¹ as computed by Drowart (58).

SiCC

Weltner and McLeod (64c) report the appearance of 11 bands assignable to SiCC in the absorption spectrum of silicon carbide vapors trapped in neon or argon at 4.2°K and 20°K. The bands appear in the same region as the previously observed blue-green stellar bands (Kleman, 56). The bands originate at 497 nm in neon and extend to about 400 nm. The intensity is highest near the origin and decreases abruptly at higher energies indicating little change in internuclear distance. In analogy with C_3 (Weltner 64a,b) the molecule is expected to be linear in both the ground state and the excited state. Transitions occur in which Δv_1 and Δv_3 take integral values and $\Delta v_2 = 0,2,4$ etc. The vibrational frequencies derived from the spectrum are: $v'_1 = 1461; v'_2 = 230;$ $\nu'_3 = 1015 \text{ cm}^{-1}$. The vibrational structure in the upper state apparently requires positive values for x'_{13} and x'_{23} . That is, the frequency v'_{3} increases with higher vibrational quanta of ν'_1 . No evidence for Renner splittings, as in C_3 , was observed. The transition is assumed to be $^{1}\Pi_{\mu} \leftarrow X^{1}\Sigma_{\rho}^{+}$.

-76-

The emission spectrum of this same system has been recorded, but the interpretation is not complete. Vibrational frequencies for the ground state of 836 cm⁻¹ and 1745 cm⁻¹ are obtained from the emission. The former is assigned to v_3 and the latter to v_1 . The remaining frequency, v_2 , is listed as 300 cm⁻¹ as obtained from the gas phase data.

Infrared measurements confirm the v''_1 and v''_3 frequencies, giving 1751 and 835 cm⁻¹, respectively, in neon. No observation of v''_2 was made. All features are also observed in argon.

' UCRL-19180

SiCSi

A few bands appearing in the absorption spectrum of silicon carbide vapors trapped in neon and argon at 4.2 and 20°K have been proposed to arise from the molecule SiCSi (Weltner, 64c). These bands overlap the long wavelength end of the A bands of SiCC. The bands originate near 530 nm in argon and near 510 nm in neon. Nearly all the intensity appears in the first three bands. The bands are separated by about 500 cm⁻¹ and the assignment is made to ν'_1 on the basis that the molecule is symmetrical and the transition is ${}^{1}\Pi_{u} \rightarrow X^{1}\Sigma_{g}^{+}$. A calculated value for ν''_{1} of 672 cm⁻¹ is obtained if all assumptions are correct. The analysis and even the assignment to SiCSi is very tentative. This is particularly true in light of the number of species known to be present in silicon carbide vapor (Drowart, 58).

-77-

SiCl

Milligan and Jacox (68c) have prepared SiCl₂ in argon at 14°K by the vacuum ultraviolet photolysis of SiH₂Cl₂ and SiD₂Cl₂.

A broad unstructured absorption at 315 nm with a half width of about 500 cm⁻¹ is the only absorption appearing between 190 and 540 nm.

Infrared absorptions appear at 502 and 513 cm⁻¹. These correspond to the v_1 and v_3 stretching fundamentals, although it is not possible on the basis of the data to determine which is which. The absorptions appear as multiplets due to silicon and chlorine isotopic splittings. The bond angle is computed to be between 90 and 120°. One electronic transition and all three vibrational modes of the species SiF_2 have been observed in several matrices at 4.2 and 14°K by Milligan (68d). Difluorosilane, SiH_2F_2 , photolyzes readily with vacuum ultraviolet radiation, for example, the hydrogen 121.6 nm Lyman line, to yield directly SiF_2 . The molecule has also been prepared and trapped via the reaction of SiF_4 with solid silicon at 1425°K (Bassler, 66a). Ratios of SiF_2 to SiF_4 in the final products are about 3:2, so that the latter system is far from spectroscopically clean. The SiF_4 infrared v_3 absorption occurs in the same region as the absorptions of SiF_2 making observations more difficult.

In both neon and argon, ultraviolet absorptions corresponding to the gas phase ${}^{1}B_{1} - {}^{1}A_{1}$ transition at 4.40 μ m⁻¹ are observed (Khanna, 67). In argon, the absorption appears as a structureless feature 7.5 nm in half-width and centered at about 220 nm; while in neon, a progression of 8 distinct bands with an average separation of 253 cm⁻¹ appears. This frequency corresponds to the upper-state bending mode of SiF₂. The bands can be correlated with the (0, v'₂,0), (0,0,0) bands of the gas phase spectrum by assuming a matrix red shift of 130 cm⁻¹. The origin is not observed, and the first band at 4.44 μ m is assigned to the (0,2,0) level.

Infrared observations in an argon matrix yield the following frequencies for the vibrational modes: the bending mode, v_2 , appears at 343 cm⁻¹; the symmetric stretching fundamental, v_1 , at 843 cm⁻¹, and the asymmetric stretching vibration, v_3 , at 855 cm⁻¹. Warm-up behavior and isotopic substitutions are consistent with the assignments.

-78-

SiF2

The use of a CO matrix has shown that H atom photodetachment is an important step in the photolysis process, whereas little or no F atom fragmentation occurs.

-79-

Numerous infrared bands not attributable to SiF_2 are observed. Some can be assigned to dimers or aggregates, others to unreacted precursors. Some, however, remain unexplained.

SrF2

The infrared spectrum of SrF_2 in argon at 4.2°K shows a moderately strong doublet absorption with components at 447 and 450 cm⁻¹, and much weaker bands at 303 and 356 cm⁻¹ (Snelson, 66). The latter bands are assigned to aggregates. The doublet nature is also retained in neon and krypton, appearing at 468, 471, 443 cm⁻¹, respectively. High resolution ⁸⁶Sr and ⁸⁸Sr isotope studies by Calder, <u>et al.</u> (69) of SrF_2 in krypton at 20°K have led to the assignment of the doublet components near 440 cm⁻¹ to the two stretching fundamentals. The band at 443 cm⁻¹ corresponds to v_2 and the band at 441 cm⁻¹ to v_1 . In addition, the bending mode, v_2 , is observed at 82 cm⁻¹. The observed isotope shifts lead to a calculated apex angle of 108°. Aggregate bands appear, in krypton, at 75 and 120 cm⁻¹.

The molecule TaO₂ has been observed in neon and argon matrices at 4.2 and 20°K following vaporization of tantalum oxide at 2270°K or via reaction of oxygen with tantalum metal at 2270°K (Weltner, 65a).

TaO₂ shows two absorptions in the visible part of the **spectrum**. In neon, a strong system of bands originates at 861 nm and a second, weaker series of bands appears at 616 nm. The former transition, designated A, consists of a progression of bands with a vibrational spacing of 285 cm⁻¹. The short wavelength portion of the system is overlapped by a second progression starting at 797 nm with the same vibrational frequency. The shift between the progressions is 927 cm⁻¹. In argon, much of the structure is lost and the bands appear broac. The principal progression frequency of 285 cm⁻¹ corresponds to v''_{ϵ} , the upper state bending frequency. The system shows a long Franck-Condon envelope indicating a significant change in angle in the upper state. The second progression has been assigned as $(1,v''_{2},0)$, (0,0,0)giving a value for v'_{1} of 937 cm⁻¹. The second system, designated B, also shows a progression in v'_{2} with a spacing of 281 cm⁻¹. Because it is significantly weaker, v'_{1} is not observed.

The ground state vibrational frequencies $v''_1 = 971$ and $v''_3 = 912 \text{ cm}^{-1}$ have been determined by infrared analysis of the same system. The assignments were made on the basis that the upper state frequency, $v'_1 = 937 \text{ cm}^{-1}$, is normally smaller than the ground state frequency, v''_1 . This results

-80-

 TaO_2

in v''_1 being greater than v''_3 , a situation, which in light triatomics almost never occurs. Thus, these assignments are tentative.

A molecular orbital scheme somewhat similar to Walsh's (53a,b) treatment for BAB molecules has been used to derive the term symbols for the ground state and the lowest allowed transitions. The ground state is suggested to be ${}^{2}B_{1}$ and the observed transitions may involve the upper states ${}^{2}A_{1}$ (2) and/or ${}^{2}A_{2}$.

^{W0}2

Vaporization of either yellow WO₃ or blue WO_{2.96} at 1600° K or the reaction of oxygen with tungsten at 1900-2950°K yields several tungsten oxide species including WO₂ in sufficient yields for direct spectral observations in neon or argon matrices at 4.2 and 20°K (Weltner, 65b).

Two electronic transitions of WO₂ are observed in the visible. A strong system A, originating at 1.267 μ m⁻¹ and a weaker system, B, with an origin near 1.280 μ m⁻¹ both show long progressions in v'₂, of the upper state. The A system also shows a simultaneous progression in v'₁. The observed vibrational frequencies for the system A are v'₁ = 972 and v'₂ = 300 cm⁻¹, while the v'₂ frequency of the B transition is 287 cm⁻¹. Isotope shifts with ¹⁸O have been used to aid the analysis. The extended v'₂ progression leads to the conclusion that the upper state molecular angle differs significantly from that of the ground state. The transitions are assigned as A(³B₁) X(³A₁) and B(³B₂) X(³A₁),

Infrared observations on tungsten oxide deposits give several bands in the region 600-110 cm⁻¹. Of these, bands appearing at 928 and 992 cm⁻¹ have been assigned to v''_3 and v''_1 respectively of the ground state WO₂ molecule. These assignments are consistent with the observed ¹⁸O substituted isotope shifts. Most of the remaining bands have been assigned to higher oxides such as W₂O₄, W₃O₉, W₄O₁₂.

-82-

XeCl

Nelson and Pimentel (67a) report the preparation and isolation of the species $XeCl_2$ in sufficient quantities to record a complex infrared band assigned to v_3 of the species. The band appears as a broad structured feature near 313 cm⁻¹. The observed absorption can be fitted closely with a calculated spectrum based on the available xenon and chlorine isotopes. The species is concluded to have a D_{oh} symmetry. No additional data on the molecule is available, therefore the identification should be regarded as tentative.

XeF₂

Photolysis of fluorine, xenon, argon mixtures at 20°K with the full light of an AH-4 medium pressure mercury lamp give sufficient XeF₂ for the observations of two of the three infrared fundamentals (Turner, 63a). A weak band at approximately 510 cm⁻¹ assigned to v_1 and an intense absorption at 547 cm⁻¹ assigned to v_3 are observed. At an F₂:Xe ratio of 5:1, evidence for the formation of XeF_h is obtained. ZnBr₂, ZnCl₂, ZnF₂, and ZnI₂

The infrared spectra of all the zinc halides have been investigated at 4.2 and 20°K in argon, krypton, and xenon matrices (McNamee, 62; Loewenschuss, 68). Each of the species, ZnF_2 , ZnCl_2 , ZnBr_2 and ZnI_2 can be vaporized directly from a Knudsen furnace, however, monomer yields appear to be greatest with a double furnace arrangement. Direct observations of ν_2 and ν_3 have been made.

-83-

Table III

Observed Infrared Frequencies for the Zinc Dihalides in Krypton (in cm^{-1})

	^v 2	×3
ZnF2	151	758
ZnCl ₂	103	508
ZnBr ₂	73	404
^{ZnI} 2	62	346

Bands attributable to dimers are also observed. The latter are found to depend significantly on the vaporization conditions. The bands assignable to monomers all show the multiplet structure expected from the natural isotopic abundance of Zn isotopes. In addition, splittings appropriate for 35 Cl, 37 Cl isotopes are observed. A band at 425 cm⁻¹ for ZnCl₂ has been assigned to the v_{12} vibration of the dimer (McNamee, 1962) assuming a D_{2h} symmetry for the species with two chlorine-bridge bonds between the zinc atoms.

Several other bands also appear in the spectra. These are in the range 450 cm⁻¹ for ZnF_2 to 170 cm⁻¹ for ZnI_2 . Bands at 334 cm⁻¹ and 297 cm⁻¹ for ZnCl_2 have also been tentatively assigned to dimer frequencies, v_9 and v_{11} respectively.

All data are consistent with a linear structure for all the halides. Thermodynamic properties have been computed from the data (Loewenschuss, 68).

-84-

Part II

-85-

Tables of the Optical Properties of Matrix-Isolated Tri- and Polyatomic Molecules

Summarized in the following tables are the important optical features as observed in low temperature matrices. The data is as presented in the original references. Values are tabulated for one matrix only. Molecules are entered alphabetically by formula, with all triatomics presented first, followed by tetratomics, pentatomics, etc. The molecular formula is entered on the left.

Units are chosen, where possible, in accordance with the SI rules. Wavelengths are given in nanometers, nm, and frequencies in reciprocal micrometers, μm^{-1} . The latter is equal to 10^4 cm⁻¹. In exception to the SI rules, the wavenumber, cm⁻¹, has been retained for vibrational frequencies and the torr for pressures. The former is used because of its unanimous usage for this purpose and the latter because of instrumentation.

The states are listed in order of energy with the highest observed level first. The state description is given where known or proposed.

The origin energy, T_{00} , is the energy as determined from the position of the (0,0) band.

Under Observed Transitions, IR indicates infrared observations. For ultraviolet and/or visible results, the entry indicates whether the data is from absorption or emission or both. The spectral wavelength range of the transition is given when reported. The fundamental vibrational frequencies are given under vibrational frequencies and are as observed in matrices. The matrix for which the values apply is identified under Remarks, if not otherwise obvious. The Herzberg (45) scheme for numbering vibrations is used. Polyatomic frequencies are identified when known.

Parentheses are used to designate uncertain, calculated or proposed data. The remaining table entries are self explanatory.

-86-

Molecule	State	T ₀₀ (µm ⁻¹)	Observed Transition	Vibration Frequencies ^v 1 ^v 2	nal (cm ⁻¹) ^v 3	Remarks	Matrix	Temp. (°K)	Preparation	Reference
Al ₂ 0	x	0	IR	715 (238)	994	argon; v ₂ calc. overtone at 1867cm ⁻¹ ; 18 ₀	Ar	4.2	Al + Al2 ⁰ 3 1465°K	Linevsky 64
BO2	$B^{2}\Sigma_{u}^{+}$	2.14 1.79	B ← X A ← X 400-565nm	930 465	2400	2 bands only 11 _B	Ar	4.2	vaporization ZnO(s) ⁺ B2 ⁰ 1825 K	Sommer 63
	x ² ng	0	IR		1276	11 2 B; $\Pi_{1/2}$ may be frozen out; excess $B_{2}O_{3}$ masks low frequency region				
BaF ₂	x	0	IR	390 (64)	413	krypton; polymer peak at 325cm ⁻¹ v ₂ calc.	Ne Ar Kr	4.2 20	vaporization 1475-2125°K	Calder 69 Snelson 66
BeBr ₂	X	0	IR	(230) 207	993	neon; v_{p} not observed in argon polymer bands at 570 and 760 cm ⁻¹ ; v_{1} calc.	Ne Ar	4.2	vaporization 975°K	Snelson 68
BeC12	X	0	IR	(390) 238	1155	neon; dimer bands at 870, 640cm ⁻¹ ; v _l calc.	Ne Ar Kr	4.2	vaporization 725-1275°K	Snelson 66,68
BeF2	x *	0	R	(680) 330	1542	neon; aggregate bands at 790, 830 and 1250 cm^{-1} ; v_1 calc.	Ne Ar Kr	4.2	vaporization 875-1275°K	Snelson 66

à

TRIATOMICS

Triatomics	s (conti	nued)	·								¢
Molecule	State	T _{OO} (μm ⁻¹)	Observed Transition	Vibr Freque Vl	ational encies(^V 2	cm ⁻¹) ^v 3	Remarks	Matrix	Тетр. (°К)	Preparation	Reference
				<u>,</u>							
BeI 2	X	0	IR	(160)	т. Калана (872	neon; v_3 doublet v_1 calc.	Ne Ar	4.2	vaporization 975°K	Snelson 68
c ₃	A ^l II _u	2.46	A ↔ X 380-408nm	1125	305	(840)	neon; v_3 tentative	CO2 Ne	4.2 20	carbon vapor	Barger 62,64, 65
	a ³ II u	1.71	a → X			•	neon; excited via $A \leftarrow X$ at 405 or 365nm	^N 2 SF6	•		Weltner 62b,64a 64b,66
	x ¹ 2 ⁺ g	0	IR	1235	(75)	2040	neon; average v ₂	Ar O ₂ Kr			
								Xe			
С ² н		0	IR	•	(1848))	no assignment; ¹³ C,D	Ar	14	vacuum UV photolysis of ^C 2 ^H 2	Brabson 65 Milligan 67
cco	?	(2.00)	? ← X (500nm)	•			broad, unstructured continuum	Ar N ₂	4.2	l) C, from vacuum ultra-	Jacox 65b
·	z ³ z	0	IR	1978	381	1074	•••••••	Ar	14	violet photo- lysis of N ₃ CN + CO	n (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
1										2)vacuum ultra violet photo- lysis of C ₂ O ₂	-
CBr ₂	x ¹ A ₁	Ο	IR	595		641	numerous, other species present; v probably <200cm-1 2	Ar	15	3'2 Li + CBr ₄	Andrews 68C
· · · ·	ì	· · · · ·			•						· · ·
CC1Br	x	0	IR	739		612	v_2 not observed	Ar	15	1) Li+CClBr ₃ 2) Li+CCl ₃ Br	Andrews 68c

\$

-88-

Triatomics	s (contin	ued)				•			•	
Molecule	State	T _{OO} (μm ⁻¹)	Observed Transition	Vibrationa Frequencies ^v l ^v 2	$s(cm^{-1})$ v_3	Remarks	Matrix	Temp. (°K)	Preparation	Reference
CC12	A(¹ A ₁ o	or (1.78)	A ← X 440-560nm	305		l6 bands, prog. in ^v 2	Ar ^N 2	14 15	l) C, from photolysis of N ₃ CN + Cl ₂	Andrews 68b,e Milligan 67c
	^{-B} 1)			· .					2) Li+CCl ₄	
	x ^l A _l	O	IR	720	746	most abundant species CCl ₄ , CCl ₃ and other impurities present	5;			
CF2	A(¹ A ₁)	3.74	A ← X 230-268nm	500	• • • •	single prog. in v_{12} ; l6 bands observed	Ar N ₂	4.2	1) discharge through C4F8	Bass 62 Milligan 64c, 1
	X ¹ A ₁	0	IR	1222 668	1102	¹³ C; "impurities" present: CF ₂ N ₂ CF ₂ , C ₂ F ₄ ,	со со ₂	•	111 AF 2) photolysis of CF_2N_2 3) photolysis of F_2 , N_3CN	
		• ±•				^{CF₄, CF₃, C₂F₆, (CF₂N)₂}	•		and argon or N ₂ mixtures	
СНСІ	A ¹ A"	(1.25)	A ← X 560-750mm	860	-	argon; several perturbations	Ar	14	C from N ₃ CN photolysis + HCl	Јасох б7ъ
	xlA·	0	IR	1201	815		-	•		• • • • • • • • •
CHF	A ¹ A"	1.73	A← X 470-546nm	1010		argon; 0,0,0 not observed; progress- ion (0,v2',0)matrix shift ~ +30cm ⁻¹	Ar ^N 2	14	photolysis of CH ₃ F	Jacox 69a
* .	X ¹ A ¹	5. O	IR	1405	1182	bands at 2918 or 3262 may be v, 13C,D				•

				·	·						
• • •		· · · · · · · · · · · · · · · · · · ·									· · · · · ·
Triatomic	cs (contin	nued)		Vibretion	el		×			•	
Molecule	State	Т _{ОО} (µm ⁻¹)	Observed Transitio	Frequencie $n v_1 v_2$	s(cm ⁻¹) v ₃	Remarks	Matri	Temp. (°K)	Preparation	Reference	
CH ²						indirect chemical evidence only				DeMore 58 Goldfarb 60a,1 Jacox 63a Milligan 58,	b
							· · ·	• • •		Moore 64,65 Robinson 60a	
CHO	B ² A'	3.87	B ← X 210-260nm	1375	1035	hydrocarbon flame bands; origin not observed	со	14	l) photolysis of ^{HI} , HBr or H ₂ S in CO	Ewing 60 McCarty 59b Milligan 64e.	
	Α ² Α"(π)	(0.93)	A - X 510-670nm	(800)			•	•	2) discharge through CH ₁ / O ₂ /Ar mixtures	69a Robinson 58b	L V
	X ² A'	0	IR	2488 1090	1861	1937, 852 and 1800 cm ⁻¹ for DCO; 13 _{C,D}			3) reaction of O atoms with C ₂ H ₂		Ö I
CNN	?	• •	? ← X 419-396nm		1355	2 bands	Kr Ar No		l) photolysis of N ₃ CN	Goldfarb 60b Milligan 65d,	
	x ³ ε ⁻	0	IR	2847 393	1241	13 _C , 15 _N	Ar	14	 2) photolysis of C₃O₂ in N₂ 3) photolysis 	Moll 66a Robinson 60a Schoen 66	
									of CH ₂ N ₂	Weltner 64b, 66	· · ·
COS		6.74	? X 115-145nm	· · · · ·	(760)	krypton; Rydberg like; mode not	Ne Ar	2 80°	l) direct deposition	Roncin 69 J. Smith 68c	
		5.96	? ← X	(495)	• •	assigned; krypton	Kr CO N		2) photolysis of S ₂ Cl ₂ in CO	Venderame 66	
		5.54	? ← X	511	 	argon; 15+ bands	CO2 725 105				1 - 22 - 12 - 12 - 12 - 12 - 12 - 12 - 1
	x ¹ Σ+	0	IR	2050 518	857	v_3 argon; v_1 and v_2 pure solid					·

Triatomics Molecule	: (continu State	ed) T _{OJ} (µm ⁻¹)	Observed Transition	Vibration Frequencie ^V l ^V 2	nal s(cm ⁻¹) ^V 3	Remarks	Matrix	Temp. (°K)	Preparation	Reference
cs ₂		6.60	? ← X 135-152n	(540) m		neon; mode not assigned; 1st band; origin not clear;	Ar Kr Xe	2 20	direct deposition	Bajema 70 Roncin 69
						Rydberg series surpressed	Ne N2 CH ₄	· · · · ·		• •• • • • • • • • • • • • • • • • • •
	(¹ B ₂)	3.10	? ~ X 290-330n	560 m		argon; simultaneous progressionsiin/y' and v'				
	(³ B)) or	(³ ^Δ)			•	Renner-Teller splittings				
	("2)	1.82	? X		.	two lifetime components $\tau_1 = 0.8$ msec;		•		
•	x ¹ ₂ ⁺ g	0				$\tau_2 = 2.6 \text{msec in}$ argon	* . • .			
CaF ₂	x	0	IR	485 163	554	krypton; dimer bands at 528cm-1, 370 cm-1; ⁴⁰ Ca, ' 44Ca	Ne Ar Kr	4.2 20	vaporization 1675 - 2175°K	Calder 69 Snelson 66
^{CdBr} 2	$x^{l}\Sigma_{g}^{+}$	0	ÎR	(205) 62	319	dimer band at 270 cm ⁻¹ ; polymers at 190 163 cm ⁻¹ ; v _l calc.	Kr	4.2 20	vaporization	Loewenschuss (
CaCl ²	$x^{l}\Sigma_{g}^{+}$	0	IR	(327) 89	420	krypton; v_3 quartet; dimers at 371, 364 and 357 cm ⁻¹ ; v_3 calc	Ar Kr	4.2 20	vaporization	Loewenschuss 6 McNamee 62

ي جندون ۽ ا

-16-

iatomics	(contin	ued)		Vibrational			× .	۰ ۱	•	· · ·	
lecule	State	T ₀₀ (μm ⁻¹)	Observed Transition	Frequencies(vl v2	^v 3	Remarks	Matri	Cemp. (°K)	Preparation	Reference	•
CdF2	x ¹ 2 ⁺ g	0	IR	(572) 123	662	polymer bands at 475, 384 , and 377 cm ⁻¹ ; v_1 calc.	Kr	4.2 20	vaporization	Loewenschuss 6)
cais	x ¹ 2 ⁺ g	0	IR	(150)	270	dimer bands at 222, 217 cm ⁻¹ ; polymers at 140, 127 cm ⁻¹ ; v_1 calc.	Kr	4 .2 20	vaporization	Loewenschuss 6	9
Cl ₃	X	0	IR	(273)	374	group of bands between 365-275 cm-1 35Cl, ³⁷ Cl v _l calc. linear, slightly asymmetric	Kr	20	discharge thru Kr and Cl ₂	Nelson 67b	-92-
C1C0	x	0	IR	1880 281	570	possible C-O triple bond 13C	Ar	14	Cl sources HCl Cl ₂ , Cl ₂ CO, (ClCO) ₂	, Jaco x 65a	
C1C10	X	0	İR	960	372	quartets; ¹⁸ 0 isotope shift smaller than expected	N ₂	20	photolysis of Cl ₂ O in N ₂	Rochkind 67b	د سرمین در این
CIO2	A(² A2) (2.30)	A ←X 300-430n	m	· ·	diffuse isopentan methylcycloh	ne- nexane	, 77 ;	solutions	Arkell 67 Norman 55 Rochkind 67b	

. sayan asa

		· · · ·										
m		• • • • •			•	• • •				• . • •		
Triatomics Molecule	s (contin State	T _{OD} (µm ⁻¹)	Observed Transition	Vibra Freque ^V l	tional encies(d 2	cm ⁻¹) ^v 3	Remarks	Matrix	Temp. (°K)	Preparation	Reference	
(100	v	0	 	7),),7	107	272		NT	ho	1) photolysis	Ambol 1 67	
CTOO	A		IR	1441	407	313	argon, U	02 Ar	4•2	of Cl ₂ and O ₂ mixtures 2) photolysis	Rochkind 67b	
		· · · ·		•	• • •	•		•		of OC10 in Ar, N ₂ , 0 ₂		•
CoCl2	? ?	(4.58) 4.16	? ~ X ? ~ X				broad band	Ar Kr	4.2 14	vaporization	Clifton 69 DeKock 68	
	?	(3.95) (3.64)	? ← X ? ← X		•	· · ·	shoulder	Xe	• •		K. Thompson 6	8
	?	3.50	?	• • • • •	·	•	single band	• •	· · ·			-93 -
:	?	3.37	? -X 290-320nm	233					· · · · ·			
	? ?	(3.20) (3.08)	? ←X ? ← X						•		· · · · · · · · · · · · · · · · · · ·	
	x(⁴ D g)	0	IR		95	493	most abundant species; linear					
CrCl2	?	3.85	? ~ X 260nm dow	n		•	strong; continuous below 260nm; gas	Ar	14	1) vaporizatio 2) reaction of	n Jacox 69b	
	?	3.26	? X	· .	Υ		and 4.96 µm ⁻¹ not observed; weak,	•		Cr ² 1035-1095°K		
	x	0	IR			490	unstructured most abundant species; linear					
FCO	A	(3.00)	A-X 220-340mm				43 bands; 18 appear in progression(v,,	Co Ar	4.2 14	l)F +C0 F from NF ₂ , OF2,	n Milligan 65b	
•	x ² Al	0	IR	1855	626	1018	0,0) ¹³ C, ¹⁰ 0 ¹		20	$\tau - N2^{1}2$ S)photolysis of F ₂ CO and H	°CO	-

A state
 A state
 A state
 A state
 A state

.

÷ ·

•			• • •							- •	
Friatomic :	s (contin	ued)	•	Vibrationa	· · · · · · · · · · · · · · · · · · ·		×				
Molecule	State	T _{OJ} (μm ⁻¹)	Observed Transition	Frequencies v1 v2	(cm ⁻¹) 3	Remarks	Matri	Temp. (°K)	Preparation	Reference	
FIC, Br	NC, CLNC		n de la composition de la comp			see text		<u></u>	<u></u>	Milligan 67b	
FeCl	?	(4.76)	? ~ X			Jacox 69 reports	Ar	4.2	1)vaporization	DeKock 68	
-	? ?	(4.41) (4.16)	? ← X ? ← X			4.10 superimposed on increasing	- :	14	Cl_2 with hot E_2 (1085°%)	K. Thompson 68	
· · ·	?	(3.98)	240mm ? ← X			band maxima			re (100) K)		
	?	(3.75)	250 down ? ↔ X							•	
	x ⁵ Δ _g	0	IR	88	493	most abundant species; linear; strong N ₂ shift of v ₃ to 447 cm-1					-46-
GeF ₂	xlal	0	IR	685 (263)	655	neon; strongest component; from gas phase; bands at 800 cm-1 due to GeFu; bands at 600cm-1 and 670cm-1 due to dimers or polymers	Ne Ar	4.2	vaporization at 425°K	Hastie 68	
							•				•
HCN	X	0	IR ,	3303 720	2093	argon; dimer bands at 3301, 3202, 2114 2090, 797, 792, and 732cm ⁻¹ ; greatest isolation in N_2	Ar N ₂ CO	4.2 20	1)direct deposition 2)photolysis diazomethane	Becker 56 C. King 68 of Moore 65	
н ₂ 0	x	0	IR	3619 1590	3733	argon; free or nearly free rotation; complex bands; D	Ne Ar Kr	4.2 to 27	direct deposition	Catalano 59 Glasel 60 Harvey 68	
• •				· · ·			Xe N2 CO2			Hopkins 60 Jacox 61 Redington 62,6 D. Robinson 63	5 3 - 3

•			-			•			•		
						•	•				
Triatomics	s (contin	nued)				· · · · · · · · · · · · · · · · · · ·					
Molecule	State	T ₀₀ (μm ⁻¹)	Observed Transition	Vibration Frequencie $\frac{v}{1}$ $\frac{v}{2}$	s(cm ⁻¹) ^v 3	Remarks	Matrix	Temp. (°K)	Preparation	Reference	
HC1 ⁵	x	Ò	IR	(260)	696	v_1 from $(v_1 + v_2)$ at 956cm-1; propose $D_{\infty h}$	Ar đ	14	Discharge thru HCl/Cl2/Ar mixtures	Noble 68a	
HNC	x(¹ Σ ⁺)	O	IR	3620 471	7 2029	presence of N ₂ in neighboring site perturbs the normal modes. values shif to 535,2032, and 3583 in Ar when significant amounts	Ar N ₂ t	4.2 14	1) vacuum UV photolysis of HCN 2) photolysis of CH ₃ N ₃	Milligan 63c, 67b	
HNF	A ² A'	2.03	² A'-2 390-500	." 103 <u>:</u>)nm	3	progression in v ₂	Ar	14	reaction of F atoms with NH;	Јасох б7а	-95 -
	x ² A''	0	IR	1432	2 1000	D, ¹⁵ N	•	 	of N ₂ F ₂ or F ₂ ; NH from HN ₃	18	
HNO	A ^l A"	1.31	A X 575-760	1422 mm	982	argon progression in v' + v'	Ar N ₂ O	.4.2 14 20	l)discharge thr N ₂ H ₄ /O ₂ /H ₂ O/Ar	u H. Brown 58 Harvey 59 McCarty 59b	
	х ¹ А'	0	IR	(3592)1570	סנוו מ	argon angle ~110° disagreement regarding v ₁	002	20	2)photolysis of CH ₃ NO ₂ or CH ₃ ONO	Milligan 62c Robinson 57a, 58a,b,d	:
			•				•		3)discharge thr Ar/H ₂ /NO	u	• . [
							•		4) photolysis of HN_3 in CO_2 or N_2O		4
HNSI	x	0	IR	3583 52	3 1198	linear; possible singlet ground state; D	Ar	4.2	photolysis of SiH ₃ N ₃	Ogilvie 66	4

Triatomics	(contin	nued)		Vibration	al _].		ţ,		an a		
Molecule	State	T _{OO} (μm ⁻¹)	Observed Transition	Frequencie vl v2	es(cm ~) V 3	Remarks	Matr	Temp. (°K) Pr	eparation	Reference	
HOBr	x	0	IR	3590 116 ¹ 285 7761	4 626 373 ⁽ 7)	angle 110°	Ar	00 00 4.2 ⁵¹ ph آلام آلام	ACTIVELS OF	Schwager 67	
HOCL	x	0		3581 123	9 729	natural isotopic species, Ol8, D	Ar	4.2 ph Ar mi	otolysis of /HCL/03 xtures	Schwager 67	
HOF	X	0	IR	3483 139	3 884	N ₂ ; complex bands intergon; D 190	N2 Ar	14 ph 20 F ₂ Ar	tolysis of /H ₂ O/N ₂ or mixtures	Noble 68b	
НОО	x ² A"	0	IR	3414 138	9 1101	argon; oxygenso a a nonequivalenter co 23 ars so.	Ar	4.2 H, ph of	from otolysis	Milligan 63b, 64a	-96 -
^{HgBr} 2	x ¹ Σ ⁺ g	0	IR	(219) 7 3330	3 29 <u>14</u>	moges: Autore (1) backment rule une (1) usrapportus (1) dimen band at 286 cm ⁻¹ ; polymer at 261cm ⁻¹ ; v. calc.	Kr	4.2 va 20	02 porization	har i forda Loewenschuss	69
HgCl ₂	x ¹ z ⁺ g	. 0	IR	(348) 10	7 407 ₂	krypton; v3 triplet unidentified band a 412 cm-1; dimer-at	; Ar t Kr Xe	4.2 va 20	porization	Leowenschuss McNamee 62	69
HgF ₂	x ¹ Σ ⁺ g	0 . R	IR	(588) 17	2 642	402cm ⁻¹ ; v _l calc. v ₃ doublet; dimer bands at 586cm ⁻¹ other bands at 660.	Kr	4.2 va 20	porization	Loewenschuss	69
I. S.	18 (CG)				· .	384 cm ⁻¹ ; v_1 calc.	· · ·				

ç

Triatomics	s (contin	nued)	Observed	Vibra Freque	ationa ncies(1 cm ⁻¹)	Pomowleg	atrîx	Temp.	D	Defension
MOTECUTE	State		Transicion	ŗ,	2	3	Nemal VS	ž		Frepe. acton	Reference
										<u> </u>	
HgI2	x ¹ 2 ⁺ g	0	IR	(158)	63	238	other bands at 229, 220, 234cm ⁻¹ ; ^v l calc.	Kr	4.2 20	vaporization	Loewenschuss 69
KrF ₂	X	0			236	580	aggregate bands at 575 and 245cm ⁻¹ ; bond strengths similar to XeF ₂	Ar	20	photolysis of F ₂ /Kr/Ar mixtures	Turner 63a,b
Li20	x	0	IR	(685)	115	987	probably linear; 6Li; v _l calc.	Kr	20	vaporization 1640°K	Seshadri 66 White 63b
Lion	x	0	IR	1352	333	650	molecular arrange- ment proposed LiON; v ₃ strongest band	Ar	15 4.2	codeposition of Li and NO	Andrews 66a,b
Li0 ₂	X	Ο	IR	(340)	231	685	best fit for C_{2v} ; v_1 calc.; angle = 170°	Kr	20	vaporization	Seshadri 66 White 63b
MgF2		0	IR	478	242	837	24, 25 Mg, 26 Mg; bands at 450 and 480 cm ⁻¹ assigned to polymers; angle 158°	Ne Ar 1 Kr	4.2 20	vaporization 1500-1575°K	Calder 69 Mann 67 Snelson 66

Triatomics	s (contin	uued)	Observed Fr	Yibration requencies	al s(cm ⁻¹)	Powenice	atrix	Temp.	Decremention Deference
Morecure	buaue	100(hmm)		J 2	5	Memeri AS	¥		II CPATAULUM MCI CI CACC
MnCl ₂	? ? x ⁶ 2 ⁺ g	5.00 4.57 4.39 0	? -X ? -X 250nm down ? -X 228nm IR	83	477	all bands broad, unstructured shoulder most abundant species	Ar	4.2 14	l)vaporization DeKock 68 2)reaction of Jacox 69b Cl ₂ with hot K. Thompson 68 Mn surface 995-1085°K
N ₃	X	0	IR		(2150)	other bands at 962 and 737cm-1; 15N; identification un- certain; Peyron <u>et</u> <u>al</u> . propose an <u>N-N₂ complex</u>	N2	20	l)discharge thru Becker 57 nitrogen Harvey 59 2)photolysis Milligan 56 of HN ₃ Peyron 59a,b
NCN	^{β³Σ_u⁻ ¹Δ_g 3_{Πu}}	3.31 3.00 2.99	$B \leftarrow X \qquad 10^{3}$ $340-300$ nm $^{1} \bigtriangleup \leftarrow X \qquad 335$ nm $\Pi \leftarrow X \qquad 11^{3}$ $300 \cdots$	40 40		argon; photolysis with $\lambda = 2500A$ mean lifetime 500 µsec in N ₂ argon; structureless	N2 CO Ar	14 20	photolysis of Comeford 66 N ₃ CN Milligan 65c,d 66c,69c Mall 66a Schoen 66
· · · · · · ·	x ³ Σ _g	0	IR 11	97 423	1475	$(v_1 + v_3) = 2672$ $l_{3_{C_1}} l_{5_{N_1}}$	- - -		

-96-

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Triatomics Molecule	(continued) State T _{OO} (µm ⁻¹	Observed) Transition	Vibrational Frequencies(cm ⁻¹) $v_1 v_2 y_3$	Remarks	Temp. (°K)	Preparation	Reference
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NCO	в ² П 3 .1 6	B. ← X 400-450nm	2295 1036	neon (R ₂); ~40 bands Ne Ar	4.2 14	1)CH ₁ /Ar/N ₂ /O ₂ discharge	McCarty 59b Milligan 67c
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		a ² Σ ⁺ 2.28	A 🔶 X 240-320nm	2325 687 1270	neon (Q); 5 bands \overrightarrow{CO}	,	2) vacuum UV photolysis HNCO 3) vacuum UV	RODINSON JOD
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		х ² л ₁ о	IR,	1922 487 1275	considerable spin splitting (A=956cm ⁻¹) transitions from ² I3/2 only at 14° K and below;	· , • . •	photolysis HN_3 in CO 4)C (from N_3CN) + NO 5)O (N_2O) + CN	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					large Renner splitting		(from HCN)	
rotation in matrix	NH2	A ² A ₁ (π) 1.02 X ² B ₁ 0	A ←X 344-790nm IR	3350 680 1499 3220	$T_e & v_2^i$ extrapol- Ar ated; alternate Kr bands; originates N ₂ in O". II and B vibronic sub bands; v_1^i average value $b_1^2 \sim 3cm^{-1}$ possible free rotation in matrix	4.2 14	1) discharge thru N ₂ H ₄ /Ar 2) vacuum UV photolysis of NH ₂ 3) photolysis of HN ₃	Keyser 60 Milligan 65e Robinson 57a, 58a,b,c, 59,62c

-99-

Triatomics	(continued)			Vibrational -1.	
Molecule	State	$T_{OC}(\mu m^{-1})$	Observed Transition	Frequencies(cm ⁻) ^v l ^v 2 ^v 3	Remarks, g (°K) Preparation Reference
	n na star Startes - St			······································	
N_0	F	9.20	F - X		observed only in argon solid 1.5 direct deposition DeMore 59a
	E	9.01	E - X		Ne Ar 53
	D	8.33	D		Ne, continuous Kr Romand 52
	C	7.34	C 🗕 X		Ne, continuous ^N 2 Sibleyras 60
• •	Β Α(¹ Σ ⁺	(6.20)) (4.00)	B ← X A ← X	(590)	progression in v'2; average spacing; origin not observed; structureless b=3600cm ⁻¹
	x ¹ Σ ⁺	0	IR		in nitrogen; all transitions strongly blue shifted
IFO ₂	B	113	B ↔ X 300-470nm		N ₂ ; diffuse N ₂ 1.5 direct deposition Bass 56 Ar 4.2 Becker 56
	A(² B ₁) 1.12	- X 340-700nm	(620)	argon; blue shifted 02 20 Broida 57b,58c from gas by 55-70cm Ha
	X ² Al	0	IR	(1320) 750 1611	argon; numerous dimer N ₂ O bands Robinson 57a
· · · ·					

Triatomics	s (contin	nued)		Vibra	tiona	1			
Molecule	State	T _{OC} (μm ⁻¹)	Observed Transition	Freque ^V l	encies ^V 2	(cm ⁻¹) ^v 3	년 Temp Remarks , 젖 (°K) Preparation	Reference
									,
NICL	?	4.15	? 🖛 X	· · ·			very weak Ar 4.2	2 1)vaporization,	DeKock 68
	?	3.69	? → X	283			extended progression 14	675-800°K	Gruen 68 Jacox 69b
		2.25	265-290nm	alia			outended meanander	Cl _p with hot	Milligan 65a
•		3.32	290-325nm	249	÷ •		extended progression	Ni surface at	K. Thompson 68
	?.	3.05	? → X	256		•	extended progression	<1375°K	
4.	2	2 12	330-370nm	250	•		2 nerellel progressions		
	•	2	440-470mm	500		•) pararter progressions		
	?	2.12	? 🛶 X		-	1	featureless		
	9	2.02	470-500nm	•		• •	hand senaration		•
	•	2.02	480-500nm	· ·	•		114cm ⁻¹ (4 bands)	•	
an a	?	1.95	? 🔶 X						
	2	1.72	510-530nm	· ·	<u>-</u>				
ana ang sa	ν 3 _π	1.12	TD	260	8c	501	most shundant energies		
	^ "g		TK	300	. 09	761	most abundant species		
. 3.		. •							
NiF ₂) X(~Π)) 0	IR	(606)		780	most abundant species; Ar 14	vaporization	Milligan 65a
		1.			· · ·		due to dimers: V. calc.	10 <i>19-1117</i> K	
		•		· •		1. A. A.	· · ·		
0	в	(1.90)	B ≪ X				first observed band No 4.	2 l)direct	Bass 58
- 3		(400-670nm				0_2 20	deposition	DeMore 58
	x ¹ A.	o **	IR	1120	705	1050	0_3 ; overtones at 3060, $\overline{C0}_2$	2)discharge	Harvey 58
	4	на страна (1996) 1990 — Прила Прила (1996) 1990 — Прила (1996)	•			· .	2800, 2150, 2110, and	through 02	MOTT OOD
			· · ·				2060cm-1	· · · · ·	
					÷				
0C12	X	0	IR	631	296	671	pure solid $v_1 = 636$ N ₂ 20	direct	Rochkind 65
	•						in argon; bent; 0 Ar 77	deposition	
				. •		· ·	sol.	•	^

Molecule	State	T ₀₀ (μm ⁻¹)	Observed Transition	Vibra Freque ^V l	ational encies(^V 2	cm ⁻¹) ^v 3	Remarks ,	Matrix	Temp. (°K)	Preparation	Reference
OF ₂	x	ο	ÍR	812	461	926	nitrogen; v ₃ doublet; v ₂ from gas ³ phase	N2 Ar ⁰ 2	4.2 20	1) photolysis of F ₂ and O ₂ mixtures 2) direct deposition	Arkell 65 a,b Spratley 66a
OOF	x	0	IR	1495	585	376	resembles O ₂ F ₂ ; angle ~110°; 180	N2 O2 Ar	4.2 20	photolysis of OF ₂ /O ₂ matrix or F ₂ /O ₂ matrix mixtures	Arkell 65b Noble 66 Spratley 66b
PH2	x ² B1	1.82 0	AX 436-522nm	(2320)	930	•	origin not observed; ^v l estimated; 5 bands (0,v ⁱ ₂ ,0), (0,0,0)	Ar	4.2	discharge thru PH ₃ argon mix- tures	McCarty 59b
so ₂	D C A ^l B _l	(4.23) (4.15) 2. <i>9</i> 6	DX CX AX 280-310nm	(720)	(220)	1	Kr; origin not observed; 17 bands; frequency differences from first observed	Ne Ar Kr CH4 CD4 SF	4.2 to 110	direct deposition	Allavena 69 Conway 69 B. Meyer 68 Phillips 69a,
	a ³ B ₁ X ¹ A ₁	2.56 0	a → X 390-470nm IR	1150	519	1351	bands SFG; lifetime 13.5 msec at 4.2°K in SFG Kr; ³⁴ S; 0; Zeeman effect	C ₄ F N ₂ O ₂	4		

-102-

Triatomics (continued)

•				·			·			
Triatomic	s (contin	ued)		•					. • •	
Molecule	State	^T _{OC} (μm ⁻¹)	Observed Transition	Vibrations Frequencies V1 V2	(cm ⁻¹) 3	Remarks .	치 Temp. 행 (°K)	Preparation	Reference	
s ₂ 0	A	2.90	A → X	(720) (286) 415	xenon; new origin, previous gas phase origin in error (see Herzherg 67) v	Ar 20 Kr 77 Xe	SOCL ₂ /matrix gas + Ag ₂ S at 433°K	Blukis 64 Phillips 69a	
	.1.		· · · · · · · · · · · · · · · · · · ·		(-	estimated; v_2 reevaluation of gas phase				
	X-A'	· · · · · · · · · · · · · · · · · · ·	IR	1165 388	679	pure solid at 77°K			· · · · · · · · ·	
ScF ₂	X	(3.14) 0	(? ← X) IR	(580) (661)	(709)	neon; tentative may be due to ScF3 not positively	Ne 4.2	vaporization of ScF ₃ 1875°K	McLeod 66	
					1997 - 19	ldentliled				-10
Se0 ₂	В	3.10	B ↔X 240-322nm 310-520nm	, (620) (310) com	complex absorption, possibly 2 transitions or 2 progressions in $(v_1', 0, 0)$ and $(v_1', 1, 0)$; reserved.	Ar 20 Kr Xe SF6 CH.	vaporization 409°K	Voigt 70)3 -
		e Al terreterre			· .	fluorescence	$C_{1}F_{Q}$			an a
	?	>2.20	? ~ X 320-410nm		•	weak absorption; may involve state C	4 0			
	C	2.20	°C ~− X 425-613nm		· ·	C is triplet state $\tau = \langle 0.2 \text{ msec in Xe};$ 2.5 msec in SFG; 2.0 msec in C _L FB; oroited at 265m				
	X	0	•	365	4					
^{Si} 3	Α(³ Σ ⁻ υ x(³ Σ ⁻) 2.15) 0	A X	310	•	7 bands; tentative	Ne 4.2	vaporization of silicon 2175-2675°K	Weltner 64c	
	8		2 · · · · ·	the second s					· ·	

Tristonics	(continu	ued)				-	•				
Molecule	State	т ₀₀ (µm ⁻¹)	Observed Transition	Vibr Freque v 1	ations ncies(^v 2	² cm ⁻¹) ² 3	Remarks	Matrix	Temp. (°K)	Preparation	Reference
•	•				• •		•				
8100	AIIu	2.01	$A^{\perp}\Pi_{u} X^{\perp}\Sigma^{\perp}$	1461	230	1015	possible positive	Ne	4.2	vaporization	Weltner 64c
 			400-497nm 500-550nm	•	•	•	adsorption; fluorescence; little	Ar	20	2(/)-312) K	
•	x ¹ 2 ⁺ g	Ο.	IR	1742	300	853	re change; from fluorescence data v ₂ gas phase, 853cm-1				
51C81	AII	1.89	A 🛶 X	500		•	J identification	Ne	4.2	vaporization	Weltner 64c
	"u 1.+	,	450-500nm			• .	tentative;	Ar	20	silicon carbide	······································
	ΧΣg	0		(672)	:		calculated	•		2775 - 3125°K	•
Sicl ₂		0	IR	502		513	assignments tentative; may be reverse	Ar	14	vacuum UV photolysis of	Milligan 68c
	_				4 A	•		•	e a e a g	SiH ₃ Cl ₂	
Sir ₂	A ¹ B	4.40	A - X 213-226nm	•	253		neon	Ne Ar	4.2 14	l)vacuum UV photolysis of	Bassler 66a Milligan 68d
	x ¹ A,	0	IR	843	343	855	argon	CO N	20	SiH_2F_2 2)reaction of	
	. 1					,		-2		SiF ₄ with Si at 1425°K	
SrF ₂	X(¹ A ₁)	0	IR	(441)	82	(443);)	krypton apex angle 108° bands near 303 and 256cm ⁻¹ assigned to aggregates; ⁶⁶ Sr,	Ne Ar Kr	4.2 20	vaporization 1625°K	Calder 69 Snelson 66
			e te la companya de l La companya de la comp				88 _{Sr}		•		
TaO2	B(² A)	1.62	в ~ Х 558-616nm		281	. •	weak	Ne Ar	4.2 20	1)vaporization 2)reaction with	Weltner 65a
	A(² A)	1.16	A ~ X	937	285	•	progression in v¿; also see (1,v20),	•		hot tantalum (2270°K)	
	x(² B ₁)	0	IR	(971)		(912)	assignment based on a decrease from		•		
	•						v'1 + v"1		* .	•	• •

-104-

•	۰.	•	1.	÷ .			· · ·			· · ·		
•	-	•					- · · ·			· •		
iatomics	(continu	ed)							•	•	•	
· · · ·	•		Observed	Vibra	tional	l		rix	Temp			
olecule	State	^T _{OO} (μm ⁻¹)	Transition	ν l	ν ₂ 2	, ^v 3	Remarks	Mat	(°K)	Preparation	Reférence	
		1.08	D + V				neon.	Ne	4.2	1)vaporization	Weltner 65b	
w02	_{в(в} 2)	7.20	D A		201		18-	Ar	20	WO_3 or $WO_2.96$		
an a	A(³ B ₁)	1.27	A + X	972	300		neon; 100; extended progression			2)reaction of Op		· · ·
· ·	$X(^{3}A_{1})$	0	IR	992		928	$\frac{1}{2180}$, numerous	•	·. ·	with tungsten at		
· · ·		•				•	IR absorptions			1900-1990 R		
							between 600-1000cm ⁻¹ assigned to higher		- - -			
e di Angele Alterna		· · · · ·			•		oxides				•	•
XeCl	x	0	IR		•	313	complex absorption	Xe	20	Xe + Cl ₂ through	Nelson 67a	
				•			due to he isotopes	· •		charge		-10
·					*				•			ប រ
XeF ₂	x	0	IR	(510)	•	547	high F ₂ :Xe ratios give XeF.	Ar	20	photolysis of F_ in Xe	Turner 63a	· ·
	· · ·	•				•	B110 100 4		• •	-2		
ZnBr	$x^{1}\Sigma^{+}$	0	IR	· · · ·	73	404	most abundant species	Ar	4.2	vaporization	Loewenschuss	68
5	g						in Kr; band at 326	Kr Xe	20		McNamee 62	
		•		алан Тайтан			abbighter vo almers	110			•	
ZnCl	$x^{1}\Sigma^{+}$	0	IR	• •	103	508	most abundant species	Ar	4.2	vaporization	Loewenschuss	68
2	g						in Kr; bands at 425,	Kr Xe	20		McNamee 62	-
			•		a af an a		to dimers	,				
	_ +											
^{ZnF} 2	$X^{1}\Sigma_{g}$	0	IR	· ·	151	758	most abundant species	Ar	4.2	vaporization	Loewenschuss McNamee 62	68
		-%			•		assigned to dimer	Xe		•		
		· . ·	*.	·	•			· · ·				
ZnI ₂	$x^{1}\Sigma_{g}^{+}$	0	IR		62	346	most abundant species in Kr; band at 272	Ar Kr	4.2 20	vaporization	Loewenschuss McNamee 62	68
			•				assigned to dimer		1			

★ ★

ર્થક દિવ્

Molecule	State	^T 00 (μm ⁻¹)	Observed Transitions	Vibrational Frequencies(cm ⁻¹)	Remarks	Matrix	Temp. (°K)	Preparation	Reference
Alf ₃	x	0	IR	300 (v ₂) 965 (v3) 270 (v4)		Ne Ar Kr	4.2	vaporization of AlF ₃ (s) at 1150- 1875°K	Snelson 67b
(BO) ₂	X	0	IR	1921 (v ₃)	multiplet	Ar	4.2	vaporization of B ₂ O ₃ + B 1450-1500°K	Sommer 63
CBr ₃	x	0	IR	582 (v ₁) 773 (v ₃)	v_2 and v_4 not observed	Ar	15	reaction of Li atoms with CBr_4	Andrews 68c
cc1 ³	x	0	IR	6674((v1) 898 (v3)	v_2 and v_4 not observed	Ar	15	reaction of Li atoms with CCl_{4}	Andrews 67d 68a,e
CF3	X	0	IR	$\begin{array}{c} 1087 \ (\nu_1) \\ 703 \ (\nu_2) \\ 1251 \ (\nu_3) \\ 512 \ (\nu_4) \end{array}$	¹³ C; other bands observed	Ar	14 20	photolysis of $CF_2N_2/$ and tN_2F_2	Comeford 66 Milligan 66b, 68a
CF ₂ N	A(² A ₁)	2.76	² A ₁ ² B ₂		fine structure	N2 Ar	14	photolysis of FCN and t-N ₂ F ₂	Jacox 68a
CF ₂ 0	П*	4.4	n→∏*		(FCO) ₂ also pro- duced; continuous absorption	CO	4.2	photolysis of OF ₂ , N_2F_2 or tN_2F_2 in CO	Milligan 65b
	X	0	IR	585 620 1913 1941					

2

-901-
Kolecule	State	^T 00 (µm ⁻¹)	Observed Transitions	Vibrational Frequencies(cm ⁻¹)	Remarks	Matrix	Temp. (°K)	Preparation	Reference	
CH ₂ F	X	0	IR	996 1163 (C-F)	argon; assignments tentative	Ar N ₂	14	photolysis of CH ₃ F	Jacox 69a	
CH ² ∥	X	0	IR	1338	uncertain	Ar	14	photolysis of HCN	Milligan 67b	
CHO	A'A" a ³ A"	2.82 2.44	A		progression in v_2 ", v_4 " and v_6 " $\tau = 1.1$ sec in Kr	Xe Kr SF6 N ₂ pure	4 200	direct deposition	Harvey 62 J. Smith 69	
	XAI	0	IR	2796 (v_1) 1742 (v_2) 1498 (v_3) 2862 (v_4) 1245 (v_5) 1168 (v_6)	argon; v1, v2, v4, v6 triplets	solid				-107-
. TH3	? X	6.65 0	? ←X IR	$\begin{array}{c} 611 \ (\nu_2) \\ 730 \ (\nu_2) \\ 1383 \ (\nu_3) \end{array}$	D; planar v ₃ not observed	N2 Ar CO	14	photolysis of CH ₄ and reaction of CH ₂ X with Li atoms	Andrews 66b, 67b Milligan 67d	
203	X	0	IR	568 593 972 1073 1880 2045 3105 3922	probably planar C ₂ with one carbonyl bond	v 4.2 50 77	2	1) photolysis of CO ₂ 2) photolysis of O ₃ /CO ₂ mixtures 3) condensation o discharged CO ₂	Moll 66 f	
(CIO) ⁵	2. X	0	IR	951	multiplet	N ₂	20	photolysis of Cl ₂ O	Alcock 68 Rochkind 67b	

	Molecule	State	^T 00 (μm ⁻¹)	Observed Transitions	Vibrational Frequencies(cm ⁻¹)	Remarks	fi tr Temp (°K)	• Preparation	Reference	
	FINCIN	X	0	IR	873 2068	13 _C , 15 _N	Ar 14	photolysis of N ₂ CN:F ₂	Milligan 68b	
	(HBr)2	x	0	(IR)	2433 2469 2500		Ar 83 103	from liquid solutions	Atwood 67	
• •	(HC1) ₂		0	IR	232	argon, D	Ne 4. Ar 20 Kr 103 Xe	.2 deposition of HCl	Katz 67b Keyser 66b	
	HICO	X	0	IR	460 (OCN) 1098 (OC) 1241 (OH bend) 2294 (C-N) 3506 (O-H)	N2 D	N2 14 Ar	vaporization of cyanuric acid	Јасох б4ъ	-108-
	HNCS	x	0	IR	$\begin{array}{c} 3505 \ (\nu_1) \\ 1979 \ (\nu_2) \\ 988 \ (\nu_3) \\ 577 \ (\nu_4) \\ 461 \ (\nu_5) \end{array}$	D	Ar 20	direct depositi	on Durig 67	
	HNF ₂	x	0	IR	877 1425 1313	Decrease with prolonged photolysis	Ar 14	photolysis of HN ₃ /F ₂ /Ar	Jacox 67a	
	^{HN} 3	X	.0	IR	$\begin{array}{c} 3324 \ (\nu_1) \\ 2150 \ (\nu_2) \\ 1273 \ (\nu_3) \\ 1168 \ (\nu_4) \\ 527 \ (\nu_5) \\ 588 \ (\nu_6) \end{array}$	dimer	20	direct deposi- tion	Pimentel 66	

Olecule	State	¹ 00 (سm ⁻¹)	Observed Transitions	Vibrational Frequencies(cm ⁻¹)	Remarks	Matri) H	emp. °K)	Preparation	Reference
^H 2 ^O 2	x	0	IR	$3417 (v_1)$ $3578 (v_5)$ $1292 (v_6)$	tentative overtone at 2750 several other unassigned bands	N2	4.2	direct deposi- tion	Catalano 63b
^{L1} 2 ^F 2	X	0	IR	$\binom{7_{\text{Li}_{2}F_{2}}}{641}$ $\frac{641}{553}$ $\binom{8_{3u}}{287}$ $\binom{8_{1u}}{8_{1u}}$	6 _{L1}	Ne 2	0	vaporization of Li at 1175-1475° K; direct deposi tion F ₂	Snelson 67a -
NH ₃	A(¹ A ₂ X) 5.25 0	A ← X IR	$\begin{array}{c} 3332 \ (\nu_1) \\ 970 \ (\nu_2) \\ 3440 \ (\nu_3) \\ 1632 \ (\nu_4) \end{array}$	fine structure; dimers; D N ₂	Ar N ₂ 2 CO ₂ 5	4.2 0 3	direct deposi- tion	Dressler 60 Jacox 63b Milligan 61a Pimental 62a
(NO)2	X	0	IR	1776 1865	argon; cis; trans	Ar NO	4.2	deposition of NO	Fateley 59
^{NO} 3	? ? X	1.60 1.50 0	? X 629nm ? X 666nm		weak; diffuse bands; band maxima	N ⁵ 5	0	1) NO ₂ + 0 2) photolysis of N ₂ O ₅ 3) discharge thru NO ₂ /O ₂ mixtures	DeMore 59a
N2H2	X	0	IR	1279 3074 1286 (v_) 1481 (v2)	<pre>v3 preferred; cis; v1 or v4; cis; trans trans</pre>	N2 2	0	photolysis of ^{HN} 3	Rosengren 65

×.

Molecule	State	^T ου (μm ⁻¹)	Observed Transitions	Vibrational Frequencies(cm ⁻¹)	. Remarks	Matrix	Temp. (°K)	Preparation	Reference
°2 ^F 2	x	0	IR	624 612 462 368		N2 Ar O2	20	photolysis of F2 ^{and 0} 2	Spratley 66a, b
sicl ₃	? ? X	4.08 3.03 0	?⊶_X ? ← X IR	470 (v1) 582 (v3)	unstructured argon; ²⁹ Si; ³⁰ Si	N ₂ Ar CO	14	photolysis of HSiCl ₃	Јасох 68ъ
(SiC)	₂ (³ Σ ⁻) x	1.54 0	? → X IR	595(Si=Si st) 657(C=Si st) 994(C=C st)	argon; additional unassigned bands	Ne Ar	4.2 20	vaporization of SiC(s) at 2600°K	Weltner 64c
sif ₃	x	0	IR	$832 (v_1) 406 (v_2) 954 (v_3) 290 (v_4)$	argon; non planar; 29 _{Si,} 30 _{Si}	Ar N ₂ CO	14	photolysis of SiHF ₃	Milligan 68e
WO ₃	A X	3.46 0	A —X IR	.894 (A'ì) 1040(E')	neon; tentative	Ne	4.2	1)vaporization of WO ₃ or WO ₂ .96 at 1600°K 2)reaction of O ₂ with tungsten at 1900-2950°K	Weltner 65b

-110-

Molecule	State	^T OO (µm ⁻¹)	Observed Transitions	Vibrational Frequencies(cm ⁻¹)	PENTATOMICS . Remarks	.) Matrix	mp. K) Preparation	Reference
^B 2 ⁰ 3	X	0	IR	2128 (v_1) 733 (v_2) 536 (v_3) 172 (v_4) 260 (v_4)	10 _{B2} 03; 11 ^B	Ar	4.2 vaporization 1400°K	Sommer 63 Weltner 62a
				$\begin{array}{c} 476 \ (v_5) \\ 2128 \ (v_6) \\ 1242 \ (v_7) \\ 471 \ (v_8) \\ 493 \ (v_9) \end{array}$				
^{CBr} 3 ^{Li}	X	0	IR	462 (C-Br st) 377 (Li st)	6 _{L1}	Ar :	L5 reaction of CBr _l with Li atoms	Andrews 68d
cci ₃ li	X	0	IR	521 (C-Cl st) 429 (Li st)	6 ₁₁	Ar :	15 reaction of CCl ₁₄ with Li atoms	Andrews 68d
CHC13	x	0	IR	2500	D; bands widened in matrix	Ar CS2 CCI4	20 deposition of 77 vapor mixtures of CHCl ₃ and $(C_2H_5)_3^{N}$	Denariez 65 S. King 68 W. Thompson 60
CH ⁵ CO	x	0	IR	$\begin{array}{c} 3043 (\nu_1) \\ 2133 (\nu_2) \\ 1374 (\nu_3) \\ 1131 (\nu_4) \\ 3140 (\nu_5) \\ 971 (\nu_6) \\ 440 (\nu_7) \\ 616 (\nu_8) \\ 529 (\nu_9) \end{array}$	D	Ar	20 photolysis of acetone	Moore 63

-111-

Molecule	State	^Т оо (µm ⁻¹)	Observed Transitions	Vibrational Frequencies(cm ⁻¹) Remarks	Matrix	Temp. (°K)	Preparation	Reference	· · · · · · · · · · · · · · · · · · ·	
CH ⁵ N ⁵	X	ο	IR	$3069 (v_1)$ $2096 (v_2)$ $1407 (v_3)$ $1168 (v_4)$ $3182 (v_5)$ $1105 (v_6)$ $420 (v_7)$ $542 (v_8)$ $427 (v_9)$	D, N ¹⁵	N2 Ar	20		Moore 64a		
сн ₃ сі	x	0	R		chlorine isototopic splitting patterns are determined	Ar	20	direct deposition	s. King 68		
сн ₃ ғ		0	IR	1041 1463 2866 2972 3022	correlate with gas phase	Ar ^N 2	14	direct deposi- tion	Jacox 69a	-112	
сн ₃ гі	x	0	IR	$\begin{array}{c} 2780 (\nu_1) \\ 1158 (\nu_2) \\ 530 (\nu_3) \\ 2820 (\nu_4) \\ 1387 (\nu_5) \\ 409 (\nu_6) \end{array}$	6 _{Li, D}	Ar	15	reaction of CH ₃ X with Li atoms	Andrews 67b,c Tan 68		
сн ₄	X	0	IR	$3037 (v_{3})$ 1306 (v_{4})	multiplets D	Ar Kr Xe	2 40	direct deposition	Cabana 63 Frayer 68		
°3°2	• x	0	IR	2282 (v_3) 1594 (v_4) 536 (v_6)	linear symmetric; overtones	Ar	4.2 20	direct deposition	Ames 63 W. Smith 66		

Molecule	State	^T 00 (بس ⁻¹)	Observed Transitions	Vibrational Frequencies(cm ⁻¹)	Remarks	Matri	Temp. (°K)	Preparation	Reference
de ^s cn	X	0	IR	576 619 840 888 1021	¹³ c, ¹⁵ N	Ar	14	photolysis of ^N 3 ^{CN:F} 2	Milligan 68b
¹⁷ 2 ⁰ 3	X	0	IR	788 1303 1596	solid	CO solid	4.2	l)heating NO ₂ 2)NO + NO ₂	Fateley 59
n ³ cn	B X	4.75 0	B ← X IR	444,450 865,923 1263,2101 2151,2163 2208,2249	broad band no definite assignments	Ar N2 CO CO	14 2	direct deposi- tion	Milligan 65d, 66c
Sir ₂ Cl	2	0	IR	2210 948 877 584_ 523		Ar	14	direct deposition	Milligan 68c
SiH2F2		0	IR	980 972 863 714		Ar ^N 2	14	direct deposition	Milligan 68d, 68e

SiH ₃ Cl O IR 2198 945 663 544 SiH ₃ F O IR 890 XeF X O IR 290 (vo) Ar 14 impurity Milligan N_2 Ar 20 photolysis of Turner 6	Molecule State
SiH _J F O IR 890 N ₂ XeF X O IR 290 (vo) Ar 20 photolysis of Turner 6	SiH ₃ Cl
XeF X 0 TR 290 (vo) Ar 20 photolysis of Turner 6	Sih ₃ F
$F_2/Xe/Ar$ mixtures	XeF ₄ X

•		· · · · · ·			•		· · ·		· · ·
Molecu	le Sta	T _{OO} te (μm ⁻	Observed) Transitions	Vibrational Frequencies(cm ⁻¹)	OTHERS Remarks	xir Lemb. X (.K)	Preparation	Reference	
сн ₃	LiBr X	0	IR	730	Li, Na, K, Br, I	Ar 15	reaction of CH ₃ X with M atoms	Tan 68	
СНЗ	х но	0	IR	3660 (OH st)	polymers	N ₂ 20	direct deposition	Van Thiel 57a	•
°2₿	r ₄ X	0	IR	595.0 (v_1) 640.5 (v_3)		Ar 15		Andrews 68c	
(HC)	и) ₂ х	0	IR	732 792 797 2090 2114 3202 3301	closely correlated to monomer peaks; D	Ar 4.2 CO 20 ^N 2	direct deposition	C. King 68	-115-
N ₂ H	4 X	•	IR	$\begin{array}{c} 3390 \ (v_1) \\ 1312 \ (v_4) \\ 1087 \ (v_5) \\ 832 \ (v_6) \\ 39^4 \ (v_7) \\ 3356 \ (v_8) \\ 3297 \ (v_9) \\ 1265 \ (v_{11}) \\ 982 \ (v_{12}) \end{array}$	N ₂	N2 4.2 Ar	direct deposition	Catalano 63a	
N ² C) ₄ X	: 0		740 755 1258 (ν_1) 1738 (ν_2) 1767	argon; possible išcmers	Ar 4.2 CO ₂	deposition of ^{NO} 2	DeMore 59a Fateley 59	

• •

Molecule	State	T ₀₀ (μm ⁻¹)	Observed Transitions	Vibrational Frequencies(cm	-1) Remarks	xi transformed tra	Preparation	Reference	
NDC15	x	0	IR	$\begin{array}{c} 444 & (\nu_3) \\ 126 & (\nu_4) \\ 396 & (\nu_5) \\ 159 & (\nu_6) \\ 99 & (\nu_7) \end{array}$	Ng	C6H12 10	vaporization	Werder 67	-
CH2(CN)	2 X	0	IR	$\begin{array}{c} 2264 \ (\nu_2) \\ 887 \ (\nu_4) \\ 573 \ (\nu_5) \\ 2272 \ (\nu_9) \\ 974 \ (\nu_{11}) \end{array}$	overtones	Ar 20	direct deposition	Ames 63	•
N205	X	0	IR	719 737 1248 1316 1700 1752	co2	co ₂ 4.2 N ₂ 20	direct depositing deposition	onDeMore 59a Fateley 59	-116-
Al2 ^F 6			IR	995 (v_8) 340 (v_9) 660 (v_{13}) 805 (v_{16}) 575 (v_{17}) 300 (v_{18})		Ne 4.2 Ar Kr	2 vaporization of AlF ₃ (s) at 1150-1875°K	Snelson 67b	
(BF3)2	X	O	IR	662 674 1410 1460 1515	correlated to monomer bands	Ar 20 Kr 50		Bassler 66b	

Molecule State	^T OO (µm ⁻¹)	Observed Transitions	Vibrational Frequencies(cm ⁻¹)	Remarks	Matrix Marix Marix	p.) Preparation	Reference
(CH ₃) ₃ N X	0	IR	$\begin{array}{c} 1475 & (v_3) \\ 1470 & (v_4) \\ 1187 & (v_5) \\ 823 & (v_6) \\ 365 & (v_7) \\ 1456 & (v_{15}) \\ 1440 & (v_{16}) \\ 1405 & (v_{17}) \\ 1098 & (v_{18}) \\ 1037 & (v_{19}) \\ 823 & (v_{20}) \\ 421 & (v_{21}) \\ 259 & (v_{22}) \end{array}$	D; C _{3v}	Ar 20) direct deposition	Goldfarb 67a
(CH ₃) SiH ₃ N X	0	IR	2872(C-Hst) 2196(Si-Hst) 1472(CH ₃ def) 1295(CH ₃ rock) 1187(C-Nst) 900(C-Nst) 990(Si-Nst) 965(SiH ₃ def) 695(SiH ₃ rock)	multiplet multiplet multiplet multiplet multiplet; pyrami	Ar 20 dal) direct deposition	Goldfarb 67b
CH ₃ (S1H ₃) ₂ N	0	IR	2891(C-H st) 2179(Si-Hst) 1470(CH ₃ def) 1200(CH ₃ rock) 1091(C-N st) 986(Si-Nst) 923(SiH ₃ def) 716(SiH ₃ rock)	planar multiplet multiplet multiplet multiplet multiplet	Ar 20	D direct deposition	Goldfarb 67b

-117--

Molecule State	^T οο (μm ⁻¹)	Observed Transitions	Vibrational Frequencies(cm	-1) . Remarks	Matrix Xi Xi Temp.	Preparation	Reference	
(SiH ₃) ₃ N X	0	IR	$\begin{array}{c} 2174 \ (v_1) \\ 2155 \ (v_2,v_{14}) \\ 942 \ (v_3) \\ 921 \ (v_{14}) \\ 767 \ (v_5) \\ 454 \ (v_7) \\ 2193 \ (v_{12}) \\ 2186 \ (v_{13}) \\ 966 \ (v_{15}) \\ 955 \ (v_{16}) \\ 934 \ (v_{17}) \\ 734 \ (v_{18}) \\ 693 \ (v_{19}) \end{array}$	C _{3v} ; overtones	Ar 20	direct deposition	Goldfarb 67a	
Fe(C ₅ H ₅) ₂ F	5.00	F←X		strong; allowed, no	Ar 20	vaporization	J. Smith 68a	-
E	4.05	E ~X	400	structure. cyclopentadienyl ring; perturbation at v' = 4.	Kr Xe N ₂ CH ₁ ,	300°K	A. Armstrong o'	8 1
D	3.50	De X	250	iron ring vibration; charge transfer.	EPA 77	•		
С	2.90	C←X	450	cyclopentadienyl ring.				
В	2.50	Be-X		3d-3d transition no structure.		•		
A X	2.00 0	A→X		τ = 1.25 sec. excited via C-X no structure. all bands broad at 77°K				
Eu(C5H5)3				complex hypersensitive line groups	4•2 77	frozen solution in 2-methyl- tetrahydro-furar	Pappalardo 68	

ала ала Алана ала Алана алана Алана алана алана Алана алана алана алана

BIBLIOGRAPHY

-119-

The master bibliography for this report is published separately as UCRL-19033. It is this bibliography which has determined the order of references. However included here are all references cited in this report. They are listed alphabetically by first author, and chronologically for a given author. They are referenced in the text and tables by name and the last two digits of the year of publication. Small letters are used when more than one publication of a given author appears in the same year. Alcock 68 - W. G. Alcock and G. C. Pimentel, J. Chem. Phys. <u>48</u> 2373 (1968).

Allavena 69 - M. Allavena, R. Rysnik, D. White, V. Calder, and D. E.

Mann, J. Chem. Phys. <u>50</u>, 3399 (1969).

Ames 63 - L. L. Ames, D. White and D. E. Mann, J. Chem. Phys. <u>38</u>, 910 (1963).

Andrews 66a - W. L. S. Andrews and G. C. Pimentel, J. Chem. Phys. 44/4, 2361 (1966).

Andrews 66b - W. L. S. Andrews and G. C. Pimentel, J. Chem. Phys. <u>44</u>, 2527 (1966).

Andrews 67b - L. Andrews and G. C. Pimentel, J. Chem. Phys. <u>47</u>, 3637 (1967). Andrews 67c - L. Andrews, J. Chem. Phys. <u>47</u>, 4834 (1967).

Andrews 67d - W. L. S. Andrews, J. Phys. Chem. 71, 2761 (1967).

Andrews 68a - L. Andrews, J. Chem. Phys. 48, 972 (1968).

Andrews 68b - L. Andrews, J. Chem. Phys. 48, 979 (1968).

Andrews 68c - L. Andrews, and T. G. Carver, J. Chem. Phys. 49, 896 (1968).

Andrews 68d - L. Andrews, and T. G. Carver, J. Phys. Chem. 72, 1743 (1968).

Andrews 68e - L. Andrews, Tetrahedron Letters 12, 1423 (1968).

Arkell 65a - A. Arkell, R. R. Reinhard and L. P. Larson, J. Am. Chem. Soc. 87, 1016 (1965).

Arkell 65b - A. Arkell, J. Am. Chem. Soc. <u>87</u>, 4057 (1965).
Arkell 67 - A. Arkell and I. Schwager, J. Am. Chem. Soc. <u>89</u>, 5999 (1967).
A. Armstrong 67 - A. T. Armstrong, F. Smith, E. Elder and S. P. McGlynn,
J. Chem. Phys. <u>46</u>, 4321 (1967).

Atwood 67 - M. R. Atwood, M. Jean-Louis and H. Vu, J. Phys. (Paris) 28, 31 (1967). Bajema 70 - L. Bajema Ph.D. Thesis, University of Washington, Seattle; 1970.

Baldeschwieler 60 - J. D. Baldeschwieler and G. C. Pimentel, J. Chem. Phys. 33, 1008 (1960).

Barger 62 - R. L. Barger and H. P. Broida, J. Chem. Phys. <u>37</u>, 1152 (1962) Barger 64 - R. L. Barger, Ph.D. Thesis, University of Colorado, 1964:

NBS Report 8290, June 4, 1964.

Barger 65 - R. L. Barger and H. P. Broida, J. Chem. Phys. <u>43</u>, 2364 (1965).
Bass 56 - A. M. Bass and H. P. Broida, Phys. Rev. <u>101</u>, 1740 (1956).
Bass 58 - A. M. Bass and H. P. Broida, J. Mol. Spectry. <u>2</u>; 42 (1958).
Bass 62 - A. M. Bass and D. E. Mann, J. Chem. Phys. <u>36</u>, 3501 (1962).
Bassler 66a - J. M. Bassler, P. L. Timms, and J. L. Margrave, Inorg. Chem. <u>5</u>, 729 (1966).

Bassler 66b - J. M. Bassler, P. L. Timms, and J. L. Margrave, J. Chem. Phys. <u>45</u>, 2704 (1966).

Becker 56 - E. D. Becker and G. C. Pimentel, J. Chem. Phys. 25, 224 (1956).
Becker 57 - E. D. Becker, G. C. Pimentel, and M. Van Thiel, J. Chem.
Phys. 26, 145 (1957).

Benson 57 - S. W. Benson and J. H. Buss, J. Chem. Phys. <u>27</u>, 1382 (1957).
Benson 59 - S. W. Benson and K. H. Anderson, J. Chem. Phys. <u>31</u>, 1082 (1959).
Blukis 64 - U. Blukis and R. L. Myers, J. Phys. Chem. <u>68</u>, 1154 (1964).
Brabson 65 - G. D. Barbson, Ph.D. Thesis, University of California,

Berkeley; 1965, UCRL 11976.

Broida 57b - H. P. Broida and M. Peyron, J. Phys. Radium <u>18</u>, 593 (1957). Broida 58c - H. P. Broida and M. Peyron, J. Phys. Radium <u>19</u>, 480 (1958). H. Brown 58 - H. W. Brown and G. C. Pimental, J. Chem. Phys. <u>29</u>, 883 (1958).
Büchler 58 - A. B. Büchler and W. Klemperer, J. Chem. Phys. <u>29</u>, 121 (1958).
Büchler 64 - A. Büchler, J. L. Stauffer and W. Klemperer, J. Am. Chem.

Soc. 86, 4544 (1964).

Cabana 63 - A. Cabana, G. B. Savitsky and D. F. Hornig, J. Chem. Phys. 39, 2942 (1963).

Calder 69 - V. Calder, D. E. Mann, K. S. Seshadri, M. Allavena, and

D. White, Department of Navy, Contract ONR N00014-67-A-0001,

Technical Report No. 3, April 1969.

Catalano 59 - E. Catalano and D. E. Milligan, J. Chem. Phys. 30, 45 (1959).

Catalano 63a - E. Catalano, R. H. Sanborn and J. W. Frazer, J. Chem.

Phys. 38, 2265 (1963).

Catalano 63b - E. Catalano and R. H. Sanborn, J. Chem. Phys. <u>38</u>, 2273 (1963). Clifton 69 - J. R. Clifton and D. M. Gruen, paper 179, 20th Annual mid-

American Symposium on Spectroscopy, Chicago, May 1969. Cochran 64 - E. L. Cochran, F. J. Adrian and V. A. Bowers, J. Chem. Phys.

<u>40</u>, 213 (1964).

Comeford 66 - J. J. Comeford, Ph. D. Thesis, Georgetown University, 1966. Conway 69 - J. G. Conway, B. Meyer, J. J. Smith and L. J. Williamson,

J. Chem. Phys. <u>51</u>, 1671 (1969).

Dalby 58 - F. W. Dalby, Can. J. Phys. <u>36</u>, 1336 (1958).

DeKock 66 - C. W. DeKock and D. M. Gruen, J. Chem. Phys. 44, 4387 (166).

DeKock 67 - C. W. DeKock and D. M. Gruen, J. Chem. Phys. <u>46</u>, 1096 (1967).

DeKock 68 - C. W. DeKock and D. W. Gruen, J. Chem. Phys. <u>49</u>, 4521 (1968).

DeMore, 58 - W. B. DeMore, Ph. D. Thesis, California Institute of Technology, 1958.

DeMore 59a - W. B. DeMore and N. Davidson, J. Am. Chem. Soc. <u>81</u>, 5869 (1959).

Denariez 65 - M. Denariez, J. Chim. Phys. <u>62</u>, 323 (1965).

Dixon 60a - R. N. Dixon, Can. J. Phys. 38, 10 (1960).

Dixon 60b - R. N. Dixon, Phil. Trans. Roy. Soc. (London) 2521, 165 (1960).

Dixon 67 - R. N. Dixon, Proc. Intern. Spect. Conf., Bombay, India, 176, (1967). Douglas 51 - A. E. Douglas, Astrophys. J. 114, 466 (1951).

Dressler 59 - K. Dressler and D. A. Ramsay, Phil. Trans. Roy. Soc. (London)

251A, 553 (1959).

Dressler 60 - K. Dressler and O. Schnepp, J. Chem. Phys. <u>33</u>, 270 (1960).

Dressler 61 - K. Dressler, J. Chem. Phys. <u>35</u>, 165 (1961).

Durig 67 - J. R. Durig and D. W. Werta, J. Chem. Phys. <u>46</u>, 3069 (1967).

Drowart 58 - J. Drowart and P. Goldfinger, J. Chim. Phys. 55, 721 (1958).

Ewing 60 - G. E. Ewing, W. E. Thompson and G. C. Pimentel, J. Chem. Phys. <u>32</u>, 927 (1960).

Fateley 59 - W. G. Fateley, H. A. Bent and B. Crawford, Jr., J. Chem. Phys. 31, 204 (1959).

Frayer 68 - F. H. Frayer and G. E. Ewing, J. Chem. Phys. <u>48</u>, 781 (1968).

Gausset 63 - L. Gausset, G. Herzberg, A. Lagerquist and B. Rosen,

Discussions Faraday So. <u>35</u>, 113 (1963).

Gausset 65 - L. Gausset, G. Herzberg, A. Lagerquist and B. Rosen, Astrophys. J. <u>142</u>, 45 (1965).

Glasel 60 - J. A. Glasel, J. Chem. Phys. <u>33</u>, 252 (1960).

Goldfarb 60a - T. D. Goldfarb and G. C. Pimentel, J. Am. Chem. Soc.

<u>82</u>, 1865 (1960).

Goldfarb 60b - T. D. Goldfarb and G. C. Pimentel, J. Chem. Phys. <u>33</u>, 105 (1960).

Goldfarb 67a - T. D. Goldfarb and B. N. Khare, J. Chem. Phys. <u>46</u>, 3379 (1967).

Goldfarb 67b - T. D. Goldfarb and B. N. Khare, J. Chem. Phys. <u>46</u>, 3384 (1967). Giguere 54 - P. A. Giguere, J. Chem. Phys. <u>22</u>, 2085 (1954). Giguere 56 - P. A. Giguere and K. B. Harvey, J. Chem. Phys. <u>25</u>, 373 (1956).

Granier-Mayence 53 - J. Granier-Mayence and J. Romand, J. Phys. Radium

14, 428 (1953).

Gruen 68 - D. M. Gruen, J. R. Clifton and C. W. DeKock, J. Chem. Phys. 48, 1394 (1968).

Harmony 61 - M. D. Harmony, R. J. Myers, L. J. Schoen, D. R. Lide Jr.,

and D. E. Mann, J. Chem. Phys. <u>35</u>, 1129 (1961).

Harmony 62 - M. D. Harmony and R. J. Myers, J. Chem. Phys. <u>37</u>, 640 (1962).
Harvey 58 - K. B. Harvey and A. M. Bas, J. Mol. Spectry. <u>2</u>, 405 (1958).
Harvey 59 - K. B. Harvey and H. W. Brown, J. Chim. Phys. <u>56</u>, 745 (1959).
Harvey 62 - K. B. Harvey and J. F. Ogilvie, Can. J. Chem. <u>40</u>, 85 (1962).
Harvey 68 - K. B. Harvey and H. F. Shurvell, J. Mol. Spectry. <u>25</u>, 120 (1968).
Hastie 68 - J. W. Hastie, R. Hauge, and J. L. Margrave, J. Phys. Chem.

<u>72</u>, 4492 (1968).

Herzberg 45 - G. Herberg, Infrared and Raman Spectra of Polyatomic

Molecules, D. Van Nostrand, Princeton, N. J. (1945).

Herzberg 61 - G. Herzberg, <u>Spectra of Diatomic Molecules</u>, D. Van Nostrand, Princeton, N. J., 1961, 2nd Ed.

Herzberg 64 - G. Herzberg and D. N. Travis, Can. J. Phys. <u>42</u>, 1958 (1964). Herzberg 67 - G. Herzberg, <u>Electronic Spectra and Electronic Structure of</u>

Polystomic Molecules, D. Van Nostrand, Princeton, N. J., 1967.

Holland 58 - R. Holland, D. W. G. Style, R. N. Dixon and D. A. Ramsay, Nature, 182, 336 (1958).

Hopkins 68 - H. P. Hopkins Jr., R. F. Curl, Jr., and K. S. Pitzer, J. Chem. Phys. 48, 2959 (1968).

and, Princeton, N. J.,

Jacox 63a - M. E. Jacox and D. E. Milligan, J. Am. Chem. Soc. <u>85</u>, 278 (1963).
Jacox 63b - M. E. Jacox and D. E. Milligan, Spectrochim. Acta <u>19</u>, 1173 (1963).
Jacox 64b - M. E. Jacox and D. E. Milligan, J. Chem. Phys. <u>40</u>, 2457 (1964).
Jacox 65a - M. E. Jacox and D. E. Milligan, J. Chem. Phys. <u>43</u>, 866 (1965).
Jacox 65b - M. E. Jacox, D. E. Milligan, N. G. Moll and W. E. Thompson,
J. Chem. Phys. <u>43</u>, 3734 (1965).

Jacox 67a - M. E. Jacox and D. E. Milligan, J. Chem. Phys. <u>46</u>, 184 (1967). Jacox 67b - M. E. Jacox and D. E. Milligan, J. Chem. Phys. <u>47</u>, 1626 (1967). Jacox 68a - M. E. Jacox and D. E. Milligan, J. Chem. Phys. <u>48</u>, 4040 (1968). Jacox 68b - M. E. Jacox and D. E. Milligan, J. Chem. Phys. <u>49</u>, 3130 (1968). Jacox 69a - M. E. Jacox and D. E. Milligan, J. Chem. Phys. <u>50</u>, 3252 (1969). Jacox 69b - M. E. Jacox and D. E. Milligan, J. Chem. Phys. <u>51</u>, (1969). Jacox 69b - M. E. Jacox and D. E. Milligan, J. Chem. Phys. <u>51</u>, (1969). Johns 61 - J. W. C. Johns, Can. J. Phys. <u>39</u>, 1738 (1961). Johns 63 - J. W. C. Johns, S. H. Priddle and D. A. Ramsay, Discussions

Faraday Soc. <u>35</u>, 90 (1963).

Katz 67b - B. Katz, a. Ron and O. Schnepp, J. Chem. Phys. <u>47</u>, 5303 (1967).
Keyser 60 - L. F. Keyser and G. W. Robinson, J. Am. Chem. Soc. <u>82</u>, 5245 (1960).

Khanna 67 - V. M. Khanna, G. Besenbruch and J. L. Margrave, J. Chem. Phys. 46, 2310 (1967).

C. King 68 - C. M. King and E. R. Nixon, J. Chem. Phys. <u>48</u>, 1685 (1968).

S. King 68 - S. T. King, J. Chem. Phys. <u>49</u>, 1321 (1968).

Kleman 56 - B. Kleman, Astrophys. J. <u>123</u>, 162 (1956).

Linevsky 64 - M. J. Linevsky, D. White and D. E. Mann, J. Chem. Phys.

<u>41</u>, 548, (1964).

Loewenschuss 68 - A. Loewenschuss, A. Ron and O. Schepp, J. Chem. Phys.

<u>49</u>, 272 (1968).

Lowwenschuss 69 - A. Loewenschuss, A. Ron and O. Schnepp, J. Chem. Phys. 50, 2502 (1969).

McCarty 59b - M. McCarty, Jr., and G. W. Robinson, J. Chim Phys. <u>56</u>, 723 (1959).

McLeod 66 - D. McLeod Jr., and W. Weltner Jr., J. Phys. Chem. <u>70</u>. 3293 (1966).
McNamee 62 - R. W. McNamee Jr., Ph.D. Thesis, University of California,
Berkeley; 1962, UCRL-10451.

Mann 67 - D. E. Mann, G. V. Calder, K. S. Seshadri, D. White and M. J. Linevsky, J. Chem. Phys. <u>46</u>, 1138 (1967).

Marsh 64 - F. D. Marsh and M. E. Harvey, J. Am. Chem. Soc. <u>86</u>, 4506 (1964).
Merer 66a - A. J. Merer and D. N. Travis, Can. J. Phys. <u>44</u>, 525 (1966).
Merer 66b - A. J. Merer and D. N. Travis, Can. J. Phys. <u>44</u>, 1541 (1966).
B. Meyer 68 - B. Meyer, L. F. Phillips and J. J. Smith, Proc. Nat. Acad.
Sci. <u>61</u>, 7 (1968).

- B. Meyer 70 B. Meyer and J. J. Smith, "Low Temperature Spectroscopy: Optical Properties of Molecules in Matrices, Glasses and Mixed Crystals," Elsevier, N. Y. 1970.
- Milligan 58a D. E. Milligan and G. C. Pimentel, J. Chem. Phys. 29, 1405 (1958).

Milligan 61a - D. E. Milligan, R. M. Hexter and K. Dressler, J. Chem. Phys. <u>34</u>, 1009 (1961).

Milligan 62a - D. E. Milligan and M. E. Jacox, J. Chem. Phys. <u>36</u>, 2911 (1962).
Milligan 62c - D. E. Milligan, M. E. Jacox, S. W. Charles and G. C. Pimentel,
J. Chem. Phys. <u>37</u>, 2302 (1962).

Milligan 63b - D. E. Milligan and M. E. Jacox, J. Chem. Phys. <u>38</u>, 2627 (1963).

Milligan 63c - D. E. Milligan and M. E. Jacox, J. Chem. Phys. <u>39</u>, 712 (1963).

Millígan 64a - D. E. Milligan and M. E. Jacox, J. Chem. Phys. <u>40</u>, 605 (1964).

Milligan 64c - D. E. Milligan, D. E. Mann, M. E. Jacox and R. A. Mitsch, J. Chem. Phys. 41, 1199 (1964).

Milligan 64e - D. E. Milligan and M. E. Jacox, J. Chem. Phys. <u>41</u>, 3032 (1964).

Milligan 65a - D. E. Milligan, M. E. Jacox and J. D. McKinley, J. Chem. Phys. 42, 902 (1965).

Milligan 65b - D. E. Milligan, M. E. Jacox, A. M. Bass, J. J. Comeford, and D. E. Mann, J. Chem. Phys. 42, 3187 (1965).

Milligan 65c - D. E. Milligan, M. E. Jacox, J. J. Comeford and D. E. Mann, J. Chem. Phys. <u>43</u>, 756 (1965).

Milligan 65d - D. E. Milligan, M. E. Jacox and A. M. Bass, J. Chem. Phys. <u>43</u>, 3149 (1965).

Milligan 65e - D. E. Milligan and M. E. Jacox, J. Chem. Phys. <u>43</u>, 4487 (1965).
Milligan 66a - D. E. Milligan and M. E. Jacox, J. Chem. Phys. <u>44</u>, 2850 (1966).
Milligan 66b - D. E. Milligan, M. E. Jacox, and J. J. Comeford, J. Chem.

Phys. <u>44</u>, 4058 (1966).

Milligan 66c - D. E. Milligan and M. E. Jacox, J. Chem. Phys. <u>45</u>, 1387 (1966).

Milligan 67a - D. E. Milligan, M. E. Jacox and L. Abouaf-Marguin, J. Chem. Phys. 46, 4562 (1967).

Milligan 67b - D. E. Milligan and M. E. Jacox, J. Chem. Phys. <u>47</u>, 278 (1967). Milligan 67c - D. E. Milligan and M. E. Jacox, J. CHem. Phys. <u>47</u>, 703 (1967). Milligan 67d- D. E. Milligan and M. E. Jacox, J. Chem. Phys. <u>47</u>, 5146 (1967).
Milligan 67e - D. E. Milligan and M. E. Jacox, J. Chem. Phys. <u>47</u>, 5157 (1967).
Milligan 68a - D. E. Milligan and M. E. Jacox, J. Chem. Phys. <u>48</u>, 2265 (1968).
Milligan 68b - D. E. Milligan and M. E. Jacox, J. Chem. Phys. <u>48</u>, 4811 (1968).
Milligan 68c - D. E. Milligan and M. E. Jacox, J. Chem. Phys. <u>49</u>, 1938 (1968).
Milligan 68d - D. E. Milligan and M. E. Jacox, J. Chem. Phys. <u>49</u>, 1938 (1968).
Milligan 68d - D. E. Milligan and M. E. Jacox, J. Chem. Phys. <u>49</u>, 4269 (1968).
Milligan 68d - D. E. Milligan and M. E. Jacox, J. Chem. Phys. <u>49</u>, 4269 (1968).

Phys. 49. 5330 (1968).

Milligan 69a - D. E. Milligan and M. E. Jacox, J. Chem. Phys. <u>50</u>, (1969).
Milligan 69c - D. E. Milligan and M. E. Jacox, in <u>Physical Chemistry; An</u>
<u>Advanced Treatise</u>, Vol. 4, <u>Moleculear Properties</u>, H. Eyring, ed.
Academic Press, N. Y., 1969 Chapter 4.

Moll 66a - N. G. Moll, and W. E. Thompson, J. Chem. Phys. <u>44</u>, 2684 (1966). Moll 66b - N. G. Moll, D. R. Cutter and W. E. Thompson, J. Chem. Phys. 45, 4469 (1966).

Moore 63 - C. B. Moore and G. C. Pimentel, J. Chem. Phys. <u>38</u>, 2816 (1963). Moore 64a - C. B. Moore and G. C. Pimentel, J.Chem.Phys. <u>40</u>, 342 (1964). Moore 64b - C. B. Moore and G. C. Pimentel, J. Chem. Phys. <u>41</u>, 3504 (1964). Moore 65 - C. B. Moore and G. E. Pimentel, J. Chem. Phys. <u>43</u>, 63 (1965). Nelson 67a - L. Y. Nelson and G. C. Pimentel, Inorg. Chem. 6, 1758 (1967). Nelson 67b - L. Y. Nelson and G. C. Pimentel, J. Chem. Phys. <u>47</u>, 3671

(1967).

Noble 66 - P. N. Noble and G. C. Pimentel, J. Chem. Phys. <u>44</u>, 3641 (1966). Noble 68a - P. N. Noble and G. C. Pimentel, J.Chem. Phys. <u>49</u>, 3165 (1968). Noble 68b - P. N. Noble and G. C. Pimentel, Spectrochim Acta <u>24A</u>, 797 (1968). Noda 68 - S. Noda, K. Fueki and Z. Kuri, J. Chem. Phys. <u>49</u>, 3287 (1968). (×.

Norman 55 - I. Norman and G. Porter, Proc. Roy. Soc. (London) <u>230A</u>, 399 (1955).

Ogilvie 66 - J. F. Ogilvie and S. Cradock, Chem. Commun. 1966, 364.

Pappalardo 68 - R. Pappalardo, J. Chem. Phys. 49, 1545 (1968).

Peyron 59a - M. Peyron and H. P. Broida, J. Chem. Phys. <u>30</u>, 139 (1959).

Peyron 59b - M. Peyron, E. M. Hörl, H. W. Brown, and H. P. Broida, J. Chem. Phys. 30, 1304 (1959).

Peyron 59c - M. Peyron, E. M. Hörl, H. W. Brown and H. P. Broida, J. Chim. Phys. <u>56</u>, 736 (1959).

Phillips 69a - L. F. Phillips, J. J. Smith and B. Meyer, J. Mol. Spectry. 29, 230 (1969).

Phillips 69b - L. F. Phillips, J. J. Smith and B. Meyer, unpublished. Pimentel 62a - G. C. Pimentel, M. O. Bulanin and M. Van Thiel, J. Chem.

Phys. <u>36</u>, 500 (1962).

Pimentel 66 - G. C. Pimentel, S. W. Charles and K. Rosengren, J. Chem. Phys. <u>44</u>, 3029 (1966).

Porter 53 - G. Porter and F. J. Wright, Discussions Faraday Soc. $\underline{14}$, 23 (1953).

Ramsay 53 - D. A. Ramsay, J. Chem. Phys. 21, 960 (1953).

Ramsay 56 - D. A. Ramsay, Nature <u>178</u>, 374 (1956).

Ramsay 57 - D. A. Ramsay, Mem. Soc. Roy. Sci. (Liege) 18, 471 (1957).

Redington 62 - R. L. Redington and D. E. Milligan, J. Chem. Phys. <u>37</u>, 2163 (1962).

Redington 63 - R. L. Redington and D. E. Milligan, J. Chem. Phys. <u>39</u>, 1276 (1963).

D. Robinson 63 - D. W. Robinson, J. Chem. Phys. <u>39</u>, 3430 (1963).

Robinson 57a - G. W. Robinson, M. McCarty Jr., and M. C. Keelty, J. Chem. Phys. <u>27</u>, 972 (1957).

Robinson 57c - G. W. Robinson and M. McCarty Jr., J. Chem. Phys. <u>28</u>, 350 (1957). Robinson 58a - G. W. Robinson and M. McCarty Jr., Can. J. Phys. <u>36</u>, 1590 (1958). Robinson 58b - G. W. Robinson and M. McCarty Jr., Informal Discussions,

Faraday Soc. Sheffield, September 1958, unpublished.
Robinson 58c - G. W. Robinson and M. McCarty Jr., J. Chem. Phys. <u>28</u>, 349 (1958).
Robinson 58d - G. W. Robinson and M. McCarty Jr., J. Chem. Phys. <u>29</u>, 883 (1958).
Robinson 59 - G. W. Robinson and M. McCarty Jr., J. Chem. Phys. <u>30</u>, 999 (1959).
Robinson 60a - G. W. Robinson and M. McCarty Jr., J. Am. Chem. Soc. <u>82</u>, 1859 (1960.

Robinson 60b - G. W. Robinson and L. Keyser, J. Am. Chem. Soc. <u>82</u>, 5245 (1960).

Robinson 62a - G. W. Robinson, Adv. Chem. Sec. <u>36</u>, 10 (1962). Robinson 62c - G. W. Robinson, in <u>Methods of Experimental Physics</u>, Vol. 3,

D. Williams, ed. Academic Press, N. Y. (1962), p. 155. Rochkind 65 - M. M. Rochkind and G. C. Pimentel, J. Chem. Phys. <u>42</u>, 1361 (1965).

Rochkind 67b - M. M. Rochkind and G. C. Pimentel, J. Chem. Phys. $\underline{46}$, 4481 (1967).

Romand 52 - J. Romand and J. Granier-Mayence, Compt. Rend. <u>235</u>, 1023 (1952). Roncin 69 - J.-Y. Roncin, N. Damany, and B. Vodar, Chem. Phys. Letters, <u>3</u>, 197 (1969).

Rosengren 65 - K. Rosengren and G. C. Pimentel, J. Chem. Phys. <u>43</u>, 507 (1965).

Schoen 66 - L. J. Schoen, J. Chem. Phys. <u>45</u>, 2773 (1966).

Schwager 67 - I. Schwager and A. Arkell, J. Am. Chem. Soc. 89, 6006 (1967).

Seshadri 66 - K. S. Seshadri, D. White and D. E. Mann, J. Chem. Phys. <u>45</u>, 4697 (1966).

Sibleyras 68 - M. Sibleyras, J-Y. Roncin, N. Damany, Compt. Rend. <u>266B</u>, 175 (1968).

J. Smith 68a - J. J. Smith and B. Meyer, J. Chem. Phys. <u>48</u>, 5436 (1968). J. Smith 68c - J. J. Smith and B. Meyer, UCRL-18060.

W. Smith 66 - W. H. Smith and G. E. Leroi, J. Chem. Phys. <u>45</u>, 1767 (1966). Snelson 66 - A. Snelson, J. Phys. Chem. 70, 3208 (1966).

Snelson 67a - A. Snelson, J. Chem. Phys. 46, 3652 (1967).

Snelson 67b - A. Snelson, J. Phys. Chem. 71, 3202 (1967).

Snelson 68 - A. Snelson, J. Phys. Chem. 72, 250 (1968).

Sommer 63 - A. Sommer, D. White, M. J. Linevsky and D. E. Mann, J. Chem. Phys. 38, 87 (1963).

Spratley 66a - R. D. Spratley, J. J. Turner and G. C. Pimentel, J. Chem. Phys., <u>44</u>, 2063 (1966).

Spratley 66b - R. D. Spratley, Ph.D. Thesis, University of California, Berkeley, 1966.

Symons 56 - M. C. R. Symons and M. Townsend, J. Chem. Phys. <u>25</u>, 1299 (1956). Tan 68 - L. Y. Tan and G. C. Pimentel, J. Chem. Phys. <u>48</u>, 5205 (1968).

- K. Thompson 68 K. R. Thompson and K. D. Carlson, J. Chem. Phys. <u>49</u>, 4379 (1968).
- W. Thompson 60 W. E. Thompson and G. C. Pimentel, Z. Electrochem. <u>64</u>, 748 (1960).

Turner 63a - J. J. Turner and G. C. Pimentel, in <u>Noble Gas Compounds</u>, Hyman ed., University of Chicago Press, 1963, p. 101. Turner 63b - J. J. Turner and G. C. Pimentel, Science <u>140</u>, 974 (1963). Vaidya 64 - W. M. Vaidya, Proc. Roy. Soc. (London) <u>A279</u>, 572 (1964). Van Thiel 57a - M. Van Thiel, E. D. Becker and G. C. Pimentel, J. Chem.

Phys. <u>27</u>, 95 (1957).

Venderame 66 - F. D. Venderame and E. R. Nixon, J. Chem. Phys. <u>44</u>, 43 (1966).
Voigt 70 - E. M. Voigt, B. Meyer, A. Morelle and J. J. Smith, J. Mol.
Spectry., in press.

Walsh 53a - A. D. Walsh, J. Chem. Soc. 1953, 2266.

Walsh 53b - A. D. Walsh, J. Chem. Soc., 1953, 2288.

Wasserman 65 - E. Wasserman, L. Barash and W. G. Yager, J. Am. Chem. Soc. <u>87</u>, 2075 (1965).

Weltner 62a - W. Wletner Jr. and J. R. W. Warn, J. Chem. Phys. <u>37</u>, 292 (1962).

Weltner 62b - W. Weltner, Jr., J. Chem. Phys. 37, 1153 (1962).

Weltner 64a - W. Weltner Jr., P. N. Walsh and C. L. Angell, J. Chem. Phys. <u>40</u>, 1299 (1964).

Weltner 64b - W. Weltner Jr. and D. McLeod Jr., J. Chem. Phys. <u>40</u>, 1305 (1964). Weltner 64c - Weltner Jr. and D. McLeod Jr., J. Chem. Phys. <u>41</u>, 235 (1964). Weltner 65a - W. Weltner Jr. and D. McLeod Jr., J. Chem. Phys. <u>42</u>, 882 (1965). Weltner 65b - W. Weltner Jr. and D. McLeod Jr., J. Mol. Spectry. <u>17</u>, 276

(1965).

Weltner 66 - W. Weltner Jr. and D. McLeod Jr., J. Chem. Phys. <u>45</u>, 3096 (1966). Werder 67 - R. D. Werder, R. A. Frey and H. H. Gunthard, J. Chem. Phys.

47, 4159 (1967).

White 63b - D. White, K. S. Seshadri, D. F. Mann and M. J. Linevsky, J. Chem. Phys. 39, 2463).

LEGAL NOTICE-

0

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. TECHNICAL INFORMATION DIVISION LAWRENCE RADIATION LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720

£

۰.