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Abstract

Targeted Minimum Loss Based Estimation: Applications and Extensions in Causal Inference
and Big Data

by

Samuel David Lendle

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Mark J. van der Laan, Chair

Causal inference generally requires making some assumptions on a causal mechanism
followed by statistical estimation. The statistical estimation problem in causal inference
is often that of estimating a pathwise differentiable parameter in a semiparametric or
nonparametric model. Targeted minimum loss-based estimating (TMLE) is a framework for
constructing an asymptotically linear plug-in estimator for such parameters.

The natural direct effect (NDE) is a parameter that quantifies how some treatment affects
some outcome directly, as opposed to indirectly through some mediator value between the
treatment and outcome on the causal pathway. In Chapter 2, we introduce the NDE among
the untreated and show that under some assumptions the NDE among the untreated is
identifiable and equivalent to a statistical parameter as the so called average treatment effect
among the untreated. We then present a locally efficient, doubly robust TMLE for the
statistical target parameter and apply it to the estimation of the NDE among the untreated
in simulations and of the NDE in a data set from an RCT.

Some estimators that adjust for the propensity score (PS) nonparametrically, such as
PS matching or stratification by the PS, are robust to slight misspecification of the PS
estimator. In particular, if the PS estimator fails to estimate the true propensity score, but
still approximates some other balancing score, such methods are still consistent for average
treatment effect (ATE). In Chapter 3, we extend a traditional TMLE for the ATE to have this
property while still being locally efficient and doubly robust and investigate the performance
of the proposed estimator in a simulation study.

Online estimators are estimators that process a relatively small piece of a data set at
a time, and can be updated as more data becomes available. Typically, online estimators
are used in the large scale machine learning literature, but to our knowledge, have not been
used to estimate statistical parameters associated with causal parameters. In Chapter 4, we
propose two online estimators for the ATE that are asymptotically efficient and doubly robust
in a single pass through a data set. The first is similar to the augmented inverse probability
of treatment weighting estimator in the batch setting, and the second involves an additional
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targeting step inspired by TMLE, which improves performance in some cases. We investigate
the performance of both in a simulation study.



i

To my mother and father.



ii

Contents

Contents ii

List of Figures iv

List of Tables v

1 Introduction 1

2 Natural direct effect among the untreated 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The counterfactual framework and natural direct effects . . . . . . . . . . . . 4
2.3 Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.A Proof of theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.B Sequential ignorability implies Assumptions 1 and 3 . . . . . . . . . . . . . . 16
2.C Modifications to the TMLE algorithm for non-binary Y . . . . . . . . . . . . 17
2.D Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Balancing score adjusted TMLE 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Targeted minimum loss-based estimation . . . . . . . . . . . . . . . . . . . . 23
3.4 Balancing score property and proposed estimator . . . . . . . . . . . . . . . 26
3.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.A Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.B Some results and proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.C TMLE when Y is not bounded by 0 and 1 . . . . . . . . . . . . . . . . . . . 39



iii

3.D Example implementation of a BSA-TMLE estimator in R . . . . . . . . . . . 39

4 Scalable Causal Infernece 42
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Formulation of the online estimation problem . . . . . . . . . . . . . . . . . 44
4.3 Online one-step estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Online targeted one-step estimation . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Initial estimators with stochastic gradient descent . . . . . . . . . . . . . . . 49
4.6 Online efficient estimation of the average treatment effect . . . . . . . . . . . 51
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Bibliography 61



iv

List of Figures

2.1 Sensitivity analysis of deviation z̄ . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Sensitivity analysis of deviation wc . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Simulation 1, bias scaled by
√
nk for the online one-step and online targeted

one-step estimators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Simulation 1, smoothed variance scaled by nk for the online one-step and online

targeted one-step estimators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Simulation 2, bias scaled by

√
nk for the online one-step and online targeted

one-step estimators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



v

List of Tables

2.1 Simulation results from an observational study. Variance bounds were 0.0201,
0.005, and 0.001 for sample sizes 50, 200, and 1000 respectively. Sample sizes are
in parentheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Total and direct effect of CBI on percent days of heavy drinking mediated by
cravings from COMBINE study. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Total and direct effect of CBI on percent days of heavy drinking mediated by
cravings from COMBINE study, not adjusting for baseline percent days abstinent. 13

3.1 Summary of properties of compared estimators . . . . . . . . . . . . . . . . . . 30
3.2 Simulation results for distribution one with Q̄n unadjusted and ḡn correctly
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Chapter 1

Introduction

In causal inference, we are interested in estimating some parameter in a causal model. For
example, we may be interested in the average difference between some outcome among
members of a population had they all received some treatment of interest versus had they
all received an alternate treatment or control. This is the so called average treatment effect
(ATE). In order to estimate a causal parameter from an observed data set, we generally
have to make some assumptions that allow us to write the causal parameter as a statistical
parameter of the distribution of the observed data (J. Pearl, 2009; M. J. van der Laan and
S. Rose, 2011).

Because we usually know very little about the true data generating distribution, we posit
a semiparametric statistical model. Targeted minimum loss-based estimation (TMLE) is a
general framework for constructing an asymptotically linear plug-in estimator for a pathwise
differentiable parameter in a semiparametric statistical model with additional properties
such as efficiency and double robustness in some cases (M. J. van der Laan and S. Rose,
2011; Mark J. van der Laan, 2010; Mark J van der Laan, 2010; Mark J. van der Laan and
Daniel Rubin, 2006).

The natural direct effect (NDE) is a parameter that quantifies how some treatment
affects some outcome directly, as opposed to indirectly through some mediator value between
the treatment and outcome on the causal pathway (Judea Pearl, 2001; J.M. Robins and
Greenland, 1992). In particular, it is the average change in an outcome had every member of
a population received treatment versus a control while some mediator is held at the level it
would have been had each member received that control. In Chapter 2, we define the NDE
more formally, and introduce the NDE among the untreated as the same quantity but only
averaged over the untreated group. We show that under some assumptions the NDE among
the untreated is identifiable and equivalent to a statistical parameter as the so called average
treatment effect among the untreated. The target statistical parameter is also equivalent to
the statistical parameter for an NDE when there are no baseline covariates (M. J. van der
Laan and S. Rose, 2011, Chapter 8), or when treatment is independent of baseline covariates
like in a randomized control trial (RCT). We then present a locally efficient, doubly robust
TMLE for the statistical target parameter and apply it to the estimation of the NDE among
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the untreated in simulations and of the NDE in a data set from an RCT.
A balancing score as defined by Rosenbaum and D.B. Rubin (1983) is a function of baseline

covariates such that treatment and baseline covariates are independent conditional on that
function. Balancing scores play an important role in estimating the ATE and other causal
parameters. The propensity score (PS), the probability of receiving treatment given baseline
covariates, is perhaps the most well known example of a balancing score. Some estimators
that adjust for the propensity score nonparametrically, such as PS matching or stratification
by the PS, are robust to slight misspecification of the PS estimator. In particular, if the
PS estimator fails to estimate the true propensity score, but still approximates some other
balancing score, such methods are still consistent. We say that estimators that have this
sort of robustness have the “balancing score property”. Though these conditions may not
be met often, other estimators that use the PS are not robust to this issue such as inverse
probability of treatment weighting estimators and the traditional TMLE for the ATE. In
Chapter 3, we extend a traditional TMLE for the ATE to have the balancing score property
while still being locally efficient and doubly robust. We investigate the performance of the
proposed estimator in a simulation study.

Traditionally, the computational cost of statistical methods is not taken into account.
With the size of data sets growing larger and larger, scalability of methods becomes more
important, and methods which require multiple passes over a data set may not be feasible in
practice. Online estimators are estimators that process a relatively small piece of a data set
at a time, and can be updated as more data becomes available. Typically, online estimators
are used in the large scale machine learning literature, but to our knowledge, have not been
used to estimate statistical parameters associated with causal parameters. In Chapter 4,
we propose two online estimators for the ATE that are asymptotically efficient and doubly
robust in a single pass through a data set. We call the first an online one-step estimator,
which is similar to the augmented inverse probability of treatment weighting estimator in the
batch setting The second is called the online targeted one-step estimator, because it involves
an additional targeting step inspired by TMLE, which improves performance in some cases.
We investigate the performance of both in a simulation study.
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Chapter 2

Identification and efficient estimation
of the natural direct effect among the
untreated

2.1 Introduction

Researchers are often interested in not only the total effect of an exposure on an outcome, but
also how the exposure acts to effect the outcome by way of a mediator. For example, suppose
there is a dietary intervention designed to reduce the risk of acute myocardial infarction
(AMI) which also tends to result in weight loss. An investigator may be interested in the
effect of diet on risk of AMI that is not due to weight loss. Specifically, she may ask “how
would a patient’s risk of AMI have changed due to the intervention diet if their weight had
been set to whatever it would have been had the patient not been on the intervention diet?”
This sort of effect is known as a natural direct effect (Judea Pearl, 2001; J.M. Robins and
Greenland, 1992).

The study of natural direct effects is also known as causal mediation analysis. Direct
effects are often defined in the context of the counterfactual or potential outcomes framework,
which we use in this paper (Albert, 2008; Albert and Nelson, 2011; Kosuke Imai, Luke Keele,
and Yamamoto, 2010; D.B. Rubin, 2004; Tchetgen Tchetgen and Ilya Shpitser, 2011).

Many methods for estimating the natural direct effect require consistent estimation
of the conditional distribution of the intermediate variable conditional on treatment and
baseline covariates, e.g. K. Imai, L. Keele, and Tingley (2010), Kosuke Imai, Luke Keele,
and Yamamoto (2010), Petersen, Sinisi, and M. van der Laan (2006), M. van der Laan and
Petersen (2008), VanderWeele (2009), and VanderWeele and Stijn Vansteelandt (2010). If the
intermediate variable, like weight loss in the example above, is continuous or multivariate,
this becomes difficult without relying on strong parametric assumptions. Jo et al. (2011)
describe a propensity score based estimation method but it is restricted to settings with a
binary mediator.
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Tchetgen Tchetgen and Ilya Shpitser (2011) develop semiparametric theory for the natural
direct effect and present a multiply robust estimating equation estimator for the statistical
parameter, and Zheng and Mark J van der Laan (2012) develop a targeted minimum loss
estimator for statistical parameter.

In this paper, we propose a new causal parameter which we call the natural direct effect
among the untreated. We show that this parameter is identifiable under similar assumptions to
those of the natural direct effect, and in a randomized controlled trial, it is equal to the natural
direct effect. We introduce a sensitivity analysis for some of the assumptions. Additionally
we present a targeted minimum loss estimator (TMLE) for the statistical parameter. We
investigate the performance of the TMLE compared to other estimators in a simulation study,
and demonstrate its use in a real data example. We also define and discuss the estimation of
the natural direct effect among the treated as well as the indirect effect among the untreated
and among the treated.

2.2 The counterfactual framework and natural direct

effects

Following J.M. Robins and Greenland (1992) and Judea Pearl (2001), we define natural direct
effects using the counterfactual framework. For an individual, let Za be the counterfactual
value of the intermediate variable, or mediator, had their exposure, A, been set to a for all
a ∈ A, the set of all possible exposures. Similarly, let Yaz be the counterfactual outcome
had the individual’s exposure and intermediate been set to a and z, respectively, for all
(a, z) ∈ A×Z. These values are called counterfactual because in practice, a researcher can
only observe the mediator and outcome for the exposure level that an individual was observed
to have.

Without loss of generality, let exposure A = 0 be the reference or untreated level. The
individual natural direct effect is defined as YaZ0 − Y0Z0 . The natural direct effect is also
known as the “pure direct effect” (J.M. Robins and Greenland, 1992). This is interpreted
as the effect of exposure a relative to the reference level on the outcome not through the
mediator. This quantity is different than the individual controlled direct effect, Yaz − Y0z,
where the mediator is set to some specific level z, not necessarily equal to Z0. Goetgeluk,
S. Vansteelandt, and Goetghebeur (2008) and S. Vansteelandt (2009) discuss estimation of
controlled direct effects.

2.3 Identifiability

Similarly to M. van der Laan and Petersen (2008), we assume there exists a random variable
X := {W,A,Za, Yaz : a ∈ A, z ∈ Z}. In addition, we assume O := {W,A,Z = ZA, Y = YAZ}
is a missing data structure on X where A is the observed exposure, and W represents a
possibly multivariate baseline covariate. As implied by the definition of O, we also assume
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consistency, that Z is the counterfactual mediator under the observed exposure, and Y is the
counterfactual outcome under the observed exposure and mediator.

LetM be the set of possible probability distributions P for O, and call the true distribution
of O P0. The set M is called the statistical model. For sake of presentation suppose O is
a discrete random variable, so P represents a probability. To allow for continuous random
variables, we can assume M is dominated by a common measure and define densities with
respect to that measure. The likelihood of O can be factorized as

P (O) = P (W )P (A | W )P (Z | A,W )P (Y | A,Z,W ).

A causal parameter is a mapping from the full data model into the real numbers, ΨF :
MF → Rk, where MF is the set of all possible data generating distributions of X, known as
the causal model or full data model. Let FX0 ∈MF be the true distribution of X. In order
to have any hope of estimating the causal parameter ΨF (FX0) of interest, we must be able
to write it as a functional of only the distribution of the observed data O. That is, we need
make some assumptions on MF to be able to find some Ψ such that ΨF (FX) = Ψ(P (FX))
for all FX ∈MF where P (FX) is the distribution of O implied by FX .

Assumption 1 (Randomization).

(A,Z) ⊥ Yaz | W

and
A ⊥ Za | W

Assumption 1 can be interpreted as assuming that the exposure and mediator share no
common causes with the outcome and that the exposure shares no common causes with the
mediator that are not measured in the set of baseline covariates.

Assumption 2 (Positivity). For a ∈ A, P0(A = a | Z = z,W = w) > 0 for all (z, w) where
P0(Z = z,W = w | A = 0) > 0.

The positivity assumption is also known as experimental treatment assignment (ETA)
assumption, and can be interpreted as assuming for every strata of W and Z that can occur
when A = 0, treatment level a has a non-zero probability of occurring. This assumption is
required for the existence of the statistical parameter associated with the causal parameter of
interest.

Assumption 3.
E(Yaz − Y0z | Z0 = z,W ) = E(Yaz − Y0z | W )

Assumption 3 means that conditional on baseline covariates, the expected direct effect
with an intermediate fixed at level z does not depend on the what the counterfactual mediator
value would have been under treatment 0.
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Consider the causal parameter

ΨF (FX) = DEU(a) = E
{∑

z

(Yaz − Y0z)P (Z0 = z | W ) | A = 0
}
, (2.1)

a generalized natural direct effect among the untreated population.

Theorem 1. (i) Under the randomization assumption (Assumption 1) and the positivity
assumption (Assumption 2), DEU(a) is identifiable. (ii) Additionally under Assumption 3,
DEU(a) equals the causal parameter E(YaZ0 − Y0Z0 | A = 0).

Proofs of theorems are provided in Section 2.A.
Call the causal parameter E(YaZ0 − Y0Z0 | A = 0) the natural direct effect among the

untreated, as it is the average of individual natural direct effects among those who have
treatment A = 0. Theorem 1 is closely related to the identifiability results in M. van der
Laan and Petersen (2004), and Assumptions 1 to 3 are analogous to the assumptions for
identifiability of

DE(a) = E
{∑

z

(Yaz − Y0z)P (Z0 = z | W )
}
,

a generalized natural direct effect discussed in M. van der Laan and Petersen (2008) and for
E(YaZ0 − Y0Z0), the natural direct effect.

The natural direct effect among the untreated (and the natural direct effect) depend on
the counterfactual value YaZ0 , which can never be observed in a real life experiment, because
it is the counterfactual outcome under two treatments that cannot occur simultaneously.
Because of this, the randomization assumption is not enough to identify the natural direct
effect among the untreated, though it is sufficient for identification of controlled direct effects
(Petersen, Sinisi, and M. van der Laan, 2006).

Kosuke Imai, Luke Keele, and Yamamoto (2010) provide an alternate set of assumptions
for identification of the natural direct effect which they call sequential ignorability. They
assume (Ya∗z, Za′) ⊥ A | W and Ya∗z ⊥ Za′ | A,W for a∗, a′ ∈ A. The natural direct effect
among the untreated can also be identified by the sequential ignorability assumption (along
with the positivity assumption.) The sequential ignorability assumption implies Assumptions 1
and 3 as shown in Section 2.B, but the converse is not true, so the sequential ignorability
assumption is stronger. Even when Assumption 3 does not hold, the causal parameter
DEU(a) is interpretable as an average of controlled direct effects averaged with respect to
the distribution of the counterfactual Z0 conditional on the distribution of baseline covariates
among the untreated group. For other discussions of identifiability of direct effects, see Avin,
I. Shpitser, and J. Pearl (2005), Bullock, Green, and Ha (2010), Hafeman and Vanderweele
(2011), Judea Pearl (2001, 2011), J. Robins and Richardson (2010), and J.M. Robins and
Greenland (1992).
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Under the randomization and positivity assumptions, we know that DEU(a) is identifiable,
and we can write DEU(a) as a functional of the observed data generating distribution:

Ψ(P0) =E
(∑

z

[
{E(Y | A = a, Z = z,W )

− E(Y | A = 0, Z = z,W )} (2.2)

P (Z = z | A = 0,W )
]
| A = 0

)
.

Theorem 2. (i) If A is completely randomized (i.e. A ⊥ (W,Za, Yaz)), then DEU(a) =
DE(a). (ii) Additionally under Assumption 3, E(YaZ0 − Y0Z0 |A = 0) = E(YaZ0 − Y0Z0), so
DEU(a) is equal to the natural direct effect.

In a randomized controlled trial (RCT) where subjects are randomly assigned to a
treatment a ∈ A independent of baseline covariates W , the conditions for Theorem 2 (i) are
satisfied. Furthermore, A ⊥ (W,Za, Yaz) implies that A ⊥ Yaz | W and A ⊥ Za | W , so the
only randomization assumption which is not automatically satisfied is Z ⊥ Yaz | A,W .

2.4 Estimation

In Section 2.3, we defined the statistical parameter that we are interested in estimating, Ψ(P0)
in (2.2). Let B = (W,Z) and without loss of generality let the exposure level of interest
a = 1. The target statistical parameter can be written as

ψ0 = Ψ(P0) = E0{E0(Y | A = 1, B)− E0(Y | A = 0, B) | A = 0} (2.3)

where E0 is used to emphasize that an expectation is taken with respect to the true distribution
P0 as opposed to some other distribution belonging to M. Under other causal models, Ψ(P0)
can be interpreted as other interesting causal parameters. For example, if B = Z and
Assumptions 1 to 3 are strengthened to (A,Z) ⊥ Yaz, A ⊥ Za, P0(A = 1 | Z = z) ∈ (0, 1)
almost everywhere, and E(Yaz − Y0z | Z0 = z) = E(Yaz − Y0z), then Ψ(P0) is the natural
direct effect as defined in Alan E. Hubbard, Jewell, and Mark J. van der Laan (2011). Under
a different causal model, Ψ(P0) is equivalent to the so called average treatment effect among
the untreated (Hahn, 1998; M. van der Laan, 2010). Hahn (1998) show that if P0(A = 1 | B),
known as the propensity score in this setting, is known or belongs to a parametric family, the
efficiency bound of Ψ(P0) is reduced relative to the model where P0(A = 1 | B) is unknown.

The functional Ψ is a mapping from the non-parametric statistical model M to R. For
a distribution P ∈ M, let Q̄(a, b) = EP (Y | A = a,B = b), g(a | b) = P (A = a | B = b),
and QB(b) = P (B = b) for a ∈ {0, 1} and b ∈ B, the support of B. Let the subscript 0
denote the truth and the subscript n denote an estimate based on n independent observations
Oi = (Bi, Ai, Yi) for i = 1, . . . , n. For example, Q̄0 is the true conditional mean of Y and Q̄n

is an estimate. The mapping Ψ depends on P through Q = (Q̄, QB) and g, so

Ψ(Q, g) =
∑
b

[
{Q̄(1, b)− Q̄(0, b)} g(0|b)QB(b)∑

b{g(0|b)QB(b)}

]
,
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recognizing the abuse of notation.
Bickel et al. (1993) show that a regular estimator for a statistical parameter in a semipara-

metric model is asymptotically efficient, (i.e. the estimator has minimal asymptotic variance,)
if it is asymptotically linear with influence curve (influence function) equal to the efficient
influence curve. This minimal asymptotic variance is known as the semiparametric efficiency
bound and is the variance of the efficient influence curve. The non-parametric model M
is a special case of a semiparametric model where there are no restrictions on the possible
distributions of O. The efficient influence curve for Ψ at P ∈M, derived in M. van der Laan
(2010), is

D∗(P ) = D∗(Q, g,Ψ(Q, g)) =
{
I(A = 1)
P (A = 0)

g(0 | B)
g(1 | B) −

I(A = 0)
P (A = 0)

}
{Y − Q̄(A,B)}

+ I(A = 0)
P (A = 0){Q̄(1, B)− Q̄(0, B)−Ψ(Q, g)}

where I(·) is an indicator function. The semiparametric efficiency bound for an analogous
statistical parameter, where the difference is conditioned on A = 1, is also derived in Hahn
(1998).

The efficient influence curve for Ψ(P0) has the double robustness property. That is,

P0D
∗(Q, g0, ψ0) = P0D

∗(Q0, g, ψ0) = 0,

where Pf :=
∫
f(o)dP (o) = ∑

o f(o)P (O = o) is the expectation of f under distribution P .
This means that if we have an estimator that solves the efficient influence curve equation, (i.e.
PnD

∗(Qn, gn,Ψ(Qn, gn)) = 0,) then it is consistent if at least one of the estimators Qn or gn
are consistent for Q0 or g0 under regularity conditions (M. van der Laan, 2010). Additionally,
the efficiency bound is achieved if both Qn and gn are consistent estimators for Q0 and g0, so
such an estimate is locally efficient at P0.

In Alan E. Hubbard, Jewell, and Mark J. van der Laan (2011) and M. van der Laan
(2010), a targeted minimum loss estimator (TMLE) is developed for Ψ(P0). The TMLE solves
the efficient influence curve and is a locally efficient, double robust estimator. It is also a
substitution or plug-in estimator in the sense that estimators for Q0 and g0 can be plugged
into the mapping Ψ to calculate an estimate as

Ψ(Qn, gn) = 1∑n
i=1 I(Ai = 0)

n∑
i=1

I(Ai = 0){Q̄n(1, Bi)− Q̄n(0, Bi)} (2.4)

for some estimates Qn and gn. That is, the estimate is the difference Q̄n(1, Bi)− Q̄n(0, Bi)
for each individual averaged with respect to the empirical distribution of B given A = 0. We
review the TMLE for Ψ(P0) here.

Begin by constructing initial estimates for Q̄0 and g0 called Q̄0
n and g0

n. If we have expert
background knowledge about the functional forms of Q̄0 and g0, they can be estimated
by parametric models. In general there is not enough background knowledge to support
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parametric models, and Q̄0
n and g0

n should be constructed by some non-parametric data
adaptive learning algorithm such as the super learner (Mark J van der Laan, Polley, and
Alan E Hubbard, 2007), which combines machine learning algorithms and parametric models
using cross validation. To calculate the TMLE, we update the initial estimates Q̄0

n and
g0
n to Q̄∗n and g∗n, and then plug them in to Ψ, so the final estimate is Ψ(Q∗n, g∗n), where
Q∗n = (Q̄∗n, QBn) and QBn is the empirical distribution of B.

Suppose Y is binary. Other cases are discussed in Section 2.C. To update the initial
estimates, for j = 1, 2, . . ., calculate until convergence

logit(Q̄j
n(A,B)) = logit(Q̄j−1

n (A,B)) + εj1nC
j−1
1 (A,B) (2.5)

and
logit(gjn(0 | B)) = logit(gj−1

n ) + εj2nC
j−1
2 (B) (2.6)

where logit(p) = log(p/(1− p)),

Cj−1
1 (A,B) = I(A = 1)

Pn(A = 0)
gj−1
n (0 | B)
gj−1
n (1 | B)

− I(A = 0)
Pn(A = 0) ,

Cj−1
2 (B) = Pn(A = 0)−1{Q̄j−1

n (1, B)− Q̄j−1
n (0, B)−Ψ(Qj−1

n , gj−1
n )},

Pn(A = 0) is the empirical probability of A = 0, and εj1n and εj2n maximum likelihood
estimates in the logistic regression models in (2.5) and (2.6), respectively. The coefficients
εj1n and εj2n can be calculated with standard logistic regression software where Q̄j−1

n (A,B)
and gj−1

n (0 | B) are offset terms. Convergence is reached when both εj1n
and εj2n are close to 0

and so estimates of Q̄0 and g0 are changing very little. Set Q̄∗n = Q̄j
n and g∗n = gjn at the last

iteration.
Under regularity conditions on the initial estimates Q0

n and g0
n, the TMLE is regular and

asymptotically linear (Mark J. van der Laan and Sherri Rose, 2011), so
√
n(Ψ(P ∗n)−Ψ(P0)) d→

N(0, σ2). When Q0
n and g0

n are consistent estimators for Q0 and g0, the variance σ2 is the
variance of the efficient influence curve. In order to estimate the variance σ2, we can use
an estimate of the sample variance of the estimated influence curve D∗(Q∗n, g∗n). Wald type
hypothesis tests can be performed, and confidence intervals can be constructed with the
estimated variance σ2

n.
When either Q0

n or g0
n is not consistent, the influence curve based variance estimate

is biased and not guaranteed to be conservative. If one assumes g0
n is a consistent MLE,

then one can compute a correction term for the influence curve which only depends on the
behavior of g0

n (M. J. van der Laan and J. M. Robins, 2003, Section 2.3.7). Alternatively, the
non-parametric bootstrap can be used to estimate the variance of the TMLE in the standard
way by resampling n observations many times from the original data and calculating the
TMLE for each resampled dataset of n observations. The variance is estimated as the sample
variance of the estimates of Ψ(P0) from each resampled data set. When initial estimates Q0

n

and g0
n are differentiable functionals of the empirical distribution, as is the case for parametric

maximum likelihood estimators, then the TMLE is also differentiable, so the bootstrap
estimate of the variance is known to be consistent (Gill, Wellner, and Præ stgaard, 1989).
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2.5 Sensitivity analysis

Sensitivity analyses have been proposed to investigate violations of Ya∗z ⊥ Za′ | A,W of the
sequential ignorability assumption when estimating the natural direct effect, which in general
require specification of some model describing the violation of the assumption. Kosuke Imai,
Luke Keele, and Yamamoto (2010) and Tchetgen Tchetgen and Ilya Shpitser (2011) require
that the mediator take on two or a finite number of values. VanderWeele and Stijn Vansteelandt
(2010) require specification of the relationship between a hypothetical unmeasured confounder
and the observed variables. Here we propose an alternative method to investigate violations
of Z ⊥ Yaz | A,W , implied by Assumption 1, that does not require the support of the
mediator to be finite. Because the causal parameter DEU(a) is identifiable under only
Assumption 1 and the positivity assumption, we focus on deviations from Assumption 1 and
not Assumption 3.

First assume A ⊥ Za | W and A ⊥ Yaz | W , which is known when A is completely ran-
domized as in an RCT. Let E(Yaz | W = w) = mQ̄0(a, z, w). If mQ̄0(a, Z,W ) = Q̄0(a, (W,Z))
does not hold almost everywhere, then Z ⊥ Yaz | A,W must be violated. Suppose mQ̄0 = mα

Q̄0

is known up to Q̄0 and parameterized by real valued α. A sensitivity analysis is performed
by estimating the causal parameter based on specified functions mα

Q̄0
using Q̄∗n in place of Q̄0

to see how the estimated causal parameter can deviate from the statistical estimate under
various violations of the randomization assumption. In Section 2.D, we discuss this approach
in detail and include an example application to the data set presented in Section 2.7.

These methods can highlight how the deviation between the statistical and causal param-
eter behaves as a function of the violation of an assumption, but in general are not conclusive
due to arbitrary choices regarding the parameterization of the violation of an assumption.
Choosing such a parameterization and range of interpretable parameter values is very difficult,
particularly in cases where the mediator is continuous or high dimensional. Nonetheless, these
or similar methods can be useful in identifying departures from Assumption 1 or Assumption 3
in some cases.

2.6 Simulation study

To explore the performance of the TMLE in Section 2.4 we compare the TMLE to other
types of estimators in a simulation study The first alternative estimator is known as the
G-computation or maximum likelihood based estimator (MLE), and depends only on an
initial estimate Q̄0

n. The estimate is computed by plugging Q̄0
n into (2.4) and averaging with

respect to the empirical distribution of B where A = 0. An inverse probability of treatment
weighted (IPTW) type estimator is also presented, which is a function of an initial estimate
of g0. The estimate is computed as

ψn = n−1∑
i

{
I(Ai = 1)
Pn(Ai = 0)

g0
n(0 | Bi)
g0
n(1 | Bi)

− I(Ai = 0)
Pn(Ai = 0)

}
Yi.
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We bound g0
n(1 | B) above 0.001 to mitigate the effect of extremely large weights on the

estimate, a method discussed by Cole and Hernán (2008). See J M Robins, Hernán, and
Brumback (2000) for a detailed treatment of IPTW estimators. Because these two estimators
depend only on either Q or g, they are not double robust and we expect them to be biased if
estimates of Q0 or g0 are not consistent.

Suppose we observe two independent baseline covariates. The first, W1, has a Bernoulli
distribution with mean 0.3, and the second, W2 has a standard normal distribution. We
also observe a binary treatment variable A, and a mediator Z. Suppose Z has a nor-
mal distribution with mean |3W1| and variance one, and A equals one with probability
logit−1(−2.5 + 3W1 + 0.2Z). Also suppose we observe a binary outcome, Y , which is one with
probability logit−1(1.4A− 2.5Z +W1). Call the true distribution of O = {W1,W2, A, Z, Y }
P0.

The statistical parameter ψ(P0) ≈ 0.0872 and the variance bound for a sample of size n
is approximately 1.004/n. The true parameter and variance bound were computed by Monte
Carlo simulation. By the construction of P0 we can see that the true Q̄0 is contained in a
main terms logistic regression model including W1, W2, A, and Z as explanatory variables,
and the true g0 is contained in a main terms logistic regression model including W1, W2,
and Z as explanatory variables. For sake of illustration, we construct initial estimates Q̄0

n

and g0
n using logistic regression, which we know will be consistent as long as all necessary

independent variables are included in the model. In practice we would turn to data adaptive
methods for the initial estimates when we do not have enough knowledge to guarantee that
estimators based on parametric models are consentent for Q̄0 and g0. In the simulations,
the misspecified model for Q̄ is a main terms logistic regression model with only A as an
explanatory variable, and the misspecified model for g has only Z as an explanatory variable.

Results from 1, 000 datasets drawn from P0 of size n = 50, n = 200 and n = 1000 are
shown in Table 2.1. When the models are correctly specified, all three estimators have low bias,
and the variance of TMLE estimates approaches the efficiency bound as sample size increases,
demonstrating that the TMLE is locally efficient. We also see that bootstrap estimates of
the variance are close to the observed variance. When the model for Q̄0 is misspecified, we
see the MLE has a large bias which does not decrease with sample size. Similarly when the
model for g0 is misspecified, the IPTW estimator has a large bias. However, when one of
the models for Q̄0 or g0 is misspecified, TMLE still has low bias, demonstrating the double
robustness property.

2.7 Application

To illustrate the TMLE, we use a subset of data from the COMBINE study, a multi-center
RCT to evaluate the efficacy of medication, behavioral therapies, and their combinations to
treat alcohol dependence (Anton et al., 2006). Naltrexone, one of the medical therapies in
the study, is thought to act via reducing cravings for alcohol (Volpicelli et al., 1995). The
combined behavioral intervention (CBI) integrated a variety of well-supported treatment
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Table 2.1: Simulation results from an observational study. Variance bounds were 0.0201, 0.005,
and 0.001 for sample sizes 50, 200, and 1000 respectively. Sample sizes are in parentheses.

Model Bias Observed Variance Bootstrap Var. Est.
(50) (200) (1000) (50) (200) (1000) (50) (200) (1000)

Q, g correct
TMLE −0.007 −0.005 0.002 0.029 0.007 0.001 0.048 0.009 0.001
MLE 0.010 0.000 0.002 0.024 0.003 0.001 0.031 0.003 0.001
IPTW −0.005 −0.005 −0.001 0.116 0.014 0.002 0.208 0.018 0.003

Q misspecified
TMLE −0.021 −0.013 −0.001 0.049 0.011 0.002 0.055 0.010 0.002
MLE −0.024 −0.025 −0.023 0.014 0.004 0.001 0.015 0.004 0.001

g misspecified
TMLE 0.004 0.000 0.002 0.022 0.003 0.001 0.029 0.004 0.001
IPTW 0.044 0.042 0.045 0.019 0.004 0.001 0.029 0.004 0.001

methods such as motivational interviewing and cognitive-behavioral skills training. An
investigator may be interested in how CBI acts to reduce drinking. For this example, we
define the outcome of interest Y as percent days of heavy drinking in the third month after
treatment. We define our parameter of interest as the NDE on percent days of heavy drinking
of CBI compared to a placebo not through reduction of cravings.

For the mediator, Z, we use a measurement of cravings collected at 4, 8, and 12 weeks
after baseline. Because the trial is randomized, we know A ⊥ Yaz and A ⊥ Za, and in order to
identify the NDE we must be able to assume Z ⊥ Yaz | W for some set of baseline covariates
W in addition to Assumptions 2 and 3. For W , we include a measurement of baseline cravings
and percent days abstinent from drinking prior to baseline.

Our dataset has 420 observations, with 227 patients assigned to CBI and 193 patients
assigned to placebo. We present estimates of the NDE and also include estimates of the
total effect for comparison. For initial estimates Qn and gn, we use a data adaptive super
learner, combining GLM regression with all main terms, GLM with main terms and pairwise
interaction terms chosen by stepwise selection, and the elastic net algorithm (Friedman,
T Hastie, and Tibshirani, 2010; Zou and T. Hastie, 2005) with main and pairwise interaction
terms. Results are presented in Table 2.2. Estimators include TMLE, MLE and IPTW.
For the natural direct effect, all three estimates are negative, suggesting that CBI reduces
percent days of heavy drinking relative to placebo by some mechanism other than by effecting
cravings. Additionally, the estimates of the total effect are larger in magnitude, suggesting
that some of the effect of CBI on percent days of heavy drinking is due to the effect on
cravings.

To investigate the effect on the estimates due to leaving out a potentially important
confounder from the set of baseline covariates, we present results where baseline percent days
abstinent is excluded from W in Table 2.3. We know that treatment is independent of baseline
percent days abstinent, so excluding it from W will not bias estimates of the total effect for
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Table 2.2: Total and direct effect of CBI on percent days of heavy drinking mediated by
cravings from COMBINE study.

Estimate Bootstrap CI Bootstrap SE Influence curve SE
Total effect
TMLE -5.20 (-10.07, -0.33) 2.48 2.50
MLE -5.04 (-9.87, -0.21) 2.46
IPTW -5.23 (-10.14, -0.31) 2.51

Natural direct effect
TMLE -4.33 (-8.51, -0.14) 2.13 2.02
MLE -3.03 (-7.12, 1.06) 2.09
IPTW -4.93 (-9.6, -0.25) 2.39

Table 2.3: Total and direct effect of CBI on percent days of heavy drinking mediated by
cravings from COMBINE study, not adjusting for baseline percent days abstinent.

Estimate Bootstrap CI Bootstrap SE Influence curve SE
Total effect
TMLE -5.39 (-10.38, -0.39) 2.55 2.53
MLE -5.29 (-10.34, -0.23) 2.58
IPTW -5.23 (-10.24, -0.21) 2.56

Natural direct effect
TMLE -4.02 (-8.48, 0.45) 2.28 2.16
MLE -3.74 (-8, 0.52) 2.17
IPTW -4.71 (-9.66, 0.25) 2.53

any estimators, but we do not know if baseline percent days abstinent is a confounder of
the mediator and outcome, so we do not know if differences in estimates observed here in
the estimates for the NDE or DE(1) are due to bias. The difference between estimates in
Tables 2.2 and 2.3 is small relative to estimated standard errors, so in this case sample size is
too small to determine if failing to include a potential confounder introduces bias. For all
estimates, estimated standard errors are smaller when adjusting for baseline percent days
abstinent, indicating that efficiency is gained even if the variable is not a confounder. In
Section 2.D, we demonstrate an application of the sensitivity analysis proposed in Section 2.5
to this dataset.

2.8 Discussion

In this paper we proposed a new causal parameter called the natural direct effect among the
untreated, and we provide and discuss identifiability results in Section 2.3. In Section 2.4,
we describe a targeted minimum loss estimator that is a locally efficient and double robust
substitution estimator for the statistical parameter Ψ(P0). In Theorem 2 we show when A is
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completely randomized, such as in an RCT, this natural direct effect among the untreated is
equal to the natural direct effect, and therefore the natural direct effect can be estimated
with the method in Section 2.4. Even when A is not completely randomized, an estimate
of Ψ(P0) can always be interpreted as the DEU(a) under Assumption 1, that is, an average
of direct effects weighted by the empirical distribution of baseline covariates W among the
unexposed subjects with A = 0.

We point out that efficient estimators for Ψ(P0) in the non-parametric model are not
fully efficient in the semiparametric model where A is completely randomized. When the
knowledge that A ⊥ W is ignored and g0(A | B) = P0(A | W,Z) is estimated without
restriction, some information about Ψ(P0) is lost and the efficient influence curve in this
semiparametric model is not equal to D∗ (Tchetgen Tchetgen and Ilya Shpitser, 2011; Zheng
and Mark J van der Laan, 2012). Although the TMLE in Section 2.4 is not fully efficient
when A is completely randomized, we argue it is still useful as an alternative and relatively
simple estimator for the NDE that does not require estimation of the conditional density of
the mediator in addition to being an estimator for the NDE among the untreated. Below we
discuss other causal parameters to which the TMLE can be applied.

In addition to the NDE and the NDE among the untreated, researchers may also be
interested in the NDE among the treated, defined as E(YaZ0 − Y0Z0 | A = a). Under
appropriate identifiability conditions, this causal parameter corresponds to the statistical
parameter

Ψ′(P0) =E
(∑

z

[
{E(Y | A = a, Z = z,W )

− E(Y | A = 0, Z = z,W )}

P (Z = z | A = 0,W )
]
| A = a

)
.

Because the conditional probability of Z is conditional on A = 0 inside the square brackets,
but the expectation of the expression in square brackets is conditioned on A = a, Ψ′(P0)
cannot be written in the form of (2.3) and cannot be estimated using a method similar to
that in Section 2.4. However, when there are only two levels of treatment so A is binary, then
Ψ∗(P0) = Ψ′(P0)P0(A = 1) + Ψ(P0)P0(A = 0) where

Ψ∗(P0) =E
(∑

z

{E(Y | A = 1, Z = z,W )

− E(Y | A = 0, Z = z,W )}

P (Z = z | A = 0,W )
)

is the statistical parameter associated with the natural direct effect. We can write Ψ′(P0) =
{Ψ∗(P0) − Ψ(P0)P0(A = 0)}/P0(A = 1). Based on this we can see that Ψ′(P0) can be
estimated using an estimate for Ψ∗(P0) such as those proposed by Tchetgen Tchetgen and
Ilya Shpitser (2011) and Zheng and Mark J van der Laan (2012) as well as an estimate for
Ψ(P0) based on the methodology in Section 2.4.
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Another causal parameter that may be of interest to researchers is called the indirect effect
(IE) among the untreated, defined as E(YaZa − YaZ0 | A = 0). This definition is analogous to
the total indirect effect of J.M. Robins and Greenland (1992) and the indirect effect of M. van
der Laan and Petersen (2004). Similarly to the total effect (TE), the TE among the untreated
or average effect of treatment among the untreated (ATU), defined as E(YaZa − Y0Z0 | A = 0)
in current notation, can be decomposed as the sum of the NDE among the untreated and the
IE among the untreated. That is,

E(YaZa − Y0Z0 | A = 0) = E(YaZa − YaZ0 | A = 0) + E(YaZ0 − Y0Z0 | A = 0).

Because of this decomposition, if the ATU and the NDE among the untreated are identifiable,
the IE among the untreated can also be identified and can be estimated based on estimates
of the ATU and the NDE among the untreated. Identifiability of the average treatment effect
among the (un)treated is discussed in M. van der Laan (2010). Analogously, this relationship
also holds for the TE among the treated, the NDE among the treated, and the IE among the
treated so the indirect effect among the untreated can be estimated similarly.

A final alternative causal parameter of interest may be defined as E(YaZa − Y0Za | A = a).
This parameter is similar to the NDE among the treated, but the intermediate variable is set
to the value it would have been under treatment a instead of treatment 0. Under appropriate
identifiability assumptions, this is equal to the statistical parameter

E0{E0(Y | A = a,B)− E0(Y | A = 0, B) | A = a}. (2.7)

This statistical parameter is similar to (2.3), but now the difference is conditional on A = a.
An analogous estimator to that developed in Section 2.4 could be used to estimate (2.7).

2.A Proof of theorems

Proof of Theorem 1
For (i), by the randomization assumption we can write

P (Y = y | A = a, Z = z,W ) = P (Yaz | A = a, Z = z,W )
= P (Yaz | W )

P (Z = z | A = a,W ) = P (Za = z | A = a,W )
= P (Za = z | W ),

so
DEU(a) = E{∑z(Yaz − Y0z)P (Z0 = z | W ) | A = 0}

= E[E{∑z(Yaz − Y0z)P (Z0 = z | W ) | A = 0,W} | A = 0]
= E{∑z E(Yaz − Y0z | A = 0,W )P (Z0 = z | W ) | A = 0}
= E{∑z E(Yaz − Y0z | W )P (Z0 = z | W ) | A = 0}
= E([∑z{E(Y | A = a, Z = z,W )− E(Y | A = 0, Z = z,W )}

P (Z = z | A = 0,W )] | A = 0),
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therefore DEU(a) is identifiable. For (ii),

E(YaZ0 − Y0Z0 | A = 0) = E[E{E(YaZ0 − Y0Z0 | Z0, A = 0,W ) | A = 0,W} | A = 0]

and
E{E(YaZ0 − Y0Z0 | Z0, A = 0,W ) | A = 0,W}

= ∑
z E(YaZ0 − Y0Z0 | Z0 = z, A = 0,W )P (Z0 = z | A = 0,W )

= ∑
z E(YaZ0 − Y0Z0 | Z0 = z,W )P (Z0 = z | W ) by Assumption 1

= ∑
z E(Yaz − Y0z | Z0 = z,W )P (Z0 = z | W )

= ∑
z E(Yaz − Y0z | W )P (Z0 = z | W ) by Assumption 3

so
E(YaZ0 − Y0Z0 | A = 0) = E{∑z E(Yaz − Y0z | W )P (Z0 = z | W ) | A = 0}

= DEU(a) �

Proof of Theorem 2
For (i),

DEU(a) = E{∑z(Yaz − Y0z)P (Z0 = z|W ) | A = 0}
= ∑

w{
∑
z(Yaz − Y0z)P (Z0 = z|W )}P (W = w|A = 0)

= ∑
w{
∑
z(Yaz − Y0z)P (Z0 = z|W )}P (W = w) by A completely randomized

= E{∑z(Yaz − Y0z)P (Z0 = z|W )}
= DE(a)

The proof for (ii) follows from (i) of this theorem and the proof of Theorem 1 (ii). �

2.B Sequential ignorability implies Assumptions 1

and 3

Note Z = ZA, and

(A,ZA) ⊥ Yaz | W ⇐⇒ {A ⊥ Yaz | W
ZA ⊥ Yaz | A,W}

For a∗, a′ ∈ A, we see (Ya∗z, Za′) ⊥ A | W implies A ⊥ Za | W and A ⊥ Yaz | W . Additionally,
Ya∗z ⊥ Za′ | A,W implies Yaz ⊥ ZA | A,W , so sequential ignorability implies Assumption 1.

Now,

E(Ya∗z | Z0 = z,W ) =E{E(Ya∗z | Z0 = z, A,W ) | Z0 = z,W}
=E{E(Ya∗z | A,W ) | Z0 = z,W} by Ya∗z ⊥ Za′ | A,W
=E{E(Ya∗z | A,W ) | W} by (Ya∗z, Za′) ⊥ A | W
=E(Ya∗z | W ).

This implies Assumption 3.
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2.C Modifications to the TMLE algorithm for

non-binary Y

If Y is not binary, but is bounded by 0 and 1, for example a proportion, the algorithm does
not need to be modified because the negative quasibinomial likelihood is a valid loss function
for estimating a conditional mean. Standard software for logistic regression can still be used
for estimating εj1n, though warning messages may be produced because the outcome variable
is not binary. More generally, if Y is bounded by l and u with l < u, the algorithm can be
modified by transforming Y to Y ′ bounded between 0 and 1. After estimating Q̄0

n(A,B),
calculate Y ′ = (Y − l)/(u − l) and Q̄′0n (A,B) = (Q̄0

n(A,B) − l)/(u − l), and perform the
updating steps with Y ′ and Q̄′0n in place of Y and Q̄0

n. After convergence, calculate the final
estimate by multiplying Ψ(Q∗n, g∗n) by u− l.

Alternatively, instead of updating the estimate Qi
n on the logit scale, we can updated it

on the linear scale by replacing (2.5) with

Q̄j
n(A,B) = Q̄j−1

n (A,B) + εj1nC
j−1
1 (A,B)

where εj1n is estimated with maximum likelihood or least squares in the linear model

Q̄(A,B) = εj1C
j−1
1 (A,B) + Q̄j−1

n (A,B).

In small samples, when Y is in fact bounded by between l and u, a linear update can yield
final estimates that do not respect these bounds. For example, suppose Y is a proportion and
therefore between 0 and 1. This implies ψ0 must be between −1 and 1, but a linear update
could potentially yield estimates outside of this interval.

2.D Sensitivity analysis

Assume A ⊥ Za | W and A ⊥ Yaz | W of the randomization assumption, but Z ⊥ Yaz | A,W
is not necessarily true. Following proof of Theorem 1 (i) and given mQ̄0(a, z, w) = E(Yaz |
W = w), the causal parameter DEU(a) is calculated as

DEU(a) = E{∑z(Yaz − Y0z)P (Z0 = z | W ) | A = 0}
= E[E{∑z(Yaz − Y0z)P (Z0 = z | W ) | A = 0,W} | A = 0]
= E{∑z E(Yaz − Y0z | A = 0,W )P (Z0 = z | W ) | A = 0}
= E{∑z E(Yaz − Y0z | W )P (Z = z | A = 0,W ) | A = 0}

by A ⊥ Za | W and A ⊥ Yaz | W ,
= E([∑z{mQ̄0(a, z,W )−mQ̄0(0, z,W )}P (Z = z | A = 0,W )] | A = 0)

Possible choices for mQ̄ are

mα
Q̄(a, z, w) = Q̄(a, (w, z)) + αr(a, z, w)′,
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or, if Yaz is bounded by l and u with l < u,

mα
Q̄(a, z, w) = (u− l)logit−1

[
logit

(
Q̄(a, (w, z))− l

u− l

)
+ αr(a, z, w)′

]
+ l

where α ∈ Rd and r is a known d dimensional function. We call these two choices of mQ̄

a linear deviation and a logistic deviation, respectively. For both of these choices of mQ̄,

mα
Q̄0

= Q̄0 when α = 0.

For a given α, call the estimate of DEU(a) ψαn , and calculate it as

ψαn =
∑n
i=1 I(Ai = 0)[mα

Q̄∗n
(a, Zi,Wi)−mα

Q̄∗n
(0, Zi,Wi)]∑n

j=1 I(Aj = 0) .

In general, ψαn is consistent when the initial estimate Q̄0
n is consistent. When the linear

deviation is used for mα
Q̄

, we can write

DEU(a) =E0(Q̄0(a, (Z,W ))− Q̄0(0, (Z,W )) | A = 0)
+ E0(αr(a, Z,W )′ − αr(0, Z,W )′ | A = 0)

=ψ0 + E0(αr(a, Z,W )′ − αr(0, Z,W )′ | A = 0)
and analogously

ψαn = ψn +
∑n
i=1 I(Ai = 0)[αr(a, Zi,Wi)′ − αr(0, Zi,Wi)′]∑n

j=1 I(Aj = 0)
where ψn is the TMLE of ψ0. In this case, the estimate ψαn is doubly robust, because ψn is
consistent for ψ0 when either Q̄0

n or g0
n is consistent, and

E0(αr(a, Z,W )′ − αr(0, Z,W )′ | A = 0)
is estimated with an empirical mean of i.i.d. random variables, which is consistent by the law
of large numbers.

A sensitivity analysis can be performed by calculating ψαn for α ∈ {α1, . . . αk}. The
deviation between ψαn and ψ0

n can be interpreted as the sensitivity of the analysis to a
violation of Z ⊥ Yaz | A,W described by mQ̄0 as a function of α.

In an application to the data set from the COMBINE study in Section 2.7, we parametrize
the deviation from the Z ⊥ Yaz | A,W assumption in two ways using the logistic deviation. In
the first we set r(a, z, w) = z̄ where z̄ is the average level of the mediator, cravings, measured
at three time points, and standardized to have mean zero and variance one. For the second,
we set r(a, z, w) = wc where wc is the baseline value of cravings again standardized to have
mean zero and variance one.

Results are plotted in Figures 2.1 and 2.2. The open circle and the confidence interval at
α = 0 are equal to the estimate of the NDE in Table 2 in the main paper, where baseline
percent days abstinent is included in W . The pointwise 95% confidence limits were calculated
based on the bootstrapped standard error at each value of α. For both deviations, we see that
the 95% confidence interval only excludes 0 for α near 0. This indicate that our results may
not be robust to violations of the randomization assumption for the deviations investigated.
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Figure 2.1: Sensitivity analysis of deviation z̄
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Chapter 3

Balancing score adjusted targeted
minimum loss-based estimation

3.1 Introduction

Estimators based on the propensity score (PS), the probability of receiving a treatment given
baseline covariates, are popular for estimation of causal effects such as the average treatment
effect (ATE), average treatment effect among the treated (ATT), or the average outcome
under treatment. Such methods can be thought of as adjusting for the propensity score in
place of baseline covariates, and generally require consistent estimation of the propensity score
if it is not known. Common propensity score methods include stratification or subclassification
(Austin, 2010; Lunceford and Davidian, 2004; Rosenbaum and D.B. Rubin, 1984), inverse
probability of treatment weighting (IPTW) (J M Robins, Hernán, and Brumback, 2000;
Rosenbaum, 1987), and propensity score matching (Caliendo and Kopeinig, 2008; Dehejia
and Wahba, 2002; Rosenbaum and D.B. Rubin, 1983).

A “balancing score” as defined by Rosenbaum and D.B. Rubin (1983) is a function of
baseline covariates such that treatment and baseline covariates are independent conditional on
that function. The propensity score is perhaps the most well known example of a balancing
score, but balancing scores are more general. Typically, propensity score based methods are
said to be consistent when the true propensity score is consistently estimated. Methods that
adjust for the propensity score nonparametrically, such as matching or stratification by the
propensity score, actually only need that the estimated propensity score converge to some
balancing score in order for the parameter of interest to be estimated consistently. However,
we are not aware of specific claims in the literature that particular propensity score based
methods are consistent under this weaker condition. We say that an estimator using the
propensity score or other balancing score has the balancing score property if it is consistent
when the estimated propensity score converges to a balancing score.

Though not guaranteed in general, it is possible for an estimated propensity score based on
a misspecified model to converge to a balancing score that is not equal to the true propensity
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score. Propensity score based estimators that have the balancing score property are robust to
this sort of estimator misspecification of the PS, while other propensity score based estimators
are not. The balancing score property is desirable because, even though most such estimators
were initially developed based on the PS specifically, they inherit this robustness for free.
Estimators with the balancing score property are in general not efficient.

An efficient estimator is one that achieves the minimum asymptotic variance of all regular
estimators. In many cases, for example when estimating the ATE, ATT, and average outcome
under treatment, doubly robust estimators can be constructed. A doubly robust estimator is
one that relies on an estimate of both the propensity score and of the outcome regression,
the conditional mean of the outcome given baseline covariates and treatment. Doubly robust
estimators are consistent if either the estimated propensity score or outcome regression is
consistent. Examples include targeted minimum loss-based estimation (TMLE) (Mark J.
van der Laan and Sherri Rose, 2011; Mark J. van der Laan and Daniel Rubin, 2006) and
augmented inverse probability of treatment weighted estimation (A-IPTW) (James M Robins,
Rotnitzky, and Zhao, 1994; M. J. van der Laan and J. M. Robins, 2003). In addition to
being doubly robust, both TMLE and A-IPTW are efficient when both the propensity score
and outcome regression are consistently estimated.

In this article, we discuss a general class of estimators that have the balancing score
property. We also construct a targeted minimum loss-based estimator (TMLE) (Mark J.
van der Laan and Sherri Rose, 2011; Mark J. van der Laan and Daniel Rubin, 2006) with
the balancing score property. This new TMLE not only has the benefit of the robustness
provided by the balancing score property, it also is a locally efficient, doubly robust plug-in
estimator. This means that our new estimator retains all of the attractive properties of a
traditional TMLE while gaining robustness that other estimators with the balancing score
property enjoy when the propensity score only converges to a balancing score.

In Section 3.2, we introduce notation and define the statistical parameter we wish to
estimate. In Section 3.3 we describe a TMLE for the statistical parameter. In Section 3.4 we
discuss the balancing score property and describe the proposed new TMLE. In Section 3.5
we compare the performance of the new estimator to a traditional TMLE as well as other
common estimator and conclude with a discussion in Section 3.6. A list of notation used
throughout the article is provided in Section 3.A. Some results and proofs not included in
the main text are in Section 3.B and two modifications to the TMLE algorithm are presented
in Section 3.C. An example implementation of the proposed new TMLE in R (R Core Team,
2013) is provided in Section 3.D.

3.2 Preliminaries

Consider the random variable O = (W,A, Y ) where W is a real valued vector, A is binary
with values in {0, 1} and Y is univariate real number. Call the probability distribution of
O P0 ∈ M where M is the statistical model. Assume P0(A = 1 | W ) > 0 for almost every
W . This is sometimes called a positivity assumption. Define the parameter mapping Ψ from
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M to R that maps P to EP (EP (Y | A = 1,W )) where EP denotes expected value under
probability distribution P ∈M.

Suppose A = 1 indicates some treatment of interest and A = 0 represents some control or
reference treatment, W represents a vector of baseline covariates measured before treatment,
and Y represents some outcome measured after treatment. Then under additional causal
assumptions, Ψ(P0) can be interpreted as a causal quantity. In particular, we may assume
that observed treatment A is independent of the counterfactual outcome had each observation
received treatment 1 given covariates W . This is known as the randomization assumption
or the “no unmeasured confounders” assumption, and the validity depends on the particular
application. Under the randomization positivity assumptions, Ψ(P0) can be interpreted as the
average outcome had everyone in the population received treatment 1. In this paper we focus
on estimation of the statistical parameter Ψ(P0), but other similar statistical parameters can,
under assumptions, be interpreted as causal parameters such as the ATE or the ATT (Hahn,
1998).

For a probability distribution P ∈M, Q̄(a, w) = EP (Y | A = a,W = w) is the regression
of the outcome on covariates and treatment. Let QW (w) = P (W = w) be the distribution
of baseline covariates. The conditional distribution of treatment on baseline covariates is
called g(a | w) = P (A = a | W = w), and define the propensity score as ḡ(w) = g(1 | w),
the probability of treatment given covariates w. The parameter mapping Ψ depends on
P only through Q = (Q̄, QW ), so recognizing the abuse of notation, we sometimes write
Ψ(P ) = Ψ(Q) = Ψ(Q̄, QW ).

For a distribution P ∈M, we make no assumptions on the outcome regression Q̄ or on
the distribution QW of W . We may put some restriction on possible functions g, for example
we may know that P (A | W ) depends only on a subset of W . The model M is therefore
nonparametric or semiparametric.

Let O1, . . . , On be a data set of n independent and identically distributed random variables
drawn from P0 where Oi = (Wi, Ai, Yi). We use the subscript 0 to denote the true probability
distribution, and n to denote an estimate based on a dataset of size n, so, for example, E0
denotes expectation with respect to P0, Q̄0(a, w) = E0(Y | A = a,W = w), and Q̄n is an
estimate of Q̄0. Let ψ0 = Ψ(P0).

3.3 Targeted minimum loss-based estimation

A plug-in estimator takes an estimate of the distribution P0, or relevant parts of P0, and
plugs it into the parameter mapping Ψ. In this case, Ψ depends on P through Q̄ and QW .
Using an estimate Q̄n of Q̄0, and letting QWn be the empirical distribution of W , we can
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calculate the plug-in estimate as

Ψ(Qn) =
∫
w
Q̄n(1,W )dQWn(w)

= 1
n

n∑
i=1

Q̄n(1,Wi).

That is, we take the mean of Q̄n(1,W ) with respect to the empirical distribution of W .
Plug-in estimators are desirable because they fully utilize known global constraints of Q0 (by
using an estimate Qn that satisfies these constraints) and guarantee that estimates are in the
parameter space, even in small samples. Non-plug-in estimators such as IPTW, can produce
estimates outside of the parameter space. For instance if our estimand is a probability, a
method like IPTW could yield an estimate outside of [0, 1] when the sample size is small.

Targeted minimum loss-based estimation is a general framework for constructing a plug-in
estimator for ψ0 with additional properties such as efficiency. TMLE takes an initial estimate
of the outcome regression Q̄0, say Q̄0

n, and, using an estimate ḡn(W ) of the propensity score,
updates it to Q̄∗n. Using the empirical distribution of W along with the updated Q̄∗n, the final
estimate is calculated as Ψ(Q̄∗n, QWn). The updated Q̄∗n is constructed in such a way that the
final estimate is efficient or attains other properties. We now review some background and a
specific implementation of the TMLE procedure for Ψ(P0).

An estimator that is asymptotically linear can be written as

√
n(ψn − ψ0) = 1√

n

n∑
i=1

IC(P0)(Oi) + oP (1)

for some mean zero function IC(P0) where oP (1) is a term that converges in probability to 0.
The function IC(P0) is called the influence curve of the estimator at P0. For an estimator to
be efficient, that is, to have the minimum asymptotic variance among all regular estimators,
it must be asymptotically linear with influence curve equal to the so called efficient influence
curve (Bickel et al., 1993; Mark J. van der Laan and Sherri Rose, 2011). The efficient influence
curve for a particular parameter mapping Ψ depends on the model. For our model, regardless
of the model for g0, the efficient influence curve at a P ∈M written in terms of Q and g is

D∗(Q̄, QW , g)(O) = A

g(1 | W )(Y − Q̄(A,W )) + Q̄(1,W )−Ψ(Q̄, QW ).

A derivation of the efficient influence curve is presented in Mark J. van der Laan and Sherri
Rose (2011, Chapter 4).

Suppose for now Y is binary or bounded by 0 and 1. A modification to the algorithm and
a different TMLE are described in Section 3.C if this is not the case. The initial estimate
Q̄0
n can be obtained via a parametric model for E0(Y | A,W ), such as a generalized linear

model (McCullagh and Nelder, 1989), or with a data adaptive machine learning algorithm
such as the SuperLearner algorithm (Mark J van der Laan, Polley, and Alan E Hubbard,
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2007; Mark J. van der Laan and Sherri Rose, 2011), which combines parametric and data
adaptive estimators using cross-validation.

The updating step is defined by a choice of loss function L for Q such that E0L(Q)(O) is
minimized at Q0, and a working parametric submodel with finite dimensional real valued
parameter ε, {Q(ε) : ε} such that Q(0) = Q. The submodel is typically chosen so that the
efficient influence curve is in the linear span of the components of the “score” d

dε
L(Q(ε)(O))

at ε = 0. When L is the negative log likelihood, d
dε
L(Q(ε)(O)) is the score in the usual

sense. Starting with k = 0, the empirical risk minimizer εkn = arg minε
∑n
i=1 L(Qk

n(ε))(Oi)
is calculated and Qk

n is updated to Qk+1
n = Qk

n(εkn). The process is iterated until εk ≈ 0,
sometimes converging in one step. Details can be found in (Mark J. van der Laan, 2010;
Mark J van der Laan, 2010; Mark J. van der Laan and Sherri Rose, 2011; Mark J. van der
Laan and Daniel Rubin, 2006).

Define the loss function L(Q)(O) = LY (Q̄)(O) + LW (QW )(O) where

LY (Q̄)(O) = −Y log(Q̄(A,W ))− (1− Y ) log(1− Q̄(A,W )).

and LW (QW )(O) = − log(QW (W )). When Y is binary, LY (Q̄)(O) is the negative conditional
log likelihood of the Bernoulli distribution. Because Y is at least bounded by 0 and 1 if
not binary, LY (Q̄)(O) is a valid loss function for the conditional mean. That is, Q̄0 =
arg minQ̄E0LY (Q̄)(O) (Gruber and Mark J van der Laan, 2010). The function LW (QW )(O)
is the negative log likelihood of the distribution of W , and its true mean is minimized by
QW0. Thus, the sum loss function is a valid loss function for Q0 = (Q̄0, QW0).

For a working submodel for Q̄, we use

Q̄(ε)(A,W ) = logit−1
[
logit(Q̄(A,W )) + ε

A

g(1 | W )

]

indexed by ε. We call this a logistic working model because it is a logistic regression model
with offset logitQ̄(A,W ) and single covariate A

g(1|W ) . The score of this model at ε = 0 is

A

g(1 | W )(Y − Q̄(A,W )).

For QW , we can use as working submodel

QW (ε′)(W ) = {1 + ε′[Q̄(1,W )−Ψ(Q)]}QW (W )

which has score Q̄(1,W )−Ψ(Q̄, QW ) at ε′ = 0. We can see that the efficient influence curve
D∗(P0) can be written as a linear combination of the scores of these submodels when Q = Q0
and g = g0.

The estimate ε0n can be calculated using standard logistic regression software with
logit(Q̄0

n(A,W )) as a fixed offset term, and A
gn(1|W ) as a covariate. By using the empiri-

cal distribution of W as an initial estimate for Q0
Wn, and negative log likelihood loss function
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for LW , the empirical risk is already minimized at Q0
Wn, so ε′0n = 0 and no update is needed.

In this case, the algorithm converges in one step, because A
gn(1|W ) is not updated between

iterations, so an additional update to Q̄1
n will yield ε1n = 0. The estimate Q̄∗n = Q̄0

n(ε0n) and
the TMLE estimate of Ψ(P0) is calculated as

Ψ(Q̄∗n, QWn) = 1
n

n∑
i=1

Q̄∗n(1,Wi).

Under regularity conditions, the TMLE is asymptotically linear and doubly robust,
meaning that if the initial estimate Q̄0

n is consistent for Q̄0, or ḡn is consistent for ḡ0, then
Ψ(Q̄∗n, QWn) is consistent for Ψ(P0). Additionally, when both Q̄0

n and gn are consistent, the
influence curve of the TMLE is equal to the efficient influence curve, so the estimator achieves
the semiparametric efficiency bound. Precise regularity conditions for asymptotic linearity
and efficiency are presented in Section 3.B in Theorem 5.

3.4 Balancing score property and proposed estimator

A function b of W is called a balancing score if A ⊥ W | b(W ) (Rosenbaum and D.B.
Rubin, 1983). Trivially, b(W ) = W is a balancing score, and by definition of the propensity
score, ḡ0(W ), is a balancing score. In general, any function b(W ) is a balancing score if
and only if there exists some function f such that ḡ0(W ) = f(b(W )) (Rosenbaum and D.B.
Rubin, 1983, Theorem 2). For example any monotone transformation of the propensity is a
balancing score. Such a function is called a “balancing score” because, conditional on b(W ),
the distribution of W between the treated and untreated observations is equal or balanced.
That is, P0(W | A = 1, b(W )) = P0(W | A = 0, b(W )). Rosenbaum and D.B. Rubin (1983)
show that adjusting for a balancing score yields the same estimand as adjusting for the full
set of covariates W which we state in Lemma 1 and offer a different proof in Section 3.B.

Lemma 1. If b(W ) is a balancing score under distribution P , then EP (EP (Y |A = 1, b(W ))) =
Ψ(P ).

This result gives rise to methods for estimating Ψ(P0) based on a balancing score and
not on an estimate of Q̄0. The propensity score is the balancing score most commonly used
for estimating Ψ(P0), and frequently used estimators include propensity score matching,
stratification, and IPTW. When the propensity score is not known, these estimators rely
on an estimated propensity score ḡn, and, under regularity conditions, are consistent when
ḡn is consistent for ḡ0. The IPTW estimator, in particular, requires that ḡn converges to ḡ0
for consistency. However, many of these methods, such as propensity score matching and
stratification by the propensity score, can be seen as nonparametrically adjusting for the
propensity score and only rely on the propensity score being a balancing score. For these
estimators, it is sufficient for ḡn to converge to some balancing score under P0. We call this
property the balancing score property.



CHAPTER 3. BALANCING SCORE ADJUSTED TMLE 27

In practice, an estimator ḡn can approximate a balancing score well but not converge
to the true propensity score. A parametric logistic regression estimator will estimate some
function of the covariates that is a projection of ḡ0 onto the model determined by the
parametrization of the estimator. If the parametric estimator is correctly specified, this
projection will be ḡ0. Depending on the true ḡ0 and distribution of covariates, it is possible
for this projection to be a balancing score or at least approximate some balancing score when
the estimator is not correctly specified. For example, suppose the true ḡ0 depends on higher
order interactions of covariates. Though not the case in general, in some settings a main
terms logistic regression may approximate a balancing score well. We explore such a setting
via simulation in Section 3.5. In another example, suppose ḡ0 depends on covariates in an
additive on the logit scale but not necessarily linear or even smooth way. A logistic regression
estimator with linear or possibly higher order polynomial main terms may again approximate
some balancing score.

Estimators based only on the propensity score are not doubly robust. We now construct
a locally efficient doubly robust estimator with the balancing score property. We start
with initial estimators Q̄n for Q̄0 and ḡn for ḡ0. We then update Q̄n by nonparametrically
regressing Y on A and ḡn(W ) using Q̄n(A,W ) as an offset. Similarly to the TMLE procedure
in Section 3.3, we use this updated estimate of Q̄0 to estimate ψ0 by plugging it in to the
parameter mapping Ψ along with the empirical distribution of W .

To update Q̄n by further adjusting for A and ḡn, we specify a working model and loss
function pair. The working model and loss function pair is somewhat analogous to that in
the updating step in the TMLE procedure described in Section 3.3. The loss function can be
the same as that in the TMLE procedure’s updating step, but it need not be. Define Q̄ and b
to be the limits of Q̄n and ḡn, respectively, as n→∞. Let Θ be the class of all functions of
A and b(W ), and let θ be some function in that class. Here Q̄ is not necessarily Q̄0 and b is
not necessarily ḡ0 or even a balancing score. For concreteness, consider two working model
and loss function pairs: a logistic working model

Q̄b,θ(A,W ) = logit−1[logit(Q̄(A,W )) + θ(A, b(W ))] (3.1)

with loss function

L′(Q̄b,θ)(O) = −Y log(Q̄b,θ(A,W ))− (1− Y ) log(1− Q̄b,θ(A,W )),

which is the negative log likelihood loss when Y is binary, and a linear working model

Q̄b,θ(A,W ) = Q̄(A,W ) + θ(A, b(W )) (3.2)

with loss function
L′(Q̄b,θ)(O) = (Y − Q̄b,θ(A,W ))2,

the squared error loss. In both working models, we leave the function θ unspecified. We can
view a working model used for the updating step in the TMLE procedure as a special case of
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the working model here by restricting θ to have the form

θ(A, b(W )) = ε
A

b(W )

where ε is real, using notation b(W ) in place of g(1 | W ) as used in Section 3.3.
Define

θ0 = arg min
θ∈Θ

E0L
′(Q̄b,θ)(O).

Given Q̄, the limit of some estimate for Q̄0, one can think of θ0, a function of A and b(W ), as
the residual bias between E0(Q̄(A,W ) | A, b(W )) and E0(Y | A, b(W )) on either the logistic
or linear scale. When the initial estimator Q̄n is consistent, so Q̄ = Q̄0, θ0(A, b(W )) will be
0, because Q̄ will already be fully adjusting for A and b(W ).

Suppose for now that we have an estimate of θ0 which we call θn. We return to the
problem of estimating θ0 later in this section. Calculate the update of Q̄n as Q̄ḡn,θn

n and
using this updated regression, a final estimate of ψ0 is calculated as Ψ(Q̄ḡn,θn

n , QWn), which
we call a doubly robust balancing score adjusted (DR-BSA) plug-in estimator. In Theorem 3
in Section 3.B, we show that the DR-BSA estimator doubly robust in the sense that it is
consistent when either Q̄ = Q̄0 or θn consistently estimates θ0 and b is a balancing score.

When initial estimator Q̄n does not consistently estimate Q̄0, consistency of the DR-BSA
estimate requires that b is a balancing score and θ0 is consistently estimated. To weaken
this requirement, we now construct a TMLE with the balancing score property by using
Q̄0
n = Q̄gn,θn

n as the initial estimate in the TMLE procedure in Section 3.3 and updating it
to Q̄∗n. The TMLE of Ψ(P0) is calculated as Ψ(Q̄∗n, QWn). We call this a balancing score
adjusted TMLE (BSA-TMLE). In Theorem 4 in Section 3.B, we show that the BSA-TMLE is
consistent if any of the three conditions hold: (1) Q̄ = Q̄0, (2) b = ḡ0, or (3) b is a balancing
score and θn consistently estimates θ0. The BSA-TMLE is therefore doubly robust in the usual
sense and also has the balancing score property. The BSA-TMLE is a TMLE as described
in Section 3.3 where in addition to attempting to adjust for W , the initial estimator Q̄0

n is
making an extra attempt to adjust for a balancing score. If θ0 is consistently estimated, then
like the standard TMLE, when both the initial estimates of Q̄0 and g0 are consistent, the
influence curve of the BSA-TMLE is the efficient influence curve. Therefore, under regularity
conditions, the BSA-TMLE is locally efficient and keeps all of the attractive properties of
TMLE while also having the balancing score property.

We now return to the problem of estimating θ0. The working model in the definition of
θ0 depends is Q̄b,θ which depends on limits Q̄ and b. To estimate θn, we use Q̄ḡn,θ

n as the
working model. If ḡn(W ) is discrete and θ0 is estimated in a saturated parametric model,
Ψ(Q̄ḡn,θn

n , QWn) is exactly a TMLE as proved in Lemma 2 in Section 3.B. When ḡn(W ) is not
discrete, it can be discretized into k categories based on quantiles. The parameter θ0 can
be estimated with a saturated parametric model with standard logistic regression software
with dummy variables for each stratum and treatment combination, and logitQ̄n(A,W ) as
an offset. When Q̄n(A,W ) is unadjusted for W , for example Q̄n is estimated in a GLM
with only an intercept and treatment as a main term, this reduces to usual propensity score
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stratification. In general, when the number of categories k is fixed and does not grow with
sample size, stratification is not consistent, though one hopes that the residual bias is small
(Lunceford and Davidian, 2004). If k is too large, there is a possibility of all observations in a
particular stratum having the same value for A, in which case θn(A,W ) is not well defined.
In many applications, the number of strata is often set based on the rule of thumb k = 5
recommended by Rosenbaum and D.B. Rubin (1984). Though the stratification estimator
of ψ0 is not root-n consistent when k is fixed, the BSA-TMLE removes this remaining bias
if gn consistently estimates the true propensity score while preserving the balancing score
property. In practice, the number of strata k can be chosen based on cross-validation in such
a way that it can grow with sample size.

Alternatively, when ḡn(W ) is not discrete or has many levels, θ0 can be estimated in an
generalized additive model(Simon N. Wood, 2011) with Q̄n as an offset. We can parameterize
this model as

Q̄ḡn,θ
n (A,W ) = logit−1[logit(Q̄n(A,W ))+

Aθ1(ḡn(W )) + (1− A)θ2(ḡn(W ))]
(3.3)

with θ = (θ1, θ2) where θ1 and θ2 are unspecified. Other parametric or nonparametric
methods can be used and cross-validation based SuperLearning can be used to select the
best weighted combination of estimators for θ0 (Mark J van der Laan, Polley, and Alan E
Hubbard, 2007; Mark J. van der Laan and Sherri Rose, 2011). When the linear model (3.2) is
used, θ0(A,W ) = E0(Y − Q̄(A,W ) | A, gn(1 | W )). In this case, a nearest neighbor or kernel
regression can be used where residuals from the initial estimate, Ri = Yi − Q̄n(Ai,Wi), are
treated as an outcome. This is similar to the bias corrected matching estimator presented by
Abadie and Imbens (2011).

3.5 Simulations

We demonstrate properties of the proposed BSA-TMLE in various scenarios, and compare
it to other estimators. The estimators compared in simulations include a plug-in estimator
based on just the initial estimator of Q̄0 without balancing score adjustment, DR-BSA plug-in
estimators without a TMLE update, non-doubly robust BSA plug-in estimators, an inverse
probability of treatment weighted estimator, and a TMLE using an initial estimator for Q̄0
not directly adjusted for a balancing score.

The plug-in estimator not adjusted for a balancing score is calculated as Ψ(Q̄n, QWn)
with Q̄n as defined in Section 3.4. We call this the simple plug-in estimator. The DR-BSA
plug-in estimator uses the balancing score adjusted Q̄0

n as in Section 3.4 and is calculated as
Ψ(Q̄0

n, QWn). The non-doubly robust BSA plug-in estimator adjusts for the balancing score,
but uses as initial Q̄n an unadjusted estimate that is not a function of W . The non-DR-BSA
plug-in estimator can be thought of as only adjusting for gn(1 | W ) and not the whole
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Table 3.1: Summary of properties of compared estimators

Estimator Plug-in Consistent if Efficient if
Q̄n → Q̄0 ḡn → ḡ0 ḡn → BS Q̄n → Q̄0 & ḡn → ḡ0

Simple plug-in X X
BSA X X X
DR-BSA X X X X X†

IPTW X
TMLE X X X X
BSA-TMLE X X X X X
†We do now show formally that the DR-BSA estimator is asymptotically linear.

covariate vector W . The IPTW estimator is calculated as

n−1
n∑
i=1

AiYi
gn(1 | Wi)

.

The estimators we compare are summarized in Table 3.1.
In the simulation studies, we use two methods for adjusting the initial estimator with

the propensity score. All simulations were conducted in R (). The initial estimator Q̄n was
adjusted with either a generalized additive model (GAM) in (3.3), or a nearest neighbor
approach analogous to propensity score matching. The non-DR-BSA plug-in estimator based
on nearest neighbors reduces exactly to a propensity score matching estimator. The GAM
was fitted with the mgcv package (Simon N. Wood, 2011) and the nearest neighbor/propensity
score matching type estimator was implement with the Matching package (Sekhon, 2011).

The initial estimates for Q̄0 and ḡ0 are estimated using generalized linear models. Specifi-
cally, ḡ0 is estimated using logistic regression, and Q̄0 is estimated with least squares when
Y is continuous, and logistic regression when Y is binary. To investigate robustness to
various kinds of model misspecification, models are either correctly specified, or some relevant
covariates are excluded.

The data generating distribution in the simulations was as follows. Baseline covariates
W1, W2 and W3 have independent uniform distributions on [0, 1]. Treatment A is Bernoulli
with mean

logit−1(β0 + β1W1 + β2W2 + β3W3 + β4W1W2).
Outcome Y is either Bernoulli or normal with variance 1 and mean

m(α0 + α1W1 + α2W2 + α3W3 + α4A),

where m is logit−1 if Y is Bernoulli, or the identity if Y is normal. All estimators were
evaluated on 1, 000 datasets of size n = 100 and n = 1, 000. Bias, variance, and mean squared
error (MSE) are calculated for each estimator.
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Table 3.2: Simulation results for distribution one with Q̄n unadjusted and ḡn correctly
specified but transformed with Beta CDF

Estimator n=100 n=1000
Bias Variance MSE Bias Variance MSE

BSA, NN 0.0276 0.0180 0.0188 0.0026 0.0018 0.0018
BSA, GAM 0.0075 0.0163 0.0163 0.0041 0.0015 0.0015
IPTW −0.0249 0.0087 0.0093 −0.0246 0.0010 0.0016
TMLE 0.1063 0.0111 0.0224 0.1082 0.0010 0.0127
BSA-TMLE, NN 0.0276 0.0180 0.0188 0.0026 0.0018 0.0018
BSA-TMLE, GAM 0.0070 0.0164 0.0165 0.0037 0.0015 0.0015

In the first scenario, which we call distribution one, α = (α0, α1, α2, α3, α4) = (−3, 2, 2, 0.5)
and β = (β0, β1, β2, β3, β4) = (−3, 1, 1, 0, 5) so W1 and W2 are confounders, and the propensity
score depends on the product W1W2. The true parameter ψ0 ≈ 0.0985 and the variance bound
is approximately 1.5691/n. The variance bound of a parameter in a semiparametric model is
the minimum asymptotic variance that a regular estimator can achieve, and depends on the
parameter mapping Ψ and the true distribution P0 (Bickel et al., 1993). This is analogous with
the Cramér-Rao bound in a parametric model. An estimator that asymptotically achieves
the variance bound is called efficient.

The first set of results in Table 3.2 demonstrate the balancing score property. The
initial estimate Q̄n is unadjusted. A correct logistic regression model is specified for ḡ0, but
predictions are transformed by the Beta cumulative distribution function with both shape
parameters equal to 2. Although artificial, this means that ḡn converges to a monotone
transformation of ḡ0, which is a balancing score, but does not converge to the true ḡ0. We
can see that the TMLE not adjusted for the propensity score and the IPTW estimators are
not consistent as the bias is not decrease substantially when sample size increase. Conversely,
methods where the initially estimate Q̄n is adjusted with the propensity score, are consistent,
as bias is decreasing quickly with sample size.

Table 3.3 shows similar performance in a more realistic scenario. In this setting, the initial
estimator for Q̄n is unadjusted, but the logistic regression model for the propensity score is
misspecified by excluding the interaction term W1W2. Here predictions are not transformed.
Here ḡn is close to but not exactly a balancing score, but it is close enough that the bias in
estimators that nonparametrically adjust for ḡn is small. The IPTW estimator, however, is
still biased at large n because ḡn is not converging to ḡ0. In this case TMLE performs well
even with an unadjusted initial estimator but this is not guaranteed when ḡn is misspecified.

Table 3.4 examines the performance of estimators when the model for ḡ0 is misspecified,
(only including W1 in the logistic regression model,) but the initial estimate Q̄n is a correctly
specified model. Here we see that estimates that rely only on estimated propensity score,
(the non-doubly robust BSA estimators and IPTW,) fail to be consistent, but estimates that
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Table 3.3: Simulation results for distribution one with Q̄n unadjusted, and ḡn misspecified
but close to a balancing score

Estimator n=100 n=1000
Bias Variance MSE Bias Variance MSE

BSA, NN 0.0311 0.0166 0.0176 0.0027 0.0016 0.0016
BSA, GAM 0.0147 0.0159 0.0161 0.0033 0.0014 0.0014
IPTW 0.0390 0.0410 0.0425 0.0357 0.0025 0.0037
TMLE 0.0096 0.0172 0.0173 0.0098 0.0016 0.0017
BSA-TMLE, NN 0.0311 0.0166 0.0176 0.0027 0.0016 0.0016
BSA-TMLE, GAM 0.0101 0.0189 0.0190 −0.0042 0.0015 0.0016

Table 3.4: Simulation results for distribution one with Q̄n correctly specified and ḡn misspeci-
fied

Estimator n=100 n=1000
Bias Variance MSE Bias Variance MSE

Simple plug-in 0.0071 0.0120 0.0120 0.0011 0.0013 0.0013
BSA, NN 0.1190 0.0126 0.0268 0.1064 0.0014 0.0128
DR-BSA, NN 0.0064 0.0139 0.0140 0.0003 0.0015 0.0015
BSA, GAM 0.1139 0.0116 0.0246 0.1096 0.0012 0.0133
DR-BSA, GAM 0.0152 0.0129 0.0132 0.0015 0.0013 0.0013
IPTW 0.1061 0.0115 0.0228 0.1035 0.0012 0.0119
TMLE 0.0076 0.0129 0.0130 0.0009 0.0013 0.0013
BSA-TMLE, NN 0.0064 0.0139 0.0140 0.0003 0.0015 0.0015
BSA-TMLE, GAM 0.0154 0.0133 0.0136 0.0014 0.0013 0.0013

use the correctly specified initial estimate of Q̄0, are consistent. Importantly, even when
the initial estimate is adjusted with the completely misspecified ḡn, final estimates are still
consistent when the initial Q̄n is correctly specified.

In a second scenario, called distribution two, Y is conditionally normal with α =
(0, 10, 8, 0, 2) and β = (−1, 0, 0, 3, 0). Here Y depends on W1 and W2 but A does not,
so they are not confounders. Additionally, A depends on W3, but Y does not, so W3 is an
instrumental variable. In this setting, because none of the baseline covariates are confounders,
an unadjusted estimator of ψ0 will be consistent but not efficient, because it will fail to take
into account the relationship with the non-confounding baseline covariates W1 and W2. Here,
the true ψ0 is 2 and the variance bound is approximately 5.1979/n.

Table 3.5 shows results from distribution two where the initial estimate for Q̄0 is the least
squares estimate from a linear regression model with A, W1, W2, and W3 are main terms,
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Table 3.5: Simulation results from distribution two with Q̄n correctly specified and ḡn correctly
specified and includes an instrumental variable

Estimator n=100 n=1000
Bias Variance MSE Bias Variance MSE

Simple plug-in −0.0112 0.0505 0.0506 0.0007 0.0048 0.0048
BSA, NN 0.0080 0.1815 0.1815 0.0020 0.0185 0.0185
DR-BSA, NN −0.0108 0.0578 0.0579 0.0024 0.0059 0.0060
BSA, GAM −0.0061 0.3207 0.3208 −0.0008 0.0097 0.0097
DR-BSA, GAM −0.0112 0.0565 0.0566 0.0010 0.0051 0.0051
IPTW −0.0072 0.7559 0.7560 −0.0021 0.0231 0.0231
TMLE −0.0182 0.0575 0.0578 0.0009 0.0052 0.0052
BSA-TMLE, NN −0.0108 0.0578 0.0579 0.0024 0.0059 0.0060
BSA-TMLE, GAM −0.0181 0.0587 0.0590 0.0009 0.0053 0.0053

and the initial estimate for the propensity score is the MLE from a logistic regression model
with main terms W1, W2, and W3. Here we see that, although all estimators have low bias,
those that only adjust for ḡn, (the non-doubly robust BSA estimators and IPTW,) have much
higher variance than those with a correctly specified initial estimate. This demonstrates the
importance in terms of efficiency of attempting to estimate Q̄0 well with the initial estimate
even when confounding is not a concern.

3.6 Discussion

In this paper we discuss the balancing score property of estimators that nonparametrically
adjust for the propensity score. We see in simulations that, even when the propensity score
estimator is not consistent, Ψ(P0) can be estimated with low bias if the estimate of the
propensity score approximates a balancing score well enough. Additionally, we introduce a
balancing score adjusted TMLE which has the balancing score property and is also doubly
robust and locally efficient, and provide regularity conditions for asymptotic linearity in
Section 3.B.

In order for an estimator to have the balancing score property, we need to estimate some
balancing score. We acknowledge that in practice, one does not expect an estimate of the
propensity score to converge exactly to a balancing score that is not g0 in general. However,
because the propensity score is a single element of the large class of balancing scores, the
condition that an estimated propensity score gn converges to some balancing score is strictly
weaker than requiring gn to converge to g0. When gn fails to converge to g0, we may still
have a chance at approximating a balancing score, and the proposed BSA-TMLE can still
reduce bias relative to an estimator that requires that gn converges to g0 without sacrificing
double robustness or efficiency.
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We now discuss some some possible generalizations to the work in this paper and areas
for further research. The estimators present in this paper are for the statistical parameter
E0[E0(Y | A = 1,W )], which, under assumptions, can be interpreted as the population mean
of a variable Y when Y is subject to missingness (Kang and Schafer, 2007). The results and
similar estimators are immediately applicable to other interesting statistical parameters such
as

E0[E0(Y | A = 1,W )− E0(Y | A = 0,W )]
and

E0[E0(Y | A = 1,W )− E0(Y | A = 0,W ) | A = 1]
which, under non-testable causal assumptions, can be interpreted as causal parameters called
the ATE or ATT, respectively (Hahn, 1998; Mark J. van der Laan and Sherri Rose, 2011).
Additionally, the results are immediately generalizable to the estimation of parameters in
marginal structural models (James M. Robins, 1997; Rosenblum and Mark J van der Laan,
2010).

Propensity score based methods are most often applied in settings where the treatment
variable is binary. In settings where the treatment variable is not binary, Kosuke Imai and
Van Dyk (2004) generalize the notion of the propensity score to the propensity function, the
conditional probability of observed treatment given covariates. Kosuke Imai and Van Dyk
(2004) show that the propensity function is a balancing score. When the propensity function
can be characterized by a finite dimensional parameter, one can estimate parameters of
the distribution of counterfactuals by adjusting for the dimensional characterization of the
propensity function in place of all covariates. Using the approach of Kosuke Imai and Van Dyk
(2004), the methods in this paper may be extended to develop estimators that are doubly
robust and efficient with the balancing score property for more general situations where
treatment is categorical or potentially even continuous.

Traditionally, propensity score based estimators estimate the propensity score based on
how well ḡn approximates the true ḡ0. Collaborative targeted minimum loss-based estimation
(CTMLE) is a method that chooses an estimator for the propensity score based on how
well it helps reduce bias in the estimation of Ψ(P0) in collaboration with an initial estimate
of Q̄0 using cross-validation (Mark J van der Laan and Gruber, 2010; Mark J. van der
Laan and Sherri Rose, 2011). In doing so, CTMLE attempts to adjust the propensity score
for the most important confounders first, and avoid adjustment for instrumental variables.
This can lead to improvements in efficiency and robustness to violations of the assumption
P0(A = a|W ) > 0. Applying an analogous techniques of estimator selection for balancing
score adjusted estimators is an area of further research.

3.A Notation

• O = (W,A, Y ): observed data structure

– W : vector of covariates



CHAPTER 3. BALANCING SCORE ADJUSTED TMLE 35

– A: treatment indicator, 0 or 1
– Y : univariate outcome

• P : a distribution of O

• M: statistical model, set of possible probability distributions P

• Ep(·): expectation under distribution P

• Q = (Q̄, QW )

– Q̄(a, w) = EP (Y | A = a,W = w)
– QW (w) = P (W = w)

• g(a | w) = P (A = a | W = w)

• ḡ(w) = g(1 | W ), also called the propensity score when .

• Ψ: statistical parameter mapping from M to R.

– In particular, Ψ(P ) = EP [EP (Y | A = 1,W )]
– Also written as Ψ(Q)

• ψ = Ψ(P )

• Subscript 0: indicates the truth, e.g. ψ0 = Ψ(P0) is the true parameter value

• Subscript n: indicates an estimate based on n observations, e.g. Q̄n is an estimate of
Q̄0

• Q̄0
n an initial estimate of Q̄0

• L: loss function

• LY : loss function for Q̄

• LW : loss function for QW

• Q(ε) a working submodel through Q

• IC: an influence curve

• D∗: the efficient influence curve

• Q̄∗n a TMLE updated estimate of some initial Q̄0
n

• b(w): some function of w that is a potential balancing score
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• θ: some function of a and b(w)

• Q̄b,θ: a working submodel through Q̄ for a particular b and θ

• L′ a loss function for Q̄b,θ, used in Section 3.4

3.B Some results and proofs

Proof of Lemma 1. In this proof, E means expectation with respect to P . First note that
E(Y | A = 1,W, b(W )) = E(Y | A = 1,W ) because b is a function of only W . Next,

E[E(Y | A = 1,W ) | A = 1, b(W )] = E[E(Y | A = 1,W ) | b(W )]

because the inner conditional expectation is a function of only W and W ⊥ A | b(W ) when b
is a balancing score. Thus,

E[E(Y | A = 1, b(W ))] =E{E[E(Y | A = 1,W, b(W )) | A = 1, b(W )]}
=E{E[E(Y | A = 1,W ) | A = 1, b(W )]}
=E{E[E(Y | A = 1,W ) | b(W )]}
=E[E(Y | A = 1,W )]
=Ψ(P )

Theorem 3. Assume

Ψ((Q̄gn,θn
n , QWn))−Ψ((Q̄b,θ0 , QW0))→ 0, as n→∞.

In addition, assume that either ḡ is a balancing score or Q̄ = Q̄0. Then Ψ((Q̄gn,θn
n , QWn)) is

consistent for ψ0.

Proof. By definition of θ0, we have

E0[h(A, b(W ))(Y − Q̄b,θ0(A,W ))] = 0

for all functions h of A and b(W ). Rosenbaum and D.B. Rubin (1983, Theorem 2) show that
b is a balancing score if and only if there exists a function f so that ḡ0(w) = f(b(w)) a.e., so
we can select the function

h(A, b(W )) = A

f(b(W )) = A

ḡ0(W ) .

In addition, we also have that E0Q̄
b,θ0(1,W )−Ψ((Q̄b,θ0 , QW,0)) = 0. This proves that

P0D
∗(Q̄b,θ0 , QW,0, g0) = 0,
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where D∗ is the efficient influence curve of Ψ at P , and notation

Pφ =
∫
φ(o)dP (o)

for some function φ of O and distribution P . Since P0D
∗(Q̄, QW , g0) = ψ0−Ψ(Q), this shows

Ψ((Q̄b,θ0 , QW0)) = Ψ((Q̄0, QW0))

This proves that under the stated consistency condition, we indeed have that Ψ((Q̄gn,θn
n , QWn))

is consistent for ψ0. This proves the consistency under the condition that b is a balancing
score.

Consider now the case that Q̄ = Q̄0. Then θ0 = 0 and thus Q̄b,θ0 = Q̄0. Thus, the limit
Ψ((Q̄b,θ0 , QW0)) = Ψ((Q̄0, QW0)), which proves the second claim of the theorem.

Theorem 4. Assume

Ψ((Q̄gn,θn
n (εn), QWn))−Ψ((Q̄b,θ0(ε0), QW0))→ 0, as n→∞,

where ε0 = arg minε P0L(Q̄b,θ0(ε)).
In addition, assume that b is a balancing score, or Q̄ = Q̄0. Then ε0 = 0 and

Ψ((Q̄ḡn,θn
n (εn), QWn)) is consistent for ψ0.

Proof. Firstly, assume b is a balancing score so by Rosenbaum and D.B. Rubin (1983, Theorem
2) there exists a mapping f so that g0(w) = f(b(w)) a.e.. In the proof of the previous theorem
we showed that

E0
A

b(W )(Y − Q̄b,θ0(A,W )) = E0
A

g0(W )(Y − Q̄b,θ0(A,W )) = 0.

The left-hand side equals d
dε
P0L(Q̄b,θ0(ε))

∣∣∣
ε=0

and this score equation in ε is solved by ε0. This

proves that ε0 = 0 under the assumption that this score equation P0L(Q̄b,θ0(ε)) = 0 has a
unique solution. The latter follows from the fact that the submodel with single parameter ε
has an expected loss that is strictly convex.

This now proves that the limit Ψ((Q̄b,θ0(ε0), QW0)) = Ψ((Q̄b,θ0 , QW,0)) so that we can
apply the previous theorem which shows that the latter limit equals ψ0. This proves the
consistency of the TMLE when b is a balancing score.

Consider now the case that Q̄ = Q̄0. Then θ0 = 0 and thus Q̄b,θ0 = Q̄0. Thus, the
limit Ψ((Q̄b,θ0 , QW0)) = Ψ((Q̄0, QW0)), which proves the consistency under the condition that
Q̄ = Q̄0. In the latter case, it also follows that ε0 = 0.

Lemma 2. If ḡn takes only discrete values with support G, then Ψ((Q̄ḡn,θn
n , QWn)) is a TMLE

if θ0 is estimated as θn using MLE in a saturated parametric model

logitQ̄gn,θ
n (a, w) = logit(Q̄n(A,W )) +

∑
a∈{0,1}
c∈G

θa,cI(A = a, ḡn(W ) = c) (3.4)

where Q̄n is some initial estimator for Q̄0 and I is the indicator function.
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Proof of Lemma 2. The MLE θn (or empirical risk minimizer for the negative quasi-binomial
log likelihood, if Y is not binary), solves the score equations for each parameter θa,c:

0 =
n∑
i=1

I(Ai = a, ḡn(Wi) = c)(Y − Q̄gn,θn
n (Ai,Wi)).

Additionally, any function h of A and ḡn(W ) is in the linear span of basis functions I(A =
a, ḡn(W ) = c) for all a ∈ {0, 1}, c ∈ G, so

0 =
n∑
i=1

h(Ai, ḡn(Wi))(Y − Q̄gn,θn
n (Ai,Wi)).

In particular, the above equation is solved when h(a, w) = a
ḡn(w) , which is the score from the

parametric submodel in (3.4). Thus if the TMLE update is applied to the initial estimate
Q̄0
n = Q̄ḡn,θn

n , εn = 0, and Q̄∗n = Q̄0
n so Ψ((Q̄ḡn,θn

n , QWn)) is a TMLE.

Theorem 5. Define Φ1(Q) = P0Q̄
ḡ−ḡ0
ḡ

and Φ2(g) = P0(Q̄− Q̄0) ḡ
ḡ0

. Assume D∗(Q∗n, gn) falls

in a P0-Donsker class with probability tending to 1; P0{D∗(Q∗n, gn) − D∗(Q, g)}2 → 0 in
probability as n→∞;

P0(Q̄0 − Q̄∗n)(ḡ0 − ḡn)(ḡ − ḡn)
ḡḡn

= oP (1/
√
n);

P0(Q̄∗n − Q̄)(ḡn − ḡ)/ḡ = oP (1/
√
n);

P0(Q̄− Q̄0)(ḡ − ḡ0)/ḡ = 0;

Φ1(Q̄∗n) and Φ2(ḡn) are asymptotically linear estimators of Φ1(Q̄) and Φ2(ḡ) with influence
curves IC1 and IC2, respectively.

Then Ψ(Q∗n) is asymptotically linear with influence curve D∗(Q, g) + IC1 + IC2.

Proof. Since P0D
∗(Q, g) = ψ0 −Ψ(Q) + P0(Q̄0 − Q̄)(ḡ0 − ḡ)/ḡ (e.g, Zheng and Mark J van

der Laan (2010, 2012)), where we use the notation Q̄(W ) = Q̄(1,W ), this results in the
identity:

Ψ(Q∗n)− ψ0 = (Pn − P0)D∗(Q∗n, gn) + P0(Q̄0 − Q̄∗n)(ḡ0 − ḡn)/ḡn.
The first term equals (Pn−P0)D∗(Q, g) + oP (1/

√
n) if D∗(Q∗n, gn) falls in a P0-Donsker class

with probability tending to 1, and P0{D∗(Q∗n, gn)−D∗(Q, g)}2 → 0 in probability as n→∞
(van der Vaart, 1998; van der Vaart and A., 1996). We write

P0(Q̄0 − Q̄∗n)(ḡ0 − ḡn)/ḡn = P0(Q̄0 − Q̄∗n)(ḡ0 − ḡn)/ḡ + P0(Q̄0 − Q̄∗n)(ḡ0 − ḡn)(ḡ − ḡn)
ḡḡn

.

Assume that the last term is oP (1/
√
n). We now write

P0(Q̄0 − Q̄∗n)(ḡ0 − ḡn)/ḡ = P0(Q̄∗n − Q̄+ Q̄− Q̄0)(ḡn − ḡ + ḡ − ḡ0)/ḡ
= P0(Q̄∗n − Q̄)(ḡn − ḡ)/ḡ + P0(Q̄∗n − Q̄)(ḡ − ḡ0)/ḡ
+P0(Q̄− Q̄0)(ḡn − ḡ)/ḡ + P0(Q̄− Q̄0)(ḡ − ḡ0)/ḡ
≡ P0(Q̄∗n − Q̄)(ḡn − ḡ)/ḡ + Φ1(Q̄∗n)− Φ1(Q̄)
+Φ2(ḡn)− Φ2(ḡ) + P0(Q̄− Q̄0)(ḡ − ḡ0)/ḡ,
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where Φ1(Q) = P0Q̄
ḡ−ḡ0
ḡ

and Φ2(g) = P0(Q̄ − Q̄0) ḡ
ḡ0

. We assume that the first term is

oP (1/
√
n), the last term equals zero (i.e., either g = g0 or Q̄ = Q̄0), and Φ1(Q̄∗n) and Φ2(ḡn)

are asymptotically linear estimators with influence curves IC1 and IC2, respectively. This
proves Ψ(Q∗n) is asymptotically linear with influence curve D∗(Q, g) + IC1 + IC2.

3.C TMLE when Y is not bounded by 0 and 1
If Y is not bounded by 0 and 1, but we can assume Y is bounded by l and u with −∞ < l <

u <∞, Y can be transformed to Y † = Y−l
u−l . Similarly Q̄0

n can be transformed to Q̄0†
n = Q̄0

n−l
u−l .

The procedure described in Section 3.3 can be applied to the data structure (W,A, Y †) using
Q̄0†
n as initial estimator, and the final estimate can be transformed back to the original scale

as Ψ((Q̄∗n, QWn)) ∗ (u− l) + l. When l and u are not known, they can be set to the minimum
and maximum of the observed Y as described in ().

For completeness we can define an alternative TMLE using a linear working model where

Q̄0
n(ε)(A,W ) = Q̄0

n(A,W ) + ε
A

gn(1 | W )

with loss function
LY (Q̄)(O) = (Y − Q̄(A,W ))2

the squared error loss. Here, ε0 = arg minεE0LY (Q̄)(O) can be estimated by standard least
squares regression software, with Q̄0

n(A,W ) as an offset.
Asymptotically, a TMLE using a linear working model (or linear fluctuation) is the

equivalent to a TMLE with a logistic working model, but in practice can perform poorly.
This is because if gn(1 | Wi) is very small for some observations, which is more likely in
small samples, ε0n can be large in absolute value, having a large effect on Q̄∗n with a linear
fluctuation, which is unbounded. Because of this, if it is reasonable to bound Y by some l and
u, it the logistic working model is recommended because Q̄∗n always respects these bounds,
even if ε0n is large.

3.D Example implementation of a BSA-TMLE

estimator in R

bsatmle <- function(QnA1, QnA0, gn1, A, Y, family="binomial") {
# computes estimates of E(E(Y|A=1, W)) (called ey1 in the
# output), E(E(Y|A=0, W)) (called ey0), and
# E(E(Y|A=1, W)) - E(E(Y|A=1, W)) (called ate)
#
# Inputs:
# QnA1, QnA0: vectors, initial estimates of \bar{Q}_n(1, W)
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# and \bar{Q}_n(O, W)
# gn1: vector, estimates of g_n(1|W)
# A: vector, indicator of treatment
# Y: vector, outcome
# family: "binomial" for logistic fluctuation, "gaussian"
# for linear fluctuation.
# if "binomial", Y should be binary or bounded
# by 0 and 1

if (!require(mgcv)) stop("mgcv package is required")
if (family=="binomial") {

#use quasibinomial to suppress error messages about
#non-integer Y
family <- "quasibinomial"
link <- qlogis

} else {
link <- identity

}

QnAA <- ifelse(A==1, QnA1, QnA0)

# Use a generalized additive model to estimate theta_0
# using the initial estimate of \bar{Q}
gamfit <- gam(Y~factor(A)+s(gn1, by=factor(A))+offset(off),

family, data=data.frame(A=A, gn1=gn1, off=link(QnAA)))

#Get predictions from gam fit
QnA1.gam <- predict(gamfit, type="response",

newdata=data.frame(A=1, gn1=gn1, off=link(QnA1)))
QnA0.gam <- predict(gamfit, type="response",

newdata=data.frame(A=0, gn1=gn1, off=link(QnA0)))
QnAA.gam <- ifelse(A==1, QnA1.gam, QnA0.gam)

# compute a/g_n(1|W)
hA1 <- 1 / gn1
hA0 <- -1 / (1 - gn1)
hAA <- ifelse(A==1, hA1, hA0)

#using glm, fluctuate the gam-updated initial fit of \bar{Q}
glmfit <- glm(Y~-1+h + offset(off), family,

data=data.frame(h=hAA, off=link(QnAA.gam)))
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QnA1.star <- predict(glmfit, type="response",
newdata=data.frame(h=hA1, off=link(QnA1.gam)))

QnA0.star <- predict(glmfit, type="response",
newdata=data.frame(h=hA0, off=link(QnA0.gam)))

#compute the final estimates
ey1 <- mean(QnA1.star)
ey0 <- mean(QnA0.star)
ate <- ey1-ey0

list(ey1=ey1, ey0=ey0, ate=ate)
}
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Chapter 4

Scalable Causal Infernece

4.1 Introduction

As the size of data sets grow, computational time becomes the limiting factor in statistical and
machine learning problems. Methods that scale super-linearly in the number of observations
are not practical as the number of observations grows extremely large or possibly infinite.
Developing scalable methods for machine learning is an active area of research, and in recent
years, procedures have been developed that scale well as sample sizes grow for tasks like
classification and regression.

For causal inference and effect estimation, we often want to estimate a relatively low di-
mensional statistical parameter in a semiparametric or nonparametric model. Semiparametric
efficient estimators of pathwise differentiable target parameters have been developed using
some general approaches such as one-step estimation (Bickel et al., 1993), estimating equation
methodology (James M Robins, Rotnitzky, and Zhao, 1994; M. J. van der Laan and J. M.
Robins, 2003), and targeted minimum loss-based estimation (TMLE) (M. J. van der Laan and
S. Rose, 2011; Mark J. van der Laan and Daniel Rubin, 2006). Though the target parameter
is much lower in dimension than the number of covariates or features per observation in the
data set, estimation of the target parameter often requires estimation of high dimensional
functions such as a conditional mean or conditional probability. Usually computational
complexity of such estimators is not taken into account. In this article, we introduce scalable
methods for estimating parameters in a semi-parametric model with applications to causal
inference.

What does it mean for a method to be scalable? First we consider so called batch methods
which are traditionally used to fit statistical and machine learning estimators. Such methods
typically update some intermediate estimate iteratively, where each iteration is computed
using the whole data set—the whole “batch”. Iteration is stopped when the estimate meets
some predefined criterion. The computational complexity of batch methods as a function of
the number of samples n measures the number of operations needed to compute the estimate.
When a data set fits in main memory, a batch method that takes O(n) operations per iteration
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and dozens or hundreds of iterations may be practical.
In the age of big data, the computational complexity of batch methods does not correspond

to wall clock time. It is simple to see why. To compute the wall clock time from the
computational complexity of an algorithm, we only need to know the “constant” hidden in
the big O notation representing the time per operation. This number turns out to not be
constant with respect to n. As the size of data sets grow too large to fit in main memory, the
time to access each data point increases quickly as data must be read from disk or across
a network. This data access time quickly dominates the total computation time. Batch
methods that need many iterations using the whole data set can become orders of magnitude
slower as n increases linearly and are no longer practical.

In contrast, incremental methods update an estimate using a relatively small, fixed
number of observations, a mini-batch, at a time. They make more updates in total but
relatively few passes through a data set compared to batch methods. Because each update
only depends on a fixed number of observations, the time per update does not grow with
n. An important incremental method is stochastic (or mini-batch) gradient descent (SGD)
which is commonly used to fit predictive models like large scale generalized linear models
(GLMs), neural networks, and support vector machines (Bottou, 2010). There are many
variants of SGD (Bottou, 2012; Duchi, Hazan, and Y. Singer, 2011; Zeiler, 2012), but they all
revolve around a common theme: make some approximation of the gradient of an objective
function of the full data set with only a few observations, and perform gradient descent with
that approximation. With a sufficiently large n, SGD can perform as well as a batch method
like batch gradient descent with only a few passes over the data set, and the computation
time can be orders of magnitude faster (Bottou, 2010).

Online methods can be thought of as incremental methods which only see each piece
of data once and therefore only make a single pass through a data set. Such methods are
particularly useful in settings where data becomes available constantly, and updating an
estimate with new data by refitting on all data available is prohibitively expensive. Under
some conditions, SGD-like methods have been shown to perform asymptotically as well as
batch methods in one pass through the data set (Murata, 1998; Xu, 2011).

In this article, we consider a method to be scalable if it is online, the required memory is
bounded and does not depend on total sample size, and the computational complexity of an
update on each new fixed-size mini-batch of data is constant. In Section 4.2 we formulate
the estimation problem and introduce some notation. In Section 4.3 we introduce an online
one-step estimator for a pathwise differentiable parameter and an online targeted one-step
estimator in Section 4.4. In Section 4.5, we review some results on stochastic gradient descent
and discuss how SGD can be used to compute initial estimators of components of our final
estimator. In Section 4.6, we describe the implementation of online one-step and online
targeted one-step estimators for estimation of the average treatment effect and investigate
their performance via a simulation study. We conclude with a discussion in Section 4.7.
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4.2 Formulation of the online estimation problem

Let O1, . . . , On be a set of n independent and identically distributed observations with
probability distribution P0 ∈ M where M is a statistical model. Let 0 = n0 < n1 < n2 <
. . . < nK = n. Here n = nK represents the total sample size, while nj represents the sample
size at the jth mini-batch. Each mini-batch j adds a next group of nj − nj−1 observations
Oi with i = nj−1 + 1, . . . , nj. We do not assume that the number of new samples at each
mini-batch, nj − nj−1 is converging to infinity, but instead, we assume that K and thus nK
converge to infinity. For simplicity, we assume nj − nj−1 = m is constant.

Let Ψ : M → Rd be a Euclidean target parameter mapping of interest so that Ψ(P0)
denotes the desired estimand we want to learn from the data. Suppose that Ψ(P ) = Ψ1(Q(P ))
for some parameter mapping Ψ1 and parameter P → Q(P ) onM, so that Ψ(P ) only depends
on P through a smaller part Q(P ). Recognizing the abuse of notation, we denote Ψ1 with Ψ
for convenience.

Assume that Ψ is pathwise differentiable at P for each P ∈ M and let D∗(P ) be the
efficient influence curve (EIC) of Ψ :M→ Rd at P . The efficient influence curve is defined
as the canonical gradient of the pathwise derivative along parametric paths through P . That
is, for any path {P (ε) : ε} ⊂ M through P with score S = d

dε
logP (ε)

∣∣∣
ε=0

at ε = 0, we have

d

dε
Ψ(P (ε))

∣∣∣∣∣
ε=0

= PD∗(P )S.

where we use the notation Pf =
∫
f(o)dP (o). This canonical gradient is uniquely defined as

the only gradient D(P ) (i.e, each component is an element of L2
0(P ) and PD∗(P )S = PD(P )S

for all scores S) whose components are also an element of the so called tangent space T (P )
defined as the closure of the linear span of all the scores generated by the class of parametric
paths.

Suppose that D∗(P ) only depends on P through Q(P ) and an nuisance parameter G(P )
defined on the model M and that we can write the efficient influence curve as a function of
Q(P ), G(P ). To emphasize this we will use the notation D∗(P ) = D∗(Q(P ), G(P )) for some
(Q,G) 7→ D∗(Q,G). The efficient influence curve determines the efficiency of an estimator of
ψ0 = Ψ(P0). An estimator ψn is an asymptotically efficient estimator of ψ0 if and only if

ψn − ψ0 = (Pn − P0)D∗(P0) + oP (1/
√
n).

In other words, an estimator attains the smallest asymptotic variance among the class of all
regular estimators if and only if the estimator is asymptotically linear with influence curve
equal to the efficient influence curve.

Let R(P, P0) be defined by

P0D
∗(Q,G) = Ψ(P0)−Ψ(P ) +R(P, P0),

where, by the fact that D∗(P ) is the canonical gradient of the pathwise deriative so (P0 −
P )D∗(P ) can be interpreted as a first order expansion of Ψ, R(P, P0) is a second order
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remainder that can be explicitly determined give Ψ and D∗. Equivalently, in terms of
D∗(P ) = D∗(Q,G) and Ψ(P ) = Ψ(Q), we have

P0D
∗(Q,G) = Ψ(Q0)−Ψ(Q) +R(Q,G,Q0, G0) (4.1)

for a specified second order term R().
Let Ok = (Onk−1+1, . . . , Onk

) represent the m = nk − nk−1 observations making up
mini-batch k. For notational convenience, we define

D∗k(P )(Ok) = 1
m

nk∑
i=nk−1+1

D∗(P )(Oi).

Before we proceed with presenting our proposed online estimators of ψ0 in the next
sections, we first formally define what we mean with an online estimator.

Definition 1. An online estimator of a parameter ψ0 based on a sequence of mini-batches
O1,O2, . . . is a sequence of estimators (ψk : k = 1, . . .) with ψk being an estimator based on
O1, . . . ,Ok satisfying the following property: there exist certain functions f1 and f2, and a
sequence of estimators (ηk : k = 1, . . .) with ηk = f2(Ok, ηk−1), so that

ψk = f1(Ok, ηk−1), k = 1, . . ..

This definition can be applied to our target parameter ψ0, but also to define an online
estimator of (Q0, G0). Whether or not a particular online estimator is scalable in the sense
described in Section 4.1 depends on choice of f1 and f2. In particular, we need that the
memory required to store ηk and the computational complexity of evaluating f1 and f2 given
Ok and ηk−1 are bounded and do not depend on k. In general, it may be not be possible to
choose ηk, f1 and f2 that meet this condition, but in Section 4.6 we present an example and
describe a class of problems in which it is possible.

Let ((Qk, Gk) : k = 1, . . . , ) be an online estimator of (Q0, G0). For example, this might
be estimators using a stochastic gradient descent algorithm based on a high dimensional
parametric model. In the next sections we will propose two online estimators of ψ0 that
map this online estimator ((Qk, Gk) : k = 1, . . .) into an online estimator ψk of ψ0, so that
ψk is only a function of (Qk−1, Gk−1, ψk−1), and possibly a few more online low-dimensional
statistics, and the new mini-batch Ok.

A crucial ingredient in the analysis of our proposed online estimators is the following
identity that is an immediate consequence of (4.1):

P0,kD
∗
k(Qk−1, Gk−1) = Ψ(Q0)−Ψ(Qk−1) +R(Qk−1, Gk−1, Q0, G0) (4.2)

for k = 1, . . . , K where we used the notation P0,kf(Ok) =
∫
f(Ok)dP0,k(Ok) and

dP0,k(Ok) =
nk∏

i=nk−1+1
dP0(Oi)
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is the probability distribution of Ok implied by the common probability distribution P0
and the fact that all Oi are independent. Note that we also have P0,kD

∗
k(Qk−1, Gk−1) =

E0(D∗k(Qk−1, Gk−1)(Ok) | Fk−1) is the conditional expectation of the random variable
D∗k(Qk−1, Gk−1)(Ok) (a function of O1, . . . ,Ok), given F(k − 1) = (O1, . . . ,Ok−1).

We will assume that an initial estimator Qk=0, Gk=0 is given, so that the online procedure
can be initiated with this choice. In practice this might be an estimator based on an initial
mini-batch that is further ignored in our definition on the online estimator. However, one
could also simply define (Qk=0, Gk=0) = (Q1, G1), i.e., as the online estimator based on the
first mini-batch, since this choice does not affect the asymptotics (i.e., it only affects the
impact of the first n1 = m observations in the online estimator which is asymptotically
negligible as K →∞).

4.3 Online one-step estimator

In the batch setting, one-step estimation is one way of constructing an efficient estimator
in a semi-parametric model (Bickel et al., 1993). Given Qn and Gn, estimates of Q0 and
G0, respectively, a one-step estimator is computed by taking a plug-in estimator Ψ(Qn) and
updating it with a step in the direction of the empirical EIC:

Ψ(Qn) + 1
n

n∑
i=1

D∗(Qn, Gn).

We now present an online version of the one-step estimator which is asymptotically
efficient. Suppose we have some procedure for computing initial online estimates of Q0 and
G0. In Section 4.6 we give a specific example of a useful initial estimator. Denote estimates of
Q0 and G0 computed using the first j − 1 mini-batches Qnj−1 and Gnj−1 and initialize them
appropriately. We define the online one-step estimator at the jth batch as

ψk = 1
k

k∑
j=1

Ψ(Qj−1) + 1
k

k∑
j=1

1
m

nj∑
i=nj−1+1

D∗(Qj−1, Gj−1)(Oi).

This can be written equivalently as

ψk = k − 1
k

ψk−1 + 1
k

Ψ(Qk−1) + 1
m

nk∑
i=nk−1+1

D∗(Qk−1, Gk−1)(Oi)
 . (4.3)

We have the following theorem with a proof presented in Appendix 4.7.

Theorem 6. Define M̄(K) = ∑K
k=1Mk, where

Mk = D∗k(Qk−1, Gk−1)(Ok)− P0,kD
∗
k(Qk−1, Gk−1).



CHAPTER 4. SCALABLE CAUSAL INFERNECE 47

Let Σ2
k = E0M

2
k = E0MkM

>
k , and Σ2(K) = 1

K

∑K
k=1 Σ2

k. Define also

R̄(K) = 1
K

K∑
k=1

R0(Qk−1, Gk−1, Q0, G0).

If we assume

1. for some M <∞ maxk | D∗k(Qk−1, Gk−1)(Ok) |< M <∞ with probability 1,

2. R̄(K) = oP (1/
√
K),

3.
1
K

K∑
k=1

P0,kD
∗
k(Qk−1, Gk−1)2 − E0

1
K

K∑
k=1

P0,kD
∗
k(Qk−1, Gk−1)2 → 0

in probability as K → ∞ where D∗k(Qk−1, Gk−1)2 = D∗k(Qk−1, Gk−1)D∗k(Qk−1, Gk−1)>,
and

4. lim infK→∞ λΣ2(K)λ > 0 for all λ,

then
ψK − ψ0 = M̄(K)/K + oP (1/

√
K)

and

Σ(K)−1M̄(K)√
K
⇒D N(0, I), as K →∞.

This implies √
KΣ(K)−1(ψK − ψ0)⇒D N(0, I), as K →∞.

If also Σ2 = limk→∞Σ(k)2 exists and is positive definite, then

√
K(ψK − ψ0)⇒D N(0,Σ2), as K →∞,

so √
Km(ψK − ψ0)⇒D N(0,Σ2/m)

as K →∞, and Σ2/m = P0D
∗(Q0, G0)2 is the efficiency bound, so ψK is an asymptotically

efficient estimator of ψ0.
Finally, consider the following estimator of Σ2(K):

Σ̂2(K) = 1
K

K∑
k=1
{D∗k(Qk−1, Gk−1(Ok)− D̄K}2,

where D̄K = 1
K

∑K
k=1D

∗
k(Qk−1, Gk−1)(Ok). We have Σ̂2(K) − Σ2(K) → 0 in probability as

K →∞, and if Σ2 exists, then we also have Σ̂2(K)→ Σ2 in probability as K →∞.
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By Theorem 6, under regularity conditions, the online one-step estimator ψK is an
asymptotically efficient estimator for ψ0 if the remainder term R̄(K) is sufficiently small

oP (1/
√

(K)). The form of R̄(K) depends on particular model and parameter mapping, but
in general, this tells us something about the necessary rate of convergence of online initial
estimators of Q0 and G0. In cases where (parts of) Q or G can be expressed as an optimum of
a known loss function, (for example a generalized linear model), those parts can be consistently
estimated with stochastic gradient descent or similar algorithms.

4.4 Online targeted one-step estimation

In the batch setting, targeted minimum loss-based estimation (TMLE) is a framework for
constructing asymptotically efficient plug-in estimators. To define a TMLE, we choose a loss
function (Q,O)→ L(Q)(O) such that

Q0 = arg min
Q

P0L(Q).

We also choose a parametric working model through Q which depends on G {Q(ε | G) : ε}
such that the linear span of d

dε
L(Q(ε | G))(O)

∣∣∣
ε=0

contains D∗(Q,G). Starting with initial

estimate Q0
n, set Qj

n = Qj−1
n (εj−1

n | Gn) where εj−1
n = arg minε 1

n

∑n
i=1 L(Qj−1

n (ε | Gn)(Oi)) for
j = 1, 2, . . . until convergence. Convergence is reached when εjn ≈ 0 or 1

n

∑n
i=1D

∗(Qj
n, Gn) ≈ 0.

In some cases, the algorithm converges in one iteration. When convergence is reached, the
final estimate is calculated as Ψ(Q∗n) where Q∗n = QJ

n at the last iteration J . For more details
and examples see Mark J. van der Laan and Sherri Rose (2011).

Under regularity conditions, the TMLE Ψ(Q∗n) is asymptotically linear and efficient, like
the one-step estimator. An advantage of TMLE is that it is a plug-in estimator, computed by
plugging in a good estimate of Q0 to the parameter mapping Ψ. Being a plug-in estimator
guarantees that the estimate respects the global constraints of the model and in particular
that the estimate of target parameter is in the parameter space, which is not true in general
for a one-step estimator in finite samples. Though the main motivation for online methods is
huge data sets, estimates can be quite unstable when a relatively small number of mini-batches
have been processed. Taking inspiration from batch TMLE, we present the online targeted
one-step estimator.

The main idea is that we want to update an initial estimate at mini-batch k, Qk, to Q∗k
so that

1
K

K∑
k=1

D∗k(Q∗k−1, Gk−1)(Ok), (4.4)

which we call the online efficient influence curve estimating equation, is small as K increases.
We then use (Q∗k, Gk) as online initial estimates of (Q0, G0) to compute the online one-step
estimator in Section 4.3 and call this an online targeted one-step estimator.
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If eq. (4.4) is sufficiently small, in particular op(1/
√
K), then the online one-step estimator

at mini-batch k in eq. (4.3) is asymptotically equivalent to

1
K

K∑
k=1

Ψ(Q∗k),

which can be used as our estimate of ψ0. If we cannot guarantee that the online efficient
influence curve estimating equation is solved up to an oP (1/

√
K) term, we hope that updating

Qk to Q∗k still improves the performance of the online one-step estimator.
It may not be clear how to compute the update to Q∗k in general. In batch TMLE, the

updating step is sometimes an iterative procedure, but in problems where it converges in one
iteration, the update can be extended to the online case. When this is the case, we define
Q∗k = Qk(εk | Gk) where εk is an online estimator of ε. We describe a concrete example in
Section 4.6.

4.5 Initial estimators with stochastic gradient descent

Often, we can express initial estimators of parts of Q0 or G0 as as an optimum of an empirical
risk. For example, we may need to estimate some conditional mean or conditional probability.
In those cases, stochastic gradient descent based estimators may be a natural choice. We
review some relevant literature on SGD and variants in this section.

Suppose we parametrize our estimator through some loss function O → L′(θ)(O) and
define the target parameter as θ0 = arg minθ P0L

′(θ) for θ ∈ Θ ⊆ Rp. For example, if
O = (X, Y ) where Y ∈ {0, 1} and X ∈ Rp, we can estimate P0(Y = 1 | X) using a working
logistic regression model by choosing

L′(θ)(O) = −Y log(logistic(θ>X))− (1− Y ) log(1− logistic(θ>X))

where logistic(z) = 1/(1 + exp(−z)). We could also choose to include a regularization term in
the loss function. Other examples include least squares regression models and linear support
vector machines.

For a data set with empirical distribution Pn, call the true optimum of the empirical mean
of the loss function, also known as the empirical risk, θ̂n. That is,

θ̂n = arg min
θ

PnL
′(θ) = arg min

θ

1
n

n∑
i=1

L′(θ)(Oi).

When L′(θ) = − log pθ for some parametric model {pθ : θ ∈ Θ}, θ̂n is the maximum likelihood
estimator. Let Vθ = P0

d2

dθ2L
′(θ). Under mild regularity conditions (see e.g., (van der Vaart,

1998)), we have θ̂n is asymptotically normally distributed with asymptotic variance

V −1
θ0 P0

[
d

dθ0
L′(θ0)> d

dθ0
L′(θ0)

]
V −1
θ0 .
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Stochastic gradient descent is an iterative optimization routine which takes a small step
in the direction of a single randomly selected observation from the data set. In practice, the
data set is usually shuffled or assumed to be in random order and processed sequentially. Let

θt+1 = θt − γtΓt
d

dθt
L′(θt)(Ot) (4.5)

where γt is a scalar step size or learning rate, Γt is a d× d matrix, and Ot is the observation
used at the t-th step (Bottou, 2010). After some number of steps, we hope that θt is sufficiently

close to the true optimum θ̂n of the empirical risk. In particular, we hope that n steps is
enough so that the SGD estimate θn after a single pass through the data set is a reasonable
estimate of θ0.

In the simplest version of SGD Γt is some constant times the identity matrix. Other
variants replace Γt with an appropriate diagonal matrix (e.g., an approximation of the diagonal
elements of V −1

θt
) as in Adagrad (Duchi, Hazan, and Y. Singer, 2011) and Adadelta (Zeiler,

2012), which are methods that tend to work well in practice. Murata (1998) shows that the
mean and variance of θt depend on the learning rate γt and the eigenvalues of the matrix ΓtVθ̂n

.
Second order SGD takes the curvature of the loss function into account, using some Γt that
approximates V −1

θ̂n
. Murata (1998) shows that when Γt = V −1

θ̂n
and γt is asymptotically 1/t,

θn, the second order SGD estimate after a single pass through the data set, is asymptotically
equivalent with the true empirical optimum θ̂n. That is, asymptotically, the variance of
second order SGD divided by the variance of θ̂n converges to 1 as n→∞. Murata (1998)
shows that, if Γt is constant and some weak conditions hold, then θn has bias of O(1/nλd),
where λd is the smallest eigenvalue of ΓnVθ̂n

, and the variance is O(1/n) if λd > 1/2.
Though optimal, due to the high dimension of p, second order SGD is rarely used in

practice because it is often too expensive to compute and store (an estimate of) V −1
θn

. Averaged
stochastic gradient descent (ASGD) is another different but related method to SGD which is
very simple to implement. The ASGD estimate at step t is simply

θ̄t = 1
t

t∑
i=1

θi

where θi is the SGD estimate at step i as in (4.5), Γt is the identity matrix times a constant,
and γt now goes to 0 slower than 1/t. Polyak and Juditsky (1992) and Xu (2011) show that in
a single pass through the data set, θ̄n is also asymptotically optimal and thus equivalent with
θ̂n. Xu (2011) note that ASGD is not frequently used in practice possibly due to required
tuning and the possibly huge number of observations required to reach the asymptotic
performance, but it is shown in simulations that with some careful tuning, ASGD can perform
very well.

There are many other variants of stochastic gradient descent type optimization routines.
For more details and some insightful notes on implementation details, see (Bottou, 2012) and
references therein.
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4.6 Online efficient estimation of the average

treatment effect

Suppose our observed data structure is O = (W,A, Y ) ∼ P0 where W ∈ Rp, A is Bernoulli,
and Y is univariate and M is the non-parametric model. Define Ψ(P ) = EP [EP (Y | A =
1,W )− EP (Y | A = 0,W )]. Under a causal model, this statistical parameter is equal to the
average treatment effect (ATE)(Holland, 1986; Neyman, 1990; J. Pearl, 2009; J.M. Robins,
1987a,b; D.B. Rubin, 2006; D. B. Rubin, 1974). Note that Ψ(P ) only depends on P through
Q(P ) = (QW , Q̄) where QW is the marginal distribution of W and Q̄(A,W ) = EP (Y | A,W ).

The efficient influence curve is given by

D∗(Q,G)(O) = 2A− 1
G(A | W )(Y − Q̄(A,W )) + Q̄(1,W )− Q̄(0,W )−Ψ(Q),

where G(A | W ) = P (A | W ) (M. J. van der Laan and J. M. Robins, 2003; Mark J. van der
Laan and Sherri Rose, 2011). The nuisance parameter G0 is sometimes called the treatment
mechanism or propensity score. Note that D∗(Q,G) = D∗(Q̄, QW , G).

We have
P0D

∗(Q,G) = Ψ(Q0)−Ψ(Q) +R0(Q̄, G, Q̄0, G0),

where

R0(Q̄, G, Q̄0, G0) =EP0(Q̄− Q̄0)(1,W )G−G0

G
(1 | W )−

EP0(Q̄− Q̄0)(0,W )G−G0

G
(0 | W ).

This also defines the efficient influence curve D∗k(Q,G)(Ok) for the k-th batch Ok, and
the corresponding identity

P0,kD
∗
k(Q,G) = Ψ(Q0)−Ψ(Q) +R0(Q̄, G, Q̄0, G0).

We also note that R(Q̄0, G, Q̄0, G0) = R(Q̄, G0, Q̄0, G0) = 0, so the efficient influence
curve has the so called double robustness property. Though Theorem 6 presents conditions
for asymptotic efficiency that rely on consistency of Qk, in this case the online one-step
estimator can remain asymptotically linear if either Qk or Gk is consistent, but not necessarily
both. Such a more general theorem for the online one-step estimator would be a completely
analogue to these types of theorems presented for a batch one-step estimator, and is not
repeated here.

Online one-step estimator for the ATE

To construct an online one-step estimator for ψ0, we first need to choose initial estimators for
Q0 and G0. The treatment mechanism G0 is a conditional probability, so we can choose as an
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estimator a logistic regression model for G0(1 | W ) fit by SGD. The outcome regression Q̄0 is
a conditional mean which we can also estimate with a generalized linear model fit with SGD.
If Y is binary, we can choose logistic regression, or if Y is continuous, we may choose linear
regression. We note that if Y is continuous and (scaled to be) bounded between 0 and 1, it is
often useful in practice to choose the negative quasi-binomial log likelihood as a loss function
for Q̄0, essentially performing logistic regression on a continuous outcome. This guarantees
that estimates are also bounded between 0 and 1(Gruber and Mark J van der Laan, 2010).

Finally, we specify an estimator for QW0. A natural choice is the empirical distribution
of W , but storing the empirical distribution requires order n storage and quickly becomes
impractical and does not fit our definition of a scalable estimator in Section 4.1. We ignore
this issue temporarily. Let

D∗1(Q,G)(O) = 2A− 1
G(A | W )(Y − Q̄(A,W )) + Q̄(1,W )− Q̄(0,W )

and compute the estimate of ψ0 and mini-batch k by eq. (4.3):

ψk =k − 1
k

ψk−1 + 1
k

Ψ(Qk−1) + 1
m

nk∑
i=nk−1+1

D∗(Qk−1, Gk−1)(Oi)


=k − 1
k

ψk−1 + 1
k

Ψ(Qk−1) + 1
m

nk∑
i=nk−1+1

D∗1(Qk−1, Gk−1)(Oi)−Ψ(Qk−1)


=k − 1
k

ψk−1 + 1
k

1
m

nk∑
i=nk−1+1

D∗1(Qk−1, Gk−1)(Oi)

=k − 1
k

ψk−1 + 1
k

1
m

nk∑
i=nk−1+1

[
2Ai − 1

Gk−1(Ai | Wi)
(Y − Q̄k−1(Ai,Wi))

+ Q̄k−1(1,Wi)− Q̄k−1(0,Wi)
]
.

We see that because D∗(Q,G) has the form D∗1(Q,G)−Ψ(Q), and D∗1 does not depend on
QW , we can compute the estimate ψk without evaluating Ψ(Q) directly, and therefore we do
not need to store the empirical distribution of W for all mini-batches at once.

Online targeted one-step estimator for the ATE

A batch TMLE procedure for ψ0 can be developed that updates an initial Qn to Q∗n in one
iteration (Gruber and Mark J van der Laan, 2010). For example, assuming Y or bounded
between 0 and 1 for simplicity, we can choose as loss function L(Q) = LY (Q̄) + LW (QW )
where

LY (Q̄)(O) = −Y log(Q̄(A,W ))− (1− Y ) log(1− Q̄(A,W ))
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and LW is the negative log likelihood loss. We can then choose

logitQ̄(ε | G)(O) = logitQ̄(A, Y ) + ε
2A− 1
G(A,W )

as a working parametric submodel through Q̄. The parameter can then be estimated as

εn = arg min
ε

n∑
i=1

LY (Q̄n(ε | Gn)(Oi))

given initial estimators Q̄n and Gn. The initial estimate of Q̄n is then update to Q̄∗n = Q̄n(εn |
Gn). If we choose the empirical distribution of W as the initial estimate of QW0, the negative
log likelihood loss function LW is already minimized, so no further update of initial estimate
QWn is needed. The final TMLE estimate of ψ0 is then computed as Ψ(Qn∗) = Ψ(Q̄∗n, QWn).

We use this batch estimator as a starting point for developing an online targeted one-step
estimator for ψ0. Using Q̄(ε | G) as defined above for a working model, we need to choose
how to estimate ε at each mini-batch. One choice is to choose εk to be the minimizer of the
loss LY on mini-batch k using Q̄k as an initial offset:

εk = arg min
ε

nk∑
i=nk−1+1

LY (Q̄k(ε | Gk)(Oi)). (4.6)

For the chosen working model, this requires fitting a logistic regression on m observations
at each mini-batch, but the regression is univariate and m is relatively small, so this will
generally be fairly fast. One potential issue is that the variance of εk will be of order 1/m, so
Q̄∗k will not converge even when Q̄k does. This may not be an issue in practice if m is not too
small. Instead, we may choose εk to be the mean of the mini-batch specific risk minimizers in
eq. (4.6) for mini-batches 1 to k so that the variance of εk is of order 1/k.

Alternatively, we may also choose to estimate εk with stochastic gradient descent or some
variant, using the initial Q̄k as an offset at each mini-batch. The computation of εk will be
faster with SGD than minimizing an empirical risk at each mini-batch, but may be more
sensitive to tuning parameters.

Simulations

We evaluate the statistical performance of the online one-step estimator and online targeted
one-step estimator for the average treatment effect in a simulation study. For each observation,
we make p = 2000 independent draws from a uniform distribution on [−1, 1] for W . We then
draw A from a Bernoulli distribution with success probability

1
1 + exp(−0.75[W (1) +W (2) +W (3) +W (4)])
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where W (j) is the jth component of W . Finally, we draw Y from a Bernoulli distribution
with success probability

1
1 + exp(1 + 0.5[W (1) +W (2) +W (3) +W (4)]− 0.3A) .

The value of ψ0, the true parameter of interest, is approximately 0.060. The first 4
components of the covariate vector W are confounders because they are related to both Y
and A. In this data generating distribution, confounding is strong enough that failing to
adjust for confounders will result in substantial bias. A naive estimate of ψ0 that does not
adjust for W is approximately −0.026. The asymptotic variance bound, P0D(Q0, G0)2, for
this data generating distribution is approximately 0.95.

For initial estimators of G0 and Q̄0, we use mini-batch gradient descent with a learning
rate of the form a/(1 + bk) for mini-batch k. When estimating G0, we include an intercept
and each component of W as main terms. For Q̄0, we include an intercept, each component
of W , and A as main terms.

We also investigate the performance of our estimators when one of the initial estimators of
G0 or Q̄0 is badly misspecified. When the estimate of G0 is misspecified, we use an intercept
only model, and when the estimate of Q̄0 is misspecified, we include an intercept and A as
main terms.

First, we compare the online one-step and online targeted one-step estimators using
SGD to compute εk for the online targeted one-step estimators on data sets up to size
nK = 5, 000, 000 with mini-batch size m = 100. For estimators of both G0 and Q̄0, we choose
0.1/(1 + 0.001k) as the learning rate, though it is not necessary for the learning rate to be
the same for both. For computing εk, we chose a learning rate of 0.1/(1 + 0.01k). We call
this Simulation 1.

We compute the bias and variance of each estimator at each mini-batch k from 1, 000
simulations and plot the results in Figures 4.1 and 4.2. In Figure 4.1, bias scaled by nk is
plotted, and we want to see the absolute value of scaled bias converge to 0 as sample size
increase. Not surprisingly, bias can be quite large when relatively few mini-batches have
been processed. We see that when both estimators of Q̄0 and G0 are correctly specified,
bias reaches nearly 0 as sample size increases. When one of Q̄0 or G0 is misspecified, bias is
larger because we are relying on double robustness of the estimators. In that case, a larger
sample size is needed for the correctly specified estimator of Q̄0 or G0 compensate for the
misspecified estimator. In particular, when the estimator for Q̄0 is misspecified, we see that
the online one-step estimator has a relatively higher bias which is very slowly decreasing to 0.
This may be because the learning rate for the correctly specified estimator of G0 is tuned
poorly. The corresponding online targeted one-step estimator has lower bias, so it appears
that the targeting step is particularly helpful in this case.

In Figure 4.2, we plot a smoothed scaled variance for each estimator by cumulative sample
size. We see that the variances stabilize slightly below the theoretical variance bound indicated
by the red line. This indicates that both the online one-step and online targeted one-step
estimators are efficient when sample size is sufficiently large and both estimators of Q̄0 and
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G0 are correctly specified. We note that when one of the initial estimators of Q̄0 or G0 is
misspecified, the estimator for ψ0 is not guaranteed to be efficient, but in this data generating
distribution we do not observe any loss of efficiency. When only a few mini-batches have been
processed, we also see that the online targeted one-step estimator has lower variance than
the online one-step estimator.

Figure 4.1: Simulation 1, bias scaled by
√
nk for the online one-step and online targeted

one-step estimators.

We also investigated the performance of the online targeted one-step estimator when εk is
computed by minimizing the empirical risk of LY at each mini-batch as in eq. (4.6). Both
bias and variance of the online targeted one-step estimator for ψ0 are almost the same as
when εk is computed with SGD as in Simulation 1, so results are not shown.

In Simulation 2, we try adjusting the learning rate for the estimator of G0 to see how
sensitive the estimators of ψ0 are to tuning parameters. We now use a learning rate of
0.1/(1 + 0.005k) at mini-batch k for the estimator of G0, and use the same choices for Q̄0 and
computing εk as in Simulation 1. We plot the bias in fig. 4.3 from 1, 000 simulated data sets.
Now we see that the online one-step estimator has a much lower bias when the estimator for
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Figure 4.2: Simulation 1, smoothed variance scaled by nk for the online one-step and online
targeted one-step estimators.

Q̄0 is misspecified than in Simulation 1. We also see that when one of the estimators for Q̄0
is misspecified, the online targeted one-step estimator has somewhat higher bias than the
online one-step estimator. The variance of both estimators are similar to those in Simulation
1, and results are not shown.

We tried other combinations of tuning parameters for learning rates and found, unsurpris-
ingly, that performance of estimators can vary greatly with tuning parameters. Usually the
performance of the online targeted one-step estimator was less sensitive to tuning parameters
for the initial estimators, in particular for the estimator of G0, but this was not always the
case.



CHAPTER 4. SCALABLE CAUSAL INFERNECE 57

Figure 4.3: Simulation 2, bias scaled by
√
nk for the online one-step and online targeted

one-step estimators.

4.7 Discussion

In this article, we introduce some asymptotically efficient and online scalable methods for
estimating a pathwise differentiable parameter in a single pass through a data set. We
describe particular implementations in an example where we estimate the average treatment
effect.

In the simulations in Section 4.6, we use stochastic gradient descent to fit main terms a
main terms generalized linear model (GLMs) estimators for Q̄0 and G0. Because we know
how the data are generated, simple estimators for Q̄0 and G0 are sufficient, but this will
usually not be the case. In order to consistently estimate the targeted parameter ψ0, we need
to consider general online initial estimators.

A main terms GLM fit with SGD can be extended by using more flexible basis functions,
and we can easily add `1 or `2 regularization terms to the objective function (Bottou, 2010).
SGD optimization methods are also applicable to other machine-learing estimators, a popular
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example being multi-layer neural networks which can be very flexible (LeCun et al., 1998).
Neural networks are frequently trained using SGD though typically one still makes many
passes over the data set. Despite this, relatively simple neural networks may be useful when
trained in a single pass.

Recently, other online estimators have been developed that are not necessarily based on
SGD. Examples include generalized additive models (Simon N Wood, Goude, and Shaw,
2014), online boosting (Oza, 2005), random forests (Abdulsalam, Skillicorn, and Martin, 2007;
Saffari et al., 2009), and bayesian semiparametric regression (Luts, Broderick, and Wand,
2014).

There is not a clear way to choose between different initial estimators or even tuning
parameters for a single estimator. In the batch setting, one approach to this problem is to use
cross-validation to choose one or a combination of estimators with a model stacking algorithm
such as the super learner algorithm (Mark J van der Laan, Polley, and Alan E Hubbard,
2007). An area of future research is to extend this approach to the online setting where
each mini-batch is used to estimate the out-of-sample risk before updating an estimator
on a mini-batch. Multiple estimators could then be fit concurrently, and a combination of
candidate estimators could be used as initial estimators for online one-step or online-targeted
onestep estimators.

In Section 4.4, we note that if the online efficient influence curve equation is sufficiently
small, we can use a mean of plug-in estimators as an estimate of ψ0 and avoid the additional
step in the direction of the influence curve, but we do not discuss a way to guarantee that this
is the case. Investigating this further by implementing some of the ideas of Mark J van der
Laan and Lendle (2014) and evaluating the performance in practice is an area of future work.

Appendix A.

In this appendix we prove Theorem 6 from Section 4.3.

Proof. We have that (M̄(k) : k = 1, . . .) is a discrete martingale w.r.t. Fk = (O1, . . . ,Ok):
that is, E0(M̄(K) | F(k)) = M̄(k) for k ≤ K. Define

W 2(K) = 1
K

K∑
k=1

E0(M2
k | Fk−1) = 1

K

K∑
k=1

P0,kM
2
k

By assumption, W 2(K)− Σ2(K)→K→∞ 0 in probability.
We have

ψK = 1
K

K∑
k=1
{Ψ(Qk−1) +D∗k(Qk−1, Gk−1)(Ok)− P0,kD

∗
k(Qk−1, Gk−1))}

+ 1
K

K∑
k=1

P0,kD
∗
k(Qk−1, Gk−1).
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By the identity (4.1), we can write

P0,kD
∗
k(Qk−1, Gk−1) = Ψ(Q0)−Ψ(Qk−1) +R(Qk−1, Gk−1, Q0, G0), k = 1, . . . , K,

Then we have

1
K

K∑
k=1

P0,kD
∗
k(Qk−1, Gk−1) = ψ0 −

1
K

K∑
k=1

Ψ(Qk−1) + 1
K

K∑
k=1

R0(Qk−1, Gk−1, Q0, G0).

Substitution of this in the last expression yields now

ψK − ψ0 = M̄(K)
K

+ R̄(K),

where

M̄(K) =
K∑
k=1
{D∗k(Qk−1, Gk−1)(Ok)− P0,kD

∗
k(Qk−1, Gk−1))} .

We assumed that R̄(K) = oP (1/
√
K) (or equivalently, R̄(K) = oP (1/

√
n)). We now note

that M̄(K) = ∑K
k=1Mk, where E0(Mk | O1, . . . ,Ok−1) = 0. Thus, E0(M̄(K) | O1, . . . ,Ok) =

M̄(k), which proves that (M̄(k) : k) is a discrete martingale process. Application of Theorem 7,

presented below, to M̄(K) establishes the conclusions of Theorem 6, and, in particular, M̄(K)√
K

converges to N(0,Σ2). Finally, the fact that Σ2/m = P0D
∗(Q0, G0)2 is easily verified. The

consistency of the estimator of Σ2(K) is a consequence of Sen and J. Singer (1993), formally
presented by Theorem 8 below.

The proof relies on establishing weak convergence of the process (M̄(K)/
√
K : K) as

K → ∞. For that purpose we apply a central limit theorem for discrete martingales. An
example of such a theorem is given in Sen and J. Singer (1993), resulting in Theorem 17 in
Mark J. van der Laan (2008). In our context this Theorem 17 translates into the following
one.

Theorem 7. Let M̄(K) = ∑K
k=1Mk, Mk = (Mk1, . . . ,Mkd), E0(Mk | Fk−1) = 0, where

Fk = (O1, . . . ,Ok). In our case, Mk = D∗k(Qk−1, Gk−1)(Ok)− P0,kD
∗
k(Qk−1, Gk−1).

Definitions: Let
Σ2
k ≡ E0M

2
k ≡ E0MkM

>
k ,

and
V 2
k ≡ E0

(
M2

k | Fk−1
)

= P0,kM
2
k .

Let

Σ2(K) ≡ 1
K

K∑
k=1

Σ2
k = E0

1
K

K∑
k=1

P0,kM
2
k

and

W 2(K) ≡ 1
K

K∑
k=1

V 2
k = 1

K

K∑
k=1

P0,kM
2
k .
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Assumptions: Assume that for some M < ∞ maxk | D∗k(Qk−1, Gk−1)(Ok) | M < ∞ with
probability 1; lim inf λΣ(k)2λ > 0 for all λ (or that Σ2 = limk→∞Σ(k)2 exists and is a positive
definite covariance matrix); and that component wise

1
K

K∑
k=1

P0,kD
∗
k(Qk−1, Gk−1)− E0

1
K

K∑
k=1

P0,kD
∗
k(Qk−1, Gk−1)→ 0 (4.7)

in probability as K →∞.
Conclusion: Then,

Σ(K)−1M̄(K)√
K
⇒D N(0, I), as K →∞,

and, if Σ2(K)→ Σ2, as K →∞, for some positive definite covariance matrix Σ2, then

M̄(K)√
K
⇒D N(0,Σ2), as K →∞.

Theorem 8. Under the conditions stated in Theorem 7, we have that

Σ̂2(K)− Σ(K)2 → 0 in probability, as K →∞,

and, if Σ2(K) → Σ2, as K → ∞, for a positive definite matrix Σ2, then this also implies

Σ̂2(K)→ Σ in probability, as K →∞.
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