
UC Berkeley
CUDARE Working Papers

Title
Monopoly Power can be Disadvantageous in the Extraction of a Durable Nonrenewable 
Resource

Permalink
https://escholarship.org/uc/item/4cs0m1vb

Author
Karp, Larry

Publication Date
1995-03-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4cs0m1vb
https://escholarship.org
http://www.cdlib.org/


DEPARTMENT OF AGRICULTURAL AND RESOURCE ECONOMICS! -- 
DIVISION OF AGRICULTURE AND NATURAL RESOURCES 

r, 

WORKING PAPER NO. 732, ghf*E- dJ 
55~ 

_MONOPOLY POWER CAN BE DISADVANTAGEOUS 
IN THE E~TRACTION OF A DURABLE NONRENEWABLE RESOURCE 

by 

Larry Karp 
- 

California Agricultural Experirnent Station 
Giannini Foundation of Agriculturai Econoniics 

March, 1995 



March I995 

Monopoly Power Can Be Disadvantageous in the 
Extraction of a Durable Nonrenewable Resource* 

Larry Karp*" 

Abstract: We study a Markov equilibrium for the case where a monopolist extracts a 
nonrenewable resource which is converted to a durable good, which then depreciates at 
a constant rate. We show that in a stationary, continuous time model (infinite horizon, 
infinitesimal period of commitment) monopoly power can be disadvantageous. 
Numerical experiments c o n f i  that this can also occur in a finite horizon, discrete 
model. This result is compared to previous examples of disadvantageous market 
power, obtained using two-period models. 

JEL Classification numbers: D42, L12, Q39 

Key words Disadvantageous market power, durable good, 
nonrenewable resources, Coase conjecture. 

* This paper has benefitted from the comments of seminar participants at Cambridge, 
Southampton, Montreal, Guelph, Berkeley and Santa Barbara, and from the comments of 
three anonymous referees, Leo Simon, and Brian Wright. The usual disclaimer appiies. 

** Department of Agricultural and Resource Econornics, University of California, Berkeley 



Monopoly Power Can Be Disadvaittageous in the 
Extraction of a Durable R'onrenewabte Resource 

1 .  Introduction 

Standard models of the durable goods monopolist (not including Coase, 1972) assume 

that the potential supply of the good is unlimited. Models of monopoly resource owners 

typically assume that the resource (the final output) is not durable, so that current demand is 

not affected by previous sales, or the anticipation of future sales. We nest these two cases by 

modelling a monopolist who owns a nonrenewable resource which, upon extraction, is 

converted to a durable good. Thus, the potential supply of the good is finite; extraction 

(production) costs may increase with cumulative extraction; past sales affect the supply in the 

"second hand market" and consequently affect the demand faced by the monopoiist in a given 

period. Here market power may be disadvantageous: industry profits nzay be lower under 
- 

monopoly than in the competitive equilibrium. This result is related to the three bodies of 

literature concerning: (i) the Coase Conjecture; (ii) disadvantageous market power; and (iii) 

nonrenewable resource monopolies. 

The Coase Conjecture (Coase, 1972) states that if buyers of a durable good have 

rational expectations and the monopolist is unable to comnlit to a futnre sales trajectory, she 

loses market power "in the twinkling of an eye" (as the period of commitment- becomes 

small). Stokey (1981) and Bulow (1982) formalize and verify this Conjecture, for the case 

where the monopolist has constant production costs. Kahn (1986j, using a Markov Perfect 

equilibrium (MPE), shows that if production costs are convex and the durable good is 

infinitely lived, market power vanishes only in the steady state. Cul et al. (1986) give 

sufficient conditions for the existence of a unique MPE, which matches the Coase Conjecture. 

- 



Ausubel and Deneckere (1989) show that if the buyeriseller relation is modeled as a game, 

and "reputational strategies" are admitted, monopoly power can be preserved even in the 

absence of the monopolist's ability to commit. Ausubel and Deneckere (1987) and Gul (1987) 

demonsaate that industry profits can be higher in a duopoly than under monopoly; these 

papers also assume that agents have history-dependent (non-Markov) beliefs. 

We consider only Markov perfect equilibria, and thus exclude reputational strategies. 

In view of the extensive modeling of the durable goods monopolist using non-Markov 

equilibria, our restriction to MPE requires some comment. There are three reasons for the 

restriction. 

First, we doubt that there is much to be learned using models of non-Markov 

equilibria for the problem of the durable nonrenewable resource. Ausubel and Deneckere 

(1989) have showed that without the Markov assumption, a great range of outcomes, ranging 
- 

from competitive to nearly monopolistic, can emerge as equilibria for the standard durable 

goods monopolist. The introduction of a nonrenewable resource to the model does not 

change the logic of their argument, so we expect that a similar result would hold here. It 

does not seem particularly helpful to establish that multiple equilibria can arise for familiar 

reasons, in a different context. In addition, this type of result is not helpful for welfare 

analysis. - 

Second, we think that economists are still interested in Markov equilibria. This is at 

least partly because we rely on two- or three-period models for much of our intuition about 

dynamics in complicated circumstances. In these finite horizon models it is often the case 



that the unique perfect equilibrium is Markov'. We may want to know how the mode1 

behaves when the number of periods becomes large or infinite, without losing the flavor of 

the simpler model. In other words, we may want to require the model to be "continuous at 

infinity", so that our results do not rely on an infinite horizon. The Markov restriction is a 

natural way to impose this continuity. 

Thud, there are circumstances where the Markov assumption appears to describe how 

markets behave. Non-Markov, reputational equilibria, require that agents revise their beliefs 

and behavior drumutically, following a (noticeable) deviation by another agent. This type of 

discontinuous behavior may be reasonable in thin markets. Indeed, the DeBeers diamond 

cartel is often cited as an example of successful exercise of market power. DeBeers' 

reputation is probably critical to its success. If this is correct, the equilibrium is non-Markov. 

However, this kind of equilibrium seems less likely to emerge if one side of the market (here, 
- 

buyers) consists of a continuum of agents, each of whom has negligible effect on the 

outcome. It is harder to believe that a continuum of buyers would dramatically change their 

beliefs in the event that the monopolist surprises them in a given period, and moreover that 

they would do so in a way that is sufficiently predictable to support an equilibrium. 

Our other important assumption is that average extraction costs depend on the 

remaining stock but not on the rate of extraction/production. This assumption-is common in 

resource economics. It implies that the cun~uluii\~e cost of producing a given stock is 

independent of the rate at which it is produced, but the average coit may increase with 

1 There are exceptions to this, of course. For exampic, if there are multiple equilibria to 
a subgame, there may be perfect non-Markov equilibria. 



previous extraction. Thus, the model is the natural extension, to a nonrenewable resource 

base, of Coase's model. However, the Coase Conjecture does not hold. 

The second related literature shows that in some situations the inability to make future 

commitments does not merely inhibit the exercise of power, but can make an apparent 

increase in power disadvantageous. Examples of this are found in Salant et al. (1983), Ulph 

and Ulph (1989), and Maskin and Newbery (1990); similarly, an increase in cooperation, 

which is analogous to an increase in market power, can be disadvantageous [Rogoff (1985), 

Kehoe (1989), Gatsios and Karp (199211. In all of these papers, an increase in market power 

or cooperation without the ability to commit means that the competitive equilibrium (or the 

equilibrium when there is less market power, or less cooperation) may no longer constitute a 

feasible equilibrium. For example, the durable goods monopolist can imitate a competitive 

seller in the current period, but may not be able to promise to do this in the future. Without 
- 

such a promise, there may be no point in imitating the competitive seller in the current 

period. Since the agent with market power cannot credibly promise to behave exactly as a 

competitive agent would, there is no reason to assume that market power need be 

advantageous. 

In view of the existing literature, it is not surprising that market power can be 

disadvantageous. However, that literature has led us to expect the result in specific 

circumstances, where it has (with the benefit of hindsight') a fairly obvious explanation. In 

addition, papers on disadvantageous power rely on two-period models. In our model, 

however, market power is always advantageous in a two-period setting. This paper shows that 



the impossibility of disadvantageous power in two-period models does not imply power is 

advantageous in a many-period setting. 

The third body of relevant literature concerns monopoly extraction of a nonrenewable 

resource. Until recently, this literature made no distinction between durable and nondurable 

resources. Monopoly extraction of oil. for which the second hand market is extren~ely 

limited, and the extraction of minerals such as bauxite (the primary component of aluminum), 

for which the second hand market is extensive, were modeled using standard optimal control 

problems. Recent papers (Chilton 1984, Karp 1993, Levhari and Pindyck 1981, Malueg and 

Solow 1990) recognize the difference between the two types of resources. Pindyck (1979) 

pointed out that the existence of a second hand market might erode the benefits of 

cartelization of durable nonrenewable resources. 

The following section describes the continuous time (infinitesimal period of 
- 

commitment) model and explains why the monopolist extracts more rapidly than competitive 

firms. This is the basis for the result that market power is disadvantageous. The next section 

specializes to linear functional forms and presents the equilibrium conditions under perfect 

competition and monopoly without the ability to commit. We use the equilibrium conditions 

to compare extraction paths and to establish the possibility of disadvantageous power. The 

next two sections provides further comments on the basic model and investigate the issue of 

exploration and strategic destruction. h conclusion follows. Technical details are collected in 



2. The Model and a Preliminary Resltlt 

Th is  section presents the model and explains why the monopolist extracts more rapidly 

than the competitive producer. This explanation provides the critical piece of intuition for the 

disadvantageous monopoly result. 

Let S, be the stock of the resource remaining at t and Q, be the stock of the durable 

good. We normalize so that a unit of the resource is equivalent to a unit of the durable good; 

the durable good depreciates at the constant rate 6 2 0. This implies 

where m is the rate of extraction (production) and i denotes dzldt. With a discount rate of r 

and inverse demand for services (implicit rental rate) of F(Q, the buyers' rational (point) 
- 

expectations imply that price at t is 

The average cost of extraction, c(S), is non-increasing in the remaining stock of the 

resource: c'(S) 2 0. The assumption of constant shori-run average costs provides the natural 

extension, to an exhaustible resource framework, of Coase's model.' 

Malueg and Solow (1990) study a discrete tiirie versiori of this model, in which 
extraction costs are convex in the rate of extraction, and the durable good does not depreciate, 
and cumulative extraction is unbounded. The convexity of extraction costs generates results 
similar to Kahn's. 



The present discounted value (PDV) of industry profits is 

where {m) is the extraction profile and the initial time is 0. 

The competitive equilibrium can be obtained by solving the social planner's problem, 

or by maximizing industry profits (*) subject to (I), taking as given the price trajectory, and 

then using (2)  and imposing the rational-expectations equilibrium condition (3). If sellers 

take the price as given, the Hamiltonian to their maximization problem is linear in the rate of 

extraction, m, which can take any non-negative value. If the initial stock of the durable good 

is high relative to the stock of the resource (e.g. at point d' in Figure I), the equilibrium sales 

price is low and sellers set m=O until the stock 

of the durable good depreciates to a low 

1 
- 

enough lev& thereafter, sellers produce at a 

positive finite rate until the resource is 

exhausted. If the initial stock of the durable 

good is low relative to the stock of the 

resource (e.g. at point d' in Figure I), sellers 

produce a discrete amount (set m=- for an d' + S 

Figure 1 The Singular Arc 
instant), causing the stock of the resource to 

jump down and the stock of the durable good to jump up; thereafter they produce at a finite 

rate, until the resource is exhausted. The curve in (S,Q) space, along which 0 < In < M. 

called the singular arc, is labelled G(S) in Figure 1. !In general this curve need not be linear, 



or intersect the origin; both of these features hold for the linear example of the next section, 

but this has no bearing on the discussion here.) Point d is on the singular arc. If the initial 

state lies above the arc, e.g. on dd*, m=O until point d is reached. If the initial state lies 

below the arc, e.g. on dd', there is a jump to point d. 

The singular arc describes the equilibrium. If something about the problem were 

changed, so that for S > 0 the singular arc were higher [e.g. in Figure 1 the singular arc were 

&(s) rather than G(S)], then the resource would be extracted more rapidly. This fact, which 

is central to Proposition 1, below, follows immediately from the definition of the singular arc. 

The equilibrium competitive rate of extraction induces an equilibrium competitive 

stationary price function, which we denote P(S,Q). This price function has two important 

features. First, it is constant on 45" lines below the singular arc, such as the dotted line dd' 

in Figure 1. This is due to the fact that for any state below the singular arc, there will be an 
- 

immediate jump to the arc. This result depends on the assumption of constant short run costs. 

The second feature, which is stated as Lema 1 in Karp (1993), is that the price function is 

continuously differentiable on the arc. These facts imply that aP/aQ = 2P/aS on or below 

the singular arc (where the constraint m 2 0 is not binding). This equality, together with the 

first order conditions to the competitive firm's problem, ~mpiy that in the competitive 

equilibrium the following holds on the s~ngular arc' - 

In the competitive equilibrium, the usual Hotelling rule holds: P(S,Q) = rip-C). Use P 
= P,S+ P ~ Q ,  equations (1) and (2), and PQ = P, to obtain equation (3). 

-8- 
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Equation (4) implicitly defines the singular arc, in terms of the unknown function P and its 

derivative. We use the function @(.), and the following assumption in a proof below. 

Assumption 1 The function $(S,Q) is decreasing in Q: @Q < 0. 

This assumption requires that (r+G)Q + SQPQQ < 0, i.e., that the endogenous function P" is 

not "very convex". This assumption is clearly met for the example in the next section (where 

Ir is linear), but is also satisfied much more generally. The assumption implies that $ < 0 for 

points in the (S,Q plane that lie above the curve defined by $(S,Q = 0. 

Before studying the monopoly Q 

equilibrium, we discuss the necessary and 

sufficient condition for the resource to be I / 
exhausted in the f i s t  instant in a 

competitive equilibrium. Consider three 
Q* 

cases: the singular arc intersects either (i) 

the origin, (ii) the Q axis above 0, or (iii) s * S 

Figure 2 Exhaitstion in Finite Time 

the S axis to the right of 0. Figure 1 

illustrates case (i) and Figure 2 illustrates case (ii). We can determine which of [lie three 

cases arises by evaluating Q(0.Q); this calculation does not require that we solve the 

competitive equilibrium. In case jiii), the resource is never exhausted (even asymptoticaiiy), 

so we need not consider this case further. For case (i) the resource is exhausted 



asymptotically (since Q, -+ 0 only as t -+ 00). Therefore, the resource can be exhausted in 

the first instant only in ease (ii). For cases (i) and (ii), define Q' as the intersection of the 

singular arc and the Q axis. Define the set of points in the positive quadrant of the (S,Q) 

plane under the 4.5' line through Q' as C (see Figure 2). That is, C = {(S,Q): S > 0, Q 2 0 

and S+Q I Q'}. For case (i), where Q" = 0, C is empty, and in case (ii) where Q' > 0, C is 

non-empty. Finally, define the critical stock level, S' as S* = Q*. From our definitions, the 

resource is exhausted in the f i s t  instant in a competitive equilibrium if and only if the initial 

condition (So,%) E C. 

We now turn to the monopoly equilibrium, where we follow Stokey (1981) in 

assuming that buyers' expectations about future sales (and consequently about the future stock 

of the durable good) depend only on the current state, S,Q: Q',, = q(s,Q,SJ where Q',, is the 

buyers' point expectation of Qt+, and q(.) is a stationary function. (We restrict attention to 
- 

stationary, Markov equilibria.) These expectations (functions) generate a price function, 

P(S,  Q). This can be seen by replacing Q, by its point expectation q(z,Q,, SJ in equation 

(3) for P. We assume that P"'(.) is continuous and almost everywhere differentiable. This is 

true for the linear example in the next section; more generally, a sufficient condition for the 

assumption is that the expectations functions are continuous. 

The function P(.) is endogenous to the problem, but the monopolist takes it as given. 

The function depends on buyers' expectiations of the monopolist's future sales. The 

monopolist at a point in time is not permitted to choose future sales (i.e., to "precommit") but 

can affect them indirectly, by means of her effect on the state, S, Q. If a jump does not 

occur, the monopolist takes the current price a? given, but recognizes that she can affect 



future prices by means of current sales. If the monopolist sells a discrete amount A at an 

instant, is. ,  causes the state to jump from S, Q to S - A, Q i. A, then the sales price of A is 

P ( S  - A, Q + A), due to buyer rationality. The monopolist maximizes (*) [with P, replaced 

by P"(S,QI], subject to (1) and (2). The endogenous function P(.) must be such that, given 

that function, the trajectories of Q and S are optimal for the monopolist and also satisfy the 

equilibrium condition (3), for all values of the state (S,Q) 2 0. The equilibrium function P(.) 

and the optimal monopoly behavior must be mutually consistent. 

Except for the fact that the function P"' is unknown, this is a standard control problem. 

It is linear in the rate of extraction, m, as was the case for the competitive producer. 

Consequently, the monopolist produces a positive, finite amount only on a singular arc; above 

the arc production is 0 and below the arc the rate of production is unbounded, causing the 

state to jump. 
- 

We now demonstrate and explain the monopolist's incentive KO produce more rapidly 

than the competitive producer. In the standard non-durable goods case, the monopolist 

restricts sales in order to increase the current price. This incentive is absent in the continuous 

time (infinitesimal period of commitment) durable goods model, where the monopolist takes 

the current price as given unless she sells at an infinite rate and causes the state to jump. 

That is, ignoring jumps, which in equilibrium might occur only in the first insiant, both the 

monopolist and the competitive seller take the cicrrent price as given at all points in time. 

The monopolist, however, recognizes that current sales affect the evolution of the state, and 

thus the trajectory of future prices. 



In order to determine how this recognition affects the monopolist's behavior we 

perfom the following thought experiment: Suppose that the monopolist solved a control 

problem with the competitive equilibrium price function P(S,Q) rather than the monopoly 

equilibrium price function. In view of the characteristics of P"(S,Q), described above, if the 

monopolist were to deviate from the competitive sales trajectory by selling an extra unit over 

a small interval of time, this would have no first order effect on price over that interval. This 

is because initially the deviation increases the trajectory of Q and decreases the trajectory of S 

by the same amount, and these changes offset each other, leaving the price unchanged. 

(Recall that aP/aQ = 8Pc/aS on and below the singular arc.) The effect of the deviation on 

the evolution of S is permanent. However, provided that 6 > 0, the effect of the deviation on 

the evolution of Q decays over time. Therefore, the eventual effect of the deviation is to 

decrease the trajectory of S by more than the increase in the trajectory of Q. This implies 
- 

that the deviation causes the future price trajectory to increase. (This is because aF/aQ and 

aP/aS are both negative, and increasing extraction over an interval increases Q and decreases 

S.) Since the deviation also increases the current flow of profits (because current price and 

costs are unchanged, but sales are higher) it unambiguously benefits the monopolist. 

We state this conclusion formally as 

Proposition 1: Suppose that 6 > 0 and Assumption 1 is satisfied. Consider the experiment in 

which a seller maximizes (*), with P, replaced by P(S,Q), subject to (1) and (2). Denote Q = 

G(S) as the singular arc in the competitive equilibrium, and Q = G(S) as the singular x c  in 

the experiment. (i) G(s) > G(S) for S > 0. iii) This inecli~ality implies that the seller in our 

experiment extracts more rapidly than in the competitive equilibrium, provided that (S,,Q,) e 

-12- 



Z;. If (So,%) E X then the resource is exhausted in the first instant in the competitive 

equilibrium and in the experiment; in this case, the competitive equilibrium is a MPE for the 

monopololist. 

Proof: (i) The Hamiltonian of the control problem corresponding to the experiment is H = - 
n(S,Q,h,q).m- h6Q, where h and q are the costate variables associated with Q and S, 

respectively, and the function n is defined as n E P(S,Q) - c(S) + h - q. An interior 

maximum of H with respect to m requires that n vanish. Differentiating the singular arc n = 

0 with respect to time, substituting in the costate equations, and simplifying, implies that on 

the singular arc the following holds: 

The shadow value of Q, h, must be negative. (This can be shown using the costate equation 
- 

for h, the fact that aP/aQ < 0, and the transversality condition lim,, en& = 0.) Using 

Assumption 1 and equations (4) and (51, this implies that at a point in (S,Q) space where P = 

0, it must be the case that 4 < 0. This implies that the singular arc defined by (4) lies below 

the arc defined by (5). (ii) This conclusion is a restatenlent of the characteristics of the 

singular arc contained in the description of Figures 1 and 2, and the definition of C.11 

If the monopolist faced the price function Pc(S,Q) [and (S,,Q, e C)], her profits would 

obviously be higher than in the competitive equilibrium. However, by construction, that 

function satisfies the rational expectations constraint (3)  only \vixen the competitive sales 

trajectory is followed. Provided that 6 > 0, the ~nonopolist would choose a different sales 

trajectory, and therefore must face a different endogenous price function. To understand how 

-13- 



the functions P" and I? are likely to differ, we can imagine an iterative search procedure for 

P"' which begins with an initial guess of the function P. and then modifies this guess in a 

way which moves us toward equilibrium. Equilibrium requires a price function and an 

extraction trajectory that solve the monopolist's control problem and satisfy (3).  We have 

seen that the initial guess, PC, results in a production trajectory which is too high to be 

consistent with (3).  If the monopolist deviates from the competitive path in the manner 

described by Proposition 1, the price would have ta be lower in order to satisfy (3) .  The next 

iteration should therefore use a guess that lies below P" for all values of the state. This leads 

to the conjecture that F"" lies below P". If this conjecture is correct, as indeed it is for the 

linear example of the next section, it is not surprising that monopoly power can be 

disadvantageous. 

3. The Linear Example - 

To obtain an explicit solution, needed for welfare comparisons, we restrict attention to 

the following example 

(6)  a 
F(Q) = a - b Q ;  c(S) = ko - kS, with -- 5 k0. 

r + 6  

The last inequality means that the cost of extracting the final unit of the resource is at least as 

great as the PDV, to society, of an extra unit of the durable good whcn Q=O. This implies 

that the non-negativity constraint S , H  is not binding, and enables us to obtain a relatively 

simple closed-form solution. By defining S as the stock which it is econornicai!y rational to 

extract, we can replace the weak inequality by an equality; hereafter we assume :.g(ii+r) = k,. 



Obviously we also have to assume that the initial stock satisfies So 5 kJk, so that extraction 

costs are non-negative. Except where we state othenvise, we assume rhat 6 > 0. 

The Appendix derives the equilibrium under competition and monopoly; the methods 

were outlined in the previous section. As benchmarks we also consider two other 

assumptions about the market structure. The "open-access" equilibrium refers to the situation 

where sellers are price-takers and have no property rights, so that there is free entry into the 

industry. The "precommitted monopoly" equilibrium refers to the case where a monopoly 

owner of the resource is able to make binding commitments about her future behavior [a 

model studied by Levhari and Pindyck (1981) and Chilton (1984)l. 

For the linear example in equation (6), it is obvious that the equilibrium is unique for 

the case of competition, "precommitted monopoly", and open access. For the case of a 

discrete stage, finite horizon model, the Markov equilibrium is also unique, and can be 
- 

obtained using dynamic programming (solving the problem "backwards", from the final 

period). In the appendix we explain how we use the characteristics of the equilibrium of the 

discrete stage, finite horizon model to search for a particular class of equilibrium in the 

continuous time, infinite horizon model. We want the equilibrium of the latter model to 

"resemble" the limiting equilibrium (as the horizon goes to infinity and the length of each 

stage to 0) of the former model. This leads us to look for an equilibrium with a linear price 

function and a linear singular arc. However, nothing about this procedure implies that the 

equilibrium we have obtained is unique. 

Indeed, it is often the case rhat there exists a continuum of blitrkov equilibria in 

infinite horizon problems, even with the additionai resrriction of differentiability of 



endogenous functions. For example, Tsutsui and Mino (1990) show that a linear-quadratic 

differential game has a continuum of non-linear Markov equilibria, in addition to the well- 

known linear equilibrium. It is natural to ask whether this is also possible in our model. 

Although we do not have a proof of uniqueness, we can at least explain why the 

intuition provided by Tsutsui and Mino does not apply in our model. In their game, non- 

uniqueness arises because of an "incomplete transversality condition". There is another, more 

.', ..' 

... intuitive way to describe this problem. The necessary conditions to a differentiable MPE, for 
% . . .> . . :.: a game with a single state variable, can be rewritten to describe the equilibrium as a (system 
.:. 
.:. ... 
... .:! 

of) differential equation(s). However, the necessary conditions do not enable us to pin down 

a steady state. Unless we have a "natural boundary condition" which selects a steady state, 

we are left with a differential equation but no boundary condition. Obviously, there is not a 

unique solution to this mathematical problem, and thus not a unique MPE. In our model, 
- 

however, there is a "natural boundary condition". Because the durable good decays, and 

because production of the good requires a non-renewable resource, the state (S,Q must 

eventually approach (0,O). This is our boundary condition.? The fact that we have a unique 

steady state suggests that there probably is a unique (differentiable) MPE. However, 

establishing this rigorously is complicaied by the fact that we have two state variables, so the 

equilibrium conditions lead to a system of part~al differentlal (rather than ordinary 

In order to help understand this, consider the durable good inonopolist where the 
durable good decays, but production of the good does not require the exhaustible resource (so 
that aggregate production can be unbounded). In that case, there is no "natural boundary 
condition", since it is possible to sustain any stock as a steady state. Differentiable bfPE are 
therefore not unique, for essentially the same reason as described by Tsutsui and Mino. This 
issue is studied in Karp (1994). 



differential) equations. We have not established that there is a unique solution to this system, 

which satisfies our boundary condition, and therefore we can not be sure of uniqueness. 

Hereafter, we consider only the linear MPE. 

The singular arc for the competitive equilibrium is linear [G(S) = gS] because of the 

linearity of the primitive functions, and intersects the origin because of the assumption that 

a,/(6+r)=k,. The slope of the arc (g) is the unique positive root of (7a). (Parameters are 

defined in Table 1.) 

(7a) h(g) ra(r  + 6 )  + [(r + 6)(ra - 1) + (ra + 1) S]g - (r + 6)gZ = 0 .  

As we noted above, there is also an equilibrium for the monopolist which involves a 

linear singular arc, the slope of which is the unique positive root of 

Under open-access, the slope of the singular arc is the positive root of 

This equation is obtained using the fact that P = c on the singular arc, and equations (1) - (3). 

In order for the equilibrium for the precomrnitted monopolist to be easily comparable 

to the previous cases, we require that the initial stock of the durable good be 0: Q, = 0. 

Without this assumption, the extraction path for the precomm~tted monopolist depends on the 



initial stock and calendar time as well as the current state. If Q, = 0, the slope of the singular 

arc here is the unique positive root oP 

.,: 
(7d) 

(X -r- - q 3  g + g 2  = 0 .  
.. 2 
,$ 

The derivation of (7a) - (7c) assumes that 6 > 0. However, it is straightforward to 

show that in each case the equilibrium is continuous in 6 at 6 = 0. When 6 = 0 the 

equilibrium stock level under competition or monopoly (without precommitment) equates 

price and marginal cost. We can verify by direct calculation that this is the level given by 

the point d in Figure 1 when g = ax. 

For the limiting case 6 = 0 the positive root is g = r a  for each of the three equations 

(7a) - (7c); the roots are different when 6 + 0. Since the root of the respective equations 

completely characterizes the equilibrium trajectory, this result implies that the competitive 
- 

equilibrium is the same with or without property rights if and only if 6 = 0. If 6 = 0 there is 

no reason to conserve the resource: anything that is worth extracting is exnacted immediately, 

and there are no resource rents. More importantly, the result implies that 6 = 0 is necessary 

The Hamiltonian to the precommitted monopolist's problem is 13 = [ P  - c(S) 4, + L j m  
- h 6 Q  + h3[(r+6)P - F(Q)], where h,, h2, and h, are, respectively, the costnte variables 
associated with the states S, Q and P. Wc use the first order conditions to this problem. 
together with the boundary condition h,(O) = 0 (because P is a "jump state"), and specialize to 
the linear example in equation (6) ,  to obtain (7d). 



Lema 1: In the nonrenewable resource durable goods model with primitive functions given by 

(6), the competitive, open-access, and monopoly equilibria and corresponding profit levels are 

equal if and only if 6 = 0.6 11 

Given the linear model (and, for the precommitted monopolist, the assumption that Qo 

= O), the equilibrium extraction paths are completely characterized by the slope of the 

respective singular arcs, g, a parameter which depends on a = k/b, r, 6, and the market 

structure. Hereafter we assume that Qo = 0, so for all market structures there is an initial 

jump to the singular arc. Given an initial condition (before the jump) of So > 0, Qo = 0, the 

level of Q after t units of time is Q, = (gSd(1 + g)) e-Pt, where p E 6g/(l + g). A larger value 

of g implies a larger initial jump and a faster decay rate. Therefore, for a given initial value 

So, the resource stock remaining at t > 0 is a decreasing function of g. A smaller value of g 

implies a more conservative extraction path. We define gc, $', g" and gp as, respectively, the 

positive roots of (7a) - (7d). (The mnemonic is c = competitive, m = monopoly, o = open- 

access, and p = precommitted monopolist.) We have 

Lema 2: For the linear functions in (6)  with a/(r+6) = k, and 6 > 0, (i) gP < gC < $ <<g and 

(ii) for values of (S,Q) which satisfy S > 0 and Q I gcS, IY"(S,Q) < P"(s,Q. 11' 

- 
6 Proposition 1 of Kafp (1993) shows that L.ema 1 holds for general functional forms, if 

a differentiable MPE exists; that paper states that 8 = 0 is necessary and sufficient for the 
monopoly and competitive equilibria to be equal. However, that statement shouid be 
modified, by requiring that (S,,Q,) E C. If (S,,Q,) 6 C, the monopoly and competitive 
equilibria are the same, regardless of the ~ a l u e  of 6. I thank Brian Wright for bringing this to 
my attention. Note that in our linear example, Z i\ empty. 

' If (S,Q) lies in the cone bounded by the two singular arcs Q = g*S and Q = g S .  then 
the constraint m 2 0 is binding for the competitive firm. We can still obtain a closed form 
expression for the competitive price function in this region, but it is complicated, and we are 



Proof: The inequalities in (i) can be established by comparing the positive roots of (7a) - (7d). - 
ver, the only surprising inequality is the second. which implies that the monopolist 

xtracts more rapidly than the competitive firm. We provide a geometric proof of this 

inequality, and in the process, we also verify part (ii). The linear example is convenient 

because it implies that for both the competitive and monopoly cases, the form of the 

equilibrium is the same. In both cases the 

price function is k, - B(S+Q) when the I 
constraint m 2 0 is not binding, and the 

singular arc is linear, Q = gS. The 

comparison of equilibria therefore amounts 

to a comparison of equilibrium values of 

B and g. For an arbitrary value of g, the I - 
BC Bm B 

rational expectations constraint (3) 
Figure 3 Equilibrium for the linear model 

determines an equilibrium value of B. 

This relation is written in equation (A6) of the appendix, and is graphed as B(g) in Figure 3. 

A larger value of g means that more of the good is sold, so the price is lower, and B is 

larger. [Differentiation of equation (A6) confirms the fact that Bf(g) > 0.1 For an arbinary 

value of B, solution of the monopoly and competitive firms' problems determine the 

equilibrium values of gm and g'. We denote the dependence on B of theie values by writlng 

not able to compare it with F = k, - Bm(S+Q). However, by continuity, the competitive 
equilibrium price must be less than P" for Q = gcS + E, for small E (i.e., slightly above the 
competitive singular arcj. We conjecture that this relation holds at all points in the cone 
bounded by the two arcs. If this conjecture is correct, it is obvious that P" < P" for Q > gmS 
(i.e., at points above the monopoly singular arcj. 



em as gm(B) and g"(B). Using equation (4) and the linear functions we can write g" r(k- 

)/(r+6)B, so dgc/dB < 0, as shown; a larger B implies lower demand which implies lower 

sales. Proposition 1 implies that for arbitrary B, gJB) lies below f(B), as is shown in 

y Figure 3. (Our argument does not rely on the sign of dg"/dB.) From Figure 3, it is 

immediate that g"' > g" (in equilibrium) and that Bm > Bc. 

.; 
'. <. 
... The Lema, together with the comments immediately preceding it, imply: 
.:~ .: .. 
... ... 

Prouosition 2: For the linear functions in (6) with a/(r+6) = k, 6 > 0, the ordering of 

equilibrium extraction paths, from "most conservative" to "least conservative" is: 

precommitted monopolist, competitive seller, monopolist (who cannot precommit), and finally, 

open-access. /I 

In the previous section we showed that for general demand and cost functions which 

satisfy Assumption 1, the monopolist would want to deviate from the competitive equilibrium 

by producing more ra@c-tly than competitive films. Proposition 1 compared the competitive 

and monopoly outcomes under the counter-factual assumption that both faced the same 

endogenous price function. Proposition 2 compares the two equilibrium outcomes when the 

two types of sellers face their respective equilibrium price functions. 

In view of the fact that the equilibrium trajectory under tile inonopolist lies between 

the trajectories under competition and open-access, we expect the PDV of industry profits 

under monopoly to lie between the PDV of profit levels uncier compctirion and open-access. 

Given a value of g and an initial condition Q,, = 0, S,, > 0, the eqiliiibrium i'DV of producer 

profits, under all market structures, equals ^y(g,a,r,8,b).Si. The function -f(.j is very 

-21- 



complicated, but for Proposition 3 below. it ir sufficient to note that it is analytic at 6 = 0. 

The complexity of y( ) makes it difficult to establish that market power is disadvantageous in 

general; the problem is that we can not show that y(.) is globally concave in g.8 However, 

we have the following local result, for small positive values of 6. 

Prooosition 3: For sufficiently small positive 6 and for the linear functions in (6) with Q, = 0, 

monopoly profits are strictly less than industry profits in the competitive equilibrium and 

strictly greater than industry profits in the open access  equilibrium.^ 

To verify that power is disadvantageous for large 6, we performed several hundred 

simulations for r in the range of ('01, .I), 6 in the range of (.001, 3) and a in the range of 

( 3 )  In all cases, monopoly power was disadvantageous. In a few cases, profits under 

monopoly are less than half of competitive profits. For small values of 6, however, the loss 

due to market power is negligible; this is consistent with the discussion of the limiting case 6 

= 0, and Lema 1. 

In order to determine whether disadvantageous market power is a peculiarity due to 

the use of an infinite horizon, infinitesimal period of commitment model, we compared 

equilibrium payoffs under monopoly and under coinpetition in an N-stage model with a finite 

period of commitment, E, for the functions given in (6). We found that for large but finite N 

and small but positive E,  the n~onopolist receives a lower payoff. 

We know that industry profits are ~nasiiilized under tile precominitted monopolis:. and 
that those profits equal y(gP)Si. Therefore gP niaximizcs y(g) If we knew that y were 
globally concave in g, we could use the fact that $ < gc .;- g'" to establislt that $gC) > $$). 



Discussion of the Results 

Zn the discussion of Proposition 1 we emphasized that P(S,Q) is constant on 45" lines 

below the singular arc; the derivation of (4), which was used in the proof of the Proposition, 

relies on this fact. This characteristic of P" is due to the assumption that costs are linear in 
~. . . 
:, 
.., the rate of extraction. If costs were non-linear in extraction, the first order effect of a 

,:. 
decrease in S would not exactly offset the effect of an increase in Q, so the intuition which 

:< 
$ .. preceded the Proposition would not hold. 
2 ... * ... 
8 The importance of a small period of commitment, which was verified by numerical 
.. .:. 
.$ 
:< 
2 experiments, can also be explained by reference to Proposition 1. In the discrete time analog 
.. 

to the model, the seller with a period of commitment of E chooses sales of me at the 

beginning of a period. If the endogenous price function is P(S,Q), and the stock at the 
.. 
.. beginning of period t is S,,Q,, the seller obtains the price F(Q$~&)E + e-"risk.~[~,  - mi&, e4'(Q, 
. . 
.~. + nq~)]. The effect of m, on the current price is of the same order of magnitude as E ,  so for E 
.. 

> 0, the monopolist seller has the usual incentive to resrrict sales. which opposes the 

incentive to increase sales identified in Proposition 1. For a sufficiently large period of 

commitment, the usual incentive dominates, and market power must be advantageous. 

The intuition for Proposition 1 also relied on the assumption that the future horizon 

was substantial. For 6 > 0, a positive deviation froin the competitive sales path eventually 

has a larger affect on the trajectory of S than on the trajecrory of Q, and therefore increases 

price. This would not happen if 6 = 0 or if the iiine horizon were negligible. Agait~, the 

numerical experiments confirm the importance of a long time horizon. 



In a two-period version of our modet market power can never be disadvantageous. It 

stating the reason for this because it illustrates how the intuition from two-period 

s can be misleading. At the beginning of the first stage, the monopolist is capable of 

selling the same amount as her competitive counterpart. This leaves the monopolist at the 

same state as her counterpart; the value of being at that state in the second stage is greater for 

the monopolist. In addition, the first-period profits are greater for the monopolist if she sells 

the same amount as her competitive counterpart: the monopolist receives a higher price since 

buyers anticipate that future sales will be lower under the monopolist than under the 

competitive counterpart. 

This line of reasoning does not extend to a model with many periods. The above 

argument is based on the assumption (which is valid for two periods) that, if the monopolist 

were to imitate her competitive counterpart in the current stage, buyers would expect her to 

sell less in subsequent stages than her counterpart does. With a sufficiently large number of 

periods, however, control over current sales does not enable the monopolist to insure that 

future sales, and the future stock of the durable good, will always be lower under monopoly. 

The competitive producer will eventually exhaust the nonrenewable resource, and leaving 

some (economically viable) resource in the ground cannot be pan of a Markov equitibrium 

under the monopolist. Therefore, for the infinite-horizon model when 8 > 0, the trajectories 

of the stock of durable good under the monopolist and the competitive producer ;ue either 

identical or cross. (When 6 :, O1 the stock of the durtlble good approaches 0 and the 

monopolist will eventually want to sell more of the good.) 'Il~erefore, the monopolist and the 

competitive producer extract the same amount of the resource and produce the same amount 



of the durable good asymptotically. This means that the monopolist cannot credibly commit 

to having a lower stock of the durable g o d  present in the market at each point in the future. 

W e  explained why the intuition from the two period model can be misleading. 

However, that model does help us understand why mimicking competitive behavior in each 

period, although feasible, is not an equilibrium strategy. Selling at the competitive level in 

the current period is not a signal (in a MPE) that this strategy will be followed in the future. 

Since sales price depends to a large extent on future sales, selling at the competitive level in 

the current period does not give the monopolist the competitive level of profits. This is true 

in a two period or a many-period model. The surprising result, of course, is that mimicking 

competitive sales early in the program does not enable the mouopolist to do at least as well as 

the competitive firm, if there are many periods remaining. The monopolist may have lower 

profits than the competitive fm. 

5. Exploration and Strategic Destructior~~ 

Thus far we have assumed that the initial stock of the resource is exogenous, and that 

the stock can be decreased only by selling it, i.e.. by adding to the stock of the durable good. 

In this section we consider the monopolist's incentives for exploration andfor strategic 

destruction of the resource. We also compare these incentives with those of a competitive 

For a given level of Q, a reduction in S increases the equiiibrium price, because 

buyers know that future sales must be reduced. if the manopoiisi were able to destroy rhe 

1 thank an anonymous referee for suggesting the topic of this section. 
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stock, she would benefit from the price increase. Of course she would lose because the 

lume of future sales must fall, and because extraction costs increace. If the benefit ever 

exceeds the loss, then the monopolist has an ~ncentive to destroy pan of the stock for 

strategic reasons. We show that for the linear example in equation (6), strategic destruction 

does not occur, but that in other cases it can occur. 

Consider the monopolist's incentives in the first instant, when the initial stock is at a 

point l i e  d' in Figure 1, where So > 0 and Q, = 0". As we stated in Section 3, for our 

linear example, the monopolist's value function is y"S2, which is increasing in S. Clearly, the 

monopolist would have no incentive to destroy any of the resource before the jump to the 

singular arc. Now suppose that the monopolist is on the singular arc, at a point like d E (S,, 

gS& in Figure 1. If buyers expect the monopolist to remain on the singular arc (as the 

equilibrium predicts) and if the monopolist actually follows this path, then we can again show 

(using tedious but straightforward calculations) that the payoff is quadratic: BS,'. The 

function f3 depends on the exogenous parameters, but not on the state (S,Q), provided that Q 

= g"S. At point d, the monopolist does not want to deviate by destroying some of the 

resource, e.g. causing the state to jump to a point d" 5 (S,-A, gS,) to the left of d (A > 0). 

The point d" is above the singular arc, so from that state the monopolist's best policy is to 

set rn = 0 until the stock of durable good decays to g(S,-A). Suppose this takes z units of 

time; during this interval the monopolist receives no revenue and incurs 110 costs. The payoff 

from destroying A units of stock is e-m8(~,-&)2 < OS,'. The same kind of arguinent shows that 

10 The assumption that Q, = 0 results in tremendous simpiiiications. If Q, > 0, tile value 
of the jump to the singular arc includes cross-product terms in Q and S. 

-26- 



it is not optimal to destroy the stock when the state is above the singular arc. In summary, 

r our linear example) the monopolist has no incentive to destroy the stock, either before a 

jump, or while on the singular arc, or if, for some reason, the state is above the singular arc. 

We noted that the monopolist incurs two types of costs from raising the price by 

destroying the stock: (i) the reduction in future sales and (ii) the increase in extraction costs. 

The first cost necessarily occurs, but the existence of the second cost is merely an 

assumption. We can imagine situations where extraction costs do not depend on the 

remaining stock. TO show that strategic destruction can occur, we therefore consider the 

model where c(S) E 0. In this case, it is easy to show, using equation (4), that a sufficient 

condition for the competitive singular arc to intersect the Q axis at a point Q* > 0, is F'(0) > . 

t4. Suppose that this inequality holds, so that X is not empty. 

For any initial condition (So,%) E X, exhaustion is instantaneous in the competitive 

equilibrium, and the price in the fust instant is P(S,,Q,) = ~;e(wShF([S,+Q,]e 9 d z  (obtained 

using equation (3) and the fact that future sales must be 0, since the resource is exhausted). 

We use the superscript oc to remind the reader that this is the competitive price function for 

points in C. Assumption 1 holds for points in C if F(Q) is not "very convex"; we adopt this 

assumption. From Proposition 1, we then know that if the monopolistic seller faces this price 

function, she will want to exhaust the resource immediately, provided that strategic 

destruction is not an option. 'merefore, if strategic destruction is impossible and (S,,Q,) E C, 

the function P(S,Q) is a Markov equiiibrium price function, and monopoly protits are 

P(S,,Q)S,, the same as competitive profits. (Proposition I .ii. j 



monopolist can destroy A units of the resource in the first instant, monopoly 

suing Markov equilibrium are II(S,,Q,,A) = P(S,-A,Q,)[S,-A]. Therefore, a 

tion for strategic desuuction to be an equilibrium strategy is that FI is an 

tion of A for (S,,Q,) E C." We can show by example that this sufficient 

n may or may not be satisfied, depending on the parameters of the problem. We do 

this using the case of linear rental demand, F(Q) = a - bQ and zero extraction costs. 

Substituting the linear F(Q) into P, setting S = 0, and using equation (4, implies that Q* = 

ar(r+2F)h~(r+S)~. For simplicity, suppose that Q, = 0, so that exhaustion is immediate if and 

only if S, I Q*. Define 9 as the value of S that maximizes P(S,O)S. For linear F(Q), 3 = 

a(r+26)/2b(r+6). Consequently, the monopolist's optimal policy is to destroy A = S, - 3, for 

So E (9, S*]. In other words, for Q, = 0, there are initial value of S, such that the monopolist 

would want to engage in strategic destruction, provided that 9 < S'. A necessary and 

sufficient condition for the last inequality is 6 < r. In summary, under the maintained 

assumption that CZ, = 0, strategic destruction occurs if 6 < r whenever 3 < So i: S'; if 6 > r, 

strategic destruction never occurs when S, I S* 

We now briefly consider the monopolist's incentives to add to the stock, e.g. by costly 

exploration. Again, we begin with the example in equation (6) and assume that Q, = 0. At 

the initial instant before a jump, the payoff is .j^S2. Since this function is not only increasing, 

but is also convex, we see that the incentives to add to the stock are higher, the i~lrger is the 

stock. The reason for this is that (by assumption) an increase in the stock decreases 

~~ ~~~~~~~~ 

" For points outside of C, insQntaneous exha~isrion does not occur in the competitive 
equilibrium, so the price function we identified is not the competitive price function. 



extraction costs. This saving is more valuable. the greater ir future extraction, i.e., the greater 

is the stock. Thus, if it ever pays the monopolist to incur the exploration cost necessary to 

increase the stock, she will want to do so immediately. From our example with zero 

extraction costs, is obvious that in some cases the monopolist would not engage in 

exploration. 

Finally, consider the relative incentives of the monopolist and the competitive firm to 

engage in exploration. As we noted in Section 3, for all our simulations, 'f > y, and 

Proposition 3 states that this inequality must hold when 6 is small. For these cases, at least, 

the marginal value of a unit of stock is greater for the competitive firm for the example in 

equation (6). Therefore, although the monopolist has an incentive to increase its stock size, 

this incentive is greater for the competitive firm. Our discussion of the case where extraction 

costs are 0, showed that the marginal value of a unit of stock might be negative for the 

monopolist. The marginal value for the competitive firm, which takes price as given, is 

always non-negative. This suggests that the incentives for exploration tend to be lower for 

the monopolist under quite general circumstances. 

6. Conclusion 

If (i) a monopolist produces a durable good which depreciates at a constant, positive 

rate, (ii) average costs are independent of the rate of production, (iii) the monopolist is unable 

to precornmit, and sells to nonstrategic buyers with ration31 expectations, and (iv) production 

requires a nonrenewable resource, also owned i?) the moncpciist, then the natural extension of 

the Coase Conjecture fails, and may do so in a surprising way: inonopoly power, instelid of 



1s selling durable resources; not only is it difficult to create and maintain a cartel, but the 

doing so may be negative. 

Our results do not imply that a durable nonrenewable re$ource monopoly is necessarily 

disadvantageous. There are three types of circumst?nces where monopoly would be 

advantageous. Fist ,  the equilibrium may be non-Markov, as appears to be the case with the 

DeBeers cartel. Second, the equilibrium may be Markov, but the time horizon may be 

sufficiently short, or the period of commitment sufficiently long, that the result conforms to 

the intuition we obtain from two-period models. Third, there may be something about the 

technology that provides a substitute for commitment in a Markov equilibrium. Examples of 

this include an upper limit on the rate of extraction, or costs which are convex in the rate of 

exaaction, or the possibility of strategic destruction. 

In addition to providing insight into nonrenewable resource durable goods monopolies, 

the analysis is of more general interest. We provided an example of a siruation where market 

power cannot be disadvantageous in a two-period setting. When we examine the reason for 

this, we recognize that the assumption of two (or a small number of) periods is critical to the 

result. Previous examples of disadvantageous market power used two-period models. These 

examples may have suggested that, in situations where market power can be disadvantageous, 

this possibility can be established in a simple manner. Our counter-example suggests that the 

possibility of disadvantageous market power iiiay be very h a d  to detect. since it [nay be due 

to factors which are assumed away when we work with two-period rnociels. Disadvantageous 

market power may be more prevalent than is co~nmonly thought. 



Appendix: Derivation of (7a) and (7b) and Proof of Proposition 3 

Derivation of (7a): An interior solution (0 < m < -) io the competitive firm's 

mization problem requires dP/dt = r[P - c(S)]. Setting this equation equal to the second 

part of (3) implies 

(All P = [F(Q) - rc(S)]/G . 

This equation holds only on the singular arc, Q = G(S). Differentiating this function with 

respect to time, using (1) and (2), implies 

on the singular arc. Differentiating (Al), using (3), (Al) and (A2), results in 

We substitute the linear functions from (6) into (A3) and use the "trial solution" G(S) = g,, i- 

gS in the result. Equating coefficients of S and 1 implies that g solves (7a). and go = 0. 

Derivation of (7b): The derivation proceeds in three steps. We first explain why we 

restrict attention to a particular form for the Markov equilibrium. We then show that the 

positive root to (7b) defines the equilibrium. Finally, we show that the positive root is unique. 

Step We look for an equilibrium with the following two characteristics: (i) There is 

a linear singular arc Q = gS; for Q < gS the state jumps to the singular arc, and for Q > gS 

extraction is 0 until the arc is reached. (ii) The endogenous price function is linear, with P = 

k, - B(S+Q) when the constraint m 2 0 is not binding. Solving for this equilibrium thus 



requires finding the two constants g and B. "Step 1" of our argument explains why these two 

characteristics of the equilibrium are reasonable. 

We view the continuous time model as a means for studying the behavior of a discrete 

time model in which the period of commitment (the length of a stage) is small, and the 

horizon is large. Therefore we restrict attention to equilibria of the continuous model that 

have the same characteristics as the limit (as the period of commitment vanishes) of the 

equilibrium of the discrete time model. This discrete time model is, in turn, taken to be the 

stationary limit, as the horizon becomes infinite, of a finite horizon model. Thus, we can use 

dynamic programming and backward induction for the discrete model. In other words, we 

begin with a discrete stage model with the length of each stage E and a finite number of 

stages, N. We let N t - to obtain a stationary solution. We then let E --+ 0 to obtain a 

continuous time model.'' 

I. Over a period during which the rate of extraction is m, the amount extracted is me. 

The discrete versions of equations (1) and (2) are S,,, - S, = -m&, and Q, = e''e(Q, + me). To 

simplify notation, we shall assume that the amount m& becomes available instantly at the 

beginning of a stage, and depreciation occurs at the end of the stage. That is, if the stock is 

Q at the start of a stage before sales, then it is Q, + m& as soon as sales have occurred, and it 

remains at that level until the end of the period, when it decays to e "(Q, + mE), This 

assumption has no effect on the limiting case where E -t 0, but it simplifies the description of 

the discrete model. The cost of extracti~ig nic given an initial stock of S, is .fk (ko -kS,)mdz = 

" The remaining paragraphs in Step 1 are preceded by Roman numerals, In order to 
facilitate communication with referees. These nurnerais wi11 be dropped in future versions of 
the paper. 



Jme + [k(me)']/2 = C(S,,m;e). Note that the portion of costs that is quadratic in m, is 

is proportional to z2). 

11. For the finite horizon model, the seller has N opportunities to sell the good. After 

e N'th sale, consumers continue to use the purchased stock, until it erodes to 0, but no 

further sales are made. Given the linear rental and cost functions defined in equation (6), 

then in period N, if the constraint m t 0 is not binding, the equilibrium has three important 

characteristics, stated in the following Remarks. Remark (i): The equilibrium sales rule is a 

linear function of the state vector, &,a). Remark (ii): The monopolist's value function is 

quadratic in the state. Remark (iii): The equilibrium price is linear in the state (is., P, = A, 

- B,,S, - B,& for some numbers A,, B,,, B,). Remark (iii) requires some explanation. 

Given our assumptions about timing, buyers are willing to pay [a - b(Q, + m&)](l - e ")/r + 

e'"ChX~N+,(&+,) for a unit of the stock at stage N. The function P,,, which is derived from 

the linear rental function F(Q, is linear, and by Remark (i) m is a linear function of the state 

vector. This establishes Remark (iii). 

111. We can now use a standard inductive proof to establish that Remarks (i), (ii) and 

(iii) hold at stage t I N, provided that the constraint m 2 0 is not binding. This is true for all 

finite N. We can then consider the infinite horizon limit, as N -+ -. In order for the 

stationary equilibrium to be the limit of the equilibrtum to the finite stage problem, Remarks 

(i) - (iii) must hold.I3 In particular, when the constrain m 2 0 is not binding, the cot~irol rule 

l3 We have not established uniqueness in the infinite horizon model. so we car1 not rule 
out that there are other stationary Markov equilibria which have different properties, e.g,, non- 
linear endogenous price functions. The issue of uniqueness is addressed in the text. 



ear, the value function is quadratic, and the endogenous price function is linear (P(S,Q) 

IV. We now want to establish that the discrete stage dynamic programming problem is 

linear-quadratic in the control, m, and more importantly, that the quadratic terms in m are 

o(E). This means that as E -+ 0, the maximization problem becomes linear in m, so that the 

solution involves a singular arc and bang-bang controls. The discrete stage DPE is 

The f i s t  term on the right side in square brackets is the current price. Note that this function 

is O(E) in the control, m. That is, for non-infinitesimal E,  the monopolist can affect the 

current price, but her ability to do so diminishes as e shrinks. Since the equilibrium price in 

the next period is a linear function of the state, which is a linear function of m, revenue in the 

current period is a linear-quadratic function of m. However, from the previous comments, the 

revenue terms which are quadratic in m are o ( ~ ) .  We mentioned above that current extraction 

cost G(S,m;e), is quadratic in m, with the quadratic term being o(E). By Remarks (i) and (ii), 

J(Q,S) is a quadratic function of the state. Since the state is linear in  rnE a2J(Q,+,,S,+JiamZ is 

proportional to eZ. In summary, the terms in the DPE which are quadratic in m are 

proportional to E'. If we Taylor expand the discrete stage DPE around E = 0 and take limits to 

obtain the continuous time control model, we obtan a problem which is linear in m, as we set 

out to show. We summarize this as Remark (iv): The continuoiis tune control problem is 

linear in m, and therefore involves a singular arc and hang-bang controls. 



V. We now use Remarks (ii) and (iv) to establish that the qingular arc (for the 

s time limit) is linear: Q = gS. To this end, define the state vector y = (S,Q). 

emark (ii), for the discrete stage problem, m is a linear function of the state on a two 

set in the plane S,Q (where m 2 0 is not binding). In this set we can substitute 

the linear control rules into the state system, and write the dynamic system as y,, = W(&)y,, 

or [y,, - y,]/& = [W(E) - UyJ&. The matrix W is obtained by substitution of the equilibrium 

control rule into the state equation; I is the identity matrix. We have also used the fact that 

the system must converge to the point (S,Q) = (0,0), so the linear system does not contain an 

intercept. Define w = liq,[W(&) - u/&, so that the limiting form of the linear difference 

equation is y = wy. By Remark (iv), m takes interior values only on the singular arc (which 

is of dimension 1) in the continuous time problem. Consequently, w must have a non- 

negative eigenvalue. (Otherwise, a jump would not be required at a state off the singular arc.) 

Therefore, the solution to y = wy implies Q/S = n,e"n,e'" = g, where h is the negative 

eigenvalue of w and n,, n, determine the singular arc. 

VI. Finally, we use Remark (iii) and (iv) to explain why we require P = k,, - B(S+Q). 

By Remark (ii) we want a linear price function when m 2 0 is not binding: P = A - B,S - 

B,Q. By Remark (iv) buyers anticipate a jump (in the continuous time problem) when the 

state is below the singular arc. Therefore, price must be constant on 45" lines such as dd' in 

Figure 1, so B, = B, = B. We noted in the previous paragraph that the singular arc must 

intersect the origin. (When Q = 0. the monopolist would not stop extracting if S z 0. Given 

the assumption that ai(ri.6) = k,,, it would not be optimal to exhaust the resource while Q > 



0.) When S = Q = 0 buyers would be willing to pay a/@+&) = k, for a unit of the resource, 

so A = kg. 

2.uations (A2) and (1) imply Q = -6gQ/(l+g). Use this expression in the 

time derivative of P = k, - B(S + Q) = k, - B(l + g) Qlg to obtain 

f A4) P = SBQ. 

Substitute the linear expression for P into (3) to obtain 

Equating (A4) and (A5) implies 

Define o E k/B, q, z (r + &)/(r + 26), q, 5 r + 26 and use the definition of o: (= k/b) ro 

rewrite (A6) as 

We now turn to the monopolist's maximization problem. We use the fact that the 

endogenous price function is differentiable on the singular arc, Q = gS, with 



a p  - = -6. 
aQ I ,  ,s 

ntiability, on the singular arc, of the price function, can be established using the same 

of calculations which are used to establish Lema 1 in Karp (1993). 

The Hamiltonian and f i s t  order conditions for the monopolist's problem are 

(A 12) P - c - h - q = O  . 
- 

The variables h and q are the costate variables associated with Q and S, respectively. 

We now differentiate with respect to time equation (A12) and substitute (I ) ,  (Z), (A10) 

and (A1 1) into the result; eliminate q using (AIZ), to obtain 

which holds on the singular arc. We now differentiate (A13) with respect to time, using (A8), 

(AlO), and the linear price function, to obtain 



6[(r + 6)h - Bm + B(m - FQ)] = r(-B(l + g)  + k) $, 

mplies 6(r + 6) h = [r(k - B(1 + g)) + 26B1 S + B B ~ s .  Use (A13) to eliminate h and 

to obtain 

(A 15) r,s = r, s 
where yo = (r + 6) rk - Bg((r + 6)' + 6') - r(r + 6) B and y, = rk - B(r + rg - 26). Use 

-m = s = -6gS/(1 + g) in (A151 to obtain yo = -y,6gl(l + g). Rearrange this equation, using 

previous definitions and q, I (r + 6)/r to obtain 

(A 16) q,(l - 0) + (2 - o)g + q 2 g 2  = 0. 

Substitute (A7) into (A16) and rearrange to obtain (7b) in the text. 

Table 1: Definitions of Parameters Used to Derive (7) 
- 

Step We now show that there is a unique positive root to this cubic. To this end, 

note that f(0) = -aq, qi < 0 and lim,,, f(&j = -, where f(g) is defined in (7b). Xierefore 

there exists a positive root of (7bj. To show that tile positive root is unique. consider the 



owing cases: (i) 0 < aq, < In, (ii) 112 < aq, < 2, and (iii) 2 < aq,. For each of these 

we apply Descartes' Rule of Signs to verify that there exists at most one positive root. 

Proof of Proposition 3: We will prove only that for small positive 6, ir(g', .) > y(g'", .). The 

second inequality in the Proposition, y($, .) > y(go, .), can be shown by a parallel argument. 

We first note that because gc, g" and go are analytic functions of 6, lemas 1 and 2 imply 

evaluated at 6 = 0. 

We now establish that y(gc) > y(go) for small 6. From Lema 1, y(gC, .) = y(go, .) iff 6 

= 0. Moreover, for small positive 6 it must be the case that y(gc, .) > y(go, .). This follows 

because profits on the singular arc are positive with property rights (where rent is positive) 

and 0 without property rights; therefore, if it were hue that y(gc,-) < $go, .) for any 6 > 0, it 

would have to be the case that profits in the initial jump were higher in the open access than 

in the competitive equilibrium. However. at the initial jumn, "ricr = Marginal Cost under 

open access, so a marginal decrease in the initial supply would increase profits from the 

initial jump. Since a marginal increase in 6 (from 0) makes the initial supply (from the jump) 

marginally smaller under competition than under open access, it follows that *[(gc, .) > y(go, .) 

for sufficiently small positive 8. 

Define y* as the value of industry profits under monopoly, competition, and open 

access when 6 = 0: y* is a function of a and r, but we suppress those arguments. Since y is 



an analytic function of g' and 6, and g' is an analytic function of 6, we have, in view the 

previous paragraph, that for small positive 6: 

The last line of (A18) and the f i t  inequality in (A17) imply that y, < 0 evaluated at 6 = 0. 

This inequality, together with the second inequality in (A17) imply that for small y 
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