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ABSTRACT OF THE DISSERTATION

Advancing Particle Physics with Sophisticated Computational Frameworks

By

Jessica Nicole Howard

Doctor of Philosophy in Physics

University of California, Irvine, 2022

Professor Timothy M.P. Tait, Co-Chair
Professor Daniel Whiteson, Co-Chair

The Standard Model (SM) of particle physics is one of the most complete mathematical

models of physical phenomena to date. Even so, it cannot explain experimental results

like the existence of particle dark matter and the fact that neutrino masses are non-zero.

Explaining such results will necessitate developing a beyond the SM (BSM) theoretical de-

scription of particle physics. What form this BSM physics will take has become increasingly

unclear; many elegant theories which were expected to appear in recent experiments have

not emerged. Thus, we find ourselves at a cross-roads, in need of new perspectives and new

computational frameworks to push our theoretical description of physics forward.

New perspectives will come from challenging previously-held assumptions in the pursuit of

fundamentally new descriptions, but challenging such assumptions often presents practical

computational challenges. Therefore, these new perspectives must also be accompanied by

new computational frameworks. Computational frameworks can come in many forms, from

the purely mathematical to the largely numerical. In particular, in recent years machine

learning (ML) has become an increasingly accessible and powerful computational tool for

scientific applications. Crafting novel BSM theories will require us to investigate and embrace

the full spectrum of computational frameworks. Additionally, one of the best ways to spark

xiii



new insights is to closely collaborate with and draw inspiration from other fields, such as

mathematics and computer science.

In this thesis, we present two examples of how advanced computational frameworks can

be used to aid in investigating new physics perspectives. In one example, we see how the

purely mathematical framework of optimal transport (OT) theory can be used in tandem

with advanced ML methods to enable a new perspective on particle physics simulations.

The result is a novel strategy which lays the foundations for a completely data-driven, end-

to-end simulation of particle collisions at the Large Hadron Collider. In a second example,

we see work which considers a new perspective on what the history of our universe might

have looked like. In particular, we consider how the abundance of a WIMP dark matter

candidate could be altered by considering a phase of electroweak force confinement early in

the universe. Considering this model while making relatively few assumptions was aided by

the application of advanced numerical computational tools.

We begin with both high-level and technical background on the topics relevant to these

works. We conclude by discussing future directions for these works, as well as briefly giving

general thoughts on strategies for applying the computational framework of ML to problems

in theoretical particle physics more broadly.

xiv



Chapter 1

Conventions

This chapter briefly summarizes the conventions and notations used in this thesis:

• Any abbreviations will be defined at their first appearance in each chapter.

• For definitions in mathematical expressions we use the symbol “ :=" or “=:" to define

the term on the left-hand-side or right-hand-side, respectively. For example, x := y

defines x in terms of y whereas x =: y defines y in terms of x. This is done to be more

explicit than the more physics-typical symbol “≡".

• Throughout, instead of calling L the Lagrangian density, we will simply refer to it

as the Lagrangian. This is a common abuse of notation. If we do, in fact, discuss

the Lagrangian itself, L :=
∫
d4x L, we will use the more precise Lagrangian density

terminology to refer to L in that discussion.

• Below we list some handy QFT notation reminders:

– As is standard in particle physics, we use the (+,−,−,−) convention for the

Minkowski metric, e.g. m2c4 = pµpµ = ηµνp
µpν = +p0p0 − p1p1 − p2p2 − p3p3 =

E2 − p⃗ 2c2.

1



– ∂µ := ∂
∂xµ .

– The Feynman slash notation is a shorthand for contraction with γµ, e.g. /∂ :=

γµ∂µ = γµ∂
µ.

– The “bar" notation is also a shorthand, e.g. ψ̄ = ψ†γ0.

• We assume throughout that ℏ = c = 1 (and where relevant kB = 1), which means all

quantities in QFT have units of energy to some power:

– Mass: [m] = E.

– Momentum: [pµ] = E.

– Length: [xµ] = E−1.

– Spatial Derivatives: [∂µ] = E (because xµ is “in the denominator").

– Action: [S] = E0 = 1.

– Lagrangian Density: [L] = ED whereD is the number of space-time dimensions

(because S :=
∫
dDx L).

– Vector Field: [Aµ] = E(D−2)/2, for D = 4 then [Aµ] = E.

– Fermion Field: [Ψµ] = E(D−1)/2, for D = 4 then [Ψµ] = E3/2.

– Scalar Field: [Φµ] = E(D−2)/2, for D = 4 then [Φµ] = E.

2



Chapter 2

Introduction

In this chapter we briefly review some relevant topics found in this thesis: the standard cos-

mological history of the Universe, dark matter (DM), and simulations of particle collisions at

the Large Hadron Collider (LHC). These high-level reviews are meant to concisely summa-

rize important features while pointing to valuable resources for more detailed information.

Finally, the last section of this chapter describes the motivation for the work in this thesis

and provides an outline of the rest of the chapters.

2.1 The Standard Cosmological History of the Universe

Cosmology is the scientific study of the origins and the development of the Universe into what

we observe today. The current accepted model of how the Universe began, the hot big bang

model, establishes that the Universe’s beginning was both hot and dense. As time progressed

the Universe expanded, the density dropped, and the Universe cooled; therefore, the further

back we go in the history of the Universe, the higher the average temperature will be at

that time. Hotter average temperatures imply that there was more energy available to the
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occupants of the Universe, most notably particles. From controlled, laboratory experiments,

such as the Large Hadron Collider (LHC), we know that the behavior and interactions of

particles can change drastically with energy. Thus, studying the interactions of fundamental

particles at high energies will help us discover what the Universe looked like shortly after

the big bang singularity [3].

The estimated age of the Universe is the time from the big bang singularity until now —

13.787±0.020 billion years ago [4].1 While we have experimental probes of the vast majority

of this history, probes of very early times, when the majority of interesting particle physics

was occurring, are still out of reach. The earliest direct experimental probe is from the era

of Big Bang Nucleosynthesis (BBN), corresponding to an average temperature of 10 MeV

to 0.1 MeV or about 10−2 seconds to 3 minutes after the big bang singularity [3]. During

this time, the light nuclei, which are more complicated than hydrogen nuclei (just a single

proton), were formed. In particular, the nuclei of deuterium (D), helium-3 (3He), helium-4

(4He), and lithium-7 (7Li) were formed. Since few subsequent astrophysical processes affect

the abundances of these nuclei,2 the observed abundances of these elements today provides

a precise constraint on our understanding of particle physics at this time in history [3].

The early-universe quantities which these measurements can constrain are g∗, which counts

the total number of effectively massless degrees of freedom at a given temperature (i.e.

m≪ T ), the neutron half-life, τ1/2(n), and the ratio of normal matter (baryons) to radiation

(photons), η := nN/nγ; η is also a measure of entropy, when η ≪ 1 the Universe is “hot"

and entropy is high. The abundance of 4He provides a constraint on the ratio of neutrons

to protons at the time when reactions converting neutrons into protons froze-out. This,

in turn, places a constraint on g∗ as well as τ1/2(n). While different values of η will also

affect the abundance of 4He, the effect is much less pronounced. Instead, the abundances
1This age was estimated from 2018 Planck data and includes Baryon Acoustic Oscillations (BAO) data.
2Note that this is less true for 4He which can also come from stellar processes, however the primordial

contribution is still significant and can be estimated by studying metal-poor objects [3].
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Figure 2.1: Schematic diagram depicting the timeline of the Universe assuming
a standard cosmological history. During the earliest times of the Universe (first few
minutes) particles were the dominant objects. Our earliest direct experimental probes only
goes as far back as Big Bang Nucleosynthesis (BBN). Under the standard cosmological
history, we can use our understanding from particle experiments to give us clues about what
earlier times might have been like.

of D, 3He, and 7Li place far stronger constraints on the value of η. These measured values

are consistent with how these objects would interact assuming the Standard Model (SM)

of particle physics. We can therefore say that the SM of particle physics can describe the

historic interactions between particles up to T = 10 MeV (t = 10−2 s) [3].

From a modern experimental particle physics perspective, T = 10 MeV is rather low-energy.

For example, the second run of the LHC was colliding protons at 13 TeV energies, which is

larger by 6 orders of magnitude. If we assume that particle physics in the lab corresponds to

particle physics in the early universe, then we can say quite a bit more about what the early

universe looked like (see Fig. 2.1 for details). This correspondence is the stance taken by the

standard cosmological history — the SM of particle physics at high energies corresponds to

what the Universe looked like at early times.
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However, we know that the SM is incomplete; missing pieces like the observed matter/anti-

matter asymmetry, the nature of DM, and non-zero neutrino masses will certainly affect an

early-universe description of particle interactions [3, 5]. So while we can use the SM as a guide

in the early universe, extrapolating it back to earlier times (higher temperatures) should not

be a strict requirement. Until experimental probes of the first instances of the Universe are

available, it is worth entertaining a wide variety of possible early-universe models to fully

explore all possibilities.

Recent work which relaxed the assumption of a standard cosmological history has had success

in being able to (partially) explain many BSM observations, such as baryogenesis and DM [2,

6–12]. In Chapter 5 of this thesis, we will see an example of this related to DM [2]. This work

considers an alternate cosmological history with a phase of electroweak force confinement

contemporary with DM freeze-out. This alteration expands regions of DM mass parameter

space which were previously considered unviable, and shows that they could produce the

observed DM relic abundance while having evaded experimental detection.

2.2 Dark Matter

One of the biggest unsolved mysteries in modern physics is the observation that there is more

mass (matter) in the Universe than we expect based on what we can see. More precisely, the

visible matter that we can observe (i.e. matter which interacts typically with light) is not

enough to describe the gravitational dynamics of large-scale structures in the Universe (e.g.

galaxies). We are thus left with two options: our description of gravity needs to be revised

or there is matter which we cannot observe via our traditional, light-based astronomical

means [5].

Since the discovery of this discrepancy many explanations have been proposed and subse-
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quent experiments devised. Explanations which modify gravity are less favorable as they

must contend with the overwhelming experimental success of the theory general relativity

and also fail to explain many experimental observations [5]. Similarly, it is unlikely that this

missing mass is arising solely from familiar “dark" objects such as planets [3].

Instead, observations to-date strongly support the notion that DM is a new kind of massive

particle. This is also motivated by the fact that we know there are other issues with our

theoretical description of particle physics (e.g. non-zero neutrino masses), so it is reasonable

to hope that the solutions may be related. However, besides the fact that DM behaves

roughly like a massive particle, we do not know much about its properties. For example, does

it only interact gravitationally with normal matter? Could it interact feebly with normal

matter via another force? Does it interact with itself? Is it fundamental or composite?

While there is experimental evidence that can attempt to answer these questions, the overall

story is muddled, and often very dependent on the specific theoretical model being used.

However, in order to make practical headway, the vast majority of DM models assume that

DM interacts with normal matter non-gravitationally, at least to some extent; this can allow

DM to better fit into a BSM physics model and also gives us a chance of seeing it in earth-

based experiments [3, 5].

A historically popular (and economic) choice for DM is that it is a Weakly Interacting Massive

Particle (WIMP). The idea is that DM interacts only via the Weak Force (i.e. it is charged

under the SM’s SU(2)L gauge symmetry, but not under any of the other SM symmetries).

Because DM interacts Weakly, this means that, at some point in the Universe’s cosmological

history, DM was in thermal equilibrium with all other SM particles (i.e. reactions converting

DM particles ↔ SM particles were happening at equal rates). If DM stayed in thermal

equilibrium throughout the Universe’s history its abundance today would be negligible3

3The abundance of a massive particle species in thermal equilibrium decreases with a factor exp(−m/T ).
Given the Universe’s present temperature T = 2.7260 K = 2.3491 × 10−4 eV [4], this exponential factor
would make the abundance nearly negligible.
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and not reflect what we observe. When a particle species departs thermal equilibrium, its

reactions (i.e. DM → SM) are said to have "frozen-out", fixing its abundance to what we

observe today. In particular, we measure the contribution of DM to the energy density

of the Universe. Assuming that the DM present today comprises a single particle species,

the energy density of DM today will be the mass of the DM particle times its number

density, ρDM := mDM nDM. This is commonly reported as a normalized density parameter,

ΩDM := ρDM/ρcrit, where ρcrit is the critical density such that the Universe would be flat i.e.

have zero curvature. Because of this normalization, the sum of the density parameters of all

sources is one,
∑

Ωi = 1

If DM’s interactions to the SM are through the Weak Force, then this lets us know when

DM froze-out and thus allows us to calculate the number density of DM today. This leaves

DM’s mass as the only free parameter. Therefore, matching the measured value of ΩDM will

uniquely determine mDM. This proposed model is attractive because it does not involve extra

particle physics mechanisms, only a new massive particle which interacts Weakly; moreover,

WIMP candidates for DM exist in many historically popular theories (e.g. SUSY), so this

scenario was historically seen as a two-for-one deal [5]. To-date, however, experiments which

have searched for WIMPs have largely ruled out the mass values favored in this scenario.

While there are WIMP models that have not been ruled out, they usually are not as elegantly

simple as the original scenario described above [13].

However, an implicit assumption in the above discussion is that the early universe followed

the standard cosmological history. An alternate cosmological history, in particular one which

affects the strength of the Weak Force during DM freeze-out, would greatly alter this picture.

In Chapter 5 we will see exactly how such an alternate cosmological history might arise and

how this expands regions of DM mass parameter space which were previously considered

unviable [2].

The remainder of this section briefly describes how one calculates the relic number density
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of a particle species which froze-out at some point in the early universe. This largely follows

the discussion found in Ref. [3].

We are interested in finding out how the phase-space distribution function of a particle

species evolves as a function of time. This evolution is simple both when this species is in

thermal equilibrium with all other particle species (the “plasma") and when it has completely

frozen-out. In the former case, we say that the particle species is coupled to the plasma,

and in the latter, we say that it has decoupled. Whether a species is coupled to the plasma

or not depends on how the per-particle interaction rate Γ (for reactions which would keep

the particle species in thermal equilibrium with the plasma) relates to the expansion rate of

the Universe, H. If Γ ≫ H, then interactions are occurring sufficiently rapidly to maintain

equilibrium (coupled); on the other hand if Γ ≪ H, then reactions are not rapid enough

to maintain equilibrium (decoupled). It is in the intermediate case, Γ ≈ H, where the

description gets tricky.

In general, the phase-space distribution function f(pµ, xµ) evolves according to the Boltz-

mann equation4

L̂[f ] = C[f ], (2.1)

where C is the collision operator and L̂ is the Liouville operator, which is generally given by

L̂ = pα
∂

∂xα
− Γα

β,γp
βpγ

∂

∂pα
, (2.2)

where the affine connection incorporates gravitational effects. Schematically, the RHS of 2.1

details changes to f(pµ, xµ) arising from interactions while the LHS details changes arising

from space-time considerations (e.g. the expansion of the Universe).
4An interesting aside worth mentioning here is that historically the field of optimal transport theory,

which will be seen later in this thesis, has been applied to the study of simple Boltzmann equations [14].
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Under the FRW model, the phase-space density will be spatially homogeneous and isotropic,

i.e. f(pµ, xµ) → f(p := |p⃗|, t) (or equivalently f(E, t)), and the Liouville operator can be

rewritten as

L̂ = E
∂

∂t
−Hp2

∂

∂E
. (2.3)

Defining number density in terms of phase-space density as

n(t) =
g

(2π)3

∫
d3p f(E, t), (2.4)

we can rewrite Eq. (2.1). We begin by multiplying both sides by

g

(2π)3

∫
d3p

E
. (2.5)

The LHS will then give us,

g

(2π)3

∫
d3p

E
L̂[f ] =

g

(2π)3

∫
d3p

E

(
E
∂f

∂t
−Hp2

∂f

∂E

)
(2.6)

=
g

(2π)3

∫
d3p

∂f

∂t
−H

g

(2π)3

∫
d3p

p2

E

∂f

∂E
(2.7)

=
∂

∂t

(
g

(2π)3

∫
d3p f

)
−H

g

(2π)3

∫
(dp p2)

p2

p

∂f

∂p
(2.8)

=
∂

∂t
n(t)−H

g

(2π)3

∫
dp p3

∂f

∂p
(2.9)

=
dn

dt
+H

g

(2π)3

∫
dp

∂(p3)

∂p
f (2.10)

=
dn

dt
+ 3H

g

(2π)3

∫
(dp p2)f (2.11)

=
dn

dt
+ 3Hn, (2.12)

where we used 1) the fact that E2 = m2+p2 implies p dp = E dE, 2) the fact that d3p = p2 dp

and 3) the relation −
∫
dp p3 ∂f

∂p
=

∫
dp ∂(p3)

∂p
f obtained via integration by parts, with the
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surface term neglected.

We can therefore rewrite the Boltzmann equation Eq. (2.1) in the following form

dn

dt
+ 3Hn =

g

(2π)3

∫
d3p

E
C[f(E, t)]. (2.13)

Thus, the Boltzmann equations are a coupled set of integral-partial differential equations for

the phase-space distributions of all particle species in the system. Under some reasonable as-

sumptions this can be simplified. In particular, we can focus on the phase-space distribution

(and thus number density) of one5 particle species, ψ, and group the rest into an effec-

tive plasma phase-space distribution, leaving us instead with one integral-partial differential

equation for the species of interest, ψ.

With some additional assumptions (see Ref. [3] for more details) we can express the collision

term entirely in terms of the number density of ψ, n, and the thermally averaged cross

section times the relative velocity, ⟨σv⟩, for reactions which would encourage ψ to go into

equilibrium with the plasma. In particular,

dn

dt
+ 3Hn = −⟨σv⟩

(
n2 − neq2

)
(2.14)

where neq is the number density when ψ is in equilibrium. If ψ is a non-relativistic particle

species

neq = g

(
mT

2π

)3/2

e−x (2.15)

where x := m/T and m is the mass of ψ. For non-relativistic interactions the relative

velocity, v, is small so we can expand ⟨σv⟩ = a+ b⟨v2⟩+O(v4). Then solving Eq. (2.14) for

the value of n at late times (low T ) will give us the relic abundance of ψ.
5Technically, there is also a way to simplify a case of N species with some additional caveats, more on

this below.
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If we wanted to instead consider N different species, in principle we would have to solve

N such equations. This can get quite complicated, especially when interactions couple the

equations together. However, in the case where the N particle species of interest, ψi for

i = 1, ..., N , have approximately degenerate masses (i.e. ∆mij ∼ TF , where TF is the freeze-

out temperature) and are interrelated such that all ψi for i > 1 will decay quickly into the

lightest ψ1 (with mass m1), we can write a single effective equation in terms of, n, the number

density of ψ1. Namely,

dn

dt
+ 3Hn = −⟨σeffv⟩(n2 − n2

eq), (2.16)

where

σeff =
N∑
ij

σij
gigj
g2eff

(1 + ∆i)
3/2(1 + ∆j)

3/2e−x(∆i+∆j), (2.17)

with

geff =
4∑

i=1

gi (1 + ∆i)
3/2 e−x∆i , (2.18)

where gi is the number of degrees of freedom of ψi, x = m1/T , σij is the cross section for

the reaction ψiψj → SM (summed over all kinematically accessible SM particles in the final

state), and ∆i:= (mi −m1) /m1 is the mass difference between the heavier ψi ̸=1 and ψ1. This

scenario is called coannihilation (see Ref. [15] and Ref. [16] for more details). The Boltzmann

equation can be solved either with analytical approximations or numerical techniques.
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2.3 Large Hadron Collider (LHC) Simulations

In an ideal world, a scientist would be able to propose a theoretical model for how some

physical phenomenon works, devise an observable and distinguishable feature of this model,

and measure this feature directly in the lab to see whether it matches the model’s prediction.

If it does, then they have a working theoretical description for that physical phenomenon.

If it does not, then they must incorporate this information to improve their theoretical

description. And repeat. This is the essence of how scientific fields in the physical sciences

would ideally operate.

So where does reality diverge from this idealistic scenario? The answer is sometimes you get

lucky and reality matches this scenario; but for many physical sciences, particularly particle

physics, the wrench in the works is that direct measurements of your distinguishable features

are practically impossible. To be more precise, in particle physics theoretical predictions are

usually restricted to a space where we cannot make direct measurements.

For example, a theory may predict that a new particle is created, but it is too short-lived to

be seen by our detectors. Instead of measuring the properties of this new particle directly,

we must infer these properties from measuring its longer-lived decay products, which we can

detect. These indirect measurements must be reconstructed into a theoretically meaningful

form before we can draw conclusions about the validity of a theory. And not only are these

measurements indirect, but their reconstruction is also imperfect, often muddled by noise

and biases coming from the detectors.

To use an analogy, this task is like finding the exact age of a fossil. We cannot travel back

in time to know exactly when the fossil was formed (direct measurement) and instead are

limited to using techniques such as carbon dating (indirect measurement) to ascertain the

approximate age of the fossil.
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In statistical terms, the inaccessible direct data belong to a latent, theoretical model space.

Different theories, with different parameters, will make distinguishable predictions in this

latent space. Statistical inference then requires understanding how points in this unobserved

latent space are transformed into experimental data. This transformation is usually non-

trivial, involving complex physical interactions that cannot be described analytically. To

bridge this gap, particle physicists typically employ computationally expensive numerical

simulations, so-called simulation based inference [17]. Theoretical calculations create predic-

tions in this latent space, Z, which depend on model parameters, Θ, and simulations map

from Z into the experimental data space, X . The simulation, in effect, samples from a con-

ditional probability distribution, psim(x | z), so that theoretical predictions can be compared

in X .

Over the years, many different simulation strategies have been employed (e.g. matrix ele-

ment method [18, 19]), but the most widely used methods (e.g. Pythia+GEANT4 [20, 21])

attempt to use our limited knowledge of particle-matter interactions to numerically map

from Z to X , using Monte-Carlo methods and data from independent experimental analyses

to patch where our theoretical understanding fails. The final numerical mapping typically

spans many different numerical software packages but can be segmented into four stages

which parallel what (we think) happens in reality (see Fig. 2.2). (1) The first stage concerns

fundamental particle interactions. The computations in this stage are relatively quick and

also theoretically well-framed within quantum field theory (QFT). These are usually com-

puted with a numerical software called MadGraph [22]. (2) The next stage concerns the

propagation of the final states from the previous stage to the particles which our detector

will eventually see. For quarks and gluons, this involves the modeling of hadronic showers.

Our theoretical knowledge of this process is limited and so it is approximated with heuristic

methods and Monte-Carlo techniques. These computations are usually performed with a

numerical software called Pythia [20]. (3) This stage attempts to recreate how the detector

will respond, including biases and inefficiencies, to the particles which it encounters. (4)
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Figure 2.2: Schematic diagram of the four stages in current LHC simulation meth-
ods: (1) parton interactions, (2) showering, (3) detection, and (4) reconstruction.
See the text for further description. We list the typical number of parameters in each stage.
Notice that the initial and final stages are low dimensional (O(10) parameters) compared to
the intermediate stages (O(100) to O(106) parameters). The arrows indicate the names of
typical software packages which perform the calculations in these stages.

Finally, this raw detector data is reconstructed into a physicist-interpretable form for use

in analyses. These last two stages are usually contained within a single numerical software,

typically GEANT4 [21] or Delphes [23].

The idea behind this segmented simulation strategy is to try to leverage as much knowledge

as we have about the intermediate processes, with the hope that the final end-to-end mapping

will mimic what happens in reality. While we would like for this to happen out-of-the-box,

it unfortunately does not. These simulations must undergo rigorous tuning to separate

experimental measurements to help account for the gaps in our knowledge (e.g. about the

mechanism of hadronization) [1].

Another downside is that these simulations are painfully slow. While Nature can produce
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detector events nearly instantaneously, it takes about 10 minutes to simulate 1 event through

this intensive chain; experimental analyses typically need millions to billions of events. More-

over, whenever the simulator must be re-tuned, these events must be re-simulated which

further slows the process. The slow simulation crisis is the cause of the current dominant

uncertainty (statistical), and this problem is only likely to worsen in future experiments (e.g.

the high luminosity LHC) [1, 24, 25].

Therefore, many physicists have set to the task of making faster simulators. Often using

techniques from machine learning to speed up the intermediate stages. However, Chapter 4

of this thesis explores an alternate perspective, which is to use machine learning to learn

an end-to-end mapping from Z to X . Other works [26, 27] have also tried this end-to-

end strategy but must incorporate simulated samples during training to learn a conditional

mapping, thus inheriting some of the above issues. On the other hand, Chapter 4 explores

how to learn this mapping directly from reconstructed data, without requiring simulated

data samples, using an optimal-transport based machine learning method.

2.4 Motivation and Outline of This Thesis

The current state of particle physics is one of many possibilities and few clear directions in

which to push forward. We have numerous reasons to believe that the SM is incomplete,

most notably the existence of DM and non-zero neutrino masses [5]. Explaining such ex-

perimental results necessitates a beyond the SM (BSM) theoretical description of particle

physics. Additionally, many of the deviations from the SM have come in places we were not

expecting, and thus are fundamentally challenging our previous guesses as to how the Uni-

verse works. To meet this challenge and solve this puzzle, we will need both new perspectives

and more clues.
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More clues will undoubtedly come from the results of new experiments; but unfortunately

this has an associated time-cost of years to decades. While efforts to design and build these

future experiments are underway, it is worth asking if we might be able to obtain new clues

in other, more immediate, ways — possibly by reexamining old clues (prior experimental

data) to see if they lead to new insights. Moreover, we must also ask ourselves how we

can best prepare to interpret the results of these future experiments when they do arrive.

Both of these pursuits will require new and improved tools. On the other hand, developing

new perspectives will require us to challenge previously-held assumptions in the pursuit of

fundamentally new descriptions. And all of this will require a healthy dose of creativity.

When at such a crossroad, questioning long-held assumptions and adding creative new tools

are not only prudent but a necessity. This time provides us with an exciting opportunity

to reflect and revise our practices. While we wait on the next era of particle experiments,

which seek to explore some of the most apparent experimental deviations from the SM, we

have the freedom to chart new possibilities and examine past results and practices with

new perspectives. Charting the possibilities, no matter how crazy they might initially seem,

ultimately builds the framework for discovering the truth.

To hearten us on this journey, we may take comfort in the past, where we have seen similar

stories play out in physics before. For example, at the end of the 19th century an unexpected

observation in the spectrum of black-body radiation led Max Planck to propose the crazy

idea that energy could be quantized. This heuristic law (Planck’s law) was able to explain the

behavior of this system, and eventually paved the way for the theory of quantum mechanics

as we know it today. Often times, the success of such unfettered exploration of possibilities

relies on the consideration of new practical tools. These tools are often found in, or inspired

by, adjacent fields like mathematics and computer science. Therefore, close collaborations

between fields will enhance these pursuits.

This thesis attempts to take this philosophy of questioning, creativity, and collaboration to
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heart, providing two small examples of the wide range of possible forms that such research

can take.

Chapter 4 contains research which develops the foundations of a fundamentally new strategy

for simulation tools used in the analysis of data from experiments at the LHC. This new

strategy has the potential to save orders of magnitude of computational time, thus meeting

the demands of current and future experiments. This method is unique in its ability to learn

a physically realistic transformation from theoretical model information to observed data

in a completely data-driven way. This proof-of-principle work lays the foundations of this

method by drawing on techniques from the fields of machine learning and optimal transport

theory [1].

Chapter 5 contains research which questions assumptions about events in our cosmologi-

cal history and explores the implications on the nature of DM today. In particular, this

work considers how a phase of electroweak force (SU(2)L) confinement which was contem-

porary with DM freeze-out may help alleviate current experimental constraints on WIMP

DM. This work is an example of how questioning assumptions, which are not yet experi-

mentally founded, might expand the space of possible descriptions. In general, such shifts

may drastically alter the extent to which certain theoretical descriptions are ruled out — in

turn affecting the analysis of current and future experimental data and even the design of

future experiments. Therefore, it is crucial to question assumptions in order to fully chart

the possibilities.

The remaining chapters of this thesis are organized as follows. Chapter 3 provides a back-

ground review of the main technical topics used in both of these works. Chapter 6 provides a

high-level summary of these works and specific follow-up directions. It also contains broader

thoughts concerning future research directions at the interface of machine learning, optimal

transport theory, and theoretical particle physics.
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Chapter 3

Background of Techniques Used

This chapter covers the background of the main technical topics found in this thesis. Sec-

tion 3.1 and Section 3.2 cover background material relevant for Chapter 4 while Section 3.3

covers background material relevant for Chapter 5.

3.1 Optimal Transport Theory

Optimal transport (OT) theory is a branch of mathematics with a sporadic yet fascinating

history. Despite being formulated in the 18th century, the mathematical study of this topic

has been relatively infrequent when compared to other branches of mathematics1 and has

only begun to flourish in earnest in recent years. Over much of its history, only a handful

of individuals were concerned with studying OT theory. As a result, breakthroughs were

separated by decades. The problem was first formulated in 1781 by French engineer Gaspard

Monge [29] but did not see any progress towards a mathematical solution until the 1930s.

During World War II major advances were made by Leonid Kantorovich resulting in one of
1For example, Group Theory, which is another branch of mathematics with wide applications in physics

and beyond, was actually developed after OT (in the 19th century [28]) but has seen far more study since.
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the most lasting formulations of an OT problem (Monge-Kantorovich formulation). After

that, advances remained relatively few until the late 1980s when work by John Mather, Yann

Brenier and Mike Cullen found wide-reaching applications of OT to problems in geometry,

partial differential equations, and meteorology (not to mention statistics) [14]. Since then,

interest in this area has only increased, and is continuing to grow. This is especially true as

scientific applications of OT are explored; for example, in the last decade, OT theory has

provided fundamental improvements to many machine learning methods [30, 31] and is even

being explored as a natural description for the products of particle collisions [32–34]. While

scientific applications of OT are relatively nascent, the potential of OT to advance scientific

fields is vast and exciting and warrants continued study.

OT theory concerns itself with finding the optimal way to transform one probability distribu-

tion into another. This can be intuitively visualized by imagining a probability distribution

as a pile of dirt. The task is then to move this pile of dirt, one shovel-full at a time,

some distance while reshaping it to have a different form in the process. After defining

the cost of transporting a given shovel-full of dirt, you can then ask the question, “What is

the transportation plan that allows me to perform this task optimally (i.e. with the least

overall cost)?" This scenario of transporting piles of dirt is actually the inspiration for the

first formulation of the OT problem by Monge who was interested in whether there was a

mathematically optimal way to construct a soil embankment [14].

Discussing the mathematics of OT problems necessitates a notion of distance between prob-

ability distributions — the more similar the probability distributions, the easier it would be

to optimally transport one into the other, and thus the smaller the distance. The Wasser-

stein distance (or Kantorovich–Rubinstein metric) was developed to meet this need.2,3 [35].
2This metric was originally proposed in 1939 by Russian engineer Leonid Kantorovich in the context

of optimal transport of goods. But in 1969, Russian matematician Leonid Vaserštĕin (or Wasserstein in
German spelling) used this distance in work on automatas. The use of these results in subsequent work led
to the coining of the name “Wasserstein" distance, despite the metric originating with Kantorovich.

3Note that, especially when describing the distance between one-dimensional probability distributions,
this is also sometimes called the Earth Mover’s metric in reference to the original OT problem.
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The Wasserstein distance has become crucial in the study of OT problems, becoming nearly

synonymous with OT in many cases.

In Section 3.1.1 we give an overview of the mathematics of the Wasserstein distance. We

also discuss a strategy for its explicit computation which is used to achieve the results in

Chapter 4.

3.1.1 Wasserstein Distance

The Wasserstein distance is a robust way to describe the degree of similarity between proba-

bility distributions (or more accurately, between probability measures). It is formally a math-

ematical metric, giving it an edge over other common distances such as the KL-divergence,

which has pathological failings such as diverging when probability distributions do not over-

lap in the same space [36, 37]. However, in dimensions greater than one, the explicit com-

putation of the Wasserstein distance becomes computationally intractable leading to the

development of many approximations(e.g. [33, 37]. In this section, we summarize the math-

ematical description of the Wasserstein distance and discuss one strategy for approximating

its computation for the case of multi-dimensional probability distributions.

We begin by first noting some definitions which will be useful in the following description:

Probability space: A probability space, Ω, is the set of events to which you can assign a

probability [38].

Probability measure: A probability measure determines how you assign probability to an

event. It is a real-valued function4 defined over a set of events in a probability space.

A probability measure µ must map from a set of events, E = {Ei | Ei ∈ Ω }, to the unit
4Note that there has been interesting work done generalizing to complex probability measures [39, 40],

but in this thesis we restrict ourselves to real measures, as is more standard.
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interval, µ : E → [0, 1]. If E is the empty set, µ(E) = 0 and if E contains all possible events

µ(E) = 1. µ also has the countable additivity property which states that for all countable

collections of pairwise disjoint event sets, {Ei}, µ (∪iEi) =
∑

i µ(Ei) [41].

Borel measure: A Borel measure is a measure which maps from the Borel σ-algebra of

some topological space to the real number line [42].

Borel probability measure: If the Borel measure is also a probability measure, then it is

called a Borel probability measure [42].

Lebesgue measure: The Lebesgue measure extends the typical idea of length, area, and

volume to more complicated sets. A measure µ is continuous with respect to the Lebesgue

measure, λ, if, for every measurable set A, λ(A) = 0 ⇒ µ(A) = 0 [42].

Pushforward (measure): A pushforward (or pushforward measure)5 is a measurable func-

tion which is used to transfer a measure from one measurable space to another — analogous

to changing variables. Given two measurable spaces Ω1 and Ω2 and a measurable mapping

f : Ω1 → Ω2 the pushforward of probability measure µ : E1 → [0, 1] is f#(µ) : E2 → [0, 1]

such that f#(µ)(B) = µ(f−1(B)) for B ∈ E2 [42].

Probability density function: A probability density function, Iµ(x), determines the prob-

abilities you assign to a given set of events with respect to a given probability measure, µ.

Specifically, it is used to specify the probability that the random variable, x, will fall within

a particular range of values, [xL, xU ]: P (x ∈ [xL, xU ]) =
∫ xU

xL
Iµ(x)dx =

∫ µ(xU )

µ(xL)
dµ(x) [37].

Cumulative distribution function: The cumulative distribution function (CDF), FX(x),

gives the probability that a real-valued random variable X will take on a value that is less

than or equal to x. For continuous random variables, the CDF is usually denoted as F (x)

and is closely related to the probability density function, I(x), via the fundamental theorem
5Note that this is sometimes also called “image measure" in the literature.
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of calculus: I(x) = dF
dx

, provided I(x) is differentiable. Inverting this relation gives an

expression for F (x) =
∫ x

−∞ I(t)dt [37].

Equipped with these definitions, we are now ready to define the Wasserstein distance and

discuss its practical computation. This discussion largely summarizes work from the following

sources [14, 36, 37, 43, 44].

Let (Ω, d) be a d-dimensional probability space. Let Pp(Ω) be the set of Borel probability

measures defined on (Ω, d) with finite pth-moment. Let µ ∈ Pp(X) and ν ∈ Pp(Y ) for

X, Y ⊆ Ω. Let the corresponding probability density functions be Iµ(x) and Iν(y). Recall

that this means that dµ = Iµ(x) dx and dν = Iν(y) dy.

Then the p-Wasserstein (typically abbreviated to Wasserstein) distance, for p ∈ [1,∞), is

defined as

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
X×Y

c(x, y) dγ(x, y)

) 1
p

⇔ (inf E[c(x, y)])
1
p (3.1)

where c(·, ·) is the cost function. The right-hand side shows the equivalent, and more prac-

tically useful, definition in terms of the expectation value, E[·], of the cost function. The

cost function is commonly chosen to be ||x− y||p when Ω is a compact subset of Rd. Unless

stated otherwise, we will assume c(x, y) = ||x− y||p in the rest of this chapter. Γ(µ, ν) is the

set of transportation plans to take µ to ν which, for γ ∈ Γ(µ, ν), satisfy

γ(A× Y ) = µ(A) ⇔
∫
γ(x, y)dy = µ(x) (3.2)

γ(X ×B) = ν(B) ⇔
∫
γ(x, y)dx = ν(y), (3.3)

for Borel subsets A ⊆ X and B ⊆ Y .

Intuitively, the first of these relations is saying that you cannot remove more dirt out of x
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than was there to begin with. And the second is saying you must only place enough dirt

at any point y to get the desired distribution shape. The total amount of dirt moved out

of (into) an infinitesimal region in the initial (final) pile is µ(x) dx (ν(y) dy). Said another

way, the joint transport plan, γ(x, y), must marginalize to µ or ν, respectively.

When µ and ν are absolutely continuous with respect to the Lebesgue measure this definition

can be rewritten as

Wp(µ, ν) =

(
inf

f∈MP (µ,ν)

∫
X

c(x, f(x))dµ(x)

) 1
p

(3.4)

where MP (µ, ν) = {f : X → Y | f#µ = ν}. Where f# is a pushforward of measure µ.

Note that calculating the Wasserstein distance in Eq. (3.1) involves optimizing over all trans-

portation plans (or equivalently over all MP (µ, ν) in Eq. (3.4)). The number of possibilities

will thus grow with the dimensionality of the probability measures, making finding the op-

timal mapping increasingly intractable.

However, for one-dimensional, continuous probability measures there is a unique, monotoni-

cally increasing transport (pushforward) map from µ to ν which minimizes the cost. Knowing

this mapping a priori removes the need to optimize. This map is f(x) = F−1
ν (Fµ(x)) where

Fµ and Fν are the cumulative distribution functions (CDF) of Iµ and Iν respectively. In this

case, the p-Wasserstein distance can now be written as

Wp(µ, ν) =

(∫ 1

0

c(F−1
µ (z), F−1

ν (z))dz

) 1
p

(3.5)

where z := Fµ(x) (and thus x = F−1
µ (z)).

Oftentimes, there is no known analytic form for the CDFs (or for the probability density

functions). In such cases where only samples from Iµ and Iν are available, one can approxi-

mate the inverse CDF F−1
µ (z) (F−1

ν (z)) by sorting the samples of Iµ (Iν) in ascending order.
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Let these sets of sorted samples be {xi | xi ≤ xi+1} and {yi | yi ≤ yi+1} respectively. The

cost function is then calculated on each pair of samples {xi, yi} and the result is averaged

over the number of samples to approximate Eq. (3.5).

The OT problem solution in Eq. (3.5) allows us to easily calculate the Wasserstein distance

for one-dimensional probability density functions, but in higher dimensions the computation

is still intractable. One approximation strategy, tries to leverage the special one-dimensional

case to solve the problem more generally.

The idea behind the Sliced Wasserstein (SW) distance is to convert the problem of calculat-

ing the Wasserstein distance between higher-dimensional probability density functions into

many calculations of the simple one-dimensional Wasserstein distance. The high-dimensional

probability density functions are “sliced" along many one-dimensional axes (i.e. projected

onto that dimension). The one-dimensional Wasserstein distance is then calculated along

this dimension. This is done for many slices and the results are averaged. This averaged

result can be shown to be a good approximation to the Wasserstein distance [36, 37] and is

computationally tractable.

We define a projection mapping Pθ : Rd → R where θ ∈ Sd−1 is the unit vector passing

through a point on the d-dimensional unit sphere, Sd−1. This mapping is a pushforward of

a measure, ρ, defined on Rd to a measure, ρ′, defined on R i.e. Pθ#(ρ) = ρ′. The 2-Sliced

Wasserstein (Sliced Wasserstein) distance is then defined as

SW2(µ, ν) =

(∫
Sd−1

W 2
2 (Pθ#(µ), Pθ#(ν))dθ

) 1
2

(3.6)

where the integral is with respect to the surface measure on Sd−1.

Part of the reason that the Sliced Wasserstein distance is so useful, is that it, like the

Wasserstein distance, is also a true distance metric. Namely, it satisfies (1) the triangle
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inequality, (2) symmetry, and (3) the identity of indiscernibles (i.e. SW2(µ, ν) = 0 ⇔ µ = ν).

The first two are inherited from the Wasserstein distance (and the fact that we are assuming

c(x, y) = ||x − y||2). The “⇒" direction of the last requirement is a bit more difficult to

show.

In order to show that SW2(µ, ν) = 0 ⇒ µ = ν, we first note that SW2(µ, ν) = 0 implies

that W2(Pθ#(µ), Pθ#(ν)) = 0 for all θ i.e. all slices will be identical). Next, we use the fact

that W2 is a true distance metric, and thus is zero if and only if its arguments are equal i.e.

Pθ#(µ) = Pθ#(ν). Therefore, we have SW2(µ, ν) = 0 ⇒ Pθ#(µ) = Pθ#(ν). Intuitively, one

can imagine that if the projections of µ and ν are equal for every angle θ, then µ and ν must

be equal. But to prove this rigorously, we use the fact that Pθ#(·) is a Radon Transform and

thus is a bijective mapping (i.e. invertible), which immediately implies that µ = ν. □

Moreover, what makes the Sliced Wasserstein distance a valid approximation of the Wasser-

stein distance is the fact that it obeys the following relation: There exists a constant α > 0

such that for β = (2(d+ 1))−1

SW2(µ, ν) ≤ W2(µ, ν) ≤ α [SW2(µ, ν)]
β (3.7)

therefore, minimizing SW2(µ, ν) will also minimize W2(µ, ν). Note also that, when restrict-

ing the domain of our measures to compact sets of Rd, these distances induce the same

topology [36, 43, 45].

Practically, calculating the Sliced Wasserstein distance (replacing all integrals with a finite-

sample average) is far more computationally efficient than computing the Wasserstein dis-

tance directly. The Sliced Wasserstein distance swaps its computational dependence on the

dimensionality of the problem, d, for a dependence on the number of Monte-Carlo sam-

ples from the distributions, M , and the number of slices used, N . This can be as fast as

N × O(M) but is at worst N × O(M logM). Theoretically, increasing both the number of
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slices and the number of samples will improve the accuracy of the approximation. However,

practically, increasing M (for sufficiently large, fixed N) improves the accuracy far more

than an analogous increase in N for sufficiently large, fixed M . This empirical observation

is supported by several works looking to improve the information given by slices [37] or use

mild assumptions to speed up calculations [46].

3.2 Machine Learning

Machine learning (ML) is a topic which has become ubiquitous in nearly every scientific

field. A main reason for this is the sheer variety of problems that ML methods can solve.

Moreover, if a ML method does not yet exist for a scientific problem, chances are it will

soon be invented. A complete overview of the various kinds of ML is out of the scope of this

thesis, and will likely be outdated in a matter of months. However, here are a few resources

which the interested reader should investigate [47–49].

At its core, ML is the practice of systematically training a machine to solve a problem for

which we cannot program a solution directly, but know when we have succeeded (i.e. we have

a measure of success). For example, say you were tasked with sorting millions of images into

two piles: cat images and dog images6. Sorting these images by hand would take forever, so

you decide to write an algorithm to distinguish cat images from dog images. You sit down

at the computer to write the algorithm... but where do you start? How do you convey to

the computer that it should identify shapes within the pixels of the images? And beyond

that, how do you define a given shape as “cat-like” or “dog-like”? Suddenly, the thought of

sorting these images by hand seems like it would be faster!

For a human, it is easy to tell whether an image is of a cat or a dog, but it is difficult to

process images quickly (which is necessary to complete the task in a reasonable amount of
6In fact, this very task is a common introductory ML problem.
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time). The strategy of how to implement ML in this scenario is this: use your slow but

precise human-intuition to correctly label a limited set of images as “cat" or “dog", then

train a machine to do this faster. From this set of examples, you can systematically train

a machine to predict the label for a given image. This training is done by measuring the

machine’s success rate (i.e. what percentage of the time does the predicted label match the

true label) and passing this score to the machine so that it can make better predictions next

time. Iterating this process eventually results in a fast, nearly perfect classifier capable of

sorting millions of images at lightning speeds.

While the range of methods which fall under the umbrella of ML is vast, much of the recent

success of ML methods lies in the use of artificial neural networks7. This is largely due to

the fact that networks are extremely flexible function approximators capable of mapping a

wide variety of types of inputs to a wide variety of types of outputs [48]. In the example

above, the inputs are images and the output is a label, 0 for “cat" and 1 for “dog".

In the rest of this thesis, all ML methods that we discuss will consist of different types

of network architectures (inputs, outputs, and how inputs are transformed into outputs

within the network) which are stitched together and trained in various creative ways. In

this section, we focus specifically on generative networks, where the output is a continuous

quantity (rather than a label as in the above example), which are trained using unsupervised

learning (no known input/output pairs8). In Chapter 4, we show how this kind of method

could be used for making a fast, data-driven simulator LHC events to use in simulation-based

inference [17].
7Sometimes you will see this abbreviated as ANNs to distinguish them from physical neural networks in

biological systems. But in this thesis we sacrifice specificity for fewer acronyms and will simply call them
“networks".

8To emphasize just how tricky this is, we are trying to get the network to learn a function, f(x), when
we do not know what the output, y = f(x), should be for a given specific input, x.
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3.2.1 Unsupervised Generative Machine Learning

In supervised ML, the goal is to learn to approximate a function, f , by comparing the

output of the network, f̃(z), and f(z) for a given input z. This is analogous to performing a

functional fit, except our network is not parameterized a priori and thus is more flexible [50].

Put simply, unsupervised ML is the process of trying to learn a function, f , of some input,

z, without any known examples of pairs, {z, f(z)}. In other words, for a specific input, we

do not know what the output should be, but we want to try to learn f(z) anyways. This

sounds like it very well could be a hopeless cause, but we just need to pick a different kind

of objective.

While we might not know the specific value f(z) for each given z we might still have in-

formation on a distribution level. Namely, for a set of samples {z} we know approximately

how the set of samples f({z}) := {f(zi) | zi ∈ {z}} is distributed. Our objective is thus to

try to learn f̃ such that the distributions match, i.e. f̃({z}) ≈ f({z}). Then, using a new

(but statistically identical) set of samples {z′}, we can generate samples of the desired final

distribution i.e. f̃({z′}).

Formally, this problem is ill-posed, as there could be many mappings of {z} that produce

the same final distribution, f({z}), so there is no guarantee that, for a finite set of examples

{z}, we will learn the exact function f . However, even this ill-posed strategy might be good

enough to solve our desired task. This is especially true if there is knowledge about the

general behavior of f which we can give to the network — so-called inductive biases [50].

In the world of unsupervised, generative ML there are two main strategies from which many

interesting derivatives and adaptations arise.

The first is Generative Adversarial Networks (GANs) [51]. The objective of GANs is to pit

two networks against each other. The first network (often called the generator) is tasked
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with transforming Gaussian distributed noise, {ϵ}, into a distribution, f̃({ϵ}), which matches

f({z}) for a fixed underlying set of {z}. The second network is tasked with distinguishing

between the real distribution, f({z}), and the fake distribution, f̃({z}). The first network is

rewarded when it “fools" the second. And the second network is rewarded when it “catches"

the fake distribution.9 However, note that the GAN has not learned a function of z but rather

a function of ϵ which mimics the distribution f({z}); in other words, it is not conditioned on

z, so for this to work, the underlying distribution of {z} must stay the same (up to statistical

fluctuations).

The other strategy is probabilistic autoencoders [31, 52]. But first, we must describe autoen-

coders (AEs) [53]. AEs also utilize two networks, but instead of pitting them against one

another they are instead encouraged to work collaboratively towards a solution. The first

network is called the encoder, E(·); it maps a data sample x ∼ f({z}) to a latent space,

creating an “encoded" representation of it. The second network is called the decoder, D(·);

it maps the encoded sample back to the data-space (“decodes" it) and tries to match it to

the initial input, x ≈ D(E(x)). When the dimension of the latent space matches that of the

data space, the ideal mapping D(E(·)) is the identity mapping. But commonly, the latent

space has a smaller dimension than the data space and thus is a means of compressing the

data, x.

Now say you want to encode a new set of data drawn from the same distribution, {x′ | x′ ∼

f({z})}, with what accuracy will x′ ≈ D(E(x′))? One would hope that the accuracy would

be high, since {x′} ≈ {x} up to statistical fluctuations. However, this is not necessarily the

case when the latent distribution produced by the encoder is unconstrained.10Constraining

the latent space to match a certain distribution can provide incentive for the AEs solution
9Unsurprisingly, this adversarial game is often described using a counterfeiter/cop analogy.

10As a pathological example, a perfect AE could map each individual sample x to its own latent coordinate
— thus ensuring that it can perfectly encode and decode each sample x ∼ {x}. As long as a sample x′ belongs
to the training set, {x}, the reconstruction will be perfect. But there is no guarantee that a sample x′ which
is close to a sample x will be mapped similarly. In other words, there is no incentive for the encoding and
decoding mappings to generalize.
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to generalize (i.e. be able to handle new, but related, data). Additionally, now that we

know what distribution the latent space should have, after training the AE, we can pass

different samples from this distribution through the decoder to generate new data samples.

This is the main goal of probabilistic autoencoders. Note that a typical choice for the latent

distribution is a Gaussian, in which case the decoder network is, in essence, the same as the

generative network in the GAN case — mapping from Gaussian distributed noise to generate

new data samples. The difference lies in how these two generative networks are trained.

So for both GANs and probabilistic autoencoders, we have the ability to mimic our data

distribution, {x} = f({z}), for a fixed underlying distribution of {z}. But we still have

yet to solve our initial task, which is to learn a function, f̃(z) ≈ f(z), which is conditioned

on, z. For GANs, there are two options. The first is called a conditional GAN [54] but

this sacrifices its unsupervised setup to achieve this conditional goal.11 The second stays

unsupervised by simply changing the initial Gaussian distribution to the distribution of the

desired inputs {z}. And while this would fit our requirements, practically speaking, training

GANs can be difficult and finicky due to the training’s adversarial nature [55].

Therefore, in this thesis we focus on achieving this goal with probabilistic autoencoders.

This turns out to be both practically easier and have several other attractive features. We

give more details in the next section.

3.2.1.1 Probabilistic Autoencoders using Wasserstein Distance

As a reminder our goal is to learn f̃(z) ≈ f(z). Ideally, this function maps a sample z to

the target output x = f(z). In an autoencoder setup, we want one of our networks to learn

to approximate this map from z to x. The natural choice is trying to force our decoder to
11Namely, a conditional GAN (cGAN), in addition to the Gaussian distributed noise, also feeds in {z},

thus making the learned function dependent on the inputs as desired. However, training a cGAN uses known
pairs, {z, f(z)}, to ensure that learned function is correctly conditioned on the input, z.
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be this map, f̃(·) := D(·) ≈ f(·). This immediately signals what we need to choose as our

latent space — we want this latent space to align with our desired input. In particular, the

latent space is the space of possible values of z and the distribution we draw from is the

distribution {z}.

Now the question is, what do we choose as our objective in order to encourage the distribution

of the output of the encoder {z̃} := {z̃i | z̃i = E(xi)} to match the desired distribution

{z}? Namely, how do you minimize the difference between two (possibly high-dimensional)

probability distributions?

One popular strategy is called a Variational Autoencoder (VAE) [52], which uses the KL-

divergence to constrain the latent space. This strategy comes along with several restrictions.

For example, the desired distribution {z} must have an analytic, parameterized form for

its probability density distribution, p(z), in order to practically calculate the KL-divergence

during training. As alluded to in the last section, the KL-divergence also has some patholog-

ical failings, which also make this unattractive (see references [36] and [37] for more details).

Lastly, and arguably most importantly, in a VAE the distributions being matched effectively

spoils the conditionality between the latent and data spaces [1, 31]. This is very problematic

as conditionality was the whole goal in the first place!

To see how this conditionality is spoiled, we need to look at the latent-space matching term

in the VAE objective. It attempts to minimize the KL-divergence between the Encoding

distribution, pE(z | x),12 and the latent prior, p(z). The problem is that this is encouraging

every sample x to be mapped to the whole latent distribution — this effectively spoils the

conditionality of z on x in the encoder mapping (and by extension the conditionality of x

on z in the decoder mapping). Instead, what we really want is to match the marginalized

encoding distribution pE(z) to the desired latent distribution p(z). See Fig. 3.1 for a visual

description.
12Note that E(x) is essentially a sample drawn from pE(z | x).
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VAE latent loss encourages information collapse

L Latent = KL( pE(z ∣ xi) ∣ ∣ p(z) )

Encoding distribution Latent prior

L Latent = D( pE(z) ∣ ∣ p(z) )

= ∫ dx pE(z ∣ x)p(x)pE(z)Marginalized  
encoding distribution

WAE latent loss retains conditional information by matching distributions instead

p(x)

xi

pE(z |xi)
p(z)

p(x)

xi

pE(z |xi)
p(z)

pE(z)

Figure 3.1: Schematic diagram showing a failing of VAEs. The latent space loss
function of a VAE matches the encoding distribution, pE(z | x), to the latent space prior,
p(z). This encourages every data sample, xi, to be mapped to the entire latent space prior
p(z), which inadvertently results in an information collapse between the data space, X , and
latent space, Z and spoils the conditionality of the encoder (decoder) mapping on x (z). On
the other hand, the latent space loss function of a WAE fixes this problem by encouraging the
matching of the marginalized encoding distribution, pE(z), to the latent space prior, p(z),
instead. Every data sample, xi, is matched to a sub-distribution, pE(z | xi) which conspire
to build the learned latent distribution, pE(z) ≈ p(z).

Fortunately, there is another strategy which tries to minimize the distance between pE(z)

and p(z) while also avoiding the other issues mentioned above. This strategy is Wasserstein

Autoencoders (WAEs) [31], and for cases where there is no analytic formulation of p(z) its

derivative Sliced Wasserstein Autoencoders (SWAEs) [36].13 WAEs reformulate the autoen-

coding objective using OT theory — ultimately aiming to minimize the Wasserstein distance

between the marginalized decoded distribution, pD(x), and the data distribution, p(x), while

also forcing matching between pE(z) and p(z). Several possible strategies to measure the

difference between pE(z) and p(z) are suggested, but the formulation, in principle, allows for
13Note that there is another derivative strategy called Sinkhorn Autoencoders (SAEs) [56] which can also

be applied in cases where there is no analytic form for p(z). These strategies are largely comparable, with
some trade-offs between accuracy and computational efficiency [1]. In this thesis, we focus on SWAEs.
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the use of any type of difference between pE(z) and p(z) (under minor assumptions) [31].

SWAEs took this a step further, arguing that the difference between pE(z) and p(z) should

also be OT-based i.e. some approximation of the Wasserstein distance between pE(z) and

p(z). In particular, SWAEs chose to use the Sliced Wasserstein distance approximation of

the Wasserstein distance, because it does not require a known analytic form for p(z). This

choice allows this method to be applied to a wide variety of kinds of problems. In Chapter 4

we illustrate one such application where p(z) represents the physically-meaningful theoretical

model space for fundamental particle collisions.

3.3 Practical Tools in Quantum Field Theory

Quantum field theory (QFT) is currently the main mathematical tool used to describe fun-

damental particle interactions. It arose out of a desire to reconcile quantum mechanics and

relativity. In quantum mechanics, time, t, is treated as a coordinate and space, x, as an

operator. But relativity tells us that space and time are not quite so different and, in fact,

are related in order to keep the physics in all inertial frames the same (Lorentz covariance).

Therefore, treating them differently (one as a coordinate and the other as an operator) makes

it impossible to write a theory that is consistent with both quantum mechanics and rela-

tivity. We are therefore left with two options: promote t to an operator, or demote x to a

coordinate. QFT is the latter choice,14 where particle states are now functions called fields,

which take a different value at each spacetime, (t, x), coordinate.15

A full review of QFT is out of the scope of this thesis work,16 so instead we aim for the much

more manageable goal of reviewing a few practical QFT techniques which are used to obtain
14For a discussion on why the former choice is problematic see Ref. [57].
15At risk of being overly pedantic, note that the name “field" is chosen in the calculus sense (i.e. scalar or

vector field) and not in the algebraic sense.
16The interested reader is encouraged to consult the following resources [57, 58].
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the results in Chapter 5. We first schematically review the advantages of using Effective

Field Theories (EFTs) in practical calculations. Next we give a historical and pedagogical

demonstration of how an EFT (along with Spontaneous Symmetry Breaking) can accurately

predict the spectrum and interactions of composite particles (Chiral Perturbation Theory).

This demonstration serves as a simple framework to give context to the calculations done in

Chapter 5.

3.3.1 Effective Field Theory

The idea of Effective Field Theory (EFT) comes from the observation that, for many physical

systems, having separate theories to describe the physics at separate scales works remarkably

well. For example, one does not need quantum mechanics to describe a ball rolling down a

hill, but would need it to describe the behavior of an atom in that ball. In this example,

the relevant scale is distance. For sufficiently small distances we need one theory (quantum

mechanics), but as we consider larger and larger distances, at some point we swap our

quantum theory for a classical one because it more easily describes the behavior of the

system. The key to this strategy working lies in the observation that the quantum behavior

has negligible effects on the macroscopic (classical) behavior, allowing us to use whatever

theory corresponds to the distance scale under consideration. The hope is that theories of

particle interactions follow this same general schematic; at high energies (short distances)

you have one theoretical description, termed the UV theory, and at low energies (larger

distances) you have another description, termed the IR theory.

As a brief aside, recent work [59, 60] is actually questioning whether the assumption that UV

and IR particle theories can be generally separated, or if there are cases where there exists

information which connects the two (so called, UV/IR mixing).17 This is not completely
17Questioning this assumption is being done to help explain an aesthetic problem in many particle theories

called naturalness.
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unprecedented either; turbulent flow systems are an example of how small-scale differences

do not average out and can greatly affect macroscopic properties [61]. However, there is

no questioning the historical success of using EFTs to make sense of experimental results

and formulate more predictive theoretical descriptions. In fact, one could argue that con-

structing the current Standard Model of particle physics was made possible by leveraging

this paradigm.

The attractive feature of an EFT is that it allows you to have a predictive, analytic theory as

long as you stay within a valid (energy) scale window. Functionally, the only alternative is

to have a UV theory which you use to explicitly calculate IR results. However, this can come

with theoretical difficulties which necessitate approximate solutions that require prohibitively

expensive computational tools. The best example of this is the high-energy theory quantum

chromodynamics (QCD). At sufficiently low energies calculations become non-perturbative18

meaning analytical calculations are intractable and instead must be performed numerically

using e.g. lattice QCD.19 The EFT alternative to this is Chiral Perturbation Theory which

we describe in more detail in the next section. This low-energy description is formulated in

terms of hadrons which behave as asymptotically free, interacting particles at these energies.

Because of this, as long as we are in the low-energy regime, analytic QFT calculations can

be performed.

In short, EFTs are a game of segmenting your theory into a spectrum of theories at different

energy levels. Each level has a different cast of particles whose interactions can be calculated

analytically using QFT. Chiral Perturbation Theory is one very successful example of how

an EFT can be used to analytically calculate particle interactions at low-energies.
18Intuitively, to perform QFT calculations, one must assume that particle states are asymptotically free.

In QCD this is only true of the quarks and gluons at high energies. At low enough energies, the quarks and
gluons are no longer free particles and are instead confined into hadrons.

19Lattice QCD, and in general Lattice QFT, is a computationally intensive task which discretizes spacetime
in order to explicitly perform QFT calculations.
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3.3.2 QCD Confinement and Chiral Symmetry Breaking

A quintessential example of the necessity of having drastically different theories to describe

particle interactions at different energy scales can be found in quantum chromodynamics

(QCD). At high energies, QCD describes the interactions between quarks and gluons (par-

tons). At these high energies these particles interact freely. However, at low energies there

are no free quarks and gluons; they have been replaced by another cast of particles called

hadrons, e.g. the protons and neutrons in the atom.

Since these two theories have drastically different degrees of freedom (partons vs hadrons),

we will need two different theories to describe them. This is exactly the situation where

an EFT description really shines. More precisely, QCD becomes non-perturbative at low

energies, so if we want to do analytic QFT calculations, we need a low-energy EFT which

can describe the interactions between hadrons. However, we would also like to understand

how this low-energy theory relates to the high-energy QCD.

Historically, this understanding came from using another technique called Spontaneous Sym-

metry Breaking (SSB) to help understand how (the lightest) hadrons are (to a first-order

approximation) constructed from quarks that have been confined — bound together by glu-

ons. To leading order, the kind of quarks which are bound together will describe which type

of hadron you will get — uud and you get a proton, udd and you get a neutron, and so on.

Chiral Perturbation Theory (ChPT) is the low-energy EFT which was used to understand

the IR/UV connection for the lightest hadrons.

ChPT is one of the great successes of an EFT description. Historically, it helped to make

sense of a messy spectrum of hadrons by predicting their spectrum and properties in a

straightforward way from QCD. This strategy has been applied to consider the confinement

due to other forces (i.e. the SSB of a different gauge symmetry) [2, 11] which might have

happened early in the Universe’s history and thus have had downstream cosmological effects.
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Chapter 5 is one example of this; it investigates the effects of having a phase of Electroweak

force confinement in the early universe on the relic abundance of a WIMP Dark Matter

candidate.

In the rest of this section, we review a simplified version of ChPT to describe the light-

est hadrons (pions), closely following existing resources on the subject [57, 61–63]. The

framework of this strategy is schematically equivalent to what is done in Chapter 5.

Our goal is to describe how the lightest hadrons (pions) arose out of QCD via the spontaneous

breaking of the chiral symmetry in the QCD Lagrangian. This spontaneous breaking confines

the two lightest quarks (u and d), in various combinations, into the three pions (π+, π−, π0).

For simplicity, we will only consider the u and d flavors of quarks. We then begin by noting

that if we neglect the pion masses,20 the QCD Lagrangian, LQCD, is invariant under the

chiral transformation SU(2)L × SU(2)R.21 Namely,

LQCD = −1

4
F a
µνF

aµν + iū /Du+ id̄ /Dd = −1

4
F a
µνF

aµν + iQ̄ /DQ (3.8)

where F a
µν is the gluon field strength tensor and Q := (u, d)T (and Q̄ := (ū, d̄) ). We have also

neglected the very small electromagnetic interaction under which the u quark has a different

charge than the d quark (i.e. the covariant derivative Dµ ≈ ∂µ − igsT
aAµ

a). Pedagogical

details of how to see that this is invariant are in Appendix A .

Under these assumptions, this SU(2)L × SU(2)R is an exact symmetry of the high-energy

theory (LQCD). The question now is what happens to this symmetry at low energies. If

this symmetry remains exact in the low-energy theory, we would expect to see them (ap-
20We will discuss what happens when we include them later.
21Note that in fact it is invariant under the symmetry U(2)L×U(2)R which can be decomposed as follows,

U(2)L×U(2)R = SU(2)L×SU(2)R×U(1)L×U(1)R. Note that the U(1)L×U(1)R piece is typically denoted
as U(1)V ×U(1)A for “vector" and “axial" respectively. It turns out that the U(1)A symmetry is anomalous
— present at tree-level but broken at loop-level — and thus, in some sense, is not a valid symmetry of the
problem. On the other hand, U(1)V is a valid symmetry and can be identified with baryon number. In what
follows, we will be focusing on just the SU(2)L × SU(2)R piece.
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proximately) manifest in the properties of hadrons. If it is broken spontaneously, we would

expect to see massless Goldstone Bosons.

What we find is that the hadrons do not retain this chiral symmetry, and we do have a set of

particles which seem to be (approximately) Goldstone Bosons. Specifically, the pions are not

exactly massless (as Goldstone Bosons should be) but they are much lighter than the other

hadrons which are composed of u and d quarks.22 The fact that the pions are not massless is

not all that surprising since the u and d quarks are not really massless. In other words, the

chiral symmetry of LQCD is only approximate, it is explicitly broken by the masses of the

u and d quarks.23 However, this approximate symmetry can still be spontaneously broken,

and therefore must give rise to pseudo Goldstone Bosons (the pions). If the chiral symmetry

were exact the pions would be massless Goldstone Bosons but since it is not exact the pions

get a mass correction.

So what is the residual symmetry in the low-energy theory? Looking at the mass spectrum

of the hadrons, it appears that the SU(2)L × SU(2)R has been broken down to SU(2). The

different groups of hadron states form different representations of this residual symmetry.

For example, the pions form a triplet and the proton and neutron form a doublet. Therefore,

we have SU(2)L × SU(2)R → SU(2) via spontaneous symmetry breaking.

In order for there to be spontaneous symmetry breaking, we need some combination of

high-energy states to get a non-zero vacuum expectation value (vev). This vev must be

invariant under the residual symmetry of the theory, SU(2). It must also be a color and

electromagnetic force singlet to reproduce the properties of hadrons that are observed (i.e.

no bare color charges and electromagnetic charge conservation). Finally, as is always the

case, the vev must be a Lorentz scalar in order to not break Lorentz invariance.
22For reference, the mass of the pions is around 135 MeV (the charged pions are a few MeV heavier)

whereas the mass of the proton and neutron is around 1 GeV.
23Specifically it is broken to the extent that M := diag(mu,md) ̸= LMR†, which breaks the invariance of

LQCD under SU(2)L × SU(2)R transformations.
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The winning candidate winds up being Q̄QL = Q̄i(Qj)L = Q̄iPLQj.24 Let us choose the vev

such that

⟨Q̄QL⟩ = ⟨Q̄iPLQj⟩ = δijv
3 = 1v3 (3.9)

We can easily see that this is invariant under an SU(2) transformation

1v3 →
SU(2)

U †(1v3)U = U †Uv3 = 1v3 (3.10)

SU(2) is said to be a vector subgroup of SU(2)L × SU(2)R; physically it corresponds to the

nuclear iso-spin symmetry obeyed by hadrons. Note that we cannot exactly predict what

value v will take (since the symmetry breaking is non-perturbative) but we expect v ∼ ΛQCD

(the EFT cutoff), since that is the relevant mass scale in the problem.

We now want to use this knowledge to construct a perturbative theory of pions. The method

we will use is called a non-linear sigma model (NLσM). The main idea is that we want to

construct our effective L such that it is obvious how it transforms under the UV symmetry

(SU(2)L × SU(2)R). Doing this allows us to easily ensure that we have accounted for all

broken generators

We therefore choose

Σ̃(x) = exp

[
i
Πa(x)

fΠ
T a

]v + σ(x) 0

0 v + σ(x)

 (3.11)

where fΠ is called the pion decay constant; it has units of [mass] and is introduced so

the Πa(x) are canonically normalized. Note that this also includes the field σ(x) which

parameterizes small perturbations away from the potential minimum after SSB. In general
24Note that some resources use Q̄Q instead. These descriptions are equivalent up to an unphysical phase.

If we restrict to a real vev, then the descriptions are exactly equivalent.
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this field is quite heavy (near to or greater than the cutoff of our EFT) and thus can be safely

ignored in this EFT description. In general, a formulation which keeps only the Goldstone

bosons (Πa) and not the heavy dof (σ) is called an NLσM.

We therefore define

Σ(x) :=
Σ̃(x)

v

∣∣∣∣
mσ→∞

= exp

[
i
Πa

fΠ
T a

]
(3.12)

This may look rather mysterious but the thinking is that if mσ → ∞ the effect of the field

σ(x) (on any Feynman diagram) would be suppressed by ∼ (1/m2
σ) due to the propagator.

Therefore as mσ → ∞ the effect will → 0. Therefore, we can safely skip including the field

explicitly.

Under the UV symmetry, SU(2)L × SU(2)R, Σ(x) has a straightforward transformation

Σ(x) → LΣ(x)R†. We can now write our effective (IR) lagrangian in terms of Σ(x). Which

terms we include will depend somewhat on the observed behavior of the hadrons which we

are trying to describe, but at the very least, we must include the kinetic term. The kinetic

term ignoring EM interactions (i.e. Dµ = ∂µ) will be

Lkinetic = f 2
ΠTr

[
(∂µΣ(x))

†(∂µΣ(x))
]
. (3.13)

If we expand out the exponential Σ(x) ≈ 1 + i
fΠ
ΠaT a + ... and plug this in we will find

Lkinetic =
1

2
(∂µΠ

a)(∂µΠa) +O(Π4). (3.14)

Note that this contains the usual kinetic terms, but it also contains an infinite number of

interactions with well-defined coefficients and characterized by inverse powers of fΠ.

In particular, if we concentrate on the O(Π4) we will find that it describes interactions like

ΠΠ → ΠΠ and comes with a pre-factor 1/(f 2
Π). By studying pion interactions we can actually
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measure this value and find that fΠ ≈ 92 MeV. Even though this is non-renormalizable

(because of the mass−2 dimension of the pre-factor), if we are safely in our EFT range, the

effects of higher order processes on the value of 1/fΠ can be systematically controlled.

We can estimate the value of the EFT cutoff scale by considering a loop diagram of pion

interactions. Comparing it to a tree level diagram, we know that there will be two extra

factors of p/fΠ corresponding to each “side" of the loop, where p is the momentum in the

loop. Schematically, the result of the loop integral (over p) should look like:

(tree level contribution)× (energy scale of process)2 ×
(

1

f 2
Π

)
×
(

1

16π2

)
(3.15)

where the last piece is the usual loop factor.

We would like the loop factor to be smaller than the tree-level results, which means

(energy scale of process)2 ×
(

1

f 2
Π

)
×
(

1

16π2

)
< 1 (3.16)

⇒ (energy scale of process) < 4πfΠ. (3.17)

Our EFT is only well-defined (perturbative) when we have a valid loop expansion (each

successive term in the expansion is smaller than the last). Therefore, we can say our EFT

is valid at energies, E < 4πfΠ, so 4πfΠ is our EFT cutoff.
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Chapter 4

Foundations of a Fast, Data-Driven,

Machine-Learned Simulator

This chapter is heavily based on work previously published in collaboration with Stephan

Mandt, Daniel Whiteson, and Yibo Yang [1].

4.1 Introduction

From measuring masses of particles to deducing the likelihood of life elsewhere in the Uni-

verse, a common goal in analyzing scientific data is statistical inference — drawing con-

clusions about values of a theoretical model’s parameters, θ, given observed data, x. The

likelihood model of observed data, p(x|θ), is a central ingredient in both frequentist and

Bayesian approaches to statistical inference; however, it is typically intractable, due to the

complexity of a full probabilistic description of the data generation process. One way to

circumvent this difficulty is to simulate experimental data for a given value of the theoretical

parameters, θ, from which a probability model of the likelihood, p(x|θ), can be constructed
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and used for downstream statistical inference regarding θ. This is known as simulation-based

inference, and has found application across scientific disciplines ranging from particle physics

to cosmology [17].

However, traditional approaches to simulation, which attempt to faithfully model complex

physical phenomena, can be computationally expensive — a limitation we aim to overcome

in this work. In simulation-based inference, experimental data arising from a physical system

typically depend on an initial configuration of the system, z, that is unobserved, or belonging

to a latent space, while the parameters θ govern the underlying mechanistic model. In many

cases, the transformation from the latent state to experimental data is non-trivial, involving

complex physical interactions that cannot be described analytically, but can be simulated

numerically by Monte-Carlo algorithms. In particle physics, for example, the parameters θ

govern theoretical models that describe fundamental particle interactions. These fundamen-

tal interactions produce secondary particles, z, which are not directly observable and often

transform in flight before passing through layers of detectors whose indirect measurements,

x, can help reconstruct their identities and momenta. The transformation from the unob-

served latent space, particles produced in the initial interaction, to the experimental data, is

stochastic, governed by quantum mechanical randomness, and has no analytical description.

Instead, Monte-Carlo-based numerical simulations of in-flight and detection processes gener-

ate samples of possible experimental data for a given latent space configuration [20, 21, 23–

25]. This approach is computationally expensive [24, 25] because it requires the propagation

and simulation of every individual particle, each creating subsequent showers of thousands

of derivative particles. Additionally, these simulations contain hundreds of parameters which

must be extemporaneously tuned to give reasonable results in control regions of the data

where the latent space has been well-established by results from previous experiments.

In particle physics, like many other fields in the physical sciences [64–67], the computational

cost of numerical simulations has become a central bottleneck. A fast, interpretable, flex-
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ible, data-driven generative model which can transform between the latent space and the

experimental data would be significant for these fields. Recent advances in the flexibility and

capability of machine learning (ML) models have allowed for their application as computa-

tionally inexpensive simulators [26, 27, 68–74]. Applications of these techniques have made

progress towards this goal but fall short in crucial ways. For example, approaches leverag-

ing Generative Adversarial Networks (GANs) are able to mimic experimental data for fixed

distributions in the latent space [26, 68, 69], but are unable to generate predictions for new

values of latent variables, a crucial requirement for a simulator. Other efforts condition on

latent variables [70] but require training with labeled pairs generated by slow Monte-Carlo

generators, incurring some of the computational cost they seek to avoid.

We lay the foundations and provide a proof-of-principle demonstration for Optimal-Transport-

based Unfolding and Simulation (OTUS). We use unsupervised learning to build a flexible

description of the transformation from latent space, Z, to experimental data space, X , re-

lying on theoretical priors, p(z), where z ∈ Z and a set of samples of experimental data

{x ∈ X} but, crucially, no labeled pairs, (z, x). Our model applies a type of probabilistic

autoencoder [31, 36], which learns two mappings: encoder (data → latent, pE(z | x)) and

decoder (latent → data, pD(x | z)). Typical probabilistic autoencoders (i.e. variational

autoencoders (VAEs) [52, 69]) use a simple, unphysical latent space, Y , for computational

tractability during learning. However, this causes VAEs to suffer from the same weakness

as GANs: doomed to mimic the data distribution, p(x), for a fixed physical latent space,

p(z), unless the model compromises to requiring expensive simulated pairs (e.g. a condi-

tional VAE approach [75]). OTUS’s innovation is to align the probabilistic autoencoder’s

latent space, Y , with that of our inference task, Z. With this change, our decoder becomes

a computationally inexpensive, conditional simulator mapping Z → X as well as a tractable

transfer function, pD(x | z). See Fig. 4.1 for a visual description.

For VAEs, identifying Y with Z is difficult because the training objective requires the ability
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to explicitly compute the latent space prior, p(y) for y ∈ Y . In particle physics, such explicit

computations are intractable. We therefore turn to a new form of probabilistic autoencoder:

the Sliced Wasserstein Autoencoder (SWAE) [31, 36], which alleviates this, and other, issues

by reformulating the objective using the Sliced Wasserstein distance and other ideas from

optimal transport theory. This reformulation lets us identify Y with Z and also allows the

encoder and decoder network mappings to be inherently stochastic.

We suggest that an SWAE [36] can be used to achieve the broad goal of simulators: learning

the mapping from the physical latent space to experimental data directly from samples

of experimental data {x ∼ p(x)} and theoretical priors {z ∼ p(z)} in control regions. The

resulting decoder (Z → X ) can be applied as a simulator, generating samples of experimental

data from latent variables in a fraction of the time, and probed and visualized to ensure

a physically meaningful transformation. Additionally, the decoder’s numerically tractable

detector response function, pD(x | z), would be useful in other applications, such as direct

calculation of likelihood ratios via integration [76]. The encoder network’s X → Z mapping

can also be used in unfolding studies [77, 78]. Lastly, the mathematical attributes of the SW

distance allow for the inclusion of informed constraints on the mappings.

In this work, we first present background on the problem, the objective, and discuss related

work. In Section 4.4, we present the foundations for the OTUS method and discuss steps

toward scaling OTUS to a full simulation capable of replacing current Monte-Carlo methods

in particle physics analyses. In Section 4.5, we give initial proof-of-principle demonstrations

on Z-boson and semileptonic top-quark decays. In Section 4.6, we discuss the details of our

methods. We then conclude by discussing directions for future work and also briefly discuss

how OTUS might be applied to problems in other scientific fields.
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4.2 Theoretical Background

The primary statistical task in particle physics, as in many areas of science, is inferring the

value of a model parameter, θ, based on a set of experimental data, {x}. For example,

physicists inferred the mass of the Higgs boson from Large Hadron Collider data [79, 80].

Inference about θ requires a statistical model, p(x | θ), which can be used to calculate the

probability to make an observation, x, given a parameter value, θ. Unfortunately, such

analytical expressions are unavailable due to the indirect nature of observations and the

complexity of detectors. Previous solutions to this problem have relied on numerical Monte-

Carlo-based simulations [20, 21, 23].

Fundamental particle interactions, like the decay of a Higgs boson, produce a set of particles

which define an unobserved latent space, Z. The statistical model p(z | θ) is usually well-

understood and can often be expressed analytically or approximated numerically. However,

experimenters only have access to samples of experimental data, {x}. Therefore, calculating

p(x | θ) requires integrating over the unobserved {z ∼ p(z | θ)}; namely, p(x | θ) =
∫
dz p(x |

z) p(z | θ).

The transfer function, p(x | z), represents the multi-staged transformation from the unob-

served latent space, Z, to the experimental data space, X . As latent space particles travel

they may decay, interact, or radiate to produce subsequent showers of hundreds of secondary

particles. These particles then pass through the detector, comprising many layers and mil-

lions of sensors resulting in a high-dimensional response of order O(108). Finally, the full set

of detector measurements are used to reconstruct an estimate of the identities and momenta

of the original unobserved particles in the latent space. For the vast majority of analyses

this final, experimental data space, X , has a similar dimensionality1 to that of Z, usually

O(101). However, the complex, stochastic, and high-dimensional nature of the transforma-
1The dimensionality is not necessarily equal due to the imperfect nature of the detection process. For

example, Z may represent four quarks but X may only contain three jets.
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tion makes it practically impossible to construct a closed-form expression for the transfer

function p(x | z). Instead, particle physicists use simulations as a proxy for the true transfer

function.

To arrive at p(x | θ), samples of {z ∼ p(z | θ)} are transformed via simulations into

effective samples of {x ∼ p(x | θ)}, approximating the integral above. Current state-of-

the-art simulations strive to faithfully model the details of particle propagation and decay

via Monte-Carlo techniques. This approach is computationally expensive and limited by

our poor understanding of the processes involved. Ad-hoc parameterizations often fill gaps

in our knowledge but introduce arbitrary parameters which must be tuned to give realistic

results using data from control regions, where the underlying p(z | θ) is well-established

from previous experiments, freeing p(x | θ) of surprises. Examples of control regions include

decays of heavy bosons (e.g. Z) or the top quark (t).

The computational cost of current simulations is the dominant source of systematic un-

certainties and the largest bottleneck in testing new models of particle physics [81]. A

computationally-inexpensive, flexible simulator which can map from Z to X such that it

effectively approximates p(x | z) would be a breakthrough.

4.3 Objective and Related Work

The development of OTUS was guided by the goals of the simulation task and the information

available for training. Specifically, the simulator has access to samples from model priors,

p(z | θ) control, and experimental data samples, {x control}. Critically, {x control} samples come

from experiments, where the true {z control} are unknown, such that no (z control, x control)

pairs exist. Instead, the distribution of {z control} are known to follow p(z | θ) control and the

distribution of {x control} is observed.
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Figure 4.1: Schematic of the problem and the solution. Current simulations map from
a physical latent space, Z, to data space, X , attempting to mimic the real physical processes
at every step. This results in a computationally intensive simulation. Previous Machine
Learning (ML) solutions can reproduce the distributions in X but are not conditioned on
the information in Z; instead they map from unphysical noise to X , which limits their
scope. We introduce a new method which provides the best of both worlds. OTUS provides
a simulation Z → X (Decoder) which is conditioned on Z yet is computationally efficient.
Advantageously, it also inadvertently provides an equivalently fast unfolding mapping from
X → Z (Encoder).
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The simulator should learn a stochastic transformation Z → X such that samples {z} drawn

from p(z | θ) control can be transformed into samples {x} whose distribution matches that of

the experimental data {x control}. Additionally, these control regions should be robust so that

the simulator can approximate p(x | θ) for different, but related, values of θ. Traditional

Monte-Carlo simulators such as GEANT4 [21] face related challenges.

The flexibility of ML models at learning difficult functions across a wide array of contexts

suggests that these tools could be used to develop a fast simulator. The objectives described

above translate to four constraints on the class of ML model and methods of learning. Gen-

erating samples of {x ∈ X} requires a (1) generative ML method. For z ∈ Z, the simulator

maps z → x such that the output x depends on the input z, meaning the mapping is (2)

conditional. The problem’s inherent and unknown randomness prevents us from assuming

any particular density model, suggesting that our simulator should preferably be (3) inher-

ently stochastic. The lack of (z, x) pairs mandates an (4) unsupervised training scheme.

Additionally, the chosen method should produce a simulation mapping (Z → X ) which is

inspectable and physically interpretable.

Generative ML models can produce realistic samples of data in many settings, including

natural images. Generative Adversarial Networks (GANs) transform noise into artificial data

samples and have been adapted to particle physics simulation tasks for both high-level and

raw detector data, which can resemble images [26, 27, 68–70]. However, while GANs have

successfully mimicked existing datasets, {x}, for a fixed set of {z}, they have not learned the

general transformation z → x prescribed by p(x | z), and so cannot generate fresh samples

{x′} for a new set of {z′}, thus failing condition (2). Other GAN-based approaches [70]

condition the generation of {x} on values of {z}, but in the process use labeled pairs (x, z),

which are only obtained from other simulators, rather than from experiments, thus failing

condition (4). Relying on simulated (x, z) pairs incurs the computational cost we seek to

avoid, and limits the role of these fast simulators to supplementing traditional simulators,
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rather than replacing them.

An alternative class of unsupervised, generative ML models are variational autoencoders

(VAEs). While GANs leverage an adversarial training scheme, VAEs instead optimize a

variational bound on the data’s likelihood by constructing an intermediate latent space,

Y , which is distributed according to a prior, p(y) [82]. An encoder (X → Y) network

transforms x→ ỹ, where the ~ distinguishes a mapped sample from those drawn from p(y).

Similarly, a decoder (Y → X ) network transforms a sample produced by the encoder back

to the data space, ỹ → x̃. The autoencoder structure is the combined encoder-decoder

chain, x → ỹ → x̃. During training, the distribution of the encoder output, pE(y | x), is

constrained to match the latent space prior, p(y), via a latent loss term which measures the

distance between the distributions. At the same time, the output of the autoencoder, x̃,

is constrained to match the input, x, which are compared pairwise. New samples from X

following the distribution of the data, p(x), can then be produced by decoding samples, {y},

drawn from p(y), via y → x̃′.

The form of p(y) is usually independent of the nature of the problem’s underlying theoretical

model, and is often chosen to be a multi-dimensional Gaussian for simplicity. This choice

provides sufficient expressive power even for complex datasets (i.e. natural images). However,

in the particle physics community, optimizing the encoding mapping to match this latent

space is seen as an extra, unnecessary hurdle in training [26]. Therefore, GANs have been

largely favored over VAEs in the pursuit of a fast particle physics simulator. Some studies

investigated VAEs in this context, but retained the unphysical form of p(y) (i.e. multi-

dimensional Gaussian) [69, 71, 72], preventing them from being conditional generators, failing

requirement (2).

51



4.4 Proposed Solution

4.4.1 Our Approach: OTUS

In this work, we aim to align the probabilistic autoencoder’s latent space, Y , with that of

our inference task, Z. This will allow us to learn a conditional simulation mapping from

our theoretical model latent space to our data space, Z → X . Therefore, we construct

a probabilistic autoencoder where the latent space prior, p(y), is identical to the physical

latent space, p(y) ≡ p(z) = p(z | θ), for the choice of particular parameters, θ. The decoder

then learns pD(x | z) providing precisely the desired conditional transformation, z → x.

Additionally, pD(x | z) can act as a tractable transfer function in approaches which estimate

p(x | θ) via direct integration [76]. The encoder’s learned pE(z | x) is of similar interest in

unfolding applications [77, 78].

This is not possible with VAEs because optimizing the variational objective requires explicit

computation of the densities p(y), pE(y | x), and pD(x | y). Therefore, p(y) is often assumed

to be a standard isotropic Gaussian for its simplicity and potential for uncovering indepen-

dent latent factors of the data generation process. However, in particle physics the true

prior, p(z), which is governed by quantum field theory, is highly non-Gaussian and comput-

ing its density explicitly requires an expensive numerical procedure. Similarly, as we have

little knowledge about the true underlying stochastic transforms, assuming any particular

parametric density model for pE(y | x) or pD(x | y), like a multivariate Gaussian, would be

inappropriate and overly restrictive. These concerns led us to use inherently stochastic (i.e.

implicit) models for p(z), pE(z | x), and pD(x | z) that are fully sample-driven.

Additionally, the VAE objective’s use of KL-divergence introduces technical disadvantages.

The KL-divergence,DKL(·∥·), is not a true distance metric, and will diverge for non-overlapping

distributions often leading to unusable gradients during training [30, 36]. Moreover, the spe-
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cific use of DKL(pE(z | x)∥p(z)) within the VAE loss forces pE(z | x) to match p(z) for every

value of x ∼ p(x) [31]. This term must be carefully tuned (e.g. with a β-VAE approach [69,

83]) to avoid the undesirable effect of the encoder mapping different parts of X to the same

overlapping region in Z, which can be particularly problematic if Z represents a physically

meaningful latent space.

We resolve these issues by applying an emerging class of probabilistic autoencoders, based in-

stead on the Wasserstein distance, which is a well-behaved distance metric between arbitrary

probability distributions rooted in concepts from optimal transport theory [31, 36].

The original Wasserstein Autoencoder (WAE) [31] loss function is

LWAE(p(x), pD(x | z), pE(z | x)) = Ex∼p(x)EpE(z|x)Ex̃∼pD(x|z)[c(x, x̃)]
4.1A

+ λ dz(pE(z), p(z))
4.1B

,

(4.1)

where E denotes the expectation operator and c(·, ·) is a cost metric. For the optimal

pE(z | x), LWAE becomes an upper bound on the Wasserstein distance between the true data

distribution, p(x), and the decoder’s learned distribution, pD(x) =
∫
dzpD(x | z)p(z); the

bound is tight for deterministic decoders.

Term A of Equation (4.1) constrains the output of the encoder-decoder mapping, x̃, to

match the input, x, while term B of Equation (4.1) constrains the encoder mapping. The

hyperparameter λ provides a relative weighting between the two terms. The difference

between the marginal encoding distribution, pE(z) =
∫
dxpE(z | x)p(x), and the latent prior,

p(z), is measured by dz(·, ·). 2 Unfortunately, the originally proposed options for dz(·, ·) [31]

had undesirable features which made them ill-suited for this particle physics problem (see

Section 4.6.2.1).
2Comparing pE(z) and p(z) rather than pE(z | x) and p(z) is the crucial innovation which allows different

parts of Z to remain disjoint.
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The more recent Sliced Wasserstein Autoencoder (SWAE) [36] uses the Sliced Wasserstein

(SW) distance as the dz(·, ·) metric. The SW distance, dSW(·, ·), is a rigorous approximation

to the Wasserstein distance, dW (·, ·). The SWAE completely grounds the loss function in

optimal transport theory as each term and the total loss can be identified as approximating

the Wasserstein distances between various distributions and allows p(y) to be any sampleable

distribution, including the physical, p(z). Additionally, the (S)WAE method allows the

encoder and decoder to be implicit probability models, while avoiding an adversarial training

strategy which can lead to problems like mode collapse [55].

Both dW and dSW are true distance metrics [36]. The KL-divergence and adversarial schemes

lack this property resulting in divergences and meaningless loss values which lead to problems

during training and make it difficult to include additional, physically-motivated constraints.

The Wasserstein distance is the cost to transport probability mass from one probability dis-

tribution to another according to a cost metric, c(·, ·), following the optimal transportation

map. However, it is difficult to calculate for multivariate probability distributions when

pairs from the optimal transportation map are unknown. However, for univariate probabil-

ity distributions, there is a closed-form solution involving the difference between the inverse

Cumulative Distribution Functions (CDF−1s) of the two probability distributions. The SW

distance approximates the Wasserstein distance by averaging the one-dimensional Wasser-

stein distance over many randomly selected slices — one-dimensional projections of the full

probability distribution [36] (see Section 4.6.3).

The SWAE loss takes the general form of the WAE loss

LSWAE(p(x), pD(x | z), pE(z | x)) = Ex∼p(x)EpE(z|x)Ex̃∼pD(x|z)[c(x, x̃)]
4.2A

+ λ dSW
4.2B

(pE(z), p(z)).

(4.2)

Term A of Equation (4.2) compares pairs (x, x̃), where x̃ is the output of the encoder-decoder
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mapping. In term B of Equation (4.2), matched pairs are not available so we instead use the

SW distance approximation. Both loss terms use the cost metric c(u, v) = ||u− v||2 [36].

The SWAE allows us to train a probabilistic autoencoder that transforms between X and Z

with a physical prior p(z). However, since we are in an unsupervised setting, the true p(x | z)

is unknown. It is therefore crucial to ensure that the learned transformation is plausible

and represents a series of physical interactions. To encourage this, we can easily impose

supplemental physically-meaningful constraints on the SWAE model. These constraints can

be relations between Z and X spaces or constraints on the internal properties of these

respective spaces. In this work, we use one constraint from each category.

From the first category, we add a term comparing the unit vector parallel to the momentum

of an easily identifiable particle in the latent and experimental spaces. This can be thought of

as analogous to choosing a consistent basis and can be helpful for problems containing simple

inversion symmetries. An example of such an inversion symmetry exists in the Z → e+e−

study below. In particle experiments, misidentification of lepton charge in the process of

data reconstruction is known to be extremely rare. This means a learned mapping which

frequently maps electron/positron (e∓) information in Z to positron/electron (e±) informa-

tion in X , and vice versa, would be unphysical. For a generative mapping G : U → V , this

anchor term takes the general form

LA(p(u), pG(v | u)) = Eu∼p(u)Ev∼pG(v|u)[cA(u, v)]. (4.3)

We chose cA(u, v) = 1− p̂u · p̂v, where p̂ is the unit vector of the electron’s momentum. We

add the anchor loss in Z space, LA(p(x), pE(z | x)), and in X space, LA(p(z), pD(x | z)), to

the SWAE loss with hyperparameter weightings βE and βD respectively.

From the second category, we enforce the Minkowski metric constraint internally for Z and

X spaces respectively. A particle’s nature, excluding discrete properties such as charge
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and spin, is described by four quantities related by the Minkowski metric. Arranging these

quantities into a 4-vector defined as pµ = (p, E) where E is a particle’s energy and p is a

vector of its momentum in the x̂, ŷ, ẑ direction respectively, the constraint becomes

pµpµ = E2 − p2 = m2, (4.4)

where m is the particle’s mass. We directly enforce this relationship in the model for all

particles. 3

Adding more physically-motivated constraints would be straightforward, however, in this

work we only assume this minimal set and recommend that more robust data structures be

considered first, as such constraints may become unnecessary (see Section 4.7).

4.4.2 OTUS in Practice

In this section we briefly outline how OTUS might eventually be applied to problems in

particle physics such as searches for new particles. However, we emphasize that this work

only demonstrates a proof-of-principle version of OTUS. Follow-up work will be necessary to

overcome some technical hurdles before OTUS could be applied to such a problem (see Sec-

tion 4.7).

A main goal of particle physics is to discover the complete set of fundamental units of

matter: particles. Therefore, searches for exotic particles are common practice in this field.

These searches typically proceed by looking for anomalies in data which are better described

by simulations which assume the existence of a new particle. It is therefore phrased as a

hypothesis test between two theoretical models, θSM, which assumes only the particles in the
3We note that initial experiments lacked this constraint yet the networks automatically learned this

relationship from the data. However, directly including this constraint in the model architecture improved
performance overall.
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Figure 4.2: Schematic diagram of how OTUS can be used in an abstract analy-
sis. The gray surface represents Z. Different theoretical models, θi, will produce different
signatures {zi | θi} which lie in Z. The goal of OTUS is to learn a general mapping from
Z → X which is independent of the underlying theory, θ, and only depends on the infor-
mation contained in {z ∈ Z}. One trains OTUS using control region data which span Z
and have known outcomes in X . These allow us to pair distributions in Z with distributions
in X . From these examples, OTUS interpolates to the rest of Z and can then be used to
generate {xi} from samples {zi | θi} from regions not used during training, including the
blinded signal region. This can then be used to search for new particles.

Standard Model (SM), and θBSM, which assumes the existence of one or more new particles

that lie Beyond the Standard Model (BSM). These distinct models will generate distinct

latent signatures, {zSM | θ} and {zBSM | θ}, which lie in Z. As particle physics experiments

do not observe the latent {z} directly, the hypothesis test is performed in the observed space

X , see Section 4.1 and Section 4.3 for more details.

The goal for OTUS is to learn a simulation mapping from Z → X which is independent of

the underlying model, θ, and can be applied to any z. This is achieved by carefully selecting

control regions, {zi | θi} , which span Z and for which observed data, {x}, is available for

training. See Fig. 4.2 for a visual description. These control regions have known distributions

of outcomes in X , which allows us to properly match distributions in Z to distributions in X

for training OTUS. Since these control regions are chosen to span Z, OTUS will then be able

to interpolate to unseen signal regions. Neural networks in general are known to perform

well at interpolation tasks [84], and recent work has shown that autoencoders in particular

are proficient at learning manifold interpolation [85]. Still more work has suggested there
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might be a deeper connection to the structure of this manifold and optimal transport [32].

Therefore, it is reasonable to expect that OTUS will be able to interpolate well in this space.

However, these claims should be thoroughly investigated in future work.

A signal region is a region in Z space where signatures of new particles might occur. SM

predictions, {zSM | θSM}, and BSM predictions, {zBSM | θBSM}, would then be passed to

OTUS to produce two simulated data samples {xSM} and {xBSM} which would be compared

with observed data, {x}, via a hypothesis test to calculate the relative likelihood of the

SM and BSM theories. This technique, simulation-based inference, is standard practice in

particle physics and is applied to existing simulation methods.

As a concrete example, let our BSM theory be the SM with the addition of a new particle,

Z ′, with a mass of 0.030 [TeVc−2], which decays into a pair of leptons, a flagship search for

the Large Hadron Collider [86]. The latent space Z would include the two leptons produced

by the decay of the Z ′, and the observed space X would include the leptons identified and

measured by the detector. For OTUS to be able to predict the observed signatures from

this latent space, it would need to interpolate between control regions which have similar

relationships. Decays of existing particles to leptons, such as the 0.091 [TeVc−2] Z and the

0.002 [TeVc−2] J/ψ would allow OTUS to learn the mapping from latent leptons to observed

leptons. Our theoretical Z ′ has a mass which lies between those of the particles in our control

regions. OTUS would need to interpolate along this axis; control regions at various masses

provided by the Z and J/ψ decays are therefore essential to describe and determine the

nature of the interpolation. To verify the interpolation, one might compare the prediction

of OTUS to observed data in the intermediate range between the Z ′ and the Z.

Alternatively, the Z ′ could have a heavier mass, e.g. 1 [TeVc−2]. In this scenario, OTUS

would be required to extrapolate along the mass axis. Naively, this sounds problematic

as extrapolation is generally much less sound than interpolation, however this task is also

required of current simulations for this scenario. Simulations succeed in such tasks when they
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have inductive biases which control their behavior even outside of training (tuning) regions.

These inductive biases are based on physics principles and scale to the signal regions of

interest. For neural networks, it has been shown that architectures with inductive bias

constraints succeed at such extrapolation tasks [50]. Since a mature version of OTUS will

manifestly include such inductive biases (see Section 4.7) it is reasonable to assume it can

achieve this task as well as current simulation methods can.

4.5 Results

4.5.1 Demonstration in Z → e+e− decays

We first test OTUS on an important control region: leptonic decays of the Z-boson to

electron-positron pairs, Z → e+e−. The theoretical prior is well-known, and its parame-

ters {θ}, like the Z-boson’s mass and its interaction strengths, are tightly constrained by

precision experiments. We identify Z with the Z-boson’s decay products: the electron, e−,

and positron, e+, whose four-momenta span the space. We compose these into an eight-

dimensional vector

z := {ze− , ze+} = {pe− , Ee− ,pe+ , Ee+}. (4.5)

This simplistic vector description excludes categorical properties such as charge.

The model prior p(z) can be simply expressed with quantum field theory and sampled. The

subsequent step, where the electron and positron travel through the layers of detectors,

depositing energy and causing particle showers, cannot be described analytically; a model

will be learned by OTUS from data in control regions. Here we use simulated data sam-

ples, but specific (z, x) pairs are not used to mimic the information available when training
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from real data. The complex intermediate state with many low-energy particles and high-

dimensional detector readouts is reduced and reconstructed yielding estimates of the electron

and positron four-momenta. Therefore, X has the same structure and dimensionality as Z,

though the distribution p(x) reflects the impact of the finite resolution of detector systems

(see Section 4.6.1).

Fig. 4.3 shows distributions of testing data, unpaired samples from X and Z in several

projections, and the results of applying the trained encoder and decoder to transform between

the two spaces. Visual evaluation indicates qualitatively good performance, and quantitative

metrics are provided. Measuring overall performance, the SW distances are as follows:

dSW(p(z), pE(z̃)) = 0.984 [GeV2], dSW(p(x), pD(x̃)) = 1.33 [GeV2], dSW(p(x), pD(x̃
′)) = 3.03

[GeV2]. Additionally, several common metrics are reported for each projection in Tables 1

and 2 of Appendix B. Details of the calculations are provided in Section 4.6.4.

To ensure that the learned decoder reflects the physical processes being modeled, we inspect

the transformation from Z → X in Fig. 4.4. The learned transfer function, pD(x | z),

shows reasonable behavior, mapping samples from Z to nearby values of X . This reflects

the imperfect resolution of the detector while avoiding unphysical transformations such as

mapping information on the far-end distribution tails in Z to the distribution peaks in X .

Finally, we examine the distribution of a physically important derived quantity, the invari-

ant mass of the Z-boson, see Fig. 4.5. This quantity was not used as an element of the

loss function, and so provides an alternative measure of performance. The results indicate a

high-quality description of the transformation from Z to X . The performance of the trans-

formation from X to Z is less well-described, likely because this relation is more strict in

Z causing a sharper peak in the distribution. Such strict rules are difficult for networks to

learn when not penalized directly or hard-coded as inductive biases, again signaling that a

robust data representation will be crucial to improving performance (see Section 4.7).

60



Figure 4.3: Performance of OTUS for Z → e+e− decays. a Matching of the positron’s
px, py, and E distributions in Z. It shows distributions of samples from the theoretical prior,
{z ∼ p(z)} (solid black), as well as the output of the encoder, {z̃}; the encoder transforms
samples of testing data in experimental space, X , to the latent space, Z, and is shown as
x→ z̃ (dashed cyan). b Matching of the positron’s px, py, and E distributions in X . It shows
the testing sample {x ∼ p(x)} (solid black) in the experimental space, X , as well as output
from the decoder applied to samples drawn from p(z), labeled as z → x̃′ (dashed purple).
Also shown are samples passed through both the decoder and encoder chain, x → z̃ → x̃
(dotted green). Dotted green and solid black distributions are matched explicitly during
training. Enhanced differences between dashed purple and solid black indicate the encoder’s
output needs improvement, as pE(z) does not fully match p(z). If performance were ideal,
the distributions in every plot would match up to statistical fluctuations. Residual plots show
bin-by-bin ratios with statistical uncertainties propagated accordingly (see Section 4.6.4).
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Figure 4.4: Visualization of the transformation from Z → X in the Z → e+e− study
for positron energy. a The learned transformation of the decoder, pD(x | z). b The true
transformation from the simulated sample, for comparison, though the true (z, x) pairs are
not typically available and were not used in training. Colors in the X projection indicate
the source bin in Z for a given sample.

4.5.2 Demonstration in semileptonic top-quark decays

The Z-boson control region is valuable for calibrating simulations of leptons such as electrons

or muons, which tend to be stable and well-measured. We next test OTUS on the challenging

task of modeling the decay and detection of top-quark pairs featuring more complex detec-

tor signatures. This control region has more observed particles and introduces additional

complexities: unstable particles decaying in flight, significantly degraded resolution relative

to leptons, undetected particles, and a stochastically variable number of observed particles.

The initial creation of top-quark pairs, their leading-order decay t t̄ → W+b W−b̄, and the

subsequent W -boson decays are well-described using quantum field theory, so p(z | θ) can

be sampled. We select the modes W− → e− ν̄e and W+ → u d̄ as examples and assign our
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Figure 4.5: Performance of OTUS for Z → e+e− decays in a physically important
derived quantity, the invariant mass of the electron-positron pair, MZ. a Matching
of the MZ distribution in Z. It shows distributions of samples from the theoretical prior,
{z ∼ p(z)} (solid black), as well as the output of the encoder, {z̃}; the encoder transforms
samples of testing data in experimental space, X , to the latent space, Z, and is shown as x→
z̃ (dashed cyan). b Matching of the MZ distribution in X . It shows the testing sample {x ∼
p(x)} (solid black) in the experimental space, X , as well as output from the decoder applied
to samples drawn from p(z), labeled as z → x̃′ (dashed purple). Also shown are samples
passed through both the decoder and encoder chain, x→ z̃ → x̃ (dotted green). Dotted green
and solid black distributions are matched explicitly during training. Enhanced differences
between dashed purple and solid black indicate the encoder’s output needs improvement, as
pE(z) does not fully match p(z). If performance were ideal, the distributions in every plot
would match up to statistical fluctuations. Note that this projection was not explicitly used
during training, but was inferred by the networks. Residual plots show bin-by-bin ratios
with statistical uncertainties propagated accordingly (see Section 4.6.4).
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latent space to describe the four-momenta of these six of particles:

z := {ze− , zν̄e , zb, zb̄, zu, zd̄} = {pe− , Ee− ,pν̄e , E ν̄e ,pb, Eb,pb̄, E b̄,pu, Eu,pd̄, E d̄}

(4.6)

with a total of twenty-four dimensions.

Unlike in the Z → e+e− study, the X space’s structure is considerably different from that

of the Z space. While the electron e− is stable and readily identifiable, the other particles

are more challenging. The neutrino, ν̄e, is stable, yet invisible to our detectors, providing

no estimate of its direction or momentum; instead its presence is inferred using momentum

conservation pν = −
∑

pobserved. Unfortunately, soft initial state radiation and detector in-

efficiencies also contribute to missing momentum. The aggregate quantity is labeled pmiss.

The four quarks b̄, u, d̄ and b are strongly-interacting particles each producing complex show-

ers of particles that are clustered together into jets to estimate the original quark momenta

and directions. Unfortunately, despite significant recent progress [87–89], we cannot assume

a perfect identification of the source particle in Z for a given jet observed in X , causing

significant ambiguity.

Additionally, a complete description of the Z → X transformation should include the pos-

sibilities for the number of jets in X to exceed the number of quarks, due to radiation and

splitting, or to fail to match the number of quarks, due to jet overlap or detector inefficiency.

We leave this complexity for future work and restrict our X space to contain exactly four

jets.

The final complexity introduced in this study is the presence of a sharp lower threshold in

transverse momentum, pT. Experimental limitations require that jets with pT < 20 [GeVc−1]

be discarded and therefore are not represented in the training dataset, as they would be

unavailable in control region data. Mimicking this experimental effect, we directly impose
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this threshold on the decoder’s output instead of the network learning it. Paralleling reality,

such events are discarded before computing losses. This strategy requires modifications to

both the model and training strategy (see Section 4.6).

Our experimental data is the vector

x :={xe− , xmiss, xjet1, xjet2, xjet3, xjet4} (4.7)

={pe− , Ee− ,pmiss, Emiss,pjet1, Ejet1,pjet2, Ejet2,pjet3, Ejet3,pjet4, Ejet4}, (4.8)

with a total of twenty-four dimensions. If quark-jet assignment were possible, it would be

natural to align the order of the observed jets with the order of their originating quarks in

Z space. Lacking this information, it is typical to order jets by descending |pT| =
√
p2x + p2y,

where jet 1 has the largest |pT|.

Fig. 4.6 shows distributions of testing data, unpaired samples from X and Z in several

projections, and the results of applying the trained encoder and decoder to transform between

the two spaces. Visual evaluation indicates qualitatively good performance, and quantitative

metrics are also provided. Measuring overall performance the SW distances are as follows:

dSW(p(z), pE(z̃)) = 22.3 [GeV2], dSW(p(x), pD(x̃)) = 232 [GeV2], dSW(p(x), pD(x̃
′)) = 120

[GeV2]. Additionally, several common metrics are reported for each projection in Table 3

and 4 of Appendix B. Details of the calculations are provided in Section 4.6.4.

To probe the Z → X transformation, we inspect the learned transfer function, pD(x | z) in

Fig. 4.7. While the overall performance is worse in this more complex case, it still shows

reasonable behavior, mapping samples from Z to nearby values of X and avoiding unphysical

transformations such as mapping information on the far-end distribution tails in Z to the

distribution peaks in X . Additionally, cross-referencing with the true simulation’s mapping

shows the similar nature of the mappings.
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Finally, we examine the distribution of physically important derived quantities, the invariant

masses of the top-quarks and W -bosons estimated by combining information from pairs and

triplets of objects, see Fig. 4.8. No exact assignments are possible due to the ambiguity of

the jet assignment and the lack of transverse information for the neutrino, but a comparison

can be made between the experimental sample in X and the mapped samples Z → X . As

in the Z → e+e− case, we see imperfect but reasonable matching on such derived quantities

which the network was not explicitly instructed to learn.

4.6 Methods

This section provides details on the methods used to produce the results in the previous

section. We first describe the data generation process. We then describe the machine learn-

ing models used and strategies for how they were trained. Finally, we give details on the

qualitative and quantitative evaluation methods used in the visualizations of the results.

4.6.1 Data Generation

The data for this work was generated with the programs Madgraph5 v.2.6.3.2 [22], Pythia

v.8.240 [20], and Delphes v.3.4.1 [23]. ROOT v.6.08/00 [90] was used to interface with the

resulting Delphes output files. We used the default run cards for Pythia, Delphes, and

Madgraph. Where relevant, jets were clustered using the anti-kt algorithm [91] with a jet

radius of 0.5. The card files can be found with the code for this analysis (see Section 4.9).

Samples of the physical latent space, Z, were extracted from the Madgraph LHE files to

form the 4-momenta of the particles. Samples of the data space, X , were extracted from

Delphes’ output ROOT files. We selected for the appropriate final state: e+, e− in the

Z → e+e− study and e−, missing 4-momentum (i.e. MET = (pmiss, Emiss)), and 4 jets in the
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Figure 4.6: Performance of OTUS for semileptonic tt̄ decays. a Matching of the
b quark’s px, py, and E distributions in Z. It shows distributions of samples from the
theoretical prior, {z ∼ p(z)} (solid black), as well as the output of the encoder, {z̃}; the
encoder transforms samples of the testing data in experimental space, X , to the latent space,
Z, and is shown as x → z̃ (dashed cyan). b Matching of the leading jet’s px, py, and E
distributions in X . It shows the testing sample {x ∼ p(x)} (solid black) in the experimental
space, X , as well as output from the decoder applied to samples drawn from the prior p(z),
labeled as z → x̃′ (dashed purple). Also shown are samples passed through both the decoder
and encoder chain, x → z̃ → x̃ (dotted green). Dotted green and solid black distributions
are matched explicitly during training. Enhanced differences between dashed purple and
solid black indicate the encoder’s output needs improvement, as pE(z) does not fully match
p(z). If performance were ideal, the distributions in every plot would match up to statistical
fluctuations. Residual plots show bin-by-bin ratios with statistical uncertainties propagated
accordingly (see Section 4.6.4).
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Figure 4.7: Visualization of the transformation from Z → X in the tt̄ study for
the energy of the b quark in Z to energy of the leading jet in X . a The learned
transformation of the decoder, pD(x | z). b The true transformation from the simulated
sample, for comparison, though the true (z, x) pairs are not typically available and were not
used in training. Note that the b quark will not always correspond to the leading jet, see the
text for details. Colors in the X projection indicate the source bin in Z for a given sample.

semileptonic tt̄ study. If an event failed this selection, the corresponding Z event was also

removed. Reconstructed data in X was extracted by default as (pT, η, ϕ) of the object and

converted into (p, E) via the following relations

p := (px, py, pz) =(pT cos(ϕ), pT sin(ϕ), pT sinh(η)) (4.9)

E =
√
(pT cosh(η))2 +m2, (4.10)

where m is the particle’s definite mass and is zero for massless particles. Note that we are

assuming natural units where the speed of light, c, is equal to unity. This equates the units of

energy, E, momentum, p, and mass, m. In our case, me+ = me− = 0 [GeVc−2] is a standard

assumption given that the true value is very small compared to the considered energy scales.

We additionally set m = 0 [GeVc−2] for the 4 jets and MET since these objects have atypical

definitions of mass.
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Figure 4.8: Performance of OTUS for semileptonic tt̄ decays in physically impor-
tant derived quantities in X . a Matching of the invariant mass of the combined tt̄ pair.
b Matching of the invariant mass of the hadronically decaying W -boson, MW . c Match-
ing of the invariant mass of the top-quark, Mt, reconstructed using information from the
leptonically decaying W -boson. d Matching of the invariant mass of the top-quark, Mt,
reconstructed using information from the hadronically decaying W -boson. These show the
testing sample {x ∼ p(x)} (solid black) in the experimental space, X , as well as output from
the decoder applied to samples drawn from p(z), labeled as z → x̃′ (dashed purple). Also
shown are samples passed through both the decoder and encoder chain, x→ z̃ → x̃ (dotted
green). Dotted green and solid black distributions are matched explicitly during training.
Enhanced differences between dashed purple and solid black indicate the encoder’s output
needs improvement, as pE(z) does not fully match p(z). Residual plots show bin-by-bin
ratios with statistical uncertainties propagated accordingly (see Section 4.6.4).
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In total, we generated 491, 699 events for Z → e+e− and 422, 761 events for semileptonic tt̄.

The last 160, 000 events in each case were reserved solely for statistical tests after training

and validation of OTUS.

4.6.2 Model

4.6.2.1 Model Choice

In this section, we briefly survey the literature of machine learning methods which might be

considered for this task. We discuss their features and whether they are compatible choices

for this application.

We will primarily focus on OT-based probabilistic autoencoder methods (i.e. WAE [31] and

its derivatives) but first we briefly address a derivative of VAEs, β-VAE. This method appears

similar to WAE in the form of loss function that is used. Both have a data-space loss and a

latent-space loss with a relative hyperparameter weighting β (or λ for the WAE). However,

the β-VAE method is not principled in OT and thus is distinct from the WAE method

and its derivatives. Most importantly for our application, the β-VAE (like its predecessor

VAE) is likelihood-based which precludes it from applications where the latent prior is not

analytically known. The interested reader can find more information on these distinctions

in the following reference [92].

The WAE method [31] provides a general framework for an autoencoder whose training is

based on ideas from OT theory, namely the Wasserstein distance. This work defined a large

umbrella under which a rich amount of subsequent literature falls (e.g. SWAE [36], Sinkhorn

Autoencoders [56], CWAE [93]). The key difference between these methods and the original

WAE method is the fact that each chooses a different dz(·, ·) cost function. Therefore, the

choice of method largely comes down to finding a suitable dz for the given problem.
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The original WAE work proposes two specific options for the dz, defining two versions of

WAE: GAN-WAE and MMD-WAE. The first is an adversarial approach in which dz is the

Jensen-Shannon divergence estimated using a discriminator network. The second chooses dz

to be the Maximum Mean Discrepancy (MMD) [31].

The GAN-WAE strategy suffers from the same practical issues as other adversarial methods

such as GANs (i.e. mode collapse). This possibility of training instability makes it an

undesirable choice. The MMD-WAE does not have this training instability issue but requires

an a priori choice of a kernel for the form of latent space prior, p(z). This implies that we

analytically know the desired prior form ahead of time, which is not the case for particle

physics in general. Therefore, this option will not work for the applications explored in this

work.

We now explore WAE derivatives which choose other choices for dz that might be more

amenable to our application. CWAE [93] chooses the Cramer-Wold distance as the dz cost

function. For a Gaussian latent space prior, this provides a computationally efficiency boost

due to the existence of a closed-form solution. However, this assumption makes it unsuitable

for our current application because our latent prior, p(z), is non-Gaussian and often does

not have a form which is known analytically a priori.

Two other derivatives allow for a flexible prior form which would be suitable for the task

at hand. SWAE [36] chooses the dz cost function to be the SW distance and Sinkhorn

Autoencoder (SAE) [56] chooses it to be the Sinkhorn divergence which is estimated via

the Sinkhorn algorithm. Both have comparable performance with trade-offs in performance

and computational efficiency. SAE claims superior performance to SWAEs for Gaussian

priors, while it is slightly more computationally intensive (O(M2) as opposed to SWAEs

best case O(M) or worst case O(M logM)). However, both methods are valid choices for

this application. Therefore, we suggest that SAE performance on this task be explored in

future work.

71



We also note the existence of other WAE-derivative methods which generalize the underlying

OT framework. In our application, the dz metric always compares distributions in the same

ambient space Z. Additionally, the overall loss function also approximates the Wasserstein

distance between two distributions in the same ambient space X , namely Wc(p(x), pD(x)).

However, recent work using the Gromov-Wasserstein distance [94] extends the underlying

Optimal Transport (OT) framework to situations where the two probability measures µ and

ν are not defined on the same ambient space (e.g. Rn and Rm with different dimensions n and

m). For this application, this is an over-powered tool since by construction p(z) and pE(z)

(p(x) and pD(x)) always lie in the same ambient space. However, if one were attempting to

study the optimal transportation between different spaces, this would be ideal. This would

be an interesting direction to follow-up recent related work which connects OT and particle

physics [32, 33].

4.6.2.2 Base Model

Both the encoder and decoder models of OTUS are implicit conditional generative models,

and operate by concatenating the input with random noise and passing the resulting vector

through feedforward neural networks.

For a model, G, mapping from a space, U , to a space, V , the steps are as follows. (1) A

sample of raw input data, u ∈ U , is standardized by subtracting the mean and dividing by the

standard deviation resulting in the standardized data vector, ū. (2) A noise neural network

computes a conditional noise distribution pN(ϵ | u), where the noise vector ϵ ∼ pN(ϵ | u) has

the same dimensionality as the core network prediction w̄ (defined in the next step). (3) The

standardized data vector, ū, and noise vector, ϵ, are then concatenated and fed into a core

neural network. This network outputs the 3-momentum, p, information of each particle in

the standardized space, collected into a vector w̄. (4) The vector w̄ is then unstandardized

by inverting the relationship in step 1, creating a vector w. (5) The Minkowski relation ( see
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Section 4.4.1) is then enforced explicitly to reinsert the energy information of each particle,

transforming w into the final v ∈ V which is distributed according to pG(v | u).

Both the encoding and decoding model’s noise networks produce Gaussian-distributed noise

vectors with mean and diagonal covariances [µ(x), σ2(x))] and [µ(z), σ2(z))] respectively. For

the Z → e+e− study, the core and noise networks for both the encoder and decoder each

used a simple feed-forward neural network architecture with a single hidden layer, with 128

hidden units and ReLU activation.

4.6.2.3 Model for semileptonic top-quark decay study

To better model the complexities in the semileptonic tt̄ data, we introduced a restriction to

the decoder model and modified the training procedure accordingly (see Section 4.6.3). With

these modifications, the base model encountered difficulty during training, so we introduced

the following three changes to the architecture for more effective training.

First, the conditionality of the noise network is removed and the noise is instead drawn from a

fixed standard normal distribution, pN(ϵ | u) = pN(ϵ) = N (0, I). Second, the model now has

a residual connection such that the core network now predicts the change from the input u.

The 3-momentum sub-vector of u is added to w before proceeding to imposing the Minkowski

relation in step 5. This input-to-output residual connection provides an architectural bias

towards identity mapping, when the model is initialized with small random weights.

Lastly, the core network itself is augmented with residual connections [95] and batch nor-

malization [96]. An input vector to the core network is processed as follows: (A) A lin-

ear transform layer with K units maps the input to a vector r ∈ RK . (B) Two series of

[BatchNorm, ReLU, Linear] layers are applied sequentially to r, without changing the di-

mensionality, resulting in s ∈ RK . (C) A residual connection from r is introduced, so that

s → s + r. (D) The resulting s is then transformed by a final linear layer with J units to
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obtain the output vector t ∈ RJ . For the tt̄ study, the input vector [ū, ϵ] is 24 + 18 = 42

dimensional, the output dimension J = 18, and we set K = 64 for the core network, in both

the encoder and decoder models.

4.6.3 Training

4.6.3.1 Base Training Strategy

As described in Section 4.4.1, the model is trained by minimizing the SWAE loss function

augmented with anchor terms

LSWAE(p(x), pD(x | z), pE(z | x)) = Ex∼p(x)Ez∼pE(z|x)Ex̃∼pD(x|z)[c(x, x̃)] + λdSW(pE(z), p(z))

+ βELA(p(x), pE(z | x)) + βDLA(p(z), pD(x | z)),

(4.11)

with respect to parameters of the encoder pE(z | x) and decoder pD(x | z) distributions.

As each term in the loss function has the form of an expectation, we approximate each with

samples and compute the following Monte-Carlo estimate of the loss:

L̂SWAE =
1

M

M∑
m=1

c(xm, x̃m) + λ
1

L ∗M

L∑
l=1

M∑
m=1

c((θl · zm)sorted, (θl · z̃m)sorted)

+ βE
1

M

M∑
m=1

cA(xm, z̃m) + βD
1

M

M∑
m=1

cA(zm, x̃
′
m),

(4.12)

where {xm}Mm=1 and {zm}Mm=1 are M instances of X and Z samples, {z̃m ∼ pE(· | xm)}Mm=1

are drawn from the encoder, {x̃′m ∼ pD(· | zm)}Mm=1 are drawn from the decoder, and {x̃m ∼

pD(· | z̃m)}Mm=1 are drawn from the auto-encoding chain x → z̃ → x̃. 4 The estimation

of dSW(p(z), pE(z)) uses L random slicing directions {θl}Ll=1 drawn uniformly from the unit
4This is equivalent to drawing a sample (x, z̃, x̃) from the joint distribution p(x)pE(z̃ | x)pD(x̃ | z̃).
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sphere, along which the samples zm ∼ p(z) and z̃m ∼ pE(z) are compared; this involves

estimating each CDF−1 by sorting the two sets of projections in ascending order as {(θl ·

zm)sorted}Mm=1 and {(θl · z̃m)sorted}Mm=1, for each direction θl; we refer interested readers to [36]

for more technical details of the Sliced Wasserstein distance. We use the squared norm as

the cost metric c(u, v) = ||u− v||2 in the SWAE loss [36]. The anchor cost, cA, between two

observation vectors u, v (which can reside in either X or Z space) is defined as cA(u, v) :=

1−p̂u ·p̂v, where p̂u is the unit vector of the coordinates of u corresponding to the momentum

of a pre-specified particle, and p̂v is defined analogously with respect to the same particle;

this is chosen as the electron in our experiments. For example, cA(x, z̃) would be computed

as

cA(x, z̃) = 1− p̂e−
x · p̂e−

z̃ = 1− pe−
x

∥pe−
x ∥

· pe−
z̃

∥pe−
z̃ ∥

. (4.13)

At a higher level, the computation of L̂SWAE based on a mini-batch proceeds as follows.

Following the path through the full model, a batch of samples X ∼ p(x) from X space is

passed to the encoder model, E, producing Z̃ ∈ Z distributed according to pE(z | x). The

encoding anchor loss term LA,E(X, Z̃) ≡ LA(p(x), pE(z | x)) is then computed along with

the SW distance latent loss, d̂SW(Z, Z̃) ≡ d̂SW(p(z), pE(z)). The samples Z̃ and Z ∼ p(z)

are then passed independently in parallel through the decoder model, D, producing X̃ and

X̃ ′, respectively. The decoding anchor loss term LA,D(Z, X̃
′) ≡ LA(p(z), pD(x | z)) is then

computed. Finally, the data space loss, chosen to be MSE(X, X̃), is computed. See Fig. 4.9

for a visual representation. We can then minimize the tractable Monte-Carlo estimate of the

objective, L̂SWAE, by stochastic gradient descent with respect to parameters of the encoder

and decoder networks.

Since the original (S)WAE aimed to ultimately minimize dW (p(x), pD(x)) via an approxi-

mate variational formulation, 5 we also consider an auxiliary strategy of directly minimizing
5When minimized over all pE(z | x) that satisfies the constraint pE(z) = p(z), term A of Equation (4.1)

becomes an upper bound on dW (p(x), pD(x)); the bound is tight for deterministic decoders [31]. The overall
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Figure 4.9: Schematic diagrams of the network and loss structures used in this
study for the base training strategy. a Diagram showing the full OTUS model where
gray indicates information used in the calculation of losses only. b Diagram showing the
internal structure present in both the encoder and decoder models. c Diagram showing the
setup used for the post processing decoder network loss. See the text for more details.

the more computationally convenient SW distance dSW(p(x), pD(x)) to train a decoder, or

minimizing dSW(p(z), pE(z)) to train an encoder. This can be done by simply optimizing the

WAE loss LWAE is a relaxation of the exact variational bound, and recovers the latter as λ → ∞.
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Monte-Carlo estimates

d̂SW(p(x), pD(x)) =
1

L ∗M

L∑
l=1

M∑
m=1

c((θl · xm)sorted, (θl · x̃′m)sorted) (4.14)

d̂SW(p(z), pE(z)) =
1

L ∗M

L∑
l=1

M∑
m=1

c((θl · zm)sorted, (θl · z̃m)sorted), (4.15)

where the samples {xm, zm, x̃′m, z̃m}Mm=1 are defined the same way as before. Auxiliary train-

ing of the encoder was found helpful for escaping local minima when optimizing the joint

loss L̂SWAE, and auxiliary fine-tuning of the decoder in post-processing also improved the

decoder’s fit to the data.

Note that the idea of training a decoder by itself is similar in spirit to GANs, but again

with the major distinction and innovation that we use samples from a physically meaningful

prior p(z) instead of an uninformed generic one (e.g. Gaussian), as we are also interested in

a physical conditional mapping pD(x | z) in addition to achieving good fit to the marginal

p(x).

4.6.3.2 Training an (S)WAE with a restricted decoder

As was previously explained, experimental limitations in the semileptonic tt̄ study require a

minimum threshold, so that jets which have pT < 20 [GeVc−1] are discarded and therefore

are not represented in the training dataset, as they would not be available in control region

data. Denoting the region of X space which passes this threshold by S, we are faced with

the task of fitting a distribution pD(x) over X while only having access to data samples in

the valid subset S ⊂ X .

We propose a general method for fitting an (S)WAE such that its marginal data distribution

pD(x), when restricted to the valid set S, matches that of the available data. We first define

77



the restricted marginal data distribution,

p̄D(x) =
pD(x)1S(x)

PD(S)
, (4.16)

where 1S(x) is the indicator function of S so that it equals 1 if x ∈ S, and 0 otherwise,

and PD(S) :=
∫
dtpD(t)1S(t) normalizes this distribution. Note that PD(S) depends on

the decoder parameters, and can be identified as the probability that the data model pD(x)

yields a valid sample x ∈ S.

Our goal is then to minimize dW (p(x), p̄D(x)). This can be done by minimizing the same

variational upper bound as in a typical (S)WAE, but with an adjustment to the data loss

function in term A of Equation (4.1), so it becomes

Ex∼p(x)EpE(z|x)Ex̃∼p̄D(x|z)[c(x, x̃)] → Ex∼p(x)EpE(z|x)Ex̃∼pD(x|z)[
1S(x̃)

PD(S)
c(x, x̃)]. (4.17)

Letting θ denote the parameters of the model, it can be shown that the gradient of the

modified cost function has the simple form

∇θ
1S(x̃)

PD(S)
c(x, x̃) =

1S(x̃)

PD(S)
∇θc(x, x̃). (4.18)

This means that training an (S)WAE with a restricted decoder by stochastic gradient descent

proceeds as in the unrestricted base training strategy, except that only the valid samples in

S contribute to the gradient of the data loss term, with the contribution scaled inversely by

the factor PD(S), which can be estimated by drawing samples x̃′m ∼ pD(x)
6 and forming

the Monte-Carlo estimate

PD(S) ≈
1

M

M∑
m=1

1S(x̃
′
m). (4.19)

6This is equivalent to passing zm ∼ p(z) through the decoder to produce x̃′
m.
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4.6.3.3 Parameter Optimization

For the Z → e+e− study, we used the base training strategy. We optimized L̂SWAE for 80

epochs with anchor penalties βE = βD = 50, followed by another 800 epochs with the anchor

penalties set to 0. For the semileptonic tt̄ study, we modified the base training strategy to

accommodate a restricted decoder, substituting all appearances of pD(x) in the loss L̂SWAE by

p̄D(x) (e.g. using the modified data loss term Equation (4.17)). We optimized the resulting

loss L̂SWAE till convergence, for about 1000 epochs. Then we froze the encoder and fine-tuned

the decoder by minimizing d̂SW(p(x), p̄D(x)) for 10 epochs, with a reduced learning rate. The

input-to-output residual connection (see Section 4.6.2) in the tt̄ model allowed for sufficiently

high PD(S) ≈ 0.6 and reliable gradient estimates during training, and the architectural bias

towards identity mapping made the anchor losses redundant, so we set βE = βD = 0.

In both studies, we found that a sufficiently large batch size significantly improved results.

This is likely do to increasing the accuracy of gradient estimates for stochastic gradient

descent and also the CDF−1 in the SWAE latent loss. In all of our experiments, we used

the Adam optimizer [97] with L = 1, 000 number of slices, a batch size of M = 20, 000, and

learning rate of 0.001. We tuned the λ hyperparameter of the (S)WAE loss ˆLSWAE on the

validation set; we set λ = 1 for the Z → e+e− model, and λ = 20 for the tt̄ model.

4.6.4 Evaluation

This section provides details on the various qualitative and quantitative evaluation techniques

used in this work.

As common in the literature [26, 68, 70], we visualize our results along informative one-

dimensional projections using histograms (e.g. Fig. 4.3 and Fig. 4.5). We choose the bin

sizes such that the error on the counts can be approximated as Gaussian distributed. These
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histograms are accompanied by residual plots, showing the ratio between the histograms

from generated samples and the histogram from true samples, with accompanying statistical

errors [98]7. We also visualize the generative mappings using transportation plots (e.g.

Fig. 4.4) that allow us to confirm the physicality of the learned mappings.

In addition to qualitative comparisons, we also evaluated the results using several quan-

titative metrics. To this end, we calculate the Monte-Carlo estimate of the SW distance,

d̂SW(·, ·), using L = 1, 000 slices according to the cost metric c(u, v) = ||u − v||2. The

results are reported for each study in the text. In addition, we apply several statistical

tests on the considered one-dimensional projections, which we report in Tables 1-4 in Ap-

pendix B. First, we calculate the reduced χ2, χ2
R, for each comparison and report it along

with the degrees-of-freedom (dof). Second, we calculate the unbinned two-sample, two-sided

Kolmogorov-Smirnov distance. Lastly, we calculate the Monte-Carlo estimate of the Wasser-

stein distance, d̂W (·, ·), according to the cost metric c(u, v) = ||u− v||2. All statistical tests

were carried-out using two separate test sets not used during training or validation of the

networks. The number of samples in each test set were 80, 000 in the Z → e+ e− study and

47, 856 in the semileptonic tt̄ study.8

4.7 Conclusion

OTUS is a data-driven, machine-learned, predictive simulation strategy which suggests a pos-

sible new direction for alleviating the prohibitive computational costs of current Monte-Carlo

approaches, while avoiding the inherent disadvantages of other machine-learned approaches.

We anticipate that the same ideas can be applied broadly outside of the field of particle
7Specifically, for a bin with counts h1 and h2, respectively, the error on the ratio, r = h2/h1 is σr =

r
√

1
h2

+ 1
h1

.
8Note that the number of samples in the semileptonic tt̄ study is lower due to the hard pT cutoff constraint

as described in section 4.5.2.The events present are ones that passed this cutoff constraint.
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physics.

In general, OTUS can be applied to any process where unobserved latent phenomena Z can

be described in the form of a prior model, p(z), and are translated to an empirical set of

experimental data, X , via an unknown transformation. For example, in molecular simula-

tions in chemistry observations could be measurements of real-world molecular dynamics,

p(z) would represent the model description of the system, and p(x | z) would model the

effects of real-world complications [64]. In cosmology, X could be the distribution of mass in

the observed universe, p(z) could describe its distribution in the early universe, and p(x | z)

would model the universe’s unknown expansion dynamics (e.g. due to inflation) [66, 99].

In climate simulations, p(z) could correspond to the climate due to a physical model, while

p(x | z) takes unknown geography-specific effects into account [65]. Additionally, an imme-

diate and promising application of OTUS is in medical imaging, which uses particle physics

simulations to model how the imaging particles (e.g x-rays) interact with human tissue and

suffers from the great computational cost of these simulations [67]. We note that our method

assumes a high degree of mutual information between Z and X in the desired application.

Therefore, in situations where such mutual information is low (e.g. chaotic turbulent flows)

the transformations learned by this method would likely be less reliable.

Moreover, features of this method can be adapted to suit the particular problem’s needs.

For example, in this work we were interested in low-dimensional data, however the method

could also be applied to high-dimensional datasets. Moreover, the encoding and decoding

mappings can be stochastic, as in this work, or deterministic. Lastly, while this work aimed

to be completely unsupervised, and thus data-driven, OTUS can be easily extended to a semi-

supervised setting. In this case, the data would consist mostly of unpaired samples but would

have a limited number of paired examples (z, x) (e.g. from simulation runs). These pairs

sample the joint distribution, p(z, x), which, combined with the decoder pD(x̃ | z), yields a

transportation map γ between p(x) and pD(x̃), γ(p(x), pD(x̃)) :=
∫
dzp(z, x)pD(x̃ | z). Since
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calculating the Wasserstein distance between p(x) and pD(x̃) involves finding the optimal

transportation map, this particular choice yields an upper bound on the Wasserstein distance.

We can similarly construct a transportation map between p(z) and pE(z̃) using p(z, x) and

pE(z | x). This makes directly optimizing the Wasserstein distances dW (p(x), pD(x)) and

dW (p(z), pE(z)) tractable in this high-dimensional setting. Therefore, we get the alternative

objectives

Lpaired(pD(x | z), p(z, x)) = E(z,x)∼p(z,x)Ex̃∼pD(x|z)[c(x, x̃)] (4.20)

Lpaired(pE(z | x), p(z, x)) = E(z,x)∼p(z,x)Ez̃∼pE(z|x)[c(z, z̃)], (4.21)

which are upper bounds on dW (p(x), pD(x)) and dW (p(z), pE(z)) respectively. These terms

can be incorporated alongside the unsupervised SWAE loss, to leverage paired examples

{(z, x) ∼ p(z, x)} in a semi-supervised setting.

We have demonstrated the ability of OTUS to learn a detector transformation in an unsu-

pervised way. The results, while promising for this initial study, leave room for improvement.

Several directions could lead to higher fidelity descriptions of the data and latent spaces.

First, the structure of the latent and data spaces can significantly affect the performance

and physicality of the resulting simulations. Particle physics data has rich structures often

governed by group symmetries and conservation laws. Our current vector format description

of the data omits much of this complicated structure. For example, we omitted categorical

characteristics of particles like charge and type. Knowledge of such properties and the asso-

ciated rules likely would have excluded the necessity of terms like the anchor loss. Therefore,

future work should explore network architectures and losses that can better capture the full

nature of these data structures [50, 100].

The next technical hurdle is the ability to handle variable input and output states. The

same p(z) can lead to different detected states as was described, but not explored, in the
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semileptonic tt̄ study where the number of jets can vary. Additionally, it should be possible

to handle mixtures of underlying priors in the latent space. This can cause the number and

types of latent-space particles to vary from one sample to another. For example, the Z boson

can decay into Z → µ+µ− in addition to Z → e+e−; a simulator should be able to describe

these two cases holistically.

Finally, an essential feature of a predictive simulator is that it learns a general transformation,

allowing it to make predictions for points in the latent space which lie outside of the control

regions. This would require structuring the latent and data spaces to accommodates data

from several control regions, such that the network may learn to interpolate between them.

Since networks excel at interpolation we expect that this will be a straightforward step.

4.8 Data Availability

The datasets generated and analysed during the current study are available in the DRYAD

repository, doi: 10.7280/D1WQ3R.

4.9 Code Availability

The code used during the current study are available in the Zenodo repository and are linked

to the dataset, doi: 10.5281/zenodo.4706055.
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Chapter 5

Dark Matter Freeze-out during SU(2)L

Confinement

This chapter is heavily based on work previously published in collaboration with Seyda Ipek,

Tim M.P. Tait, and Jessica Turner [2].

5.1 Introduction

The identity of the dark matter and its role in a theory of fundamental interactions remains

one of the most pressing open questions today, and drives a vibrant program of experimental

and theoretical research into Physics beyond the Standard Model (SM) [101]. A key property

that distinguishes among different possibilities is the nature of the interactions between the

dark matter and the ingredients of the Standard Model, typically characterized by the masses

and couplings of the mediator particles.

An economical choice is to allow the dark matter to transform under the SM’s SU(2)L weak

interaction, repurposing the electroweak bosons of the Standard Model (W , Z, and h) as the
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mediators. This results in a prototypical weakly interacting massive particle (WIMP), whose

abundance in the Universe can be naturally understood as a result of it freezing out after

an initial period of chemical equilibrium with the SM plasma [102]. While attractive, an

SU(2)L-charged WIMP whose abundance is set by freeze-out is highly constrained. The TeV

masses favored by the dark matter abundance often predict signals which are expected to

have been visible at colliders [103, 104], in searches for ambient dark matter scattering with

heavy nuclei [105], and by searches for high energy annihilation products which make their

way to the Earth [106]. With dominant couplings typically fixed by SU(2)L gauge invariance,

a specific choice of SU(2)L-charged WIMP freezes out with the correct abundance for only

a very narrow range of masses. While windows of viable parameter space exist (see e.g.

Ref. [13]), many types of SU(2)L-charged WIMPs naively appear to be excluded as relics

whose abundance is determined by freeze-out.

An SU(2)L-charged WIMP typically freezes out at a temperature ≃ M/20, which for an

electroweak-sized mass corresponds to a period of cosmology that is much earlier than Big

Bang Nucleosynthesis, and thus during an epoch that is relatively unconstrained by obser-

vational data. At this time, the Universe may deviate dramatically from our extrapolation

based on the SM, due to unforeseen Physics beyond the Standard Model. Indeed, explo-

rations of non-standard cosmological histories, including a period of early matter domina-

tion [7], late entropy injection [8], and modifications of fundamental parameters such as the

strength of the SU(3) coupling [9, 10] have all been shown to lead to dramatically different

expectations in the mapping of WIMP parameter space onto its predicted abundance in the

early Universe.

This chapter explores a non-standard cosmology that can dramatically change the favored

mass range for an SU(2)L-charged WIMP, which makes up the bulk of the dark matter.

We introduce dynamics that modify the value of the SU(2)L interaction strength very early,

causing it to confine [11]. This weak confinement causes the left-chiral quarks and leptons of
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Figure 5.1: Schematic diagram of the weak confinement and dark pion freeze-out.
Upper panel: A sketch of the cosmological history of the Universe where we assume a period
of weak confinement begins at ΛW , at which point the DM (χ1, χ2) and SM (q, ℓ) doublets
are bound into weak pions. During this epoch, the freeze-out of dark pions takes place at Tfo,
followed by deconfinement at Tdc. Lower panel: The evolution of the dark pion abundance
for a representative value of the freeze-out temperature xfo = m1/Tfo ≃ 30, corresponding to
a temperature of 0.2mDM. In our notation, m1 and mDM denote the lightest dark pion and
the constituent dark matter masses respectively, see Section 5.3 for details.

the SM, and a new vector-like pair of fermionic doublets that plays the role of dark matter,

to bind into composite pion-like states that are SU(2)L neutral. The freeze-out process

involves those pions containing the dark matter annihilating into lighter pions composed

entirely of SM fermions. At some time after freeze-out, the SU(2)L interaction returns to its

currently observed value, at which point the pions deconfine, leaving behind the frozen out

dark matter. A sketch of this cosmological history is shown in Fig. 5.1.

Our work is organized as follows: in Section 5.2, we introduce the description of the Uni-

verse during an early period of SU(2)L confinement, including an additional vector-like pair

of fermionic doublets which can play the role of dark matter. In Section 5.3 we discuss

the freeze-out process in detail and identify the parameter space leading to the observed
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abundance of dark matter today and our results are summarized in Fig. 5.4. The more

realistic case including three generations of SM fermions is discussed in Section 5.4. Finally,

we conclude in Section 5.6 and provide technical details in the appendices.

5.2 Weak Confinement and Dark Matter

Our dark matter production mechanism involves a temporary cosmological era of SU(2)L

confinement. The possibility that the weak sector was strong in the early universe was

initially proposed in [107–110] (see also [111–114]) and the cosmological consequences of

such a scenario were studied in Ref. [11]. We refrain from rederiving the complete results

of Ref. [11], which gives a detailed discussion of the gauge and global symmetry breaking

patterns as well as the particle content of the confined phase, and instead highlight some

key results pertinent for this work:

• Weak confinement causes the SU(2)L doublets to condense into bound states analogous

to the mesons and baryons of QCD. The lowest-lying states are mesons, Π and η′,

composed of the SM lepton and quark doublets, l and q respectively. These states are

contained in the complex antisymmetric scalar field, Σij, where i, j = 1, ...., 2Nf with

2Nf of left-chiral Weyl fermion fields. For the Standard Model with three generations,

Nf = 6.

• Following intuition based on chiral symmetry breaking in QCD [115, 116] and evidence

from lattice simulations, there is a chiral condensate spontaneously breaking the global

symmetry: SU(2Nf ) → Sp(2Nf ) [117–123]. This pattern of symmetry breaking is

encoded by the antisymmetric field Σij acquiring a vacuum expectation value ⟨Σij⟩ =

(Σ0)ij that satisfies Σ†
0Σ0 = Σ0Σ

†
0 = 1. Neglecting the other SM gauge interactions

and Yukawas, this symmetry breaking results in 2N2
f − Nf − 1 massless Goldstone
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bosons (GBs) and a single massive pseudo-Goldstone boson (PGB), analogous to the

η′ of QCD.

• The dynamics of the confined theory are described by an infrared Lagrangian which

is constructed from the scalar field Σij that contains the massive PGB and massless

GBs:

Σ = exp
[
iη′/

√
Nff

]
exp

[∑
a

2iXaΠa/f

]
Σ0 , (5.1)

where Xa
ij are the 2N2

f − Nf − 1 broken generators of Sp(2Nf ) and f is the decay

constant. Considering the three SM generations of SU(2)L doublets, there are 65

massless pions. However, loop-induced corrections from the SM gauge and Yukawa

interactions provide masses to 58 of the 65 pions.

• Weak confinement breaks the gauge symmetry of the Standard Model from SU(3)C ×

U(1)Y to SU(2)C ×U(1)Q, resulting in four massless gauge bosons (G1,2,3, A′) and five

massive gauge bosons, which can be arranged into a pair of complex gauge bosons

(W ′±) and single real vector boson (Z ′).

We augment the SM particle content by two SU(2)L doublets, χ1 and χ2 (of hypercharges

±1/2, respectively), which play the role of dark matter. They are assembled into a pseudo-

Dirac state,

Lχ = iχ†
1σ̄

µDµχ1 + iχ†
2σ̄

µDµχ2 +mDM χ1χ2 + h.c , (5.2)

where Dµ is a covariant derivative of the unconfined phase and mDM is the mass of the

constituent dark matter. This Lagrangian is invariant under a U(1)χ symmetry under which

χ1 (χ2) are charged ±1 that ensures their stability.
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The infrared Lagrangian, describing the dynamics of the confined theory, has the form

LIR ⊃ f 2

4
Tr

[
DµΣ

†DµΣ
]
+ Λ3

WTr[MΣ + Σ†MT ] + κΛ2
Wf

2Re[detΣ] + ∆L , (5.3)

where Dµ is a covariant derivative of the confined phase, ΛW ∼ 4πf is the weak confinement

scale, κ is an O(1) dimensionless number, and M is the mass matrix, treated as an SU(2Nf )-

breaking spurion in the limit mDM ≪ ΛW. In the simplified case where we consider a single

generation of SU(2)L doublets together with the dark matter, 2Nf = 6 and the mass matrix,

defined in the basis {ℓ, qR, qG, qB, χ1, χ2} where R, G, and B denote the colors of SU(3)C,

is:

M =
mDM

2



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0


. (5.4)

The infrared Lagrangian also contains operators reflecting the explicit breaking of SU(2Nf )

by the gauging of SU(3)C and U(1)Y:

∆L = CGΛ
2
Wf

2 g2s
16π2

∑
a=1,2,3

Tr[LaΣ†LaTΣ] + CAΛ
2
Wf

2
e2Q
16π2

Tr[QΣ†QΣ]

+ CWΛ2
Wf

2 g
2
s/2

16π2

∑
±

∑
i=1,2

Tr[Li±Σ†Li±Σ] + CZΛ
2
Wf

2
e2Q/s

2
Qc

2
Q

16π2
Tr[JΣ†JΣ] ,

(5.5)

where the dimensionless coefficients, CG, CA, CW , and CZ , encode the non-perturbative

SU(2)L dynamics, and are expected to be O(1) [124, 125]. The SU(2)C and hypercharge

couplings are denoted as gs and g′, respectively, and sin θQ = g′/
√

3g2s + g′2 with eQ ≈ g′

in the limit, g′ ≪ gs. The generators of the SU(2)C and U(1)Q are denoted as La and Q,
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respectively, and L± is a combination of SU(3)C generators which couple to the massive

vector fields W ′±. Finally, J is a combination of an SU(3)C and an U(1)Q generator which

couple to the massive Z ′ gauge boson (see Appendix D and Ref. [11] for further details).

For the remainder of this Section, we consider a simplified toy model consisting of one SM

generation of fermionic doublets together with χ1 and χ2 (corresponding to Nf = 3, for which

there are 14 broken generators of the SU(6) flavor symmetry). This allows us to extract the

most important points in a framework that is simpler to analyze. We return to the more

realistic case of three generations plus χ1,2 (corresponding to Nf = 14) in Section 5.4.

5.2.0.1 Pion Masses and Mass Eigenstates

The mass spectrum of the pions during weak confinement is determined from the terms of

Eq. (5.3) that, after plugging in the expression for Σ(Π) in Eq. (5.1), are quadratic in the

meson fields, LIR → −(1/2)(M2
Π)abΠ

aΠb. Following Ref. [11], we define M2
Π in the basis

Π = {η′,Πa} where a = 1...14. In contrast to the case studied in [11], the resulting mass

matrix contains non-diagonal entries mixing the η′ with the meson dominantly composed of

χ1χ2:

M2
Π =



M2
0,0 . . . M2

0,14

. M2
1,1 . . .

. . . . .

. . . M2
13,13 .

M2
0,14 . . . M2

14,14


, (5.6)
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and thus the interaction and mass eigenstates are not aligned. We rotate to the mass basis

via the unitary transformation Π → WΠ, for which

M2
diag = WM2

ΠW
−1 , (5.7)

where W is a unitary matrix

W =



cos θ . . . sin θ

. 1 . . .

. . . . .

. . . 1 .

− sin θ . . . cos θ


, (5.8)

with

tan 2θ = 2
M2

0,14

(M2
0,0 −M2

14,14)
, (5.9)

and

M2
0,0 = 24κΛ2

W +
2Λ3

WmDM

3f 2
, M2

0,14 = −2
√
2Λ3

WmDM

3f 2
, M2

14,14 =
4Λ3

WmDM

3f 2
. (5.10)

Substituting Eq. (5.10) into Eq. (5.9), we find that

tan 2θ =
2
√
2πmDM

πmDM − 9κf
≈ −2

√
2πmDM

9κf
+O

(
m2

DM

f 2

)
, (5.11)

where we have taken ΛW = 4πf (see Appendix F for more details). Throughout we assume

that mDM ≪ f and this implies that the mixing between η′ (which we label as Π0) and the

92



Pion Mass2 U(1)Q SU(2)C content
Πmass

0 384π2f 2κ 0 1 χ1, χ2

Πmass
1,2,3,4 −1

2
CAe

2
Qf

2 − 3
2
CGf

2g2s + CWf
2g2s +

CZe2Qf2

6s2Q
+ 1

2
CZe

2
Qf

2 ±1 2 ℓ, qD, qS

Πmass
5,8 64π3fmDM 0 1 χ1, χ2, qS

Πmass
6,7 −2CAe

2
Qf

2 − 2CZe
2
Qf

2s2Q + 2
3
CZe

2
Qf

2 + 64π3fmDM ±1 1 ℓ, χ1, χ2, qS

Πmass
9,10,11,12 −1

2
CAe

2
Qf

2 − 3
2
CGf

2g2s +
CZe2Qf2

18s2Q
+ 64π3fmDM ±1 2 χ1, χ2, qD

Πmass
13 0 0 1 ℓ, qS

Πmass
14

256
3
π3fmDM 0 1 χ1, χ2

Table 5.1: Masses of the pions (for the one SM generation case) in the small mixing
limit, along with their U(1)Q×SU(2)C charges and constituent SU(2)L doublet
content.

χ1χ2 (which we label as Π14) state is small, cos θ ≈ 1 and sin θ ≈ θ, and this leads to:

Πmass
0 ≈ Πint

0 + θΠint
14 , (5.12a)

Πmass
14 ≈ Πint

14 − θΠint
0 , (5.12b)

where Πmass
i = Πint

i for i = 1, ..., 13. The masses of Πmass
0 and Πmass

14 are:

M2
0 ≈ 384π2f 2κ

(
1 +

πmDM

9κf
+O

(
m2

DM

f 2

))
,

M2
14 ≈

256π3

3
fmDM

(
1− πmDM

9κf
+O

(
m2

DM

f 2

))
.

(5.13)

Table 5.1 shows the approximate masses of the 15 mesons for the one generation SM case,

as well as their representations under the residual U(1)Q × SU(2)C gauge symmetries, in the

small mixing limit.

The specific pion masses depend on the non-perturbative coefficients CG, CA, CZ , CW , and

κ. These could in principle be determined from lattice simulations, and are expected to

be O(1) based on arguments from naive dimensional analysis [126]. We proceed under the

assumption that CG = CA = CZ = −1 and CW = κ = 1. As is evident from Table 5.1, the

masses of Πmass
1,2,3,4 are independent ofmDM, reflecting the fact that they are purely composed of

SM quark and lepton doublets, with masses generated via SM gauge interactions, Eq. (5.5),
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and are typically the lightest of the massive pions. The Πmass
0 is significantly heavier than

the other mesons, rendering it unimportant for the freeze-out dynamics due to Boltzmann

suppression. We observe that Πmass
14 is 4/3 times heavier than Πmass

5,8 and hence, we can ignore

the effect of Πmass
14 in calculating the dark matter dynamics. In Fig. 5.2, we show the pion

masses as a function of mDM for f = 65 TeV, corresponding to ΛW ≈ 800 TeV (this choice

is motivated by discussions of DM abundance in Section 5.3). We examine two benchmark

cases: BP1 where gs, g′ and sQ = g′/
√
3g2s + g′2 are found by evaluating the running SM

coupling constants to approximately ΛW and BP2, which is similar to a regime of interest

from Ref. [11]. More specifically:

BP1 gs = 0.8 , eQ = 0.5 , s2Q = 0.12 ,

BP2 gs = 0.1 , eQ = 0.01 , s2Q = 3.3× 10−3 .

Fig. 5.2 indicates that M5,8,M6,7 and M9,10,11,12 differ slightly due to the loop contributions,

and that M5,8 are the lightest massive states. BP2 has values of gs, eQ which are smaller

than those in BP1, leading to much smaller differences between M5,8,M6,7 and M9,10,11,12,

resulting in a more compressed spectrum.

94



2 4 6 8 10
5
10

50
100

500
1000

5000

BP1 : gs = 0.8, eQ = 0.5, sQ = 0.3

CG = CA = CZ = − 1, CW = 1, κ = 1, f = 65 TeV

BP2 : gs = 0.1, eQ = 0.01, sQ = 0.01

BP1
BP2

5.0000 5.0002 5.0004 5.0006 5.0008 5.0010
803.00

803.50

804.00

804.50

805.00

805.50

5.0000 5.0002 5.0004 5.0006 5.0008 5.0010
803.08

803.10

803.12

803.14

803.16

803.18

Figure 5.2: Pion masses as a function of mDM, assuming CG = CA = CZ = −1, CW = 1
and κ = 1, for two benchmark points: BP1 where gs, eQ ≃ g′ and sQ ≃ g′/

√
3g2s + g′2

are found by running gs and g′ to ΛW = 4πf ≃ 800 TeV; and BP2 where we take gs = 0.1
and eQ = 0.01. M13 = 0 is not shown.

5.2.0.2 U(1)χ Eigenstates

U(1)χ remains unbroken during the confined phase, and it is convenient to organize the pions

based on their U(1)χ charges. This is evident from the fact that the U(1)χ generator,

Qχ =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 −1


, (5.14)
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leaves the vacuum invariant: QχΣ0 +Σ0Qχ = 0. To infer the U(1)χ charges of the pions, we

transform Σ by an infinitesimal U(1)χ rotation:

Σ
U(1)χ−−−→ eiQχθχΣ(eiQχθχ)T ≈ Σ + iθχ (QχΣ + ΣQχ) + . . . , (5.15)

and expand Σ to first order, Σ ≃ Σ0 + i
f
ΠaXaΣ0 + ..., from which we can extract the

transformation of each pion:

Πb
U(1)χ−−−→Πb + iθχ 2ΠaTr[[Qχ, Xa], Xb]︸ ︷︷ ︸

δΠb

. (5.16)

Using the specific form of the generators Xa and Qχ we can explicitly evaluate δΠa for each

a = 0, ...14, and construct complex linear combinations of pion fields that have definite U(1)χ

charge:

Π̃±
1 ≡ 1√

2
(Πmass

5 ∓ iΠmass
8 ) ,

Π̃±
2 ≡ 1√

2
(Πmass

6 ∓ iΠmass
7 ) ,

Π̃±
3 ≡ 1√

2
(Πmass

9 ∓ iΠmass
12 ) ,

Π̃±
4 ≡ 1√

2
(Πmass

10 ∓ iΠmass
11 ) ,

(5.17)

and Π̃0
i ≡ Πmass

i for i ∈ {0, 1, 2, 3, 4, 13, 14} are left as zero-charge real scalar fields. Note

that these redefinitions commute with the mass basis, as expected.

5.2.0.3 Pion Interactions

The most important interactions of the pions, for our purposes, are four-point vertices arising

as residual strong interactions from the confined SU(2)L force. These are encoded in the

infrared Lagrangian as higher order terms (in powers of Π/f). Expanding Σ to second
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order:

Σ(x) = exp

[
iη′√
Nff

]
exp

[
i
2Πa(x)Xa

f

]
Σ0

≈

[
1 + i

(
2Πa(x)Xa

f

)
− 1

2

(
2Πa(x)Xa

f

)2

+O
(

Π3

3!f 3

)]
Σ0 ,

(5.18)

where the relevant terms from Eq. (5.3) take the form:

L4 =
4

f 2
Tr1(a, b, c, d) ΠaΠb∂

µΠc∂µΠd +
2mDMΛ

3
W

3f 4
Tr2(a, b, c, d) ΠaΠbΠcΠd , (5.19)

with flavor tensors Tr1 and Tr2 defined by

Tr1(a, b, c, d) ≡
1

4

(
Tr [XcXaXdXb] + Tr [XaXcXdXb]

)
− 1

12

(
Tr [XcXaXbXd] + Tr [XaXcXbXd]

)
− 1

3
Tr [XaXbXcXd] ,

Tr2(a, b, c, d) ≡ −Tr [AXaXbXcXd] , (5.20)

where A ≡ diag(02x2, ..., 02x2, 12×2). These expressions are written in the interaction (mass)

basis, and can be transformed into states of definite U(1)χ charge via Eq. (5.17).

The pions charged under SU(2)C and U(1)Q will also have gauge interactions with those

gauge bosons, contained in the kinetic terms of Eq. (5.3). However, we have verified that

these couplings are small enough at the scales of interest (leading to cross sections of O(10−3)

smaller than those characterizing annihilation into SM pions) that they can be neglected in

our freeze-out analysis.
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5.3 Dark Matter freeze-out

At the time of freeze-out, the dark matter particles are bound into dark pion (DP) states,

and the final abundances of χ1,2 are determined by the frozen-out densities of Π̃±
1,2,3,4 (each

of which contains one χ) and Π̃0
0 and Π̃0

14 (each of which contains two χs). In practice,

because of the large mass hierarchy between Π̃0
0,14 and Π̃±

1,2,3,4, it is sufficient to neglect the

contributions from the two neutral states and to focus on the U(1)χ-charged ones.

The relic abundance of the Π̃±
i is controlled by the temperature, Tfo, at which their number-

changing interactions freeze-out from thermal equilibrium, which in turn depends sensitively

on their annihilation cross sections into the lightest neutral pions comprised of SM doublets:

Π̃+
i Π̃

−
j → Π̃0

13Π̃
0
13. The charged states are typically sufficiently close in mass (∆m/Tfo ∼ 10−2)

that coannihilation processes can be important [15, 16], and are included in our calculations.

Nonetheless, the relic abundance is dominated by the annihilation of the lightest DP state

into the zero-mass SM pion: Π̃+
1 Π̃

−
1 → Π̃0

13Π̃
0
13.

5.3.1 Annihilation Cross Section

The rate for ΠiΠj → ΠcΠd is determined by the Feynman diagrams shown in Fig. 5.3, where

the dashed (solid) lines indicate legs on which derivatives do (do not) act in the corresponding

operator. We define the incoming legs to correspond to the pion flavors i, j, and outgoing to

c, d. The resulting matrix element, M, takes the form

iM = −i4(pc · pd)
f 2

G1 + i
4(pi · pc)

f 2
G2 − i

4(pi · pj)
f 2

G3 + i
4(pj · pd)

f 2
G4

+ i
4(pj · pc)

f 2
G5 + i

4(pi · pd)
f 2

G6 + i
128π3mDM

3f
G7 ,

(5.21)
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Figure 5.3: Four-point pion interaction diagrams contributing to the process
ΠaΠb → ΠcΠd. The dashed lines denote fields on which derivatives act, contributing a
factor of the corresponding momentum. An incoming (outgoing) field contributes a negative
(positive) momentum factor to the matrix element.

where we used ΛW = 4πf and define:

G1 = Tr1(i, j, c, d) , G2 = Tr1(d, j, c, i) , G3 = Tr1(c, d, i, j) , G4 = Tr1(i, c, j, d) ,

G5 = Tr1(i, d, c, j) , G6 = Tr1(c, j, i, d) , G7 = Tr2(i, j, c, d) ,

where Tr1 and Tr2 are given in Eq. (5.20). Subsequently, the annihilation cross section can

be expressed as,

σij(s) =
1

16π

1

λ(s,m2
i ,m

2
j)

[
Cconst(t+ − t−) +

1

2
Clin(t

2
+ − t2−) +

1

3
Cquad(t

3
+ − t3−)

]
, (5.22)

where λ is the well-known Källén function, λ(x, y, z) ≡ (x− y − z)2 − 4yz, and

t+ = m2
c +m2

i − 2EcEi + 2|p⃗c||p⃗i| ,

t− = m2
c +m2

i − 2EcEi − 2|p⃗c||p⃗i| .
(5.23)
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The above traces define the coefficients inside the square brackets as:

Cconst ≡
(
128π3mDM

3f

)2

|C|2 + 4s2

f 4
|G13,56|2 −

2s

f 2

(
128π3mDM

3f

)[
C∗G13,56 + CG∗

13,56

]
,

Clin ≡ 4s

f 4

(
G13,56G

∗
24,56 +G∗

13,56G24,56

)
− 2

f 2

(
128π3mDM

3f

)[
C∗G24,56 + CG∗

24,56

]
,

Cquad ≡ 4

f 4
|G24,56|2 ,

(5.24)

with

C ≡ G7 +
3m2

i

64π3fmDM

(G2 +G3 −G5) +
3m2

j

64π3fmDM

(G3 +G4 −G6)

+
3m2

c

64π3fmDM

(G1 +G2 −G6) +
3m2

d

64π3fmDM

(G1 +G4 −G5) ,

G13,56 ≡ G1 +G3 −G5 −G6 ,

G24,56 ≡ G2 +G4 −G5 −G6 .

(5.25)

Note that 64π3fmDM is the mass squared of the lightest pion with DM constituent. In the

non-relativistic limit, the 2 → 2 scattering cross section can be expanded in terms of the

relative velocity, v = |v⃗i − v⃗j|, of the incoming particles,

⟨σv⟩ = σ0 + σ2⟨v2⟩+ .. (5.26)

At freeze-out, the leading (s-wave) term of this expansion dominates over the order higher

terms and hence the velocity averaged cross section is:

⟨σijv⟩s−wave =
λ1/2(s,m2

c ,m
2
d)

32πEaEbs

[
Cconst + ClinW1 + CquadW

2
1

]
, (5.27)
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where

W1 = m2
i +m2

c −
1

2s
(s+m2

i −m2
j)(s+m2

c −m2
d) . (5.28)

Further, assuming that the incoming particles are non-relativistic implies that s = (mi+mj)
2.

For the most significant annihilation processes, Π̃+
1 Π̃

−
1 → Π̃0

13Π̃
0
13, mc = md = 0 and m2

i ≃

m2
j ≃ 64π3fmDM. In this limit, the parametric dependence of the s-wave annihilation cross

section is:

⟨σijv⟩s−wave ∝ constant× mDM

f 3
, (5.29)

where the overall constant is a combination of various traces and found to be O(1) from

numerical analysis.

5.3.2 Freeze-out

The number density of the dark pions, nDP = nΠ±
1
+nΠ±

2
+nΠ±

3
+nΠ±

4
, evolves according the

Boltzmann equation [16]:

ṅDP + 3HnDP = −⟨σeffv⟩(n2
DP − n2

DP,eq) , (5.30)

where H =
√

8π3g∗/90T
2/MPl is the Hubble rate during radiation domination, nDP,eq =

g∗m
2
1T/(2π

2)K2(m1/T ) is the equilibrium number density of the lightest dark pion and m1

is the mass of the lightest DP freezing out, more specifically the mass of Π̃±
1 . The effective
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co-annihilation cross section is defined as

σeff =
4∑

i,j=1

σij
gigj
g2eff

(1 + ∆i)
3/2 (1 + ∆j)

3/2 e−x(∆i+∆j) ,

with geff =
4∑

i=1

gi (1 + ∆i)
3/2 e−x∆i ,

(5.31)

where x = m1/T , σij is the cross section for the reaction Π̃±
i Π̃

∓
j → Π̃0Π̃0 given in Eq. (5.27)

(summed over all kinematically accessible SM pions in the final state), gi = 2 is the number

of degrees of freedom of Π̃±
i , and ∆i ≡ (mi −m1) /m1 is the mass difference between the

heavier dark pions and Π̃±
1 .

In Fig. 5.4 we present ⟨σeffv⟩ for a range of f and mDM. By fitting our numerical results to

the approximation given in Eq. (5.29), we find the velocity-averaged effective cross section

to be

⟨σeffv⟩ ≃ (1.5− 2)× 10−11GeV−2
( mDM

5 TeV

)(
65 TeV

f

)3

, (5.32)

where the lower and higher values correspond to one or three generations of SM fermions

respectively. For smaller f and larger constituent DM mass, ⟨σeffv⟩ is larger, resulting in

too much annihilation and hence not enough dark pions left over to produce the observed

abundance of the dark matter. Conversely, a lighter constituent dark matter mass and higher

confinement scale result in a lower dark pion annihilation cross section and an overabundance

of dark matter.

5.3.3 Deconfinement

The freeze-out of the dark pions determines the final comoving number density of dark pions,

which has an associated energy density, ρDP = m1nDP. At the time of deconfinement, each
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dark pion flies apart into one χ as well as SM radiation. At that point, the dark matter

consists of freely streaming χ particles, with energy density,

ρDM =
mDM

m1

× ρDP = mDM × nDP , (5.33)

which is to be compared with the observed abundance of dark matter from cosmological

measurements, Ωh2 = 0.1200± 0.0012 [127].

We assume that the weak sector deconfines at temperature Tdc, where Tdc ∼ m1/100. In

estimating the relic density of χ, we assume that the entropy dump into the thermal plasma

from the deconfinement process is negligible1. After deconfinement, the free χ particles could

begin to annihilate into SM through the now unbound weak interactions, for which the cross

section is parametrically σW ≈ α2
Wπ/m

2
DM, where αW ∼ 0.1 has presumably returned to the

value measured by experiments today. In our numerical scans, we verify that σW nDP ≪ H

at x = 100 for the regions of (mDM, f) of interest, ensuring that no period of thermalization

after deconfinement occurs and therefore alters the dark matter relic density from Eq. (5.33).

5.3.4 Numerical Results

We numerically solve Eq. (5.30), adapting the infrastructure of ULYSSES [128], a pub-

licly available Python package developed to solve Boltzmann equations associated with

leptogenesis. For each benchmark point, we determine the regions of the parameter space,

(mDM, f) that are consistent with the measured relic abundance. To perform this task, we use

ULYSSES in conjunction with MultiNest [129–131] (more precisely, pyMultiNest [132],

a wrapper around Multinest written in Python). We place flat priors on the parameters
1The vacuum energy in the confined phase is ∼ c0Λ

4
W , where c0 is a constant. We require that this

energy is always smaller than the contribution from relativistic degrees of freedom in the Universe, g∗T 4.
Assuming deconfinement happens at a temperature Tdc = 10−4ΛW , requiring c0Λ

4
W < g∗T

4
dc would imply

that c0 ≲ 10−14.
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Figure 5.4: The region of interest for the constituent dark matter mass, mDM, and
the weak confinement scale, f , for one generation (left) and three generation
(right) cases. The solid and dashed lines show where the DM relic density is consistent
with observations at 1 and 2 σ respectively. We show the velocity-averaged effective cross
section during freeze-out given in Eq. (5.31). The grey shaded area is inconsistent with
unitarity constraints. Note that for both cases we start our scan at mDM = 500 GeV and
that the highest points for our scans are mDM = 8.5 TeV and 10.5 TeV for one generation and
three generation case respectively. For the benchmark shown above, BP1, gs = 0.8, eQ = 0.5
and s2Q = 0.12.

(mDM, f) and employ the log-likelihood as the Multinest objective function:

logL = −1

2

(
Ωh2(mDM, f)− Ωh2

PDG

∆Ωh2

)2

, (5.34)

where Ωh2(mDM, f) is the calculated relic density for a point in the model parameter space,

Ωh2
PDG is the best-fit value of the relic density and ∆Ωh2 is the 1-σ experimental uncertainty

range of the relic abundance [127]. In the left panel of Fig. 5.4, we show the regions for which

the predicted relic abundance of dark matter is consistent with the observed abundance at

the one and two sigma. We find that multi-TeV χ masses (and f ∼ 60 TeV) are favored

and consistent with the perturbative unitarity bound [133], which, using the approximate
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analytic form of ⟨σeffv⟩ Eq. (5.29), takes the form:

⟨σeffv⟩s−wave ≈
0.8mDM

f 3
≲

4π

64π3fmDMv
⇒ m2

DM ≲
5f 2

64π2v
, (5.35)

where we substitute m2
DP = 64π3fmDM. For a freeze-out temperature of Tfo ≃ m1/30, the

unitarity limit constrains mDM ≲ 1.3f , which cuts into the parameter regime favored by

the relic density at around mDM ∼ 10 TeV. Fig. 5.4 shows the unitarity limit on the region

of interest using the numerical results for ⟨σeffv⟩s−wave. The numerical results for BP1 and

BP2 are qualitatively very similar. Our code, which calculates the effective cross section

and solves the Boltzmann equations, for both the one- and three-generation case, is publicly

available at �.

5.4 Three Generations of Standard Model doublets and

Dark Matter

For simplicity, we have outlined the freeze-out dynamics in the case of a single generation of

SM doublets together with the pair of vector-like fermionic SU(2)L doublets ({ℓ, qr, qg, qb, χ1,

χ2}). In this Section, we generalize to three generations ({ℓi, qri , q
g
i , q

b
i , χ1, χ2} with i =

1, 2, 3) where there are 90 pseudo-Goldstone bosons and an η′. The mass matrix is 91× 91

and, due to the added complexity of three generations of SM doublets, the mass2 matrix

contains off-diagonal entries which depend non-trivially on the scan parameters (mDM, f).

Therefore, unlike in the one generation case, where we could perform the diagonalization

of the mass squared matrix analytically, in the three-generation case, we instead rely on a

numerical diagonalization of the mass-squared matrix to transform from the interaction to

the mass basis for each parameter scan point. We perform the same procedure outlined in

Section 5.2.0.1 to transform from the mass to the U(1)χ basis, and compute annihilation

105

https://github.com/jnhoward/SU2LDM_public


Pion # Mass squared U(1)Q SU(2)C
(mass basis) value charge charge

Πmass
1 1 64π2f

(
7fκ+ πmDM +

√
49f 2κ2 − 10πfκmDM + π2m2

DM

)
0 1

Πmass
2 24 −1

2
CAe

2
Qf

2 − 3
2
CGf

2g2s + CWf
2g2s − 1

2
CZe

2
Qf

2s2Q +
CZe2Qf2

6s2Q
+ 1

3
CZe

2
Qf

2 ±1 2
Πmass

3 14 0 0 1

Πmass
4 6 −2CAe

2
Qf

2 − 2CZe
2
Qf

2s2Q − 2CZe2Qf2

9s2Q
+ 4

3
CZe

2
Qf

2 ±1 1

Πmass
5 12 −1

2
CAe

2
Qf

2 − 3
2
CGf

2g2s − CWf
2g2s − 1

2
CZe

2
Qf

2s2Q +
CZe2Qf2

6s2Q
+ 1

3
CZe

2
Qf

2 ±1 2
Πmass

6 6 64π3fmDM 0 1
Πmass

7 6 −2CAe
2
Qf

2 − 2CZe
2
Qf

2s2Q + 2
3
CZe

2
Qf

2 + 64π3fmDM ±1 1
Πmass

8 9 −4CGf
2g2s 0 3

Πmass
9 12 −1

2
CAe

2
Qf

2 − 3
2
CGf

2g2s − 1
2
CZe

2
Qf

2s2Q +
CZe2Qf2

18s2Q
+ 64π3fmDM ±1 2

Πmass
10 1 64π2f

(
7fκ+ πmDM −

√
49f 2κ2 − 10πfκmDM + π2m2

DM

)
0 1

Table 5.2: Table of mass squared values corresponding to mass basis states along
with the relevant SU(2)C × U(1)Q charges. Three SM generations with χ1 and χ2

are included.

cross section as described in Section 5.3.1, but in the three-generation case, there are 12

charged dark pion states. We find that there are ten distinct pion masses as shown in

Table. 5.2. Rather than provide the complete indexing of states, we provide the number of

pions (second column) with each mass eigenvalue. Interestingly, several new states, such as

the color triplet, appear in the multi-generational case.

In the right panel of Fig. 5.4, we show the regions for which the predicted relic abundance

of dark matter in the three generation case is consistent with the observed abundance. The

favored region that explains the DM abundance in the three-generation case is approximately

the same as the simplified one generation case but favors slightly higher f values for a given

mDM. Another slight difference is that the unitarity constraint is more stringent due to the

higher values of ⟨σeffv⟩s−wave in the three-generation case.
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5.5 Methods

This section expands upon the calculation steps leading to the results in this chapter. In

particular, we give an outline of the code’s [134] organization and structure, as well as more

statistical details for the parameter scan.

5.5.1 Outline of Code

The majority of the code is in the format of Python [135] script files (.py) and Jupyter [136]

notebook files (.ipynb), with some initial information supplemented by analytic Mathe-

matica [137] calculations. The code considers two cases, a toy model with only the first

generation of Standard Model (SM) particle content (denoted Ngen = 1) and the full model

with three generations of SM particle content (denoted Ngen = 3).

There are 5 main stages that the code progresses through:

1. Converting the vector of Π states from the interaction basis to the definite Dark Matter

(DM) charge basis.

2. Calculating the velocity averaged effective cross section of interactions which deplete

the constituent DM abundance, ⟨σeffv⟩. Namely, interactions which convert pions

containing the constituent DM particles (ΠDM) into pions containing only SM particles

(ΠSM).

3. Solving the Boltzmann equations using this effective cross section to determine the

evolution of the number density of DM during the freeze-out of the ΠDM’s.

4. Comparing the final constituent DM abundance (after ΠDM freeze-out and subsequent

deconfinement) to the experimentally measured value, Ωh2 = 0.1200± 0.0012 [127].
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Figure 5.5: Schematic outline of the code showing the dependencies of the vari-
ous script files. There are two main script files preScan.py and omegaH2.py which call
functions in several helper script files located in the directory utilityFunctions/. The
arrows indicate the order in which functions are called in the helper script files. Relevant
file outputs of preScan.py and omegaH2.py are shown in the orange sections. The code is
publicly available � [134].

5. Performing a parameter space scan to determine the region of parameter space which

agrees with the experimentally measured value at the 1σ and 2σ levels. The scan uti-

lizes the software package ULYSSES [128] which gives an efficient method for scanning

the parameter space with a pymultinest [132] backend.

The Ngen = 1 and Ngen = 3 cases progress through these stages similarly, differing only in

the exact details of stage 1 (analytic mass-squared matrix diagonalization versus numeric,

respectively) and the difference in the number of Π states to keep track of throughout (15

versus 91, respectively). Fig. 5.5 outlines the dependencies of the core calculation script files

as well as the key outputs.
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5.5.2 Statistical Handling of Parameter Scan Results

We do not scan directly in {f,mDM} parameter space, but rather in {fpow, bsmall,pow} param-

eter space. These spaces are related in the following way

fpow := log10(
f

GeV
) (5.36)

bsmall,pow := log10(bsmall) (5.37)

bsmall :=
mDM

ΛW

(5.38)

ΛW := 4πf. (5.39)

The definition of bsmall allows us to easily ensure that the constituent DM mass, mDM, is well

below the weak scale, ΛW , which is acting as our EFT cutoff (i.e. bsmall ≪ 1 ). Additionally,

scanning in log10-parameter space, {fpow, bsmall,pow}, rather than directly in the parameter

space, {f, bsmall}, is computationally favorable.

The ULYSSES parameter scan results in a text file (ULSNEST.txt). Each row of this file

corresponds to a different parameter space point, θ := {fpow, bsmall,pow}. The first and second

columns correspond to the posterior and negative 2 log-likelihood (−2 lnL) values at each

parameter space point, respectively. The final columns correspond to the scan parameter

values at which the posterior and −2 lnL were evaluated. In this case there are two columns

corresponding to fpow and bsmall,pow.

The goal is to use the sampled posterior and −2 lnL information from the scan to discover the

viable regions of parameter space (so-called interval or, in the case of multiple parameters,

region estimation). Whether we use the posterior or −2 lnL information depends on whether

we would like to adopt a Bayesian or frequentist approach, respectively. In the former we

would have credible regions and in the latter we would have confidence regions. In what

follows we adopt the latter, which is more typical [138]. For more details on this topic and

109



how these intervals are drawn in general see Appendix E which draws heavily from Chapter

9 of [138].

We define our likelihood function (in general form) as

−2 lnLg =

(
g(θ)− µ

σ

)2

(5.40)

where µ := Ωh2PDG = 0.1200 and σ := ∆Ωh2 = 0.0012 are the experimentally measured

Ωh2 value and its 1σ error. In what follows, statistically, these are treated as fixed, known

parameters. The function g(θ) := Ωh2(θ) converts the scan parameters into a prediction for

the Ωh2 value. The parameters are θ = {bsmall,pow, fpow} (or, equivalently, θ = {mDM, f}

since g is unaffected by this reparameterization). A scan is performed to find the θ such that

−2 lnLg is minimized. By the definition above and since µ and σ are considered known, the

theoretical minimum of −2 lnLg will occur at g(θ) = µ.

By the likelihood’s property of invariance, the regions where −2 lnLg is minimized will

correspond directly to the regions where −2 lnLθ is minimized. Because of this we need not

know the analytic form of Lθ, which is likely quite complicated. This invariance property is

why using likelihood information to draw confidence regions is so common.2 Because of this,

and to simplify the notation, we now simply denote the likelihood as L.

The parameter space has been sampled irregularly, with samples preferentially falling in

regions of minimal −2 lnL. But we need to use this information to obtain a general function

of L over the parameter space scan region. We therefore estimate the two-dimensional

profile likelihood (following the methodology here [139]). We begin by binning the desired

region of parameter space to create a grid. Next we use the (approximate) definition that

χ2 = −2ln(L/Lmax) = −2lnL, where we have taken a frequentist perspective in assuming

Lmax = 1 (the theoretically maximum value). For each bin, we find the minimum χ2 value
2Note that this invariance is practically very useful but is only approximately true.
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that falls in that bin. If a bin is empty we set its value to infinity (inf). This defines the

grid of the profile-χ2. From this we can invert the relationship to get the gridded profile-

likelihood (i.e. profile-likelihood = exp(−0.5 profile-χ2)). The final step is to smoothly

interpolate between these grid points in order to draw confidence intervals over parameter

space. Given the likelihood’s (approximate) relationship to χ2, a 1σ (2σ) confidence interval

is drawn by finding the contour where the likelihood is equal to 0.32 (0.05). This corresponds

to requiring that χ2 ≤ F−1
χ2 (1 − α, dof = 2) ⇒ L/Lmax = L ≤ α for α = 0.32 (α = 0.05),

where F−1
χ2 (·) is the Cumulative Distribution Function (CDF) of the χ2 distribution. These

regions are shown in Fig. 5.4.

5.6 Discussion

Our results indicate that a modification to the strength of the SU(2)L weak coupling dra-

matically transforms the nature of the freeze-out process for an SU(2)L-charged WIMP. For

a vector-like pair of doublets, we find that the weak confinement scenario favors a range

of masses (depending on the early SU(2)L confinement scale) around O(1 − 10) TeV and

can be much larger than the ≃ 1.1 TeV favored by a standard cosmological history [102].

This highlights the possibility that the physics of the dark matter itself could be drastically

different at the time of freeze-out from today. In particular, the constraints on a several TeV

WIMP are quite different from those restricting a ∼ 1 TeV mass particle.

Direct searches for WIMPs scattering with heavy nuclei remain an important challenge. At

∼ 10 TeV, XENON1T data restricts the cross section to scatter with a nucleon to be smaller

than about ∼ 10−44 cm2 [105], which is still incompatible with the cross section mediated

by full strength Z boson exchange (∼ 10−38 cm2). However, this bound can be avoided by
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introducing Majorana masses via a dimension-5 operator of the form,

L∆M =
1

M1

(H†χ1)(H
†χ1) +

1

M2

(Hχ2)(Hχ2) + h.c. (5.41)

where M1,2 parameterize the interaction strength and parentheses indicate how SU(2)L in-

dices are contracted. After electroweak breaking, these operators result in Majorana masses

of order v2/M1,2, which split the Dirac χ into two Majorana fermions, in close analogy with

the see-saw mechanism for generating neutrino masses. The Majorana particles have van-

ishing vector currents, and thus Z boson exchange mediates inelastic scattering, which is

kinematically suppressed once the mass splitting is larger than the typical kinetic energy of

the WIMPs in the Galactic halo [140, 141]. Provided the scales M1 and M2 are sufficiently

large, these operators play essentially no role in freeze-out, and do not themselves mediate

an observable scattering with nuclei via Higgs boson exchange.

Despite its full-strength electroweak interactions, a multi-TeV dark matter particle is too

heavy to be accessible at the LHC. Even when kinematically accessible, unless there is mixing

with another nearby state via electroweak symmetry-breaking, the signatures at colliders are

challenging because the charged state is expected to be degenerate with its neutral counter-

part to within a few hundred MeV [142], and thus requires mono-jet or disappearing track

analyses. As a result, even a future 100 TeV hadron collider is expected to struggle to reach

sensitivity to TeV mass electroweak doublets [143].

Indirect searches for the annihilation products of WIMP annihilation, for example, from

observation of high energy γ-rays, can reach sensitivity to around 10 TeV for electroweak-

sized annihilation cross sections [106], particularly for masses for which the annihilation

experiences a Sommerfeld-like enhancement due to the exchange of weak bosons. These

bounds exhibit a considerable sensitivity to the distribution profile of the dark matter around

the Galactic center, which is not well constrained by observation (see, e.g. Ref. [13] for
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discussion). Despite these challenges, a future gamma-ray observatory such as the Cherenkov

Telescope Array [144] could offer the best chance of a direct observation of dark matter in

such a scenario.

Looking forward, it would be interesting to explore further the consequences of a period of

early SU(2)L confinement. It may be that such an epoch could enable new possibilities to

understand other mysteries of the early Universe, such as the primordial asymmetry between

baryons and anti-baryons. And more widely, our results illustrate the general truth that

the early Universe may well turn out to have been more weird and wonderful than simply

extrapolating the SM to high temperatures would lead us to expect. Exploring the space

of possibilities and how to constrain them with experimental measurements will remain an

essential task for particle physics.
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Chapter 6

Conclusion and Outlook

In this thesis we have demonstrated two ways in which mathematical and computational

methods can work together with physics insight to make valuable contributions to the field.

Moreover, these works demonstrate how questioning prior assumptions and incorporating

tools from other fields can lead to novel results.

In Chapter 4 we saw how mathematical techniques from optimal transport (OT) theory

have augmented powerful unsupervised machine learning methods and enabled the design of

a physics-informed, data-driven particle simulator: OTUS. OTUS has been shown to work

on proof-of-principle cases, but should be developed further before being applied generally.

In particular, it is worth taking a step back to examine how to formulate a general de-

scription of LHC events which also incorporates physically-motivated constraints. It may

be that OT is the answer for this as well. Interesting recent work has been able to natu-

rally express many jet observables in terms of OT [32, 33], and is even being proposed as a

means to formulate a general metric on the space of particle collisions [34]. Having a robust

description of the data will undoubtedly improve the network’s ability to learn simulation

and unfolding mappings by allowing it to focus in on physically meaningful features. Other
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immediate future directions include investigating semi-supervised applications of OTUS, in

which some simulated samples are used to ground the learned mappings, and investigating

other Wasserstein distance estimation techniques for the latent loss (such as Sinkhorn dis-

tance [56]). Finally, future work should investigate the ability for OTUS to interpolate over

Z space (see Section 4.7 for more details). This last step is crucial to achieve the goal of

applying OTUS to LHC searches for BSM physics.

In Chapter 5 we saw how questioning assumptions about the early universe can widen the

range of possible WIMP DM masses which could produce the observed DM relic abundance.

We also saw how investigating the effects of changing these assumptions could be aided

by computational tools. Considering the effects of Electroweak force (SU(2)L) confinement

presented a computational challenge even in the simple toy model. Tackling this problem

analytically with software like Mathematica [137] was computationally intractable, and

thus would have required introducing simplifying assumptions to move forward. Therefore,

efficient numerical Python [135] computational tools made investigating this scenario with

relatively few assumptions possible. Future work should investigate what other effects a

phase of SU(2)L confinement in the early universe could have had. For example, it would

be useful to investigate the extent to which this model (with possible minor modifications)

may serve as a mechanism for baryogenesis — the process by which the matter/anti-matter

asymmetry in the Universe arose. Similar work considering a phase of early QCD force

confinement showed that such a change could lead to a novel baryogenesis mechanism [12].

Additionally, this work remained agnostic to the dynamics of the scalar field ϕ whose vev

alters the strength of the Electroweak force; investigating these dynamics in future work may

also lead to interesting implications.

115



6.1 Thoughts on Applying Machine Learning to Prob-

lems in Particle Theory

In recent years, it seems like every scientific field has seen some kind of machine learning

(ML) revolution. In experimental and phenomenological particle physics, such a revolution

has been especially fruitful. State-of-the-art ML methods are being applied to a wide variety

of problems [145]. For example, on the experimental side ML has been applied to problems

in data analysis, trigger algorithms, pileup subtraction, feature identification, unfolding,

simulations [146–148]; and on the phenomenological side, ML has been applied to problems

like solving differential equations [149, 150] and parameter searches [151, 152]. Many of

these particle physics problems have natural analogs to common ML tasks, making matching

problems with the correct ML tool straightforward. Additionally, the traditional methods

used to solve these problems are already numerical in nature, so the ideological jump to

using ML (a very powerful numerical method) is not so large.

Applications of ML to problems in theoretical physics more broadly (and also mathematics)

have seen a comparative lag, but this lag is already disappearing rapidly [145]. ML tools

which can handle more abstract data-types such as natural language processing and, more

generally, graph networks have already been applied to finding relations between abstract

objects [50, 153, 154], in problems in string theory [155], and even helped to discover new

mathematical relations [154]. Another interesting area of recent work is pushing to connect

ML and particle physics, more specifically QFT, on a mathematical level [156–161]. It has

been shown that many network structures are Gaussian processes (freely interacting fields)

in the limit of infinite nodes, indicating that a finite network can be modeled as a field with

interactions. Moreover, the evolution of parameters in a common gradient descent training

algorithm has been connected with the evolution of a scalar field in early-universe cosmology.

Such connections immediately provide more insight into how ML algorithms function, which
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is often considered a black-box, and may allow particle theorists to investigate these systems

in new ways. Another fascinating, and promising, theoretical insight came indirectly from

applying ML particle physics problems. In particular, applications of optimal-transport

based ML methods to problems in LHC phenomenology have led people to consider whether

the mathematics of OT are a natural description for particle interactions. The history of OT

also foreshadows its potential utility, with historical studies applying OT to find solutions to

Boltzmann equations and particle system dynamics [14]. This potentially powerful method

has only resurfaced as a result of applications of OT-based ML methods. These blossoming

directions of ways ML can help particle physics (and vice versa) are sure to only become more

fruitful in the coming years. But just as people twenty years ago could not have foreseen the

extent to which ML is being used in LHC experiments, the variety of possible applications

of ML to problems in particle theory will no doubt expand from what we see today.

When attempting to push the boundaries of how ML might be applied to problems in

theoretical particle physics, it is easy to feel like ML is an over-powered tool. Often the answer

to whether you could use ML to solve a problem is, “Sure, I guess you could. But couldn’t

you just do... ⟨insert analytical method, approximation, or simpler numerical technique⟩?"

So while you can open a peanut with a sledgehammer, it is fair to ask whether you should.1

At this point, it seems that you have hit a wall and there are two options: stick to using

ML to improve upon numerical methods or change your perspective. It is not surprising

that many of the problems in theoretical particle physics seem better suited to analytical

approximations or simple numerical methods as this is all that has historically been available.

ML is great at solving difficult problems, but often fails miserably at simple ones. So when

finding a home for ML in theoretical particle physics, it is best to start from the beginning,

consider the problem in its most general, difficult form, with as few prior assumptions as

possible. Then ask yourself, 1) What mapping am I trying to learn? and 2) How will I know
1Credit for this analogy goes to Dr. Gopolang “Gopi" Mohlabeng in a very fun conversation about this

topic.
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when I have succeeded i.e. what is the objective? And keep in mind that ML need not solve

the problem in its entirety to be useful. If it can point us in the right direction, or help us in

a specific case, this already brings us closer to our goals. And perhaps a bit of AI assistance

is all we need to bring about the next paradigm shift in theoretical physics.
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Appendix A

Chiral transformation invariance of QCD

lagrangian

As a fun exercise, we will see the SU(2)L × SU(2)R invariance of

LQCD = −1

4
F a
µνF

aµν + iū /Du+ id̄ /Dd = −1

4
F a
µνF

aµν + iQ̄ /DQ

play out explicitly. As a reminder, we are only considering the first generation of quarks (u

and d) and are neglecting their masses.

For simplicity, we will focus on the term Q̄ /DQ. We can split Q := (u, d)T into two parts QL,R.

Each of these parts will have a definite transformation under SU(2)L × SU(2)R. Specifically,

Q = PLQ+ (1 − PL)Q = PLQ+ PRQ =: QL +QR (A.1)

where PL := (1− γ5)/2 is the left-handed projection operator. These left and right handed
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parts, QL,R, transform as follows

QL →
SU(2)L

LQL and QL →
SU(2)R

QL (A.2)

QR →
SU(2)R

RQR and QR →
SU(2)L

QR. (A.3)

And, recalling that Q̄L,R = Q†
L,Rγ

0, Q̄L,R transforms as

Q̄L = Q†
Lγ

0 →
SU(2)L

Q†
LL

†γ0 = Q̄LL
† (A.4)

Q̄R = Q†
Rγ

0 →
SU(2)R

Q†
RR

†γ0 = Q̄RR
†, (A.5)

where we have used the fact that γ0 commutes (trivially) with L†, R†.

We can expand out the desired term

Q̄ /DQ =
(
Q̄L + Q̄R

)
/D (QL +QR) (A.6)

=Q̄L /DQL + Q̄R /DQR + Q̄L /DQR + Q̄R /DQL (A.7)

=Q̄L /DQL + Q̄R /DQR. (A.8)

Where in the last step we have used the fact that the left and right projection operators will

annihilate. To see this in more detail, first use the fact that {γµ, γ5} = 0, we then know that

Q̄L = Q†
Lγ

0 = Q†PLγ
0 = Q†γ0PR = Q̄PR. This then implies

Q̄L /DQR = Q̄PRγ
µDµPRQ = Q̄γµDµPLPRQ = 0. (A.9)

Eq. (A.8) transforms as

Q̄L /DQL + Q̄R /DQR →
SU(2)L×SU(2)R

Q̄LL
† /DLQL + Q̄RR

† /DRQR. (A.10)
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Therefore, the invariance of this term depends on how /D transforms. We need L† /DL =

R† /DR = /D. This is true because we are assuming Dµ = ∂µ − igsT
aAµ

a which is invariant

under SU(2)L,R transformations.
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Appendix B

OTUS Statistical Matching

z vs z̃
W [GeV2] (χ2

R, dof) KS

Fig. 3a (py) 1.34× 10+00 (50.583, 23) 1.61× 10−02

Fig. 3a (pz) 1.59× 10+00 (1.325, 26) 4.90× 10−03

Fig. 3a (E) 1.29× 10+00 (8.814, 26) 1.47× 10−02

Fig. 5a 2.73× 10+01 (822.762, 39) 2.46× 10−01

Table B.1: Table showing Z space statistical test results for the Z → e+e− dataset.
These tests were performed on the distributions in the referenced figures in the main text.
W is the Wasserstein distance, χ2

R is the reduced χ2 and dof is the degrees-of-freedom, and
KS is the value of the Kolmogorov-Smirnov statistical test. See the Evaluation section in
the main text for detailed information about the calculations of these statistics.

x vs x̃ x vs x̃′
W [GeV2] (χ2

R, dof) KS W [GeV2] (χ2
R, dof) KS

Fig. 3b (py) 4.22× 10−01 (1.391, 23) 3.48× 10−03 1.05× 10+00 (37.560, 23) 1.22× 10−02

Fig. 3b (pz) 3.71× 10+00 (1.523, 26) 1.03× 10−02 9.53× 10+00 (4.775, 26) 7.49× 10−03

Fig. 3b (E) 6.64× 10−01 (0.489, 26) 3.19× 10−03 3.64× 10+00 (9.370, 26) 2.00× 10−02

Fig. 5b 7.28× 10−01 (5.055, 39) 2.61× 10−02 7.15× 10−01 (12.821, 39) 3.14× 10−02

Table B.2: Table showing X space statistical test results for the Z → e+e− dataset.
These tests were performed on the distributions in the referenced figures in the main text.
W is the Wasserstein distance, χ2

R is the reduced χ2 and dof is the degrees-of-freedom, and
KS is the value of the Kolmogorov-Smirnov statistical test. See the Evaluation section in
the main text for detailed information about the calculations of these statistics.
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z vs z̃
W [GeV2] (χ2

R, dof) KS

Fig. 6a (py) 1.58× 10+01 (7.418, 49) 1.25× 10−02

Fig. 6a (pz) 5.52× 10+01 (4.613, 55) 1.65× 10−02

Fig. 6a (E) 6.20× 10+01 (31.228, 31) 4.04× 10−02

Table B.3: Table showing Z space statistical test results for the semileptonic tt̄
dataset. These tests were performed on the distributions in the referenced figures in the
main text. W is the Wasserstein distance, χ2

R is the reduced χ2 and dof is the degrees-of-
freedom, and KS is the value of the Kolmogorov-Smirnov statistical test. See the Evaluation
section in the main text for detailed information about the calculations of these statistics.

x vs x̃ x vs x̃′
W [GeV2] (χ2

R, dof) KS W [GeV2] (χ2
R, dof) KS

Fig. 6b (py) 2.40× 10+01 (2.395, 49) 1.66× 10−02 1.23× 10+02 (34.021, 49) 4.59× 10−02

Fig. 6b (pz) 1.08× 10+02 (0.828, 55) 9.90× 10−03 3.42× 10+02 (1.980, 55) 6.94× 10−03

Fig. 6b (E) 4.11× 10+01 (1.281, 30) 1.02× 10−02 3.24× 10+02 (50.072, 30) 4.80× 10−02

Fig. 8a 1.60× 10+02 (1.192, 43) 7.63× 10−03 1.03× 10+03 (54.598, 43) 1.03× 10−01

Fig. 8b 9.30× 10−01 (3.974, 35) 1.66× 10−02 1.04× 10+02 (68.392, 35) 1.09× 10−01

Fig. 8c 8.83× 10+00 (1.579, 30) 5.91× 10−03 7.41× 10+01 (92.533, 30) 1.31× 10−01

Fig. 8d 2.21× 10+01 (2.455, 41) 1.72× 10−02 1.11× 10+03 (160.712,
41)

2.35× 10−01

Table B.4: Table showing X space statistical test results for semileptonic tt̄ dataset.
These tests were performed on the distributions in the referenced figures in the main text.
W is the Wasserstein distance, χ2

R is the reduced χ2 and dof is the degrees-of-freedom, and
KS is the value of the Kolmogorov-Smirnov statistical test. See the Evaluation section in
the main text for detailed information about the calculations of these statistics.
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Appendix C

OTUS Ablation Study

In this section we show the results of an ablation study to demonstrate the effect of the various

hyperparameters. As seen in our final loss function Equation (11),the main hyperparameters

of our approach are the λ coefficient in front of the latent space loss, as well as the βE and

βD coefficients weighing the anchor losses for the encoder and decoder, respectively. For the

semileptonic tt̄ study the only hyperparameter is λ, as the anchor loss is redundant with the

choice of a ResNet [95] architecture (see Section 6.2.3). We performed ablations by retraining

the models as in Section 6.3.3 but with different values of the hyperparameters on a grid,

and comparing the results on validation data.

For studying the effect of λ, we reran both the Z → e+e− and the semileptonic tt̄ studies with

λ in {0.001, 0.01, 0.1, 1, 10, 100, 1000}, while keeping all other hyperparamters unchanged

(specifically, in the Z → e+e− study we kept βE = βD = 50). For the effect of the anchor

loss coefficients, we always assume that βE = βD and define a shared hyperparameter β :=

βE = βD. We reran the Z → e+e− study with β in {0, 10, 20, 50, 100, 200}, while keeping

λ = 1 as in the original experiment. We did not repeat this for the semileptonic tt̄ study as

it did not use an anchor loss.
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We first consider how the hyperparameters on the anchor loss terms, βE = βD, affect per-

formance. The anchor losses are direct constraints on the learned encoding and decoding

mappings which are based on physical concerns. Namely, the anchor loss penalizes networks

which would map electron/positron (e∓) information in Z to positron/electron (e±) informa-

tion in X , and vice versa. We impose this constraint because we know that misidentification

of charge in the process of data reconstruction is extremely rare in particle experiments.

Therefore, for our simulation to be physical, it should not make these unphysical inversions.

Unsurprisingly, without this constraint we can see that these inversions can occur during

training (see Supplementary Figure C.1). On the other hand, if the values of βE = βD are

too high we observe unphysical behavior. This is likely due to the fact that the anchor loss

is only a proxy for enforcing charge conservation.

We next consider the hyperparameter λ which is present in both case studies. The behavior

of λ has theoretical motivations. The WAE method aims to minimize Wc(p(x), pD(x)) by

converting its calculation into a constrained optimization problem. It was shown [31] that

Wc(p(x), pD(x)) = infpE(z|x):pE(z)=p(z) E[c(X,D(Z))] for a deterministic decoder pD(x|z) =

δD(z)(x), 1. Namely, we need to minimize a reconstruction error over all probabilistic en-

coders, pE(z|x), satisfying the latent-space matching condition, p(z) !
= pE(z) where pE(z) :=∫

x
pE(z|x)p(x)dx. To make the constrained optimization computationally tractable, the

WAE method only softly enforces this constraint via a penalty term λdz(p(z), pE(z)), and

considers minimizing the surrogate penalty loss Ep(x)pE(z|x)pD(x̃|z)[c(x, x̃)] + λdz(p(z), pE(z))

instead.

Standard results on penalty methods [162] conclude that for a fixed decoder, pD(x|z),

globally minimizing the penalty loss with respect to the encoder pE(z|x) results in a lower

bound onWc(p(x), pD(x)), and solving a sequence of such penalized problems while annealing

λ towards infinity results in the exact Wc(p(x), pD(x)). However, when training a WAE, it
1We can show that more generally, for a stochastic decoder, we have an upper bound Wc(p(x), pD(x)) ≤

infpE(z|x):pE(z)=p(z) Ep(x)pE(z|x)pD(x̃|z)[c(X, X̃)]
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Figure C.1: Results of anchor loss ablation study in the Z → e+e− study. For
βE = βD = 0 we can see that unphysical transformations can arise. In px, negative values
in Z are being mapped to positive values in X . This is a result of e± information being
swapped in the learned transformation. For βE = βD = 50, this effect goes away; we also
see more physical behavior in E as well. For βE = βD = 100, we observe that high values of
βE and βD inadvertently encourage unphysical behavior in E. This is likely due to the fact
that the anchor loss is only a proxy for enforcing charge conservation.
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is expensive to repeat this inner optimization procedure after every decoder update, so in

practice both the encoder and decoder are optimized jointly on a penalty loss, keeping λ

fixed throughout the entire training [31].

While the theoretical guarantees of the penalty method no longer applies to the joint Stochas-

tic Gradient Descent training procedure used in practice, it does suggest that λ should be

set to be as large as possible (and perhaps annealed during training) to better enforce the

latent space matching, and consequently offer a better approximation of the ideal objec-

tive Wc(p(x), pD(x)). Indeed, recently it was proven [56] that perfect latent space matching

pE(z) == p(z) is a necessary condition for W (p(x), pD(x)) = 0.

Overall, our ablation experiments confirmed this notion and showed that when λ is too small

and thus the penalty on latent space matching too week, neither the encoder or the decoder’s

marginal distribution (pE(z), pD(x)) could capture the ground truth p(z) or p(x) well, despite

minimal reconstruction error. We see this behavior in both test cases, however we note that

in the semileptonic tt̄ the behavior is somewhat less dramatic because of the heavy initial

bias towards an identity mapping due to the ResNet [95] architecture (see Supplementary

Figure C.2).

We see performance in matching principal axes improve as λ grows larger, possibly plateauing

in the case of the semileptonic tt̄ study. This plateau is potentially due to issues with

optimization and poor numerical conditioning with overly large λ. However, we find that

too large of a value of λ results in unphysical mappings.

Specifically, we find unphysical behavior when we view the transport plots and derived

quantities (see Fig C.3). Again, we note that this is less noticeable for the semileptonic tt̄

study due to the ResNet [95] architecture. We find that the ideal choice is λ ≈ 1 for the

Z → e+e− study and λ ≈ 20 for the semileptonic tt̄ study; this retains acceptable principal

axis matching while not introducing unphysical transformation characteristics. We suspect
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Figure C.2: Results of λ ablation study on principal axis matching. a Matching of
the positron’s py distribution for λ = 0.001, λ = 1, and λ = 100 in Z for the Z → e+e−

study. b Matching of the positron’s py distribution for λ = 0.001, λ = 1, and λ = 100
in X for the Z → e+e− study. c Matching of the b quark’s py distribution for λ = 0.001,
λ = 10, and λ = 100 in Z for the semileptonic tt̄ study. d Matching of the leading jet’s
py distribution for λ = 0.001, λ = 10, and λ = 100 in X for the semileptonic tt̄ study. For
small values of λ (λ = 0.001) we find that performance suffers as latent space matching is
not enforced. This improves as we increase λ but eventually plateaus.

147



Figure C.3: Results of λ ablation study on transport plots and derived quantity
matching. a Transport plans from z̃ → x̃ of the positron’s E distribution for λ = 0.001,
λ = 1, and λ = 100 for the Z → e+e− study. b Matching of the invariant mass of the
Z-boson for λ = 0.001, λ = 1, and λ = 100 for the Z → e+e− study. c Transport plans
from z̃ → x̃ of the b quark’s E distribution in Z to the leading jet’s E distribution in X for
λ = 0.001, λ = 10, and λ = 100 for the semileptonic tt̄ study. d Matching of the invariant
mass of the top-quark, Mt, reconstructed using information from the hadronically decaying
W -boson for λ = 0.001, λ = 10, and λ = 100 for the semileptonic tt̄ study.
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that if the choice of λ is too large, it over-constrains the optimization problem and should

instead be annealed.

As discussed, instead of an expensive double-loop procedure where we train the encoder

to optimality with the penalty method before updating the decoder, we forego theoretical

considerations by jointly optimizing the encoder and decoder of a WAE on a surrogate loss

as in [31]. The resulting loss is neither an upper nor a lower bound on the ideal objective

Wc(p(x), pD(x)), and we choose λ by experimentation. An alternative would be to use the

Sinkhorn Autoencoder [56] approach, which only needs a large enough λ for its loss to be a

proper upper bound on Wc(p(x), pD(x)). This is further motivation that this method should

be explored in future work.
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Appendix D

Matrices for One Generation

First, recall the definitions for the Pauli matrices

σ1 :=

0 1

1 0

 , σ2 :=

0 −i

i 0

 , σ3 :=

1 0

0 −1

 . (D.1)

Additionally, define the following matrices

l1 :=

0 0

1 0

 , l2 :=

0 0

0 1

 . (D.2)

150



The explicit form of the matrices in Eq. (5.3) for a single generation of Standard Model

doublets in addition to χ1 and χ2 are:

Lj =
1

2


02×2 02×2 02×2

02×2 σj 02×2

02×2 02×2 02×2

 where j = 1, 2, 3, (D.3)

Q =
1

2


σ3 02×2 02×2

02×2 02×2 02×2

02×2 02×2 σ3

 , (D.4)

Lj,+ =


02×2 lj 02×2

02×2 02×2 02×2

02×2 02×2 02×2

 where j = 1, 2, (D.5)

Lj,− =


02×2 02×2 02×2

lTj 02×2 02×2

02×2 02×2 02×2

 where j = 1, 2, (D.6)

J = diag

(
−
s2Q
2
,
s2Q
2

− 1

3
,
1

6
,
1

6
, −

s2Q
2
,
s2Q
2

)
(D.7)

M =
mDM

2


02×2 02×2 02×2

02×2 02×2 02×2

02×2 02×2 iσ2

 . (D.8)
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Appendix E

Statistics Supplement

In this appendix we review the statistics of how one draws valid regions in parameter space.

There are generally two kinds of regions which can be drawn credible regions and confidence

regions, which correspond to whether you are operating in a Bayesian or frequentist setting.

The frequentist setting assumes that there is a single, constant true (but unknown) parame-

ter, θ0. The goal then is to try to draw a confidence region that contains this parameter with

some probability. Whereas the Bayesian setting assumes only that there exists a distribution

of possible true values. In the Bayesian setting, the posterior p(θ | D) is the probability

density distribution that encodes all knowledge about the parameters, θ. Namely, it incor-

porates prior knowledge given by the aptly named prior distribution, p(θ), and information

provided by the observed data, D. The posterior can be used to draw credible regions, but

these do not come with guarantees of coverage. Namely, we cannot say that the credible

regions contain the true parameter with some probability. This makes sense because in

a Bayesian framework there is no notion of a constant true parameter. Both approaches

have their advantages and disadvantages, but adopting the frequentist setting (i.e. drawing

confidence regions) is more common.
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For this analysis, we therefore focus on using −2 lnL to draw confidence regions in parameter

space. This is quite effortless due to −2 lnL having some very nice statistical properties

which we outline below. Since our parameter space is multidimensional (2 dimensional) this

process is called finding the profile likelihood.

As is generally true in statistics, everything is easier for normally distributed data. Unfor-

tunately, often times the nice properties of normally distributed data do not carry over to

general distributions. However, the likelihood is a special case where we can retain much of

the inference potential of the normally distributed case.

As an illustrative example, consider the case of a single data sample, D, which is normally

distributed with the known parameter variance, σ2, but unknown parameter mean, µ. The

likelihood for this single observation, as a function of the unknown parameter µ, is given by

lnL(D | µ) = ln c− (µ−D)2

2σ2
. (E.1)

The typical convention is to set c = 1 such that the maximum lnL (minimum −2 lnL) occurs

at D = µ. Rearranging we have

−2 lnL(D | µ) = (µ−D)2

σ2
. (E.2)

We are ultimately interested in ensuring that the interval [D −∆L, D +∆U ] for some ∆L,U

contains the unknown µ with probability β. By convention we are usually most interested

in β = 68.3% and β = 95.5% which define 1σ and 2σ intervals respectively. Explicitly, a 1σ

interval implies that there is a 68.3% chance that the true unknown parameter µ falls in the

interval.

From the properties of the normal distribution, we know that P [(D − µ)2 ≤ σ] = 68.3%.

This can be rearranged such that we find P [(D−µ)2 ≤ σ] = P [D−σ ≤ µ ≤ D+σ] = 68.3%.
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Similarly, we find that P [D− 2σ ≤ µ ≤ D+2σ] = 95.5%. Therefore the 1σ and 2σ intervals

are [D − σ,D + σ] and [D − 2σ,D + 2σ] respectively.

Notice that we can also arrive at this result another way. If we draw a line at −2 lnL = 1 we

find that it will intersect lnL at µ = D∓ σ, thereby defining the edges of the 1σ interval. A

line at −2 lnL = 4 will similarly define the 2σ interval. Therefore, we can obtain the interval

directly from −2 lnL.

This story generalizes to multiple unknown parameters. Consider a k-dimensional parameter

space denoted by θ. The confidence region with probability content β are given by the

hypersurface

−2 lnLθ(D | θ) = −2 lnLmax + χ2
β(k). (E.3)

Where lnLmax := L(D | θ̂), namely the value of the maximum of the likelihood function,

occurring at θ = θ̂, where θ̂ is the true parameter space point. One can also define the

likelihood ratio ℓ := L(D | θ)/L(D | θ̂)

−2 ln ℓ(θ) = χ2
β(k). (E.4)

This generalization can be justified by the fact that −2ℓ is asymptotically distributed as

χ2(k). Therefore, by the properties of χ2
β(k)

β = P [χ2(k) ≤ χ2
β(k)] ≈ P [−2 ln ℓ(θ) ≤ χ2

β(k)] (E.5)

Note that this statement is only approximately true.

The above is technically still assuming normally distributed data, however the likelihood

function has the property of invariance which allows you to make statistical inferences about

functions g(θ). Therefore, even if your likelihood as a function of θ, L(D | θ), is very different
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than it would be in the normally distributed case (i.e. non-parabolic), you can perform a

change of parameter space variables to get L(D | g(θ)) which is consistent with the normally

distributed case (i.e. parabolic). In this g(θ) parameter space, you can use all of the above

to draw confidence regions. Then, crucially, the property of invariance allows you to use the

regions in g(θ) parameter space to immediately find the corresponding regions in θ space.

This is important because it allows you to define the confidence regions for an arbitrarily

distributed likelihood function. Note that the confidence regions in θ space are exact only

to order 1/N where N is the number of observed data samples.

For example, consider a one-dimensional case (k = 1). Assume that lnLθ has some non-

parabolic shape in θ parameter space. It has a peak at the true value, θ̂, and its 1σ confidence

interval is defined as [θL, θU ], such that lnLθ(θL,U) = −1/2. Assume that there is a function,

g(θ), such that in this new space lnLg is parabolic. It has a peak at the true value, ĝ, and

its 1σ confidence interval is defined as [gL, gU ], such that lnLg(gL,U) = −1/2. The property

of invariance suggests that the confidence interval in g parameter space will, to order 1/N ,

correspond to the interval in θ parameter space (i.e. g(θL,U) = gL,U).
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Appendix F

Small Angle Approximation

In this appendix we explicitly work through the calculation leading to the result in Eq. (5.11).

For convenience, we repeat Eq. (5.9) and Eq. (5.10) below

tan 2θ = 2
M2

0,14

(M2
0,0 −M2

14,14)
,

M2
0,0 = 24κΛ2

W +
2Λ3

WmDM

3f 2
, M2

0,14 = −2
√
2Λ3

WmDM

3f 2
, M2

14,14 =
4Λ3

WmDM

3f 2
.

We begin by simplifying the denominator of Eq. (5.9)

M2
0,0 −M2

14,14 = 24κΛ2
W +

2Λ3
WmDM

3f 2
− 4Λ3

WmDM

3f 2
= 24κΛ2

W − 2Λ3
WmDM

3f 2
(F.1)

=
72κΛ2

Wf
2 − 2Λ3

WmDM

3f 2
. (F.2)

We now substitue this and the expression for M2
0,14 into Eq. (5.9), canceling the 3f 2 terms,

to get

tan 2θ = 2

[
−2

√
2Λ3

WmDM

72κΛ2
Wf

2 − 2Λ3
WmDM

]
=

−2
√
2ΛWmDM

36κf 2 − ΛWmDM

. (F.3)
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We now use ΛW = 4πf to get

tan 2θ = −2
√
2

[
(4πf) mDM

36κf 2 − (4πf) mDM

]
= −2

√
2 πmDM

[
1

9κf − πmDM

]
. (F.4)

We would now like to expand this in some small parameter. Writing things suggestively as

tan 2θ =
−2

√
2 πmDM

9κf

[
1

1− πmDM

9κf

]
. (F.5)

we can expand this using 1
1−x

= 1 + x + x2 + ... if x := |πmDM

9κf
| < 1. Rearranging this (and

using the fact that all of these variables are positive) we find that in order for this to be true

πmDM < 9κf ⇒ mDM <
9

π
κf. (F.6)

Given the fact that κ ∼ 1 and we are only considering parameter space regions such that

mDM≪f , we can see that this relation is indeed satisfied. This allows us to write

tan 2θ ≈ −2
√
2 πmDM

9κf

[
1 +O

(
mDM

f

)]
(F.7)

≈ −2
√
2πmDM

9κf
+O

(
m2

DM

f 2

)
. (F.8)

For the parameter space point (mDM, f) = (5 TeV, 65 TeV) used in Eq. (5.32), tan 2θ ≈

0.0759.
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Appendix G

Handling Derivative Field Interactions

In this work, there are two main lagrangian terms contributing to 2-to-2 pion interactions

(ΠiΠj → ΠcΠd). These are given in Eq. (5.19): ΠiΠj∂
µΠc∂µΠd and ΠiΠjΠcΠd. The goal is to

write down the contributions to iM for all unique Feynman diagrams that come from these

two lagrangian terms. In other words, we need to figure out all possible ways to connect the

end-points labeled i, j, c, d using the terms in Eq. (5.19). Both terms connect these points

with one vertex, so there are no propagators to consider.

For the ΠiΠjΠcΠd term this is straightforward. There is only one (non-redundant) diagram

that can contribute to ΠiΠj → ΠcΠd. And the corresponding contribution to iM is just

related to the vertex factor (iM ⊃ i128π
3mDM

3f
G7).

For the ΠiΠj∂
µΠc∂µΠd term, things are a bit more complicated. Naively, there are 4! = 24

diagrams one could draw. This comes from the fact that there are 4 possible slots in how

you can place the labels on the Lagrangian terms (e.g. Π(slot 1)Π(slot 2)∂
µΠ(slot 3)∂µΠ(slot 4)).

You have 4 options (i, j, c, d) for slot 1, then 3 options for slot 2, and so on. This means the

total number of combinations is 4∗ 3∗ 2∗ 1 = 4!. However some of these diagrams are equiv-

alent. For example, in the term Π(slot 1)Π(slot 2)∂
µΠ(slot 3)∂µΠ(slot 4) we can freely interchange
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(slot 1) ↔ (slot 2) and (slot 3) ↔ (slot 4) and still get the same result. Each of these ex-

changes represents a factor of 2 over-counting. Therefore, the number of unique diagrams we

have is instead 4!/(2 ∗ 2) = 6. Explicitly, these correspond to the terms (1) ΠiΠj∂
µΠc∂µΠd,

(2) ΠdΠj∂
µΠc∂µΠi, (3) ΠcΠd∂

µΠi∂µΠj, (4) ΠiΠc∂
µΠj∂µΠd, (5) ΠiΠd∂

µΠc∂µΠj, and (6)

ΠcΠj∂
µΠi∂µΠd which are also depicted in Fig. 5.3.1 So all together, we should have 7

terms contributing to iM, 6 of which arise from the first term in Eq. (5.19).

Since the first term of Eq. (5.19) contains derivatives of fields, the contributions to iM will be

more complicated. This appendix discusses how to handle interaction terms in a lagrangian

which contain derivatives (i.e ΠiΠj∂
µΠc∂µΠd) in more detail. Note that we are restricting

ourselves to only consider the relevant case of scalar fields in the Lagrangian, (i.e. Πa).

The derivatives introduce factors of momentum with signs corresponding to whether it is

acting on an incoming or outgoing field (leg of the diagram). Since we are considering

the physical process ΠiΠj → ΠcΠd, when a derivative acts on Πi or Πj it is acting on an

incoming leg and when a derivative acts on Πc or Πd it is acting on an outgoing leg. When

a derivative acts on an leg, Πa, which is incoming to a vertex (being “destroyed"), it will

contribute a factor of −ipa to iM. When a derivative acts on an leg, Πa, which is outgoing

from a vertex (being “created"), it will contribute a factor of +ipa to iM.Each diagram will

always have two derivative legs, so these factors of momentum are dotted together in each

term. For example, for the term ΠiΠj∂
µΠc∂µΠd the derivatives are both acting on outgoing

legs so there will be a factor +ipc · +ipd = −pc · pd multiplying the vertex factor i 4
f2G1. So

iM ⊃ −i4(pc·pd)
f2 G1.

1Note that, despite the shuffling of which fields the derivatives act on, all of these terms still contribute
to the physical 2-to-2 process ΠiΠj → ΠcΠd.
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Appendix H

Neglecting Gauge Interactions

In this work we are interested in interactions which could deplete the abundance of pions

containing Dark Matter (ΠDP). The dominant depletion interaction is the 2-to-2 interaction

ΠDPΠDP → ΠSMΠSM; this is what is considered explicitly in the work of Chapter 5.

However, one might wonder whether we should also include interactions which deplete into

gauge bosons (ΠDPΠDP → GG). This turns out to be negligible compared to ΠDPΠDP →

ΠSMΠSM interactions. This appendix gives a sketch of how we can see that this process

should be negligible but also outlines how one would go about finding the Lagrangian terms

leading to such interactions.

As shown in Chapter 5, we can estimate the cross-section of the process ΠΠ → ΠΠ via the

following

σΠΠ→ΠΠ = CΠ
mDM

f 3
(H.1)

where CΠ can be estimated from the numerical results but is ∼ 0.8 for (mDM, f) = (5 TeV, 65 TeV)

in BP1 for Ngen = 1.
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To get a similar estimate for ΠΠ → GG, we can turn to the literature on analogous interac-

tions in QCD. In particular, a calculation of stops to gluons in Ref. [163] indicates that the

analogous version in this case should be

σΠΠ→GG = C̃G
g4s
πm2

Π

= CG
g4s

fmDM

(H.2)

where in the last step we used the fact that for the ΠDPΠDP → ΠSMΠSM reaction of interest

m2
Π = 64π3fmDM, thus CG = C̃G/(64π4). The analogy of C̃G in Ref. [163] is 7/216. Translat-

ing it to the case where we have SU(2) instead of SU(3) should reduce this by approximately

half due to the differences in gauge factors. Therefore, we estimate C̃G = 7/432.

In order to safely neglect ΠΠ → GG interactions we want

σΠΠ→GG

σΠΠ→ΠΠ

<< 1 (H.3)

⇒
(

CG g4s
fmDM

)(
f 3

CΠmDM

)
<< 1 (H.4)

⇒ g4s CG
CΠ

f 2

m2
DM

<< 1 (H.5)

Let us now estimate whether this condition is satisfied for our standard point of interest,

(mDM, f) = (5 TeV, 65 TeV), under BP1 (gs = 0.8),

g4s
CG
CΠ

f 2

m2
DM

= (0.8)4
(

7

432 ∗ 64π4

)(
1

0.8

)(
65

5

)2

≈ 2.25× 10−4, (H.6)

which is much less than 1, and thus can be safely neglected. Fig. H.1 shows this ratio directly

for other points in (mDM, f) parameter space using the corresponding numerical values of

CΠ for each point. All values of this ratio are less than or equal to O(10−3) in the parameter

space regions of interest.

If one wanted to calculate σΠΠ→GG in this theory directly, the process would proceed as
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Figure H.1: Depiction of the ratio of the cross section for the ΠΠ → GG reaction
as compared to our main ΠΠ → ΠΠ interaction. We can see that for the majority of
our valid parameter space, σΠΠ→GG is a factor O(10−5) to O(10−3) smaller than σΠΠ→ΠΠ.
For low masses, this factor increases to being around O(10−2), which is still much less than
1. We can therefore safely neglect these contributions in our results.

follows. Note that we will not actually perform this calculation, as the back-of-the-envelope

result is sufficiently convincing, but, for completeness, we sketch how it would be done.

Neglecting gauge interactions (at the Lagrangian level) amounts to the approximation that

Dµ ≈ ∂µ. If we want to include gauge interactions explicitly, this relationship will change.

Specifically for this model, it will become

DµΣ = ∂µΣ− igs

3∑
a=1

Ga
µ[L

aΣ + Σ(La)T ]− ieQA
′
µ[QΣ + ΣQ] (H.7)

Therefore, the kinetic term of the IR Lagrangian will now be

LIR ⊃ f 2

4
Tr[DµΣ†DµΣ] (H.8)

Plugging in Eq. (H.7) into this and expanding will wind up looking like the following

LIR ⊃ f 2

4
Tr

[
(∂µΣ

†)(∂µΣ)
]
+ L(gauge interactions). (H.9)
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The first term is what we have already considered explicitly in Chapter 5, while L(gauge interactions)

will contain terms that contribute to ΠΠ → GG interactions. From here, the goal would be

to find what terms in L(gauge interactions) contribute to ΠΠ → GG interactions and how this

cross-section, σΠΠ→GG, relates to σΠΠ→ΠΠ analytically.
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