
UC Irvine
ICS Technical Reports

Title
SLAM : an automated structure to layout synthesis system

Permalink
https://escholarship.org/uc/item/4ct357tz

Authors
Wu, Allen C.H.
Gajski, Daniel

Publication Date
1989-11-07

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4ct357tz
https://escholarship.org
http://www.cdlib.org/

'^SLAM: An Automated Structure to Layout
Synthesis System

by

Allen C. H. Wu

Dauiel^Gajski

Technical Report 89-40

Information and Computer Science Department
University of California, Irvine

Irvine, CA. 92717

Abstract

SLAM is a structure to layout synthesis system. It incorporates
parameterisable bit-sliced and glue-logic generators to produce high density
layout. In this paper, we describe a sliced layout architecture and SLAM system.
In addition, we present partitioning algorithms for generating the floorplan for
such an architecture. The algorithms partition the netlist into component sets
best suited for different layout styles such as bit-sHced or strip-oriented logic.
Each group is partitioned further into clusters to achieve better area utilization.
Several experiments demonstrate that highly dense layouts can be achieved by
using these algorithms with the sliced layout architecture.

r

Cj

TABLE OF CONTENTS

1. Introduction ^

2. Layout architecture g

3. System overview ^2

4. Partitioning

4.1 Component partitioning 26

4.2 Stack partitioning by folding 20

5. Sliced stack generation 9y

6. Floorplanning and layout generation 30

7. Results 2^

8. Conclusions ^2

9. Acknowledgement 42

10. References 42

Noverriber 7, 1989 p^gg j

LIST OF FIGURES

Figure 1. Bit-sliced layout architecture 2

Figure 2. Standard cells and bit-sliced cells with routing channel layout
architecture 3

Figure 3. SUced-cell structure 6

Figure 4. (a) Five connection modes, (b) Multi-bit connection, point to '
point connection, and input/output connection 7

Figure 5. Layout of a 4-bit ALU 9

Figure 6. Three "switch box" modes for wire-alignment 10
Figure 7. Folded sliced-stack architecture H

Figure 8. SLAM system block diagram I \ 13
Figure 9. Graph representation for the structural netlist 17

Figure 10. Stack folding process 21

Figure 11. Two area cost functions for area evaluation . 25

Figure 12. Switch box insertion for wire-alignment 29
Figure 13. Two floorplan styles with one sliced stack and one glue-logic

unit 31

Figure 14. Three floorplan styles for two sHced stacks and one glue-logic
unit 32

Figure 15. Wire ordering for the sliced stack and the glue-logic unit 34
Figure 16. Layout of a controlled counter 36

Figure 17. (a) SLAM without stack folding, (b) SLAM with stack fold
ing, and (c) macrocells placement/routing 37

Figure 18. Layout of MARKl computer 38

Figure 19. The layouts of a simple computer with 1:1 and 2:1 aspect ra
tios 39

Noverriber 7, 1989 Page ii

LIST OF TABLES

Table 1. Layout comparison of the controlled counter 40

Table 2. Layout comparison for stack folding implementation 40

Table 3. Layout comparison of the MARKl computer 40

NoveirdDer 7, 1989 Page iii

1. Intrcxiuction

Surveys of VLSI products reveed that most of the fabricated chips can be

described by register-transfer schematics or netlists. In addition to gates, latches,

and flip-flops, schematics include register-transfer components such as registers,

counters, adders, alus, shifters, multiplexers, and register files. The products in

this category include DMA controllers, bus controllers, disc controllers, and

programmable I/O interfaces; that is, basically all chips for computer design

with the exception of CPUs and memories.

The preferred layout strategy for such designs is the use of standard cells.

Standard cell methodology does not take into account the regular nature (bit-

slice property) of register-transfer components, since they are decomposed into

basic gates, latches, and flip-flops before layout. Standard cells have two major

disadvantages: (i) They require excessive routing, and (ii) They do not group the

bits of register-transfer units into a bit-sliced layout. This lowers the

performance of standard cell designs.

Other approaches[Joha79, JaJe85, PeWh86, VaCo86, RoWa87, ScWe87,

ThKo87, HsGr87, LuDe89] have been reported that use datapaths with standard

cells or macrocells. There are two common layout styles for datapaths: bit-sliced

stacks and standard cells. Using a bit-sliced layout style, the datapath generator

abuts the bits horizontally and register-transfer units vertically with no routing

Noverriber 7, 1989 Page 1

h-
unit.

unit 1

unit2

unit3

unit4

bit-widths

(b)

'bit-slice

: empty

bit-

alignment

Figure 1. Bit-sliced layout eirchitecture

channels between the units (Figure 1(a)). Data connections run over the bit-

slices in the vertical direction. This approach can produce a high density layout

if units are of the same bit-width and the interconnections between units are

within the same bit-slice. This style, however, wastes area if units with different

bit-widths are in the same datapath or if bits in different bit-slices must be

connected. As shown in figure 1(b), the datapath has 4 units with bit-widths 8,

November 7, 1989 Page 2

8, 5, and 4. The bit-slices(0-3) of unit 3 connect to the bit-slices(2-5) of unit 1

and the bit-slices(0-4) of unit 4 connect to the bit_slices(l-5) of unit 2. After

placing and aligning the units 3 and 4, several bit-slices are left empty.

'The second layout style uses standard cells or bit-sliced cells with routing

channels (Figure 2(a)), producing a flexible datapath layout even with units of

unit2

empty spaces

.bit-w idths,

(a)

unltl

unit3

(b)

wire

alignment
routing
channel

Figure 2. Standard celb and bit-sliced celk with routing channels
layout architecture

November 7, 1989 Page 3

different bit-widths. In this layout style, the bit-slices are abutted horizontally

and bit-sliced units are placed verticedly with routing channels between units.

Several units with smaller bit-widths can be placed, in the same row in order to

reduce empty space (Figure 2(b)). This method still generates some wasted area

because of mismatching of the height of adjacent units as shown in Figure 2(b).

Furthermore, this approach needs to use a routing channel for wire connections

between the units contributing to low area utilization. Recently,

LASSIE[TrDi89] has used an approach that selects different layout styles (bit-

slices or standard cells) for different designs.

In this paper, we first describe a "sliced" layout architecture which

combines over-the-cell routing, switch box ahgnment, and layout folding to

alleviate the problems that previous approaches encounter with the layout of

register-transfer schematics. Furthermore, we describe an automated structure

to layout synthesis system SLAM that uses parameterizable bit-sliced cell

generator and a flexible custom .layout system to produce high density layouts.

SLAM tries to fully utilize high density bit-sliced cells and determines which

layout style, glue-logic or bit-slices, is best suited for each component to achieve

better area utilization. In addition, we describe partitioning algorithms used in

the layout synthesis system, SLAM, that uses the new layout architecture. Two

algorithms are used to obtain the final floorplan. The first algorithm partitions

components into two groups for possible layout using a strip or bit-sliced layout

November 7, 1989 Page 4

architecture based on the connectivities, type of components, and possible

overall area utilization. The other algorithm partitions those two groups further

to achieve better area utilization. Bit-sliced components are partitioned by a

folding algorithm into several folded "stacks" while striped components are

partitioned into several striped modules with flexible aspect ratios to fit the

overall floorplan.

•In the remainder of this paper we describe the layout architecture (section

2), give the system overview (section 3), present the partitioning algorithms

(section 4), describe the sliced-stack generation (section 5), and describe the

floorplan and layout generation (section 6). Finally, we present the results of

running several examples through the system (section 7) and conclusions

(section 8).

2. Layout architecture

Sliced layout architecture combines over-the-ceU routing, switch box

alignment, and folding methods to produce high density layout. The sliced

layout is a stack of register-transfer units. Each bit-slice has same width, but

unit heights vary with the unit functionality. The stack grows horizontally

when the bit-width increases, and grows vertically when the number of units

increases. The sliced stack uses an over-the-cell routing strategy with data

signals running vertically in 2nd metal over the bit-slices. Power, ground, carry,

November 7, 1989 Page 5

and control lines are routed horizontally in the 1st metal or poly between the

bit-slices. When connections cross over several bit-slices are needed, a routing

channel called "switch box" is inserted in the stack. This allows folding of the

stack when several units of different bit-width are presented in the netlist.

VDD

V5S

VDD

I

30 urn •-I

I I I I I I I I I I I I

I ' I ' ' ' I ' I I I '

I I I I I I I I I I I I

I I I I I I I I I I I I

CONTROL

.INE

/
I I I I I I I I I I I I I

• I I I I I I I I I I I
JJJJJJJJJJJJJJJJJttJtm ^

13 METAL2

TRACKS

(DATA)

VDD

November 7, 1989

I I I I r I

I I I I I I I I I I I I

I I I I I I I I I I I I
I I I I

Figure 3. Sliced cell structure

Page 6

metal2

i

MULTI-BIT

CONNECTION

•• CONNECTION RULES

(a)

PT TO PT

CONNECTION

1
L

unit 1

unit2 •

un1t3

(b)

empty track

iTTT

I I

I I

I I

J—L

EXIT ON TOP

WITH

FEEDTHROUGH

MULTI-BIT EXIT

ON BOTTOM

Figure 4. (a) Five connection modes, (b) Multi-bit connection,
jx>int to point connection, and input/output connection

November 7, 1989 Page 7

The bit-sliced cell structure is shown in Figure 3. Each cell has a fixed

horizontal pitch (130|im in our implementation), and a fixed number of metaI2

routing tracks over the cell (13 in our implementation). There are five modes for

connecting external wires: (i) Feedthrough, (ii) Feedthrough with, connection, (iii)

Up connection, (iv) Down connection, and (v) No connection(empty track)

(Figure 4(a)). All the routing is accomplished by assigning tracks to the shces

using, these five rules. An example of multi-bit connection, point to point, and

input/output connection is shown in Figure 4(b). Each unit, such as an ALU,

multiplexer, register, adder, and register, is generated by a parameterizable

generator. A layout for a 4-bit ALU is shown in Figure 5.

In the sliced layout, units are, stacked vertically and aligned at the least

significant bit. In order to connect different bit-slices of different units, a wire-

alignment cell called a "switch box" is used for passing signals between bit-slices

(Figure 6(a)). The switch box also rearranges the wire connections between two

adjacent units as shown in Figure 6(b). Furthermore, the switch box can get

external data from the right or the left (Figure 6(c)).

Units often have varying bit-widths. Because of these bit-width mismatches,

there is a lot of empty space within the sliced stack's bounding box. A stack

folding algorithm folds small units into this empty space. Units are fitted

together as in a jigsaw puzzle. The folding is a two dimensional area filling

November 7, 1989 Page 8

Figure 5. Layout of a 4-bit ALU

November 7, 1989 Page 9

process that considers both the bit-widths and the heights of the units. Thus, it

can alleviate the height mismatching problem that results from abutting two

different units horizontally. The final stack structure is shown in Figure 7. The

sliced stack is divided into two parts: folded and unfolded sections, which are

connected by a switch box. The control signals exit on the left or the right. The

01 .23 45

1

1 2 3 4 5 6

(a)_Blt augment

2 3 3 2

r-p-n

(b) Adjacent units connections

switch box

switch box

switch box

(c) Exit on left or right

Figure 6. Three "switch box" modes for wire-alignment

November 7, 1989 Page 10

input/output data signals exit on the top or bottom. After forming the sliced

stacks, the rest of the components are placed around them under constraints

such as input/output port positions, aspect ratio, and total area.

control

Novertiber 7, 1989

i/o ports

1/0 ports

: folded units

: unfolded units

: empty spaces

Figure 7. Folded sliced-stack structure

control

Page 11

3. System overview

SLAA^Sliced Layout Methodolo^) is a register-transfer layout system that

combines high density bit-sliced cells and flexible strip oriented modules to

produce high density layouts. It uses the "sliced" stack and strip oriented layout

architecture and combines partitioning and floorplanning techniques to

transform a register-transfer netlist into a layout. The system block diagram is

shown in Figure 8. The SLAM system consists of three main parts: (i) partitioning

and component binding, (ii) floorplanning, and (iii) layout generation.

Input to SLAM is a register-transfer VHDL netlist which contains the

description of a design[Lis89]. The connection binder first builds up a connected

graph from the netlist. Then, the component partitioner separates component

instances into sliceable or non-sliceable types based on the connectivities of

components and their functionalities. The component binder obtains

information for each component, such as type, area, and delay, by querying the

Component Database[Chen89]. The component binder then assigns component

types to the component instances based on the component partitioning

algorithm. To achieve better area utilization, the stack partitioner folds the

small units to fill empty space in the stack.

The unit placer permutes the bit-sliced units to minimize the routing track

density, and the stack router assigns the routing tracks between the connected

November 7, 1989 Page 12

Register-Transfer

netlist

Connection

binder

Component

Partitioner

Component

• Binder

Stack Folding

Stack

Placement &

Routing

Glue-Logic

Binder

Sliced Stack

Generator

Floorplanner

Striped Logic

Generator

Global Router

Layout

Figure 8. SLAM system blcx:k diagram

Noverriber 7, 1989

CDB

Component
Library

Component I
Generator

Area

Estimator

Page 13

ports. After forming the sliced stack, the glue-logic component binder first

estimates the loads for each wire giving to the sliced stack. The loads are

calculated by summing the input capacitances of driven bit-shced units and the

routing wire capacitances. In the binding step, the binder forwards the glue-

logic netlist, output loads, and delay constraints to the database, and retrieves a

netlist of gates with pin information from the database. This netlist also contains

the transistor sizes for each component. These transistor sizes are generated by a

logic optimization phase[VaGa88] to meet a set of design's constraints. Finally,

the binder maps the glue-logic unit into a gate level module by reconnecting the

gate netlists of glue-logic components retrieved from the database.

The floorplanner uses a constructive method to place the glue-logic axound

the stack module. It also assigns the global routing channel and determines the

aspect ratio of the glue-logic module. Furthermore, the flooplanner determines

the ordering of input/output pins for the glue-logic that will minimize the wire

crossing between stack and glue-logic modules.

In the final phase, the glue-logic module is generated by the striped layout

generator[LiGa87], and the stack module is generated by generators using

GDT[BuMa85]. A global router[SCS89] then finishes the detailed routing

between modules to generate the final layout.

November 7, 1989 Page 14

4. Pzirtitioning

The primary purpose of partitioning is to define the layout style for each

component in the design. By fuUy utilizing high density bit-sliced cells and using

the best suited layout style for each component, better area utilization can be

achieved. The overall objective is to minimize the total layout area and the

interconnections between the sliced stack and glue-lbgic modules. Since routing

among units use 1st and 2nd metal, the performance will stay the same or be

slightly improved because of the smaller area.

The partitioning algorithm consists of three phases; (i) Component

partitioning into bit-slices and glue-logic, (ii) Stack folding and partitioning, and

(iii) Layout balancing. In phase one, the algorithm partitions the structural

instances into sliceable and non-sliceable components based on components'

characteristics and connectivities. In. phase two, the algorithm partitions the

sliceable components into several stacks using a folding method to reduce layout

area,. After folding, the layout balancing algorithm reassigns small components

that do hot fit in the stack module to the glue-logic to improve area utilization.

Throughout the paper, we will use SS for the bit-sliced units in the sliced

stack, and GL for the glue-logic components.

November 7, 1989 Page 15

4.1 Component partitioning

A weighted and labeled undirected graph G is formed by a set U of nodes, a

set V of ports, and a set E of edges. There are m nodes in U where m is the

number of components in the design, and there are n ports in each node where n

is the number of ports in each component. The attribute type of a port i, ptype{i),

indicates that port i is a control port or a data port. Let e(ij^, j,) be the edge

between port i of and port j of u,, where ,u, C U and i, j € V. The weight of

an edge e € E, w[e(i^J,)], is the number of wires between these two ports. The

graph generated from the schematic in Figure 9(a) is shown in Figure 9(b).

There are two components SSI and SS2 with bit-widths 4 in the netlist. SSI and

SS2 form two nodes, U1 and U2, in the graph, with three ports each, one control

port and two data ports. The edges correspond to connections between ports,

while weights are equal to the multiplicity of connections. For example, W3=4

because there are 4 wires connect between port c and port d.

The component partitioning algorithm initially determines the component

types of each node by querying the database. The component type can be CiL

only, such as single gates or DECODERS, SS only if is specified by user, or both

GL and SS, such as a MUX or ALU. The algorithm assigns the component type

to the node if it is a SS only or GL only component. If a component can be used

as SS or GL and the bit-widths are larger than a user specified threshold(i.e. the

November 7, 1989 Page 16

elk

se!

input

1 (a)
(b)

SSI
' (c)

2
(e).

(d)

SS2

• fn

output

(a)

port s a, c, a, ana r: aata port

ports D ana e : control port,

5S1

Wl = 4

W2 = I

W3 = 4

W4 = 2

.W5 = 4

output

(b)

Figure 9. Graph representation of the structural netlist

minimum bit-width requirement of components that can be laid out by bit-sliced

units), the SS is initially assigned to the component; otherwise, an undecided

component type(UN) will be assigned to the component.

After the initial component type assignments, the algorithm evaluates and

assigns the component types of the nodes based on a linking cost function. The

linking cost functions are

November 7, 1989 Page 17

W_,^(I) = Sw(Oifu„isaGL'

W^aa) = Ew(e,Jifu„isaSS

where is the number of wires connected to u, from other GEL nodes, and

is the number of wires connected to u, from other SS nodes. If >

^controiO) then u, is a SS; otherwise, u, is a GL.

Assuming there is an edge e(ij^, j,), the component type of u, can be determined

as follows:

(1) If the node u, is a component of undecided type, the algorithm simply

assigns a SS component type to the node u, if ptype(ij^) is a data port;

otherwise, a GBL component type will be assigned to u,.

(2) If the node u, has an initial SS or CSL component type, there are two'possible

cases: (i) If ptype(ij.) is a data port and Uj is a SS, or ptype(ij.) is a control port

and u, is a GL, the u,'s component type is unchanged, (ii) If ptype(i^) is a data

port and u, is a GHj, or ptype(ij^) is a control port and Uj is a SS, the linking

cost function, and are used to determine the u,'s component

type. .

November 7, 1989 Page 18

ALGORITHM 1 Component Partitioning

PROCEDURE Component_partitioning()

begin

/**Let Ct(u) be the component type of u.**/

G = build_graph(); ,

/**initial component type assignments by querying database**/

for ail u € U

Ct(u) = init_type_assignment(u);
/**Let ptype(ij(.) £ {data or control} where i £ V and k ^ u. Let $ = U and assigns €
$ into four groups Ct(i/>) C{lO, SS, GL, or UN} where $ is in the sorting order according
to the bit-widths and group orders**/

while 9 ^ (j)

begin

rpf. = head of
for i € V and i C.

begin

for e(ij(., j,) e E
begin

if(Ct(^j) == UNandptype(ij.) == data) then
Ct{tlj,) = SS;

else if (Ct(^j) == UN and ptyi)e(ij(,) == control) then
Ct(v^,) = GL;

else

begin ,

(((ptype(ifc)==data and Gt(V',)==GL)
or (ptype(ij.)==control and Ct(^j)==SS))
and Ct(V',) ^ {SSonly, GLonly, or lO}) then
begin

calculate and W^j^(l);

^"^contrdi^) >
Ct(V',) = GL;

else

Ct(V',).= SS;
endr

end;

®

end; -

end;

end;

end;

November 7, 1989 Page 19

4.2 Stack psirtitiomng by folding

Using the sliced architecture, the bit-sliced units need to be aligned so that

signals can pass through all of the units. Often units have different bit-widths.

Because of this bit-width mismatch, there is some empty space within the stack

bounding box. The folding algorithm tries to fold small units to fill these empty

space. The stack will also be partitioned into multiple stacks if a smaller layout

area can be achieved. The main objective of folding is to nainimize the total

layout area.

Defimtion 1

The bounding box of the unit u. is defined by the upper-left point and
J

the lower-right point (x,^; y,^,.) of unit u.. and Wj are the height and width of

unit u..

Definition 2

The sliced-stack area, A^^,is determined by the nainimum bounding box enclosing

all units, where and are the height and the width of this bounding box.

E>efinition 3

Let foldj^ be the stack containing all of the folded units, and ^ss fold

the height and width of foH '̂s bounding box. Let unfold^^ be the datapath

containing all of the unfolded units, and and be the height and

November 7, 1989 Page 20

width of unfold/s bounding box. Let be the outline that separates the

unfolded units with maximum bit-widths and the rest of unfolded units,.

max bit-width

cutHne

baseline

L5B LSB

shift to the right and rotate 180

(a)

bush up

•• S s-' s -••V \ ^ Vs.-'Jll

s S N s'vf''.

(b)

-yl

-y2

-y3

overlap

"Shift to the right

(c)

Figure 10. Stack folding process

November 7, 1989

: unfolded units

: empty spaces

: folded units

Page 21

The folding algorithm includes three steps: unit folding, overlap checking,

and area cost function evaluation. There are two main constraints for the stack

folding: (i) the units must be aligned with the least significant bit and (ii) the

units must not overlap. The algorithm first sorts the units based on the units'

bit-widths. One unit is folded at a time. The folding process has two steps: (i)

move the unit u. to the right edge of stack's bounding box and rotate it around

the center (Figure 10(a)) and (ii) push all of the folded units up based on a step

function, until reaching the base-line (Figure 10(b)). The step function

is defined as follows:

y,iep = y^, y^, and y^} and y,,^p >0

where

y^ is the height between the and the top of fold

y^ is the height of first folded unit below the

yg is the height between the base-line and the bottom of fold^^.

After unit folding, an overlap checking procedure is implemented to check

whether the units in the folded part and, the unfolded part overlap. The

bounding box of unit u. is defined by the upper-left point (x^,y^,, J and the

lower-right point (x,^, y,^,) of unit u.. The overlapping conditions are

November 7, 1989 Page 22

(1) There exists a where u. € unfolded bit-sliced units.

(2) There exists a where u. € folded bit-sliced units.

(3) And and y^, . < y,^ ..

If an overlap occurred, the algorithm will shift the folded units to the right

by to avoid the overlap (Figure 10(c)). is defined as follows:

= max{x,^ ,. - x„, .}

® and y^, < y,^,

where

u. € unfold and u. ^ fold
I SS J 3S

After folding a unit' u., we have

W,, = W„ + X if overlap

where

H = n + h.ss^joid ss^foid ' I

H = n - h.ssjanjold si^unfoid i

The algorithm then evaluates a cost function to select the best stack

partition. The area cost function evaluation has two conditions as follows:

NovenJber 7, 1989 Page 23

(1) If H > H the cost function of A is^ ' oitline sa^joid' aa

A — * H - ., "t" A .
is IS isjunfold ' rcmting^jadjunjoid

where

^rosstingjMjsnjoid couting channel area for connecting unfold^^ and

fold

(2) Kh„„, > some units in fold^^ overshoot the outline of unfold^^ and

overlap with some units in unfold . There are two area cost functions A
* aa sa

and A . They are defined as follows:
r\ew ^

(i) The Aj^ cost function is the minimum bounding box enclosing all of

the units and the routing area for connecting the unfolded units and

the folded units Figure 11(a).

(ii) Using the second cost function, the algorithm moves the

unfitted units(overshoot units) from the first stack module to form a

new stack module Figure 11(b). The cost function is

A = A + A T Anett; aa^d ' aajiew ' routing^djnew

A ,, is the first stack module area without the unfitted units, and A is
aa^oia ' aa^ew

the new stack module area that contains the units that do not fit in the

first stack module. ^r<mtmg^d^ew routing area between two stack

Noverr±)er 7, 1989 Page 24

modules. If A < A then the alfforithm moves the unfitted units to the
new ss

new stack group for further partitioning. The stack folding algorithm is

shown as follows:

(a)

(b)

: bit-sliced unit

Figure 11. Two area cost functions for area evaluation

Noveniaer 7, 1989 Page 25

ALGORITHM 2 Stack Partitioning

Let D be a set of SS components.

PROCEDURE Stack_partitioning(D)

begin

^unfold ~ sorts d S D according to bit_widths in descending order;
^/old = <f>\ '
D = ;

new ^ '

A . = H * W
jj_min*mum ssjunfold ssjunjold^

^min ^un/o/d'
d = head of

{fold d}

while (bit_width(d) < max_bit_width)
begin

^unfold ^unfdd
^fdd - ^fdd +
^ overlaps then

shift

if > ^ss.fcld)
calculate

dse

begin

calculate A and A ;
5« new'

if iK > \eJ
begin

D = D + dnew new ' unftV

^ fdd ^fdd ^unfit^
. A = A ;

SS new'

end;

end;

if (A > A) then
^ J3_m»ntmum • ss^

begin

A = A •
ss'

i^min ~ ^unfold + ^fdd'
end; - ,

d = head of D , .
unfdd'

end;

if (D ^ 4>) then
^ new ^ '

Stackj>artitioning(D^^^);
end;

NoveniDer 7, 1989 Page 26

The stack partitioning algorithm is executed recursively until no more

stacks can be formed. The layout balancing algorithm first moves the small units

that do not fit in the stack to the glue-logic. If there is more than one stack
\

module, the algorithm estimates two area costs: (i) The layout of the small stack

module using striped logic and (ii) The layout of the small stack module using

sliced units. If the total area of (i) is less than that of (ii), the algorithm moves

all of the components in the small stack to the glue-logic.

5. Sliced-stack generation

Stack generation maps the bit-sliced components into a sliced stack module.

Stack generation includes three steps: (i) placement, (ii) folding, and (iii) routing.

The connection binding step maps the register-transfer structural netlist

into connected graph as described in section 4.1. In our implementation, there

are three wiring modules, SELECTOR, CONCAT, and PORT[Lis89], that offer

the wiring information among units. The binder will delete the wiring modules

after specifying all the wire connections. The component partitioning step

partitions the modules into bit-slice and glue-logic as described in section 4.1.

The main goal of placement is to determine the optimal placement of units

that minimizes the total number of routing tracks and wire length. The

placement algorithm includes three steps: (i) initial placement, (ii) routing track

alignment, and (iii) routing track minimization. The algorithm first sorts the

November 7, 1989 Page 27

units based on bit-widths, and places units in a descending order aligned with

the least significant bit. The algorithm then determines the misaligned wire

connections between units by traversing the connected graph. If there are wire

connections between the different bit-slices in the units, a switch box will be

, inserted to align the routing tracks. An example of wire connection misalignment

and switch box insertion is shown in Figure 12. There are three SS units with

bit-widths 8,5, and 4. Because the units are abutted and aligned with the least

significant bit (Figure 12(b)), the wire connections between Regl (bits 4-7) and

Reg2 (bits 0-3) are not routeable. Therefore, a routing box is inserted to connect

Regl and Reg3 (Figure 12(c)).

The routing track minimization step permutes the order of the units of the

same bit-widths to minimize the track density. The complexity of the exhaustive

ordering search algorithm is 0(n!) where n is the maximum number of units in

the same bit_width group. Therefore, the exhaustive search method is suitable

for small unit sizes, but is impractical to implement for large problems. The

routing track minimization algorithm implements a heuristic by combining min-

cut and exhaustive search methods. Because units are placed in a sorted order,

the algorithm only needs to permute the units in the same bit-width group. The

algorithm first partitions the units into groups based on bit-width. If the

number of unit^ in a group is less than a threshold, then it permutes the units

exhaustively to find the minimal track density. Otherwise, a min-cut

Noverriber 7, 1989 Page 28

Reg]

Reg2

Reg3

SW BOX

Reg 1[0-7]

' '

. SELI SEL2

1
r5 (0-4) ; ,4(4-7)

Reg2 Reg3

-(•a) structural netlist

0 I 2 3 4 5 6 7

f

1 \
1 ^ ^ot routable .

(b) initial placement'

0 I 2 3 4 5 6 7

m

(c) switch box insertion

Figure 12. Switch box insertion for wire-alignment

algorithm[KeLi70] is implemented recursively until the sub-group sizes are less

than a threshold, at which time it applies exhaustive permutation on each sub

group.

November 7, 1989 Page 29

After the placement step, the stack folding algorithm as described

previously is applied to reduce the layout area. Finally, the routing tracks are

assigned to the units using a left-edge algorithm[HaSt71].

6 Floorplanning and layout generation

The glue-logic is placed around the stacks after forming the stack modules.

The floorplanner determines the aspect ratio and location of the GL module to

achieve minimum total layout area or aspect ratio. To obtain minimal layout

area, the system examines different floorplan styles and selects the one with the

minimum area for the final floorplan. For instance, consider a floorplan style

that incorporates one stack and one glue-logic unit. There are two sub-styles: (i)

The glue-logic module can be placed on the left of the stack module or (ii) The

glue-logic module can be placed on the bottom of the stack module (Figure 13).

The final area is calculated as follows:

^total ^gl ^routing

A = A -I- A -I- Arouting si- gl ' fold- control ' unfold- control

The tot^ area is the summation of the stack area, the glue-logic area, and

the total routing area. The routing area consists of three parts: (i) The routing

channel between the glue-logic module and the control ports of the folded stack,

November 7, 1989 Page 30

(a)

routing channel between GL and'folded-SS control ports

routing channel between GL and unfolded-SS control ports

routing channel between GL and SS data ports.

53 r

r

GL

(b)

Figure 13. Two floorplan styles for one sliced stack and one
glue-logic unit

Novenioer 7, 1989 Page 31

(ii) The routing channel between the glue-logic module and the control ports of

the unfolded stack, and (iii) The routing channel between the glue-logic module

and the data ports of the stack. By querying the database, the aspect ratio,

height, and width of the glue-logic module can be determined. The "placer then

calculates the total area, and the style with minimal total area is selected as the

final floorplan.

552

SSI

GL

Figure 14. Three floorplan styles for two sliced stacks and one
glue-logic unit

November 7, 1989 Page 32

The second floorplan style incorporates two stacks and one glue-logic

module. There are eight possible configurations of the layout that can be

divided into three styles(figure 14). The placer treats the glue-logic module as a

soft block which is flexible for changing the aspect ratio. The placer first,

determines the minifnum bounding box that contains both stacks. After placing

the stack modules, the placer determines the aspect ratio of the soft glue-logic

block by querying the database. The style with minimal total area is selected as

the final floorplan.

After selecting the floorplan style, the placer determines the ordering of

input/output ports for the glut-logic module. Since the input/output ports of

the stack are in the flxed positions, the placer simply assigns the port positions

of glue-logic module corresponding to the port positions of the stacks based on

connection configurations. There are two basic connection configurations. If the

glue-logic module and the stack have adjacent connection boundary then the

placer assigns the same ordering of ports to the glue-logic module as

stack's(figure 15(a)). Otherwise, the placer assigns the reverse ordering of ports

to the glue-logic module(figure 15(b-c)). Finally, the layout is generated using

the striped layout generator and the bit-sliced generators with a global router.

Noveirber 7, 1989 Page 33

(a)

(b)

(c)

Figure 15. Wire ordering for sliced stack and glue-lo^c miit

7. Results

The SLAM system is implemented in the C programming language and is

currently running on SUN 3/SUN 4 workstations under the UNIX operating

system. A number of examples have been tested. The register-transfer structural

netlists were generated from a VHDL synthesis system VSS[LiGa89] or mapped

November 7, 1989 Page 34

from register-transfer schematics. The layouts were generated using a 3-micron

CMOS technology.

The first example is a controlled counter[Arms89] that consists of

approximately 50% sliceable components and 50% non-sliceable components.

Three different layouts were generated using (i) SLAM without partitioning, (ii)

SLAM with partitioning, and (iii) standard cfells. The results in Table 1 show

that the layout generated by SLAM with partitioning is 12% smaller than that

without partitioning, and 20% smaller than that of standard cells. The final

layout that is geherated by SLAM with partitioning Is shown in Figure 16.

Example 2 consists of seven units with different bit-widths. Figures 17(a) and

17(b) show the layouts generated using the SLAM system without and with

implementing stack folding. Figure 17(c) shows the layout generated using the

same units with a global router.- To generate the layout of Figure 17(c), we used

GDT interactive floorplanner to place the units. The results in Table 2 show

that the total area using stack folding is 40% less than that of the other two

approaches. Example 3 is the Markl simple computer[SiGo82] which consists of

20 components with bit-widths 32, 16, 13, 3„ and 1. The partitioner partitions

the design into two sliced stack modules and one glue-logic module, and the final

layout is shown in Figure 18. The results in Table 3 show that the layout

generated by SLAM •with partitioning is 20% smaller than that without

partitioning.

November 7, 1989 Page 35

NoverrJber 7, 1989

LIM IN and COUNT GUT

•mwiJiJiwiiiii

IIIo'

17777777777777777711 i /'
/, 11,'I 'illiU,

Ml

Figure 16^ Layout of a controlled counter

Page 36

mraDuimnnniint

miUQluKnuto miLiMiiE

tnatwmaagiMHna

[{sttKasmnuRontiuua^uiiD

Em
tuiimuHuuiEiMnciCU]

m(R[iR((K[Ei{ni»([[tiiti([(E{{mn([(i([ic

um trniD

(a)
(b) (c)

Figure 17. (a) SLAM without stack folding, (b) SLAM with stack
folding, and (c) macrocells placement/routing

November 7, 1989 Page 37

ffinggnpnannpgigMtaowMtKamtigBCBiMmgiMLmmswigagMmaffi^ OTiirainMiiTimMmitKanmnnCTaifltiiMiiTjjW

i|^ffifTi!»"M'Hiitmcaii^tiQ;atna[iDJtiiigigi

•'j(inH)C]:KMoioiu!Ui(ia:iiii{ii(iQ.iiii[iitiiZ]jiiiinfiac»{i^

Kn!itgJn||ra.R^s.OT

isnittO^iiritziiiimiiiGtoiratajinciitimtmiczi

iiwiinOTnraiiwiira

Figure 18. Layout of MARKl sirrple conputer

Noverrfcer 7, 1989 Page 38

QND udG T. "OftTft "DATA OUT", *nd "ADDRESS^IrffiKKai

Areo.= ISBSum * 1838unn = 2,883,804

Klv f'.. • »r-..-•••T-.

. r:-? 'Mv.'- f-

Area = 1207um * 2420um = 2,920,940

Figure 19. The layouts of a sinple computer with 1:1 and 2:1 aspect
ratios

November 7, 1989 Page 39

unit Slam with Slam without Standard

m rcron partitioning partitioning cells ..

. H/W 620 * 780 934 * 582 740 * 782

Area ,483,600 • 543,588 . 578,680

, % . 0 * 12,4 ^9.6

Table 1. Layout cortparison of the controlled counter

Unit

micron
folded unfolded

macrocell placement

and routing

Total (W/H) 1046 * 997 1046 * 1380 1264 * 1 175

Area 1,042,862 1,443,480 1,485,200

% • 0 *38.4 *42.4

Table 2. Layout comparison for stack folding implementation

unit Slam with Slam without

micron • partitioning partitioning

H/W 4250 * 2640 4250 * 3150

Area 1 1,220,000 13,387,500

% 0 *19.3

Table 3. Layout comparison of the MARKl computer

NovenJber 7, 1989 Page 40

Finally, example 4 is a simple computer[Mano88]. The layouts for example 4

with 1:1 and 2:1 aspect ratios are shown in figure 19.

8. Conclusions

In this paper, we described a sliced layout architecture and presented two

methods for performing partitioning, component partitioning and stack

partitioning. The component partitioning algorithm decides which layout style,

glue-logic or bit-slices, is best suited for each component based on the

component's types and connectivities. The stack folding algorithm partitions

glue-logic and bit-slices into clusters, and implements layout tradeoffs between

bit-slices and glue-logic components to achieve better area utilization. The

experimental results in Table 1 show that using the partitioning techniques and

the sliced layoiit architecture, denser layouts are achieved in comparison with

standard cells. The experimental results in Table 2 and Table 3 demonstrate

that better area utilization can be achieved using.the stack folding technique.

9. Acknowledgements

This work was supported by NSF grant #MIP-8711025. We are grateful for their

support.

Noveirfcer 7, 1989 - Page 41

10. References

[Arms89] Armstrong, J., Chip Level Modeling with VHDL, Prentice-Hall, 1989.

[BuMa85] Buric, M., R., and Matheson, T.G., "Silicon Compilation
Environments," Proc. CICC, 1985.

[ChGa89] Chen, G. D. and Gajski, D., " An Intelligent Component Database
System for Behavioral Synthesis," Tech. Report 89-39, ICS Dept.,
U.C. Irvine, 1989.

[HaStTl] Hashimoto, A. and J. Steven, "Wire Routing by Optimizing Channel
Assignment within Large Apertures," Proc. of 8th DAC, 1971.

[HsGr87] Hsu, D., Grate, L., Ng, C., Hartoog, M., and Bohm, D., "The
ChipCompiler, An Automated Standard Cell/Macrocell Physical
Design Tool," Proc. CICC, 1987.

[JaJe85] Jamier, R. and Jeraya, A., "APOLLON: A Datapath Compiler," Proc.
ICCD, 1985.

[Joha79] Johannsen, D. L., "Bristle Blocks: A Silicon Compiler," Proc. 16th
DAC, 1979.

[KeLi70] Kernighan, B. W., and Lin S., " An Efficient Heuristics for
Partitioning Graphs," Bell System Technical Journal, 49, (2), 1970.

[LiGa87] Lin, Y.L. and Gajski, D., "LES: A Layout Expert System," Proc. 24th
DAC, 1987.

[•Lis89] Lis, J. S., "VHDL Structure Netlist Specification," CADLAB Internal
Document, ICS Dept., U.C. Irvine, 1989.

[LiGa89] Lis, J.S. and Gajski, D., "Synthesis from VHDL," Proc. ICCD, 1988.

[LuDe89] Luk, W. K., and Dean, A. A., "Multi-Stack Optimization for Data-
Path Chip(Microprocessor) Layout," Proc. 26th DAC, 1989.

[Mano88] Mano, M. M., Computer Engineering Hardware Design, pp. 291,
Prentice-Hall, 1988.

November 7, 1989 Page 42

[PeWh86] Peterson, B. R., White, B. A., Salomon, D. J., and Elmasary, M. I.,
"SPIL:A Silicon Compiler with Performance Evaluation," Proc.
ICCAD, 1986.

[RoWa87] Rowson, J., Walker, B., and Dholakia, S., "A Datapath Compiler for
Standard Cells and Gate Arrays," Proc. CICC, 1987.

[SCS89] "GDT Database and Language Tools" Silicon Compiler System, Sec.
7, V.4;0, 1989.

[ScWe87] Schuck, J., Wehn, N., Glesner, M., and Kamp, G., "The ALGIC
Sihcon Compiler System: Implementation, Design Experience and
Results," Proc. 24th DAC, 1987.

[SiGo82] Siewiorek, D. P., Bell, C. G., and Newell, A., Computer Structures:
Principles and Examples, McGraw-Hill, 1982.

[ThKo87] Thonemann, H. G., Kolonko, M., Severloh, H., "VENUS-An
Advanced VLSI Design Environment for Custom Integrated Circuits
with Macros Cells, Standard Cells and Gate Arrays," Proc. CICC,
1987.

[TrDi89] Trick, M. T., Director, S. W., "LASSIE:Structure to Layout for
Behavioral Synthesis Tools," Proc. 26th DAC, 1989.

[VaCo86] Varinot P., J. A., Courtois B., J. R., "Principles of The SYCO
Compiler," Proc. 23rd DAC, 1986.

[VaGa88] Vanzen Zanden, N., and Gajski, D., "MILO: A Microarchitecture and
Logic Optimizer," Proc. 25th DAC, 1988.

November 7, 1989 Page 43

