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Monopoly Power Can Be Disadvantageous in the
Extraction of a Durable Nonrenewable Resource
1. Introduction

Standard models of the durable goods monopolist (not including Coase, 1972) assume
that the poteﬁtial supply of the good is unlimited. Models of monopoly resource owners
typiéaliy assume that the resource (the final output) is not durable, so that current demand is
not affected by previous sales, or the anticipation of future sales. We nest these two cases by
modelling a zhonepaiist who owns a nonrenewable resource which, upon exﬁ‘action, is
converted to a durable good. Thus, the potential supply of the good is finite; extraction
{production) costs may increase with cumulative extraction; past sales affect the supply in the
“second hand market" and consequently affect the demand faced by the monopolist in a given
period. Here market power may be disadvantageous: industry profits may be lower under
monopoly than in the competitive equilibritm. This result is reia;d to the three bodies of
literature concerning: (i) the Coase Conjecture; (ii) disadvantageous market power; and (iii)
nonrenewable resource monopolies.

The Coase Conjecture (Coase, 1972) states that if buyers of a durable good have
rational expectations and the monopolist is unable to commit to a future sales trajectory, she
loses market power "in the twinkling of an eye” (as the period of commitment-becomes
small). Stokey (1981) and Bulow (1982) formalize and verify this Conjecture, for the case
where the monopolist has constant production cosis. Kahn (1986}, using a Markov Perfect
equilibriem (MPE), shows that if production costs are convex and the durable good is

infinitely lived, market power vanishes only in the steady state. Gul et al. {1986) give

sufficient conditions for the existence of a unique MPE, which matches the Coase Conjecture.



Ausubel and Deneckefc (1989) show that if the buyer/seller relation is modeled as a game,
and-"fepntational strategies" ére admitted, monopoly power can be preserved even in the
absence of the monopolist’s ability to commit. Ausubel and Deneckere (1987) and Gul (1987)
demonstrate that industry profits ¢an be higher in a duopoly than under monopoly; these
papers also assume that agents have history-dependent (non-Markov) beliefs.

We consider only Markov perfect equilibria, and thus exclude reputational strategies.
In view of the extensive modc:iing of the durable goods monopolist using non-Markov
equilibria, our restriction to MPE requires sorne comment. There are three reasons for the
restriction.

First, we doubt that there is much to be learned using models of non-Markov
equilibria for the problem of the durable nonrenewable resource. Ausubel and Deneckere
(1989) have showed that without the Markov assumption, a great range of outcomes, ranging
from competitive to nearly monopolistic, can emerge as equiiibriaﬂ for the standard durable
goods monopolist. The introduction of a nonrenewable resource to the model does not
change the logic of their argument, so we expect that a similar result would hold here. It
does not seem particularly helpful to establish that multiple equilibria can arise for familiar
reasons, in a different context. In addition, this type of resuit is not helpful for welfare
analysis. N

Second, we think that economists are still interested in Markov equilibria. This is at
least partly because we rely on two- or three-peried models for much of our intuition about

dynarnics in complicated circumstances. In these finite horizon models it is often the case



that the unique perfect equilibrium is Markov'. We may want to know how the model
behaves when the number of periods becomes large or infinite, without losing the flavor of
the simpler model. In other words, we may want to require the model to be "continuous at
infinity”, so that our results do not rely on an infinite horizon. The Markov restriction is a
natural way to iin;ﬁose this continuity.

Third, there are circumstances where the Markov assumption appears to describe how
markets behave. Non-Markov, reputational equilibria, require that agents revise their beliefs
and behavior dramatically, following a (noticeable) deviation by another agent. This type of
discontinuous behavior may be reasonable in thin markets. Indeed, the DeBeers diamond
cartel is often cited as an example of successful exercise of market power. DeBeers’
reputation is probably critical to its success. If this is correct, the equilibrium is non-Markov.
However, this kind of equilibrium seems less likely to emerge if one side of the market (here,
buyers) consists of a continuum of agents, each of whom has neéﬁgible effect on the
outcome. It is harder to believe that a continuum of buyers would dramatically change their
beliefs in the event that the monopolist surprises them in a given period, and moreover that
they would do so in a way that is sufficiently predictable to support an equilibrium,

Our other important _assumption is that average extraction costs depend on the
remaining stock but not on the rate of extraction/production. This assumption-is common in

resource economics. It implies that the cumulative cost of producing a given stock is

independent of the rate at which it is produced, but the average cost may increase with

! There are exceptions to this, of course. For example, if there are multiple equilibria to
a subgame, there may be perfect non-Markov equilibria.
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previous extraction. Thus, the model is the natural extension, to a nonrenewable resource
base, éf Coase’s model. Hoﬁever, the Coase Conjecture does not hold.

The second related literature shows that in some situations the inability to make future
commitments does not merely inhibit the exercise of power, but can make an apparent
increaée in power disadvantageous. Examples of this are found in Salant et al. (1983), Ulph
and Ulph (1989), and Maskin and Newbery (1990); similarly, an increase in cooperation,
which is analogous to an increase in market power, can be disadvantageous [Rogoff (1985),
Kehoe (1989), Gatsios and Karp (1992)]. In all of these papers, an. increase in market power
or cooperation without the ability to commit means that the competitive equilibrium (or the
equilibrium when there is less market power, or less cooperation) may no longer constitute a
feasible equilibrium. For example, the durable goods monopolist can imitate a competitive
seller in thé carrent period, but may not be able to promise to do this in the future. Without
such a promise, there may be no point in imitating the competitive seller in the current
period. Since the agent with market power cannot credibly promise 1o behave exactly as a
competitive agent would, there is no reason to assume that market power need be
advantageous. )

In view of the existing literature, it 18 not surprising that market power can be
disadvantageous. However, that literature has led us to expect the result in specific
circurnstances, where it has (with the benefit of hindsight) a fairly obvious explanation. In

addition, papers on disadvantageous power rely on two-period models. In ocur model,

however, market power is always advantageous in a two-period setting. This paper shows that



the impossibility of disadvant&geous power in two-period models does not imply power is
advantageous in a many-period setting.

| The third body of relevant literature concerns monopoly extraction of a nonrenewable
rcsourcé. Uﬁ;ﬂ'recent}y, this literature made no distinction between durable and nondurable
resources. Monopoly extraétion of oil, for which the second hand market is extremely
limited, and the exiraction of minerals such as bauxite (the primary component of aluminum),
for which the sacﬂnd hénd market is extensive, were modeled using standard optimal control
problems. Recent papers k(Chi}ton 1984, Karp 1993, Le?hari and Pindyck 1981, Malueg and
Solow 1990) recognize the difference between the two types of resources. Pindyck (1979)
pointed oﬁf that the existence of a second hand market might erode the benefits of
cartelization of durable nonrenewable resources.

The following section describes the continuous time (infinitesimal period of
commitment) model and explains why the monopolist extracts more rapidly than competitive
firms. This is the basis.fdr the result that market power is disadvantageous. The next section
specializes to linear functional forms and presents the equilibrium conditions under perfect
competition and mqnopoly without the ability to commit. We use the equilibrium conditions
to compare extraction paths and to establish the possibility of disadvantageous power. The
next two sections provides further comments on the basic model and investigate the issue of
exploration and strategic destruction. A conclusion follows. Technical details are collected in

the Appendix.



2. The Model and a Preliminary Result
- This section presents the model and explains why the monopolist extracts more rapidly
than the compeﬁtive producer. This explanation provides the critical piece of intuition for the
disadvantageous monopoly result.
Let S, be the stock of the resource remaining at t and Q, be the stock of the durable
good. We normalize so that a unit of the resource is equivalent to a unit of the durable good;

the durable good depreciates at the constant rate 8 2 0. This implies

M $=-m

@ O =m - 80
where m is the rate of extraction (production) and z denotes dz/dt. With a discount rate of r

and inverse demand for services (implicit rental rate) of F(Q), the buyers’ rational (point)

expectations imply that price at t is
(H P = j.e - ArByis -0 F(Q) ds = P = {# + QP - F(Q).

The average cost of extraction, ¢(S), is non-increasing in the remaining stock of the

resource: ¢'(S) £ 0. The assumption of constant short-run average costs provides the natural

extension, to an exhaustible resource framework, of Coase’s model.?

? Malueg and Solow (1990) study a discrete time version of this model, in which

extraction costs are convex in the rate of exiraction, and the durable good does not depreciate,
and cumulative extraction is unbounded. The convexity of extraction costs generates results
similar to Kahn’s.
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The present discounted value (PDV) of industry profits is
* HQy Syl = [ e, - e(S)ymdr

where {m]} is the extraction profile and the initial time is 0.

The competitive equilibrium can be obtained by solving the social planner’s problem,
-or by maximizing industry profits (*) subject to (1), taking as given the price trajectory, and
then using (2) aﬁd imposing the rational-expectations equilibrium condition (3). If sellers
take the price as given, the Hamiltonian to their maximization problem is linear in the rate of
extraction, m, which can _take.any non-negative value. If the initial stock of the durable good
is high relative to the stock of the resource (e.g. at point d” in Figure 1), the equilibrium sales
price is low and sellers set m=0 until the stock

of the durable good depreciates to a low

enough level; thereafter, sellers produce at a Q : f(S)

positive finite rate until the resource is d"g / G(5)=g3
exhausted. If the initial stock of the durable i{

good is low re:lativ? to the stock of the ’d§

resource (e.g. at point d’ in Figure 1), sellers

produce a discrete amount (set me==ee for an d’ - S

) ) Figure 1 The Singular Arc

instant), causing the stock of the resource to

jump down and the stock of the durable good to jump up; thereafter they produce at a finite

rate, until the resource is exhausted. The curve in (S,Q) space, along which (0 < m < oo,

called the singular arc, is labelled G(S) in Figure 1. (In general this curve need not be linear,



or intersect the origin; both of these features hold for the linear example of the next section,
~ bat tﬁis has no bearing on the discussion here.) Point d is on the singular arc. If the initial
state lies above the arc, e.g. on dd*, m=0 until point d is reached. If the initial state lies
below the arc, e.g. on dd’, there is a jump to point d.

The singular arc describes the equilibrium. If something about the problem were
changed, so that for S > 0 the singular arc were higher [e.g. in Figure 1 the singular arc were
G(8) rather than G(8)], then the resource would be extracted more rapidly. This fact, which
is central to Proposition. 1, below, follows immediately from the definition of the singular arc.

The equilibrium competitive rate of extraction induces an equilibrium competitive
stationary price function, which we denote P(S,Q). This price function has two important
features, First, it is constant on 45° lines below the singular arc, such as the dotted line dd’
in Figure 1. This is due to the fact that for any state below the singular arc, there will be an
immediate jump to the arc. This result depends on the assampti;h of constant short run costs.
The second feature, which is stated as Lema 1 in Karp (1993), is that the price function is
continuously differentiable on the arc. These facts imply that dP°/9Q = JdP/3S on or below
the singular arc (Where the constraint m = 0 is not binding). This equality, together with the
first order conditions to the competitive firm’s problem, imply that in the competitive

equilibrium the following holds on the singular arc’ .

* In the competitive equilibrium, the usual Hotelling rule holds: P(8,Q) = (P-C). Use P
= PiS+ PQQ, equations (1) and (2), and P, = P, to obtain equation (4.
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4) 6(8,0) = PS,0) - o5y « 9L°82 _ ¢

dQ r
Equation (4) implicitly defines the singular arc, in terms of the unknown function P¢ and its

derivative. We use the function ¢(-), and the following assumption in a proof below.
Assumption 1 The function ¢(S8,Q) is decreasing in Q: ¢, < 0.

This assumption requires that (T+3)P°, + 6QF, < 0, i.e., that the endogenous function P* is
not "very convex”. This assumption is clearly met for the example in the next section (where
P¢ is linear), but is also satisfied much more generally. The assumption implies that ¢ < 0 for
points in the (5,Q) plane that lie above the curve defined by ¢(S5,Q) = 0.

Before studying the monopoly Q
G(S)
equilibrium, we discuss the necessary and
sufficient condition for the resource to be

exhausted in the first instant in a

competitive equilibrium. Consider three

cases: the singular arc intersects either (i)

s* $
Figure 2 Exhaustion in Finite Time
the S axis to the right of 0. Figure 1 .

the origin, (ii) the Q axis above 0, or (iii)

illustrates case (i) and Figure 2 illustrates case (ii). We can determine which of the three
cases arises by evaluating ¢(0,Q); this calculation does not require that we solve the
competitive equilibrium. In case (iii}, the resource is never exhausted (even asymptotically),

so we need not consider this case further. For case (i) the resource is exhausted
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asy_mpmticaliy (since Q, — 0 only as t —» =). Therefore, the resource can be exhausted in
thé first instant only in case (ii). For cases (i) and (ii), define Q" as the intersection of the

' siﬁguiar arc and the Q axis. Ijeﬁne the set of points in the positive quadrant of the (5,Q)
plane under the 45° line through Q" as I (see Figure 2). Thatis, L = {(5.0:$>0,Q=20
and $+Q £ Q°). For case (i), where Q" = 0, ¥ is empty, and in case (i) where Q" > 0, T is
non-empty. Finally, define the critical stock level, " as S = Q". From our definitions, the
resource is exhausted in the first instant in a competitive equilibrium if and only if the initial
condition (5,.Q,) € Z.

We now turn to the monopoly equiliﬁrium, where we follow Stokey (1981) in
assumiﬁg that buyers’ expectations about future sales (and consequently about the future stock
of the durable good) depend only on the current state, $,Q: Q%,, = q(s,Q,,S) where Q°,; is the
buyers’ point expectation of Q,,, and q(-) is a stationary function. (We restrict attention to
stationary, Markov equilibria.) These expectations (functions) geﬁerat& a price function,
P™S, Q). This can be seen by replacing Q. by its point expectation q(z,Q,, S, in equation
(3) for P. We assume that P*(-) is continuous and almost everywhere differentiable. This is
true for the linear example in the next section; more generally, a sufficient condition for the
assumption is that the expectations functions are continuous.

The function P™(-) is endogenous to the problem, but the monopolist takes it as given.
The function depends on buyers’ expectations of the monopolist’s future sales. The
monopolist at a point in time is not permitted to choose future sales (i.e., to "precommit”) but
can affect them indirectly, by means of her effect on the state, S, Q. If a jump does not

occur, the monopolist takes the current price as given, but recognizes that she can affect
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future prices by means of current sales. If the monopolist sells a discrete amount A at an
instant, i.e., causes the state to jump from S, Q to S - A, Q + A, then the sales price of A is
PP(S - A, Q + A), due to buyer rationality. The monopolist maximizes (*¥) [with P, replaced
by P*(5,Q)], subject to (1) and (2). The endogenous function P*(-} must be such that, given
that function, the trajectories of Q and S are optimal for the monopolist and also satisfy the
equilibrium condition (3), for all values of the state (5,Q) 2 0. The equilibrium function P%(:)
and the optimal monopoly behavior must be mutoally consistent,

Except for the fact that the function P* is unknown, this is a standard control problem.
It is linear in the rate of extraction, m, as was the case for the competitive producer.
Consequently, the monopolist produces a positive, finite amount only on a singular arc; above
the arc production is 0 and below the arc the rate of production is unbounded, causing the
state to jump.

We now demonstrate and explain the monopolist’s incentive to produce more rapidly
than the competitive producer. In the standard non-durable goods case, the monopolist
restricts sales in order to increase the current price. This incentive is absent in the continuous
time (infinitesimal period of commitment} durable goods model, where the monopolist takes
the current price as given unless she sells at an infinite rate and causes the state to jump.
That is, ignoring jumps, which in equilibrium might occur only in the first instant, both the
monopolist and the competitive seller take the current price as given at all points in time.
The monopolist, however, recognizes that current sales affect the evolution of the state, and

thus the trajectory of future prices.
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“In order tel determine how this recognition affects the monopolist’s behavior we
ycrform the following thaugﬁt experiment: Suppose that the monopolist solved a control
- problem with the competitive equilibrium price function P*(§,Q) rather than the monopoly
equilibrium price function. In view of the characteristics of P°(S,Q), described above, if the
| monopolist were to deviate from the competitive sales trajectory by selling an extra unit over
a small interval of time, this would have no first order effect on price over that interval. This
is because initially the deviation increases the trajectory of Q and decreases the trajectory of §
| by the same amount, and these changes offset cach other, leaving the price unchanged.
(Recall that dP°/0Q = dP/dS on and below the singular arc.) The effect of the deviation on
the evolution of S is permanent. However, provided that 8 > 0, the effect of the deviation on
the evolution of Q decays over time. Therefore, the eventual effect of the deviation is to
decrease the trajectory of S by more than the increase in the trajectory of Q. This implies
that the deviation causes the future price trajectory to increase. (';“ f}is is because dP/0Q} and
dP’/aS are both negative, and increasing extraction over an interval increases (Q and decreases
S.) Since the deviétion also increases the current flow of profits (because current price and
costs are unchanged, but sales are higher) it unambiguously benefits the monopolist.

We state this conclusion formally as

Proposition 1: Suppose that 8 > 0 and Assumption | is satisfied. Consider thel experiment in
which a seller maximizes (¥), with P, replaced by P°(8,(3), subject to (1) and (2). Denote Q =
G(8) as the singular arc in the competitive equilibrium, and Q = G(8) as the singular arc in
the experiment. (i) G(8) > G(S) for S > 0. (i) This inequality implies that the seller in our

experiment extracts more rapidly than in the competitive equilibrium, provided that (§,Q,) ¢
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.2. If (§,.Q,) € I then the resource is exhausted in the first instant in the competitive
¢qniﬁbrium and in the experiﬁaent; in this case, the competitive equilibrium is a MPE for the
monopololist.

Proof: (i) .The Hamiltonian of the control problem corresponding to the experiment is H =
n(S,Q,A,n)m- ASQ, where A and 1 are the costate variables associated with Q and §,
respectively, and the function % is defined as ® = P°(5,Q) - ¢(S) + A - 1. An interior
maximum of H with respect to m requires that 1t vanish. Differentiating the singular arc n =
0 with respect to time, substituting in the costate equations, and simplifying, implies that on

the singular arc the following holds:

0.

& BEQAW = PE.0) - (S + %PC?Q - _5?7‘. - 0(5.0) - .@. -

The shadow value of Q, A, must be negative. (This can be shown using the costate equation .
for A, the fact that dP*/0Q < 0, and the transversality condition U;n e €74, = 0) Using

Assumption 1 and equations (4) and (5), this implies that at a point in (5,Q) space where § =
0, it must be the case that ¢ < 0. This implies that the singular arc defined by (4) lies below

the arc defined by (5). (i) This conclusion 1s a restatement of the characteristics of the

singular arc contained in the description of Figures 1 and 2, and the definition of .}

If the monopolist faced the price function P/(5.Q) [and {5,,Q, ¢ )], her profits would
obviously be higher than in the competitive equilibrium. However, by construction, that
function satisfies the rational expectations constraint (3) only when the competitive sales
trajectory is followed. Provided that & > 0, the monepolist would choose a different sales

trajectory, and therefore must face a different endogenous price function. To understand how
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the. functions P" and P* are likely to differ, we can imagine an iterative search procedure for
p* Wh-ich begins with an initial guess of the function P, and then modifies this guess in a

| Way which moves us toward equilibrium. Equilibrium requires a price function and an
extraction trajectory that solve the monopolist’s control problem and satisfy (3). We have
seen that the initial guess, F¥, results in a production trajectory which is too high to be
consistent with (3). If the monopolist deviates from the competitive path in the manner
described.by Proposition 1, the price would have ta be lower in order to satisfy (3). The next
iteration should therefore use a guess that lies below P° for all values of the state. This leads
to the conjecture that P™ lies below P°. If this conjecture is correct, as indeed it is for the
linear example of the next section, it is not surprising that monopoly power can be

disadvantageous.

3. The Linear Example -
To obtain an explicit solution, needed for welfare comparisons, we restrict attention to

the following example

4 _ <

o

(6) FQ) =a -b0; ¢S =k, - kS, with

r o+

The last inequality means that the cost of extracting the final unit of the resource is at least as
great as the PDV, to society, of an extra unit of the durable good when Q=0. *This implies
that the non-negativity constraint 20 is not binding, and enables us to obtain a relatively

simple closed-form solution. By defining S as the stock which it is economically rational to

extract, we can replace the weak inequality by an equality; hereafter we assume a/(0+1) = k.
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Obviously we also have to assume that the initial stock satisfies S, £ k/k, so that extraction
costs_“are non-nggative._ Excépt where we state otherwise, we assume that & > 0.

The Appendix derives the equilibrium under competition and monopoly; the methods

- were outlined in the previous section. As benchmarks we also consider two other

assumptions about the xﬁarket structure. The "open-access” equilibrium refers to the situation
where sellers are price-takers and have no property rights, so that there is free entry into the
industry. The "precommitied monopoly” equilibrium refers to the case where a monopoly
owner of the resource is able to make binding commitments about her future behavior [a
model studied by Levhari and Pindyck (1981) and Chilton (1984)].

For the linear exaini)le in equation (6), it is obvious that the equilibrium is unique for
the case of competition, "precommitted monopoly"”, and open access. For the case of a
discrete stage, finite horizon model, the Markov equilibrium is also unique, and can be
obtained using dynamic programming (selving the problem ”backﬁwards“, from the final
period). In the appendix we explain how we use the characteristics of the equiiibxium of the
discrete stage, finite horizon model to search for a particular class of equilibrium in the
continuous fime, iﬁjﬁﬁitc horizon model. We want the equilibrium of the latter model to
"resemble” the limiting equilibrium (as the horizon goes to infinity and the Iength of each
stage to 0) of the former model. This leads us to look for an equilibrium with a linear price
function and a linear singular arc. However, nothing about this procedure implies that the
equilibrium we have obtained is unique.

Indeed, it is often the case that there exists a continuum of Markov equilibria in

infinite horizon problems, even with the additional restriction of differentiability of
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endogenous functions. For example, Tsutsui and Mino (1990) show that a linear-quadratic
differential game has a continuum of non-linear Markov equilibria, in addition to the well-
known 1iﬁear equilibrium. It is natural to ask whether this is also possible in our model.

Although we do not have a proof of uniqueness, we can at least explain why the
intuition provided by Tsutsui and Mino does not apply in our model. In their game, non-
unigueness arises because of an "incomplete transversality condition”. There is another, more
intuitive way to describe this problem. The necessary conditions to a differentiable MPE, for
a game with a sing}c. state variable, can be rewritten to describe the equilibrium.as a (system
of) differential equation(s). However, the necessary conditions do not enable us to pin down
a steady state. Unless we have a "natural boundary condition" which selects a steady state,
we are left with a differential equation but no boundary condition. Obviously, there is not a
unique solution to this mathematical problem, and thus not a unique MPE. In our model,
however, there is a "natural boundary condition”. Because the d;fable good decays, and
because production of the good requires a non-renewable resource, the state (8,Q) must
eventually approach (0,0). This is our boundary condition.* The fact that we have a unique
steady state suggests that there probably is a unique (differentiable) MPE. However,

establishing this rigorously is complicated by the fact that we have two state variables, so the

equilibrium conditions lead to a system of partial differential {rather than ordinary

* In order to help understand this, consider the durable good monopolist where the
durable good decays, but production of the good does not require the exhaustible resource (5o
that aggregate production can be unbounded). In that case, there is no "natural boundary
condition”, since it is possible to sustain any stock as a steady state. Differentiable MPE are
therefore not unique, for essentially the same reason as described by Tsutsui and Mino. This
issue is studied in Karp (1994).
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differential) equations. We have not established that there is a unique solution to this system,
which satisfies our boundary. condition, and therefore we can not be sure of uniqueness.
Hereafter, we consider only the linear MPE.

_ The singular arc for the competitive equilibrium is linear {G(S) = g8] because of the
linearity of the primitive functions, and intersects the origin because of the assumption that
a/(8+r)=k,. The slope of the arc (g) is the unique positive root of (7a). (Parameters are

defined in Table 1.)

T2)  higy=rafr + 8 + [(r + H(a ~ 1) = (o + 1) 8lg - ¢ + 8)g? = 0.

As we noted above, there is also an equilibrium for the monopolist which involves a

linear singular arc, the slope of which is the unique positive root of

-
(7b) o) = -ar (r+8) + [r (1-20m)] g + Lf_fl‘ﬁ gr+m, g’ =0.

0 -

Under open-access, the slope of the singular arc is the positive root of

(7c) ~r+ Bo+ (1 -momg g = 0.

This equation is obtained using the fact that P = ¢ on the singular arc, and equations (1) - (3).
In order for the equilibrium for the precommitted monopolist to be easily comparable
to the previous cases, we require that the initial stock of the durable good be 8: Q, = 0.

Without this assumption, the extraction path for the precommitted monopolist depends on the
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‘jnitial stock and calendar time as well as the current state. If Q, = 0, the slope of the singular

arc here is the unique positive root of®

(7d) —F -My g+ gt =0.

v R

The derivation of (7a) - (7c) assumes that & > 0. However, it is straightforward to
show that in each case the equilibrium is continuous in & at 8 = 0. When & = 0 the
equilibrium stock level under competition or monopoly (without precommitment) equates
price and marginal cost. We can verify by direct calculation that this is the level given by
the point d in Figure 1 when g = or.

For the limiting case & = 0 the positive root is g = rot for each of the three equations
(7a) - (7c); the roots are different when & # 0. Since the root of the respective equations
completely characterizes the equilibrium trajectory, this result implies that the competitive
equilibrium is the same with or without property rights if and oniny if&=0. If 3 =0 there is
no reason to conserve the resource: anything that is worth extracting is extracted immediately,
and there are no resource rents. More importantly, the result implies that & = 0 is necessary

and sufficient for the Coase Conjecture to hold in this setting. We restate this as as

° The Hamiltonian to the precommitted monopolist’s problem is H = [P - ¢(8) -A, + A,Jm
- ,8Q + L J(+8)P - F(Q)], where A, &,, and X, are, respectively, the costate variables
associated with the states S, Q and P. We use the first order conditions to this problem,
together with the boundary condition 2,(0) = 0 (because P is a "jump state”), and specialize to
the linear example in equation (6), to obtain (7d).
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Lema 1: In the nonrenewable resource durable goods model with primitive functions given by
(6), the competitive, open-access, and monopoly equilibria and corresponding profit levels are

_ cquaf ifand only if § =05

Given the linear model (and, for the precommitted monopolist, the assumption that Q,
= (}), the equiﬁbrium extraction paths are completely characterized by the slope of the
rcspecﬁve singular arcs, g, a parameter which depends on @ = k/b, r, 8, and the market
structure, Heréafter we assume that Q, = 0, so for all market structures there is an initial
jump to the singular arc. Given an initial condition (before the jump) of §, > 0, Q, =0, the
level of Q after t units of time is Q, = (gS/(1 + £)) e®, where p = dg/(1 + g). A larger value
of g implies a larger initial jump and a faster decay rate. Therefore, for a given initial value
Sg, the resource stock remaining at t > 0 is a decreasing function of g A smaller value of g
implies a more conservative extraction path. We define g°, g”, g>and g¥ as, respectively, the
positive roots of (7a) - (7d). (The mnemonic is ¢ = competitive, m = monopoly, o = open-

access, and p = precominitted monopolist.) We have

Lema 2: For the linear functions in (6) with a/(r+8) = k, and § > 0, (i) gf < g° < ¢g" <g", and

(ii) for values of (S,Q) which satisfy S > 0 and Q < ¢°S, P™S.Q) < P(S5,Q).Y

% Proposition 1 of Karp (1993) shows that Lema 1 holds for general functional forms, if
a differentiable MPE exists; that paper states that 8 = 0 is necessary and sufficient for the
monopoly and competitive equilibria to be equal. However, that statement should be
modified, by requiring that (S,,Q,) & Z. If (5,,Q,) € Z, the monopoly and competitive
equilibria are the same, regardless of the value of 8. I thank Brian Wright for bringing this to
my attention. Note that in our linear example, X is empty.

7 If (8,Q) lies in the cone bounded by the two singalar arcs Q = ¢°S and Q = ¢*S, then
the constraint m 2 0 is binding for the competitive firm. We can still obtain a closed form
expression for the competitive price function in this region, but it is complicated, and we are
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"_jl‘ng;g_gj: 'The inequalities in (i} can be established by comparing the positive roots of (7a) - (7d).
o -‘__:.;_Huwet“/cr, the only surprising. inequality is the second, which-implies that the monopolist
ggﬁacts-lﬁorc rapicﬁy than the competitive firm. We provide a geometric proof of this
inequality, and in the process, we also verify part (ii). The linear example is convenient
because it implies that for both the competitive and monopoly cases, the form of the

equilibrium is the same. In both cases the

price function is k, - B(S+Q) when the 4

constraint m 2 0 is not binding, and the B(g)
singular arc is linear, Q = gS. The g™

comparison of equilibria therefore amounts gt g™ ®)
to a comparison of equilibrium values of g'®m

B and g. For an arbitrary value of g, the * *
_, g ary E pe¢ Rpo B

rational expectations constraint (3) . L .

Figure 3 Equilibrium for the linear model
determines an equilibrium value of B.
This relation is written in equation (A6) of the appendix, and is graphed as B(g) in Figure 3.
A larger value of g means that more of the good is sold, so the price is lower, and B is
larger. [Differentiation of equation (A6) confirms the fact that B'(g) > 0.] For an arbitrary

value of B, solution of the monopoly and competitive firms’ problems determine the

equilibrium values of g" and g°. We denote the dependence on B of these values by writing

not able to compare it with P* = k, - B"(5+Q). However, by continuity, the competitive
equilibrium price must be less than P” for Q = g°S + ¢, for small & (i.e., slightly above the
competitive singular arc). We conjecture that this relation holds at all points in the cone
bounded by the two arcs. If this conjecture is correct, it is obvious that P < P° for Q > ¢"$
(i.e., at points above the monopoly singular arc).
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i them as g"(B) and g°(B). Using equation (4) and the linear functions we can write g° = r(k-

'.'...:_B)..;.’(r«l-ﬁ)B', 50 dg°/dB < 0, as shown; a larger B implies lower demand which implies lower
éales. Proposition 1 implies that for arbitrary B, g°(B) lies below g®(B), as is shown in
Figure 3. (Our argument does not rely on the sign of dg"/dB.) From Figure 3, it is

immediate that g” > g° (in equilibrium) and that B™ > B°.
The Leiﬁa, together with the comments immediately preceding it, imply:

Proposition 2: For the linear functions in (6) with a/(r+d) = k,, 6 > 0, the ordering of
equilibrium extraction paths, from "meost conservative” to "least conservative” is:
precommitted monopolist, competitive seller, monopolist (who cannot precommit), and finally,

open-access.

In the previous section we showed that for general demand and cost functions which
satisfy Assumption 1, the monopolist would want to deviate from the competitive equilibrium
by producing more rapid'y than competitive firms. Proposition 1 compared the competitive
and monopoly cutcomes under the counter-factual assumption that both faced the same
endogenous price function. Proposition 2 compares the two equilibrium outcomes when the
two types of sellers face their respective equilibrium price functions.

In view of the fact that the equilibrium trajectory under the monopolist lies between
the trajectories under competition and open-access, we expect the PDV of industry profits
under monopoly to lie between the PDV of profit levels under competition and open-access.
Given a value of g and an initial condition Q, = 0, §, > 0, the equilibrium PDV of producer

profits, under all market structures, equals v(g,0,1,8,b)-S;. The function ¥(-) is very
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complicated, but for Proposition 3 below, it is sufficient to note that it is analytic at § = 0.
_ The_ cempl_éxity of ¥( ) makes it difficult to establish that market power is disadvantageous in
_ 'gencrél; the probie'ni is that we can not show that ¥(*) is globally concave in ¢® However,

we have the following local result, for small positive values of d.

Proposition 3: For safﬁcientiy small positive & and for the linear functions in (6) with Q, = (,
monopoly preﬁis are strictly less than industry profits in the competitive equilibrium and

strictly greater than industry profits in the open access equilibrium. |

To verify that power is disadvantageous for large &, we performed several hundred
simulations for r in the range of (.01, .1), 8 in the range of (.001, 3) and « in the range of
(.1,3). In all cases, monopoly power was disadvantageous. In a few cases, profits under
monopoly are less than half of competitive profits. For small values of &, however, the loss
d;]€ to market power is negligible; this is consistent with the discussion of the limiting case &
= {}, and Lema 1.

In order to determine whether disadvantageous market power is a peculiarity due to
the use of an infinite horizon, infinitesimal period of commitment model, we compared
equilibrium payoffs under monopoly and under competition in an N-stage model with a finite
period of commitment, &, for the functions given in (6). We found that for large but finite N

and small but positive €, the monopolist receives a lower payoff.

* We know that industry profits are maximized under the precommitted monopolist, and
that those profits equal Y(g")S;. Therefore g¥ maximizes y(g). If we knew that v were
globally concave in g, we could use the fact that g < g° < g" to establish that y(g") > v(g™.
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A Discussion of the Results

In the discussion of Proposition 1 we emphasized that P°(S,Q) is constant on 45° lines
b¢10W the singular arc; the derivation of (4), which was used in the proof of the Proposition,
relies on this fact. This characteristic of P° is due to the assumption that costs are linear in
the rate of extraction. If costs were non-linear in extraction, the first order effect of a
decrease in S would not exactly offset the effect of an increase in Q, so the intuition which
preceded the Proposition would not hold.

The importance of a small period of commitment, which was verified by numerical
experiments, can also be explained by reference to Proposition 1. In the discrete time analog
to the model, the seller with a period of commitment of € chooses sales of me at the
beginning of a period. If the endogenous price function is P(5,Q), and the stock at the
beginning of period t is $,Q, the seller obtains the price F(Q+mg)e + ¢ ™ %.P[S, - mg, e¥(Q,
-?--nye)}. The effect of m, on the cument price is of the same order of magnitude as €, so for €
> 0, the monopolist seller has the usual incentive to restrict sales, which opposes the
incentive to increase sales identified in Propesition 1. For a sufficiently large period of
commitment, the usual incentive dominates, and market power must be advantageous.

The intuition for Proposition 1 also relied on the assumption that the future horizon
was substantial. For & > 0, a positive deviation from the competitive sales path eventually
has a larger affect on the trajectory of S than on the trajectory of Q, and therefore increases
price. This would not happen if & = 0 or if the time horizon were negligible. Again, the

numerical experiments confirm the importaace of a long time horizon,
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In a two-period version of our model market power can never be disadvantageous. It

_is worth stating the reason for this because it illustrates how the intuition from two-period

o 'ziiedels_ can be misleading. At the beginning of the first stage, the monopolist is capable of

séilihg the same amount as her competitive counterpart. This leaves the monopolist at the
sé}ﬁé state .as hcf counterpart; the value of being at that state in the second stage is greater for
the monopolist. In addition, the first-period profits are greater for the monopolist if she sells
the same amount as her competitive counterpart: the monopolist receives a higher price since
buyers anticipate that future sales will be lower under the monopolist than under the
competitive counterpart.

This line of rcasoning. does not extend to a model with many periods. The above
argument is based on the assumption (which is valid for two periods) that, if the monopolist
were to imitate her competitive counterpart in the current stage, buyers would expect her to
sél less in subsequent stages than her counterpart does. With a sufficiently large number of
periods, however, control over current sales does not enable the monopolist to insure that
future sales, and the future stock of the durable good, will always be lower under monopoly.
The competitive producer will eventually exhaust the nonrenewable resource, and leaving
some (economically viable) resource in the ground cannot be part of a Markov equilibrium
under the monopolist. Therefore, for the infinite-horizon model when 8 > 0, the trajectories
of the stock of durable good under the monopolist and the competitive producer are either
identical or cross. (When & > 0, the stock of the durable good approaches 0 and the
monopolist will eventually want to sell more of the good.) Therefore, the monopolist and the

competitive producer extract the same amount of the resource and produce the same amount



of the dux:'abie good asymptotically. This means that the monopolist cannot credibly commit
. to h&ving. a lower stock of the durable good present in the market at each point in the future.
S ‘We 'exwpiained why the intuition from the two period model can be misleading.
However, that model does help us understand why mimicking competitive behavior in each
period, aithoﬁgh feasible, is not an equilibrium strategy. Selling at the competitive level in
the current period is not a signal (in a MPE) that this strategy will be followed in the future.
Since sales price depends to a large extent on future sales, selling at the competitive level in
the current period does not give the monopolist the competitive level of profits. This is true
in a two period or a many-period miodel. The surprising result, of course, is that mimicking
competitive sales early in the program does not enable the monopolist to do at least as well as
the competitive firm, if there are many periods remaining. The monopolist may have lower

profits than the competitive firm.

5. Exploration and Strategic Destruction’

Thus far we have assumed that the initial stock of the resource is exogenous, and that
the stock can be decreased only by selling it, i.e., by adding to the stock of the durable good.
In this section we consider the monopolist’s incentives for exploration and/or strategic
destruction of the resource. We also compare these incentives with those of a competitive
firm.

For a given level of Q, a reduction in S increases the equilibrium price, because

buyers know that future sales must be reduced. If the monopolist were able to destroy the

® 1 thank an anonymous referee for suggesting the topic of this section.
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" stock, she would benefit from the price increase. Of course she would lose because the

L yélnn;e of fﬁtum sales must fall, and becanse extraction costs increase. If the benefit ever
éxcécds the ios’s, then the monopolist has an incentive to destroy part of the stock for

| strategié reasons. We show that for the linear example in equation {6), strategic destruction
does not occur, but that in other cases it can occur.

Consider the monopolist’s incentives in the first instant, when the initial stock is at a
point like d’ in Figure 1, where S, > 0 and Q, = 0'°. As we stated in Section 3, for our
1i§ear example, the monopolist’s value function is ¥°S%, which is increasing in S. Clearly, the
monopolist .Wou}d have no incentive to destroy any of the resource before the jump to the
singular arc. Now suppose that the monopolist is on the singular arc, at a point like d = (§,,
gS,) in Figure 1. If buyers expect the monopolist to remain on the singular arc (as the
equilibrium predicts) and if the monopolist actually follows this path, then we can again show
(u-;'sing tedious but straightforward calculations) that the payoff is quadratic: 8S,%. The
function 9 depends on the exogenous parameters, but not on the state (5,Q), provided that Q
= g”8. At point d, the monopolist does not want to deviate by destroying some of the
resource, €.g. causing the state to jump to a point d”’ = (S;-4, g5, to the left of d (A > 0).
The point d”’ is above the singular arc, so from that state the monopolist’s best policy is to
set m = 0 until the stock of durable good decays to g(S,~A). Suppose this takes T units of
time; during this interval the monopolist receives no revenue and incurs no costs. The payoff

from destroying A units of stock is e™8(S,-A)’ < 8S.”. The same kind of argument shows that

' The assumption that Q, = 0 results in tremendous simplifications. If Q, > 0, the value
of the jump to the singular arc includes cross-product terms in Q and S.
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it is not optimal to dest_rojr the stock when the state is above the singular arc. In summary,
: (f_eif _oin‘ linear eﬁampk:) the monopolist has no incentive to destroy the stock, either before a
3 jﬁmp’, or while on the singular are, or if, for some reason, the state is above the singular arc.

We noted that the monopolist incurs two types of costs from raising the price by
destroying .the stock: (i) the reduction in future sales and (ii) the increase in extraction co;sts.
The first cost necessarily occurs, but the existence of the second cost is merely an
assumption. We can imagine situations where extraction costs do not depend on the
remaining stock. To show that strategic destruction can occur, we therefore consider the
model where ¢(S) = 0. In this case, it is easy to show, using equation (4), that a sufficient
condition for the competitive singular arc to intersect the Q axis at a point Q" > 0, is F'(0) > -
=0, Suppose that this inequality holds, so that X is not empty.

For any initial condition (5,Q,) € £, exhaustion is instantaneous in the competitive
cciuiiibrium, and the price in the first instant is P%(8,,Q,) = f“ge‘(’*é)’F({S§+Qu}e'&)d‘c (obtained
using equation (3) and the fact that future sales must be 0, since the resource is exhausted).
We use the superscript oc to remind the reader that this is the competitive price function for
points in X. Assumption 1 holds for points in X if F(Q) is not "very convex"; we adopt this
assumption. From Proposition 1, we then know that if the monopolistic seller faces this price
function, she will want to exhaust the resource immediately, provided that strategic
destruction is not an option. Therefore, if strategic destruction is impossible and (5,,Q,) € Z,
the function P*(5,Q) is a Markov equilibrium price function, and monopoly profits are

P*(S,,Q,)S,. the same as competitive profits. (Preposition 1.31.)
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the monopolist can destroy A units of the resource in the first instant, monopoly
i‘__'ﬂief'ensﬁing Markov equilibrium are T1(S,,Q,4) = P®(8,-A,Q,)[S,-Al. Therefore, a
nt 'c.:.(;nditi'en for strategic destruction to be an equilibrium strategy is that IT is an
mcreasmg function of A for (5,,Q,) £ T.'"! We can show by example that this sufficient

| condmcm may or may not be satisfied, depending on the parameters of the problem. We-do
: thlS using the case of linear rental demand, F(Q) = a - b() and zero extraction costs.

: .Substituting the linear F(Q) into P™, setting S = 0, and using equation (4), implies that Q" =
ar(r~é28)/b(r+5-)2. For simplicity, suppose that Q, = 0, so that exhaustion is immediate if and
only if S, £ Q".- Define § as the value of S that maximizes P(S,0)S. For linear F(Q), § =
a(r+28)/2b(r+3). Consequently, the monopolist’s optimal policy is to destroy A = S, - §, for
S, & (§, S"1. In other words, for Q, = 0, there are initial value of S, such that the monopolist
would want to engage in strategic destruction, provided that § < §". A necessary and
Sl;f.ficient condition for the last inequality is 8 < r. In summary, under the maintained
assumption that Q, = 0, strategic destruction occurs if 8 < r whenever § < §, <S5 if 8>,
strategic destruction never occurs when S, < §7,

We now briefly consider the monopolist’s incentives to add to the stock, e.g. by costly
exploraﬁon. Again, we begin with the example in equation (6) and assume that Qg = 0, At
the initial instant before a jump, the payoff is ¥"S*. Since this function is not only increasing,
but is also convex, we see that the incentives o add to the stock are higher, the larger is the

stock, The reason for this is that (by assumption) an increase in the stock decreases

" For points outside of £, instantancous exhaustion does not eccur in the competitive
equilibrium, so the price function we identified is not the competitive price function.
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- extraction costs. _Thi’s saving is more valuable, the greater is future extraction, i.e., the greater
: is tha stock. Thus, if it ever pays the monopolist to incur theé exploration cost necessary to

_increase the stock, she will want to do so immediately. From our example with zero
extraction costs, is obvious that in some cases the monopolist would not engage in
exploration,

Finally, consider the relative incentives of the monopolist and the competitive firm to
engage in exploration. As we noted in Section 3, for all our simulations, ¥ > ¥, and
Proposition 3 states that this inequality must hold when 8 is small. For these cases, at least,
the marginal value of a unit of stock is greater for the competitive firm for the example in
equation (6). Therefore, although the monopolist has an incentive to increase its stock size,
this incentive is greater for the competitive firm. Our discussion of the case where extraction
costs are 0, showed that the marginal value of a unit of stock might be negative for the
rr;énopolist. The marginal value for the competitive firm, which takes price as given, is
always non-negative. This suggests that the incentives for exploration tend to be lower for

the monopolist under quite general circumstances.

6. Conclusion

If (i) a monopolist produces a durable good which depreciates at a constant, positive
rate, (ii) average costs are independent of the rate of production, (iii) the monepolist is unable
to precommit, and sells to nonstrategic buyers with rational expectations, and (iv) production
requires & nonrenewable resource, also owned by the monopolist, then the natural extension of
the Coase Conjecture fails, and may do so in a surprising way: monopely power, instead of

disappearing, can be disadvantageous. This may provide an explanation for the paucity of
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: camis .sslii.ng durable resources; not only is it difficult to create and maintain a cartel, but the
reward to d{)iﬂg so may be negative.
5 Our results do not imply that a durable nonrenewable resource monopoly is necessarily
: di'saévan-tégé_:ou.s. There are three types of circumstances where monopoly would be
advantageous. First, the equilibrium may be non-Markov, as appears to be the case with the
DeBeers cartel. - Second, the equilibrium may be Markov, but the time horizon may be
sufficiently short, or the period of commitment sufficiently long, that the result conforms to
the inttlxi'tion we obtain from two-period models. Third, there may be something about the
technology that provides a substitute for commitment in a Markov equilibrium. Examples of
this include an upper Hmit on the rate of extraction, or costs which are convex in the rate of
extraction, or the possibility of strategic destruction.

In addition to providing insight into nonrenewable resource durable goods monopolies,
tﬁe analysis is of more general interest. We provided an example of a situation where market
power cannot be disadvantageous in a two-period setting. When we examine the reason for
this, we recognize that the assumption of two (or a small number of} perieds is critical to the
result. Previous examples of disadvantageous market power used two-period models. These
examples may have suggested that, in situations where market power can be disadvantageous,
this possibility can be established in a simple manner. Our counter-example suggests that the
possibility of disadvantageous market power may be very hard to detect, since it may be due
to factors which are assumed away when we work with two-period models. Disadvantageous

market power may be more prevalent than 15 commonly thought.
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Appendix: Derivation of (7a) and (7b) and Proof of Proposition 3

Derivation of (7a): An interior solution (0 < m < <o) to the competitive firm’s

i maximization problem requires dP/dt = {P - ¢(8)]. Setting this equation equal to the second
part of (3) implies

(A1) P = [F(Q) - re(DH1/8 .
This equation ﬁélds only on the singular arc, Q = G(S). Differentiating this function with

respect to time, using (1) and (2), implies

(A2) | - m = 9GO
1+ G/(8)

on the singular arc. Differentiating (A1), using (3), (A1) and (A2), results in

rF(GS)) = r(r + ) «(S) =

(A3) )
~FIG(SNBG(S) + (rcf(S)(l f/((f,%; 3G(S)

We substitute the linear functions from (6) into (A3) and use the "trial solution" G(S) = g, +
gS in the result. Equating coefficients of S and 1 implies that g solves (7a), and g, = (.
Derivation of (7b): The derivation proceeds in three steps. We first explain why we
restrict attention to a particular form for the Markov equilibrium. We then show that the
positive root to (7b) defines the equilibrium. Finally, we show that the positive root is unique.
Step 1. We look for an equilibrium with the following two characteristics: (i) There is
a linear singular arc Q = g§; for Q < ¢S the state jumps to the singular arc, and for Q > g§
extraction is 0 until the arc is reached. (ii) The endogenous price function is linear, with P =

k, - B{(5+Q) when the constraint m 2 0 is not binding. Solving for this equilibrium thus
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'require_s finding the two constants g and B. "Step 1" of our argument explains why these two
chm;;teristics of the equilibrium are reasonable.

'. We view the continuous time model as a means for studying the behavior of a discrete
time model in which ﬁhe period of commitment (the length of a stage) is small, and the
'hoﬁzon is large. Therefore we restrict attention to equilibria of the continuous model that
have the same characteristics as the limit (as the period of commitment vanishes) of the
equilibrium of the discrete time model. This discrete time model is, in turn, taken to be the
stationary limit, as the horizon becomes infinite, of a finite horizon model. Thus, we can use
dynamic programming and backward induction for the discrete model. In other words, we
begin with a discrete stage model with the length of each stage £ and a finite number of
stages, N. We let N —» oo {0 obtain a stationary solution. We then let ¢ — 0 to obtain a
continuous time model."

I. Over a period during which the rate of extraction is m, the amount extracted is me.
The discrete versions of equaﬁons (1) and (2) are S,,, - S, = -me, and Q,,, = e*(Q, + me). To
simplify notation, we shall assume that the amount me becomes available instantly at the
beginning of a stage, and depreciation occurs at the end of the stage. That is, if the stock is
Q, at the start of a stage before sales, then it is Q, + me as soon as sales have occurred, and it
remains at that level until the end of the period, when it decays to e¢®(Q, + me). This

assumption has no effect on the limiting case where € — 0, but it simplifies the description of

the discrete model. The cost of extracting me given an initial stock of §, is [£ (k, -kSmdt =

2 The remaining paragraphs in Step 1 are preceded by Roman numerals, in order w©
facilitate communication with referees. These numerals will be dropped in future versions of
the paper.
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o (k,, - kSt)mé + [k(me)*}/2 = C(S,m;e). Note that the portion of costs that is quadratic in m, is
. o(e) (n is 'pri:;pgrtional to €.

o 'II.l Fér the finite horizon model, the seller has N opportunities to sell the good. After
: § the N’th sale, consumers continue to use the purchased stock, until it erodes to 0, but no
further sales are made. Given the linear rental and cost functions defined in equation (6),
then in period N, if the constraint m 2 0 is not binding, the equilibrium has three important
characteristics, stated in the following Remarks. Remark (i): The equilibrium sales rule is a
linear function of the state vector, (S, Qy). Remark (ii): The monopolist’s value function is
guadratic in the_stﬁte. Remark (iii): The equilibrium price is linear in the state (i.e., Py = Ay
- BinSx - BywQn for some numbers Ay, By, Byy). Remark (jii) requires some explanation.
Given our assumptions about timing, buyers are willing to pay [a - b(Qy + me)[{1 - e™}/r +
e P, (Q,,) for a unit of the stock at stage N. The function P,,, which is derived from
thc linear rental function F(Q), is linear, and by Remark (i) m is a linear function of the state
vector. This establishes Remark (iii).

I We can now use a standard inductive proof to establish that Remarks (i), (it) and
(iii) hold at stage t < N, provided that the constraint m 2 0 is not binding. This is true for all
finite N. We can then consider the infinite horizon limit, as N — oo, In order for the
stationary equilibrium to be the limit of the equilibrium to the finite stage problem, Remarks

(i) - (iii) must hold.” In particular, when the constrain m 2 0 is not binding, the control rule

3 We have not established uniqueness in the infinite horizon model, so we can not rule
out that there are other stationary Markov equilibria which have different properties, e.g., non-
linear endogenous price functions. The issue of uniqueness is addressed in the text.
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1sh1war the value function is quadratic, and the endogenous price function is linear (P(5.QQ)
=A-BS-BO.

' I\f We now want to establish that the discrete stage dynamic programming problem is
linear-quadratic in the control, m, and more importantly, that the quadratic terms in m are
o(e). This means that as € — 0, the maximization problem becomes linear in m, so that the

solution involves a singular arc and bang-bang controls. The discrete stage DPE is

m

J(Q,S8) = max[[a--b(Qﬁmg)} l“i“rﬁ +e"~(r*~8>€P(QM,S“e)]mE - C(§,m;e)
+e FJ(Q, 5. -

The first term on the right side in square brackets is the current price. Note that this function
is O(e) in the control, m. That is, for non-infinitesimal €, the monopolist can affect the
current price, but her ability to do so diminishes as € shrinks. Since the equilibrium price in
tl;; next period is a linear function of the state, which is a linear function of m, revenue in the
current period is a linear-guadratic function of m. However, from the previous comments, the
revenue terms which are quadratic in m are o(e). We mentioned above that current extraction
cost C(S,m;g), is quadratic in m, with the quadratic term being o{e). By Remarks (i) and (i),
3Q,8) is a quadratic function of the state. Since the state is linear in me 'J(Q,,..S,,)/om” is
proportional to €. In summary, the terms in the DPE which are quadratic in m are
proportional to £*. If we Taylor expand the discrete stage DPE around € = 0 and take limits to
obtain the continuous time control model, we obtain a problem which is linear in m, as we set
out to show. We summarize this as Remark (iv): The continuous time control problem is

linear in m, and therefore involves a singular arc and bang-bang contols.
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T V We now use Remarks (ii) and (iv) to establish that the singular arc (for the

- _contfi_ﬁtl;;iixs time limit) is linear: Q = gS. To this end, define the state vector y = (5,Q).

Usmg Remark (i), for the discrete stage problem, m is a linear function of the state on a two
d;mcnswnai set in the plane S,Q (where m 2 0 is not binding). In this set we can substitute
the linear coniroi rules into the state system, and write the dynamic system as y.,.. = W(E)y,
or [V, - vJ/e = [W(g) - Ily/e. The matrix W is obtained by substitution of the equilibrium
control rule into_ the state e@uaticn; I is the identity matrix. We have also used the fact that
the sysfe@ must éonverge to the point ($,Q) = (0,0), so the linear system does not contain an
intércept.- Define W = lim,_,[W(e) - I}/e, so that the limiting form of the linear difference
equatioﬁ is y = Wy. By Remark (iv), m takes interior values only on the singular arc (which
is of dimension 1) in the continuous time problem. Consequently, W must have a non-
negative eigenvalue. (Otherwise, a jump would not be required at a state off the singular arc.)
T}—’l.erefore, the solution to y = Wy implies Q/S = n,e"/n,e™ = g, where h is the negative
eigenvalue of W and n,, n, determine the singular arc.

V1. Finally, we use Remark (3ii) and (iv) to explain why we require P = k, - B(§+Q).
By Remark (iil) we want a linear price function when m 2 0 is not binding: P=A - B,S -
B,Q. By Remark (iv) buyers anticipate a jump (in the continuous time problem) when the
state is below the singular arc, Therefore, price must be constant on 45° lines such as dd” in
Figure 1, so B, = B, = B. We noted in the previous paragraph that the singular arc must
intersect the origin. (When Q = 0, the monopolist would not stop extracting if § > 0. Given

the assumption that a/(r+3) = k,, it would not be optimal to exhaust the resource while Q >
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~0.) ‘When 8§ = Q = 0 buyers would be willing to pay a/(r+8) = k, for a unit of the resource,
so A=k,
Step 2. Equations (A2) and (1) imply Q = -8gQ/(1+g). Use this expression in the

time derivative of P =k, - B(S + Q) =k, - B(1 + g) Q/g to obtain

(A%) P = 580,

Substitute the linear expression for P into (3) to obtain

b=+ 5)(@, ~Uues +gg) BQJ - (a - bQ)

___[b _r+®BQ @g)}Q'
g

Equating (A4) and (AS) implies

(AS)

(A6) -G rOBg _sp
g

Define 6 = k/B, n, = (r + 8)/(r + 28), , = r + 28 and use the definition of & (= k/b) to
rewrite (A6) as
o
(A7) g = «-—-—-——-—ni (8 * TE{J).
8

We now turn to the monopolist’s maximization problem. We use the fact that the

endogenous price function is differentiable on the singular arc, Q = g8, with




: "._ _ ifferentiability, on the singular arc, of the price function, can be established using the same
" type of calculations which are used to establish Lema 1 in Karp (1993).

The Hamiltonian and first order conditions for the monopolist’s problem are

(A9 H=[P—c+?\.-.n]m-'z\,5Q

(A10) o=+ S -_g_g.m
oP de

Al1) I N W

( " ( 55 ds}” d

(A12) P-c+A-m=0

The variables A and 1| are the costate variables associated with Q and S, respectively.
We now differentiate with respect to time equation (A12) and substitute (1), (2), (A1)

and (A1l) into the result; eliminate M using (A12), to obtain

(A13) " 5(1 - %Q} = HP - ¢)

which holds on the singular arc. We now differentiate (A13) with respect to time, using (A8),

(A10), and the linear price function, to obtain

Py




G S[(r + &L + Bm + B(m - 30)] = r(-B(l + g) + &) §,
‘which implies 8(r + 8) A = [r(k - B(1 + g)) + 28B] § + &BgS. Use (A13) to eliminate A and
' tearrange to obtain
(Al5) Y,S =7 S
where ¥, = r + &) tk - Bg((r + 8" + ) - r(r + ) Band v, =tk - B(r + rg - 28). Use
m=§= -0gS/(1 + g) in (A15) to obtain v, = ~y,dg/(1 + g). Rearrange this equation, using
previous definitions and 1, = (r + 8)/r to obtain
(Al6) Ml o) + (2 -0)g +m, g* = 0.

Substitute (A7) into (A16) and rearrange to obtain (7b) in the text.

Table 1: Definitions of Parameters Used to Derive (7)

o =kb - c =k/B
T = (r+9)/(r+28) m=r+29
Yo = (14+8)rk - Bg{_(ﬁ»ﬁ)z +&%] r(r+3)B v, = rk - B{r+rg-28)
1, = (t+d)/r : M, =rfo + (@8 - 2/(r + §)1/2

Step 3. We now show that there is a unique positive root to this cubic. To this end,

note that f(0) = -am, N; < 0 and lim,_,. f(g) = =, where f{g) is defined in (7b). Therefore

there exists a positive root of (7b). To show that the positive root is unique, consider the
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.i'if'g_ff:'-:folic}Wing cases: () 0 < an, < 1/2, (i) 1/2 < an, < 2, and (iii) 2 < an,. For each of these

cases we apply Descartes’ Rule of Signs to verify that there exists at most one positive root.

- Proof_of Proposition 3: We will prove only that for small positive 8, ®(g°, -) > (g™, ). The

. second inequality in the Proposition, ¥(g", -) > ¥(g°, -), can be shown by a parallel argument.

We first note that because g°, g™ and g° are analytic functions of 8, lemas I and 2 imply

(AY]) agc<ag0; agc<agm
98 dd dd dd

evaluated at & = 0.

| We now establish that ¥(g%) > W(g%) for small 8. From Lema 1, (g%, -) = y(g°, -) iff &
= 0. Moreover, for small positive 8 it must be the case that y(&°, -) > ¥(g°, -). This follows
because profits on the singular arc are positive with property rights (where rent is positive)
and O without property rights; therefore, if it were true that y(g°,~) £ y(g°, -) for any 6 > (0, it
would have to be the case that profits in the init@al jump were higher in the open access than
in the competitive equilibrium. However. at the initial jump, Price = Marginal Cost under
open access, so a marginal decrease in the initial supply would increase profits from the
initial jump. Since a marginal increase in & (from 0) makes the initial sup.ply {from the jump)
marginally smaller under competition than under open access, it follows that (g%, ) > ¥(g°, -)
for sufficiently small positive 0. ‘

Define y* as the value of industry profits under monopoly, competition, and open

access when & = (; v* is a function of « and r, but we suppress those arguments. Since 7y is



" an analytic function of g' and 3, and ¢ is an analytic function of 8, we have, in view the

' prevmus paragraph, that for small positive &:

o "
g, ) = v* 4.[«{8_&%“ +ﬂ{5}8 +0(d) >
A18) dg* - oo
( ) Y*'F'Yg“d*g—"'vsg*()(a)‘ﬁg")
dg®  dg°
= Yg[‘&’&' "38"] > 0

The last line of (A18) and the first inequality in (A17) imply that v; < 0 evaluated at § = 0.

This inequality, together with the second inequality in (A17) imply that for small y

C Ly gy =] 98 g™
'Y(gy) ’Y(g!) Yg[—gfﬂg- ‘.ES‘—] 0(6)>0
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