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Abstract. Marine Protected Areas (MPAs) are increasingly established globally as a spatial
management tool to aid in conservation and fisheries management objectives. Assessing
whether MPAs are having the desired effects on populations requires effective monitoring pro-
grams. A cornerstone of an effective monitoring program is an assessment of the statistical
power of sampling designs to detect changes when they occur. We present a novel approach to
power assessment that combines spatial point process models, integral projection models
(IPMs) and sampling simulations to assess the power of different sample designs across a net-
work of MPAs. We focus on the use of remotely operated vehicle (ROV) video cameras as the
sampling method, though the results could be extended to other sampling methods. We use
empirical data from baseline surveys of an example indicator fish species across three MPAs in
California, USA as a case study. Spatial models simulated time series of spatial distributions
across sites that accounted for the effects of environmental covariates, while IPMs simulated
expected trends over time in abundances and sizes of fish. We tested the power of different
levels of sampling effort (i.e., the number of 500-m ROV transects) and temporal replication
(every 1–3 yr) to detect expected post-MPA changes in fish abundance and biomass. We found
that changes in biomass are detectable earlier than changes in abundance. We also found that
detectability of MPA effects was higher in sites with higher initial densities. Increasing the sam-
pling effort had a greater effect than increasing sampling frequency on the time taken to
achieve high power. High power was best achieved by combining data from multiple sites. Our
approach provides a powerful tool to explore the interaction between sampling effort, spatial
distributions, population dynamics, and metrics for detecting change in previously fished pop-
ulations.

Key words: integral projection model; monitoring design; remotely operated vehicle; simulation; spatial
point process.

INTRODUCTION

Marine Protected Areas (MPAs), areas of restricted
human use, are being increasingly established globally as
a spatial management tool to aid in conservation and
fisheries management objectives (Klein et al. 2015).
Assessing whether MPAs are having the desired perfor-
mance effects requires establishment of effective moni-
toring programs before, during, and after MPA
implementation. Effective design and execution of moni-
toring programs rely on collecting data that are capable

of tracking trends in the dynamics of populations of
interest. Monitoring data collected within a rigorously
designed program also enable comparisons with pre-
dicted outcomes, possibly resulting in management
adjustments under an adaptive management framework
(Nichols and Williams 2006, Lyons et al. 2008). In this
respect, a crucial component of an effective monitoring
program is ensuring that sampling designs provide suffi-
cient statistical power to detect change (Urquhart et al.
1993, Lindenmayer and Likens 2010, Urquhart 2012).
Examining the relationship between sampling effort and
the power achievable with different designs is especially
important in the marine environment, where surveys are
often technically challenging and expensive. When a net-
work of MPAs is the focus of monitoring efforts,

Manuscript received 8 July 2019; revised 15 April 2020;
accepted 19 June 2020. Corresponding Editor: Mark Henderson.

7 E-mail: Nicholas.Perkins@utas.edu.au

Article e02215; page 1

Ecological Applications, 31(1), 2021, e02215
© 2020 by the Ecological Society of America

https://orcid.org/0000-0002-1328-2321
https://orcid.org/0000-0002-1328-2321
https://orcid.org/0000-0002-1328-2321
https://orcid.org/0000-0003-3242-2454
https://orcid.org/0000-0003-3242-2454
https://orcid.org/0000-0003-3242-2454
https://orcid.org/0000-0001-6102-1110
https://orcid.org/0000-0001-6102-1110
https://orcid.org/0000-0001-6102-1110
info:doi/10.1002/eap.2215
mailto:
http://crossmark.crossref.org/dialog/?doi=10.1002%2Feap.2215&domain=pdf&date_stamp=2020-10-12


budgetary constraints will require that researchers
choose between available tools, levels of within-site sam-
pling and the amount of spatial and temporal replication
achievable across multiple sites.
A critical aspect of monitoring program design is the

selection of indicators and metrics to be used in assess-
ing program goals. In order to track trends, indicators
must respond to the process of interest (e.g., changes in
population size structure and abundance after fishing
ceases) and be quantifiable with accuracy and precision
within the limits of the survey tools being used (Skalski
2012, Hayes et al. 2015). For many biological monitor-
ing programs, particular indicator species are chosen for
this purpose because knowledge of life history traits and
important environmental drivers at the species level
make likely responses more predictable (Butler et al.
2012). In the case of the MPAs, the pre-implementation
level of fishing mortality largely determines the expected
level of recovery (White et al. 2013, Nickols et al. 2019).
For example, Kaplan et al. (2019) show how expected
rates of recovery differ among previously fished species
in a network of MPAs and depend on life history traits
and levels of pre-MPA fishing mortality. Changes in bio-
mass will likely show a greater magnitude of response
than abundance due to the expected increase in the pro-
portion of larger individuals in MPAs (Kaplan et al.
2019). Increases in abundance and biomass of previously
fished species have been documented by a number of
long-term empirical studies (e.g., Claudet et al. 2006,
Guidetti 2006, Barrett et al. 2007, Lester et al. 2009), but
the rate and magnitude of change reported is variable,
likely reflecting life history traits of the species con-
cerned, differing levels of pre-implementation fishing
mortality and inherent environmental variability.
The ability to detect population changes with high sta-

tistical power will inevitably decrease with variability in
the trend of interest, which can arise from multiple
sources. Environmentally driven stochasticity, such as
recruitment variability dependent on oceanographic
conditions (reviewed by White et al. 2019), is irreducible
but quantifiable (Regan et al. 2002). Noise from mea-
surement or sampling error depends on sampling design
and therefore is both quantifiable and reducible (Regan
et al. 2002), depending on budgetary constraints. Assess-
ment of sample sizes achievable for given indicator spe-
cies and associated metrics can aid in determining both
their suitability and likely timeframes to detect and
report on change. For example, Starr et al. (2015)
assessed fisheries-independent hook-and-line surveys
across MPAs and found that detecting responses in
abundance and sizes of individual species was likely to
take at least 20 yr. When analysis in the early stages of
monitoring shows that sample sizes may not be achiev-
able for individual species, alternative metrics can also
be explored. For example, Caselle et al. (2015) analyzed
monitoring data collected by divers over the decade after
MPAs were established and found that it was necessary
to pool the biomass of all fished species to detect MPA

effects (but see also Caselle and Cabral [2018] for an
updated analysis). Any assessment of sampling effort
needs to account for the sample sizes and accompanying
covariate information that available survey tools are able
to capture.
MPA monitoring programs are increasingly using

visual survey technologies, such as remotely operated
vehicles (ROVs), due to their ability to sample non-de-
structively and collect data over large spatial scales (e.g.,
Karpov et al. 2012, Haggarty et al. 2016, Huvenne et al.
2016). In particular, the ability to conduct surveys
beyond scuba diving limits (typically 20–30 m) has
meant that a more complete picture of the status of
many species within MPAs is achievable, as the depth
distribution of most species extends beyond safe scuba
diving depths. Furthermore, larger ROVs are capable of
collecting over a kilometer of transect data per hour,
which is much more than is routinely collected in scuba
surveys, affording the potential for more accurate and
precise estimation of the abundance and biomass of spe-
cies across the scale of an MPA. Even so, compared to
the spatial scale of a typical coastal MPA (~5–50 km2),
sampling is relatively sparse, and an assessment of the
ability of sampling designs to detect likely levels of
change is necessary.
Here, we explore the ability of differing levels of sam-

pling effort with a ROV to detect expected changes due
to MPA implementation by developing a method to
combine spatial point process models, integral projec-
tion models (IPMs; Easterling et al. 2000) and simula-
tion-based approaches. We used baseline survey data for
an example species, brown rockfish (Sebastes auricula-
tus), across three MPAs and associated reference sites in
California, USA as the basis for creating simulated time
series of responses to MPA establishment. Spatial point
process models that quantify covariate effects and spa-
tial patterns in the distribution of our target species sim-
ulated distributions across sites. IPMs simulated
changing abundance and size structure of the popula-
tions within sites due to MPA establishment, capturing
the expected initial population response to MPA imple-
mentation of a “filling in” of the size structure of previ-
ously fished size classes (White et al. 2013, Kaplan et al.
2019). Using these simulated data sets, we conducted
simulated ROV transect-based surveys with varying
sampling effort (number of transects) in order to charac-
terize the data captured regarding changing size and
abundance of populations of brown rockfish. We then
examined the statistical power of different levels of sam-
pling effort in both space and time to detect changes in
abundance and biomass. Our novel approach (1) quanti-
fies the effect of ROV sample design and effort on the
power to detect likely changes in abundance and bio-
mass due to MPA implementation, (2) establishes likely
timeframes to detect changes between MPA and refer-
ence sites given realistically achievable levels of sam-
pling, and (3) explores the trade-offs in replication of
effort across sites and the frequency of sampling.
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METHODS

Study system

California recently established a state-wide network of
124 MPAs encompassing a total of 16% of state waters.
Various levels of protection were afforded through a com-
bination of state marine reserves, state marine conserva-
tion areas, state marine parks, recreational management
areas, and special closures. This network was designed
and established under the legislative mandate of the Mar-
ine Life Protection Act (MLPA) and the MPAs were
implemented between 2007 and 2013. The MLPA legisla-
tion has the aim of preserving the structure and function
of marine ecosystems and protection and conservation of
the populations within them. There are also requirements
in the legislation that the best available science is used and
that the network is monitored through time and subject
to adaptive management (Botsford et al. 2014). At pre-
sent, the monitoring program is transitioning from base-
line quantification into the long-term monitoring phase
(CDFW and OPC 2018). It is therefore timely that an
assessment of the scientific knowledge gained to date be
made, with a view to making recommendations for the
ongoing monitoring of the network. This includes choos-
ing appropriate indicators, site selection, sampling design
and the temporal replication of effort.
California’s MPA Monitoring Action Plan (CDFW

and OPC 2018) identified brown rockfish (Sebastes
auriculatus) as one of a number of potential indicator
species that has been the target of historical fishing
effort. Brown rockfish are distributed from southern
Baja California to Prince William Sound in the northern
Gulf of Alaska, but are most abundant in the central
and southern parts of Puget Sound and from southern
Baja California to Bodega Bay, California (Love et al.
2002). They are most commonly found in shallow
(<120 m) inshore reefs and show high site fidelity. They
are viviparous and produce planktonic larvae that meta-
morphose into pelagic juveniles before settling back to
rocky reef habitat. Adults grow to a maximum size of
approximately 56 cm and an age of 34 yr (Shanks and
Eckert 2005). Both commercial and recreational fisheries
target brown rockfish. Given the estimated level of fish-
ing effort for this species, population models indicate
that it is likely to provide a good indicator for MPA per-
formance with relatively high projected rates of increases
in abundance and biomass (Kaplan et al. 2019).

Data collection and survey sites

The empirical data used in this study were collected
by ROV as part of baseline characterization surveys of
California’s MPA network between 2014 and 2016. We
focused on three study areas, each consisting of a paired
MPA site and associated reference site. The three areas
were Bodega Head, A~no Nuevo, and Montara (Fig. 1).
All study areas contained populations of brown

rockfish. Variable densities of the focal species were
observed across the study areas in the survey data, which
allows for the examination of the interaction between
abundance and sampling effort.
The sampling design for ROV surveys utilized a

defined survey rectangle that covered the depth profile
of rocky reef at each site (Fig. 1). The rectangles were
always 500 m wide but varied in length depending on the
local extent of reef. Benthic transects were conducted
across the width of the rectangle (i.e., 500 m long tran-
sects) utilizing a random systematic design. A random
starting point was chosen at the shallow end of the rect-
angle that allows the required number of equally spaced
transects to be deployed across the rectangle. Typically,
the aim was to acquire at least 4 km of linear transect
per site. Subsequent scoring of the video transects was
conducted by trained experts in the laboratory.

Bathymetric covariates

We utilized multibeam maps of the bathymetry of each
study area for modeling covariate associations in the
empirical data and subsequent simulations. Bathymetric
data were available at a 2-m resolution (i.e., each cell is
4 m2) for all sites and were acquired from the United
States Geological Survey (USGS) repository (USGS
2019). A seafloor character layer developed by USGS
enabling each cell to be classed as hard, mixed or soft sub-
strate was also used. We derived all other covariates by
subsequent post-processing of the bathymetric layers in
ESRI ArcGIS v 10.3.1 software. The benthic terrain mod-
eler (BTM) and terrain attribute selection for spatial ecol-
ogy (TASSE; Lecours 2015) tools were used to extract the
multiple covariates. Bathymetric Position Index (BPI), a
measure that categorizes benthic terrain into peaks and
troughs was calculated at four scales: BPI_2_10,
BPI_3_15, BPI_5_25, and BPI_10_50, where the numbers
represent the inner and outer radii used (in m). Vector
Ruggedness Measure, a measure of benthic terrain rugos-
ity, was calculated at two scales: VRM_5 and VRM_15,
where the numbers represent the radius used (in m). We
also calculated curvature, slope (using the TASSE tool),
relative difference to mean value (RDMV from the
TASSE tool, a unitless measure of relative topographic
position), Euclidian distance to the nearest hard sub-
strate, and eastness and northness, unitless sin- and
cosine-transformed measures of orientation or aspect of
the cell. Both depth and depth2 were tested as model
parameters, as depth2 may capture nonlinear effects of
depth, such as when a species has preference for interme-
diate depths. We found these terms to be highly collinear
and used depth2 due to the ability to capture associations
at the extreme shallow and deep ends of the surveys.

Modeling and simulation approach: an overview

The modeling and simulation approach consisted of
five steps: (1) spatial point process modeling of the
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baseline survey data to parameterize the spatial simula-
tions; (2) projection of time series of abundance and size
distributions of fish populations from the IPM; (3) fore-
cast simulation of time series of fish populations across
sites including explicit positions and sizes at each time
step; (4) simulation of specified number of ROV tran-
sects with randomized starting points at each time step
to capture sample data; and (5) analysis of the forecasted
time series of estimated abundance and biomass from
simulated samples (Fig. 2). Below, we outline the details
of each of these processes. Example code and data are
provided online (see Data Availability).

Spatial point process model

Spatial point process models are a class of models that
provide a probabilistic description of the distribution of
individuals (viewed as points) across a spatial domain,
both in relation to where they are in terms of important
covariates, such as habitat or depth, and where they are
in relation to each other (e.g., Diggle 1983, Moller et al.
1998). Spatial autocorrelation in the data is explicitly

modeled, which capture patterns in distributions unac-
counted for by covariates, such as might be observed
with species that display aggregating behavior. Also,
“marked” point processes can assign additional informa-
tion to points in these models, such as the size of individ-
uals. These models therefore provide a convenient means
to model biological distributions and are being increas-
ingly used in this setting (e.g., Niemi and Fern�andez
2010, Yuan et al. 2016).
To characterize the distribution of brown rockfish

across each study area, we used a class of spatial point
process model known as Log Gaussian Cox Process
(LGCP; Moller et al. 1998) models. These models envi-
sion a continuous latent intensity surface k(s) at points s
across a contiguous two-dimensional domain D. How-
ever, a Poisson process likelihood, written at the point
level, involves the integral

R
D
kðsÞds, which at the point

level results in a likelihood
function with infinite parameters {k(s):sεD}. A com-

mon approach to address the problem is to assume that the k
(�) surface is piecewise constant where each piece is small
enough so that the variation of k(�) within that piece is not

FIG. 1. (A) Map showing the study region in north-central California, USA and individual study areas: (B) Montara, (C) A~no
Nuevo, and (D) Bodega Head. Red shading shows the boundaries of the protected areas. Blue rectangles show the boundaries of
the delineated remotely operated vehicle (ROV) sampling sites. Black lines show the navigated ROV transect lines. Blue dots show
the observed locations of brown rockfish. Note that some blue dots represent aggregations of multiple brown rockfish.
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of interest (e.g., Waagpetersen 2004). We considered the
bathymetric cell as a natural choice for this as cells are suffi-
ciently fine scale, and bathymetric covariates are also
recorded at this scale. For any such bathymetric cell A, a
high (low) value of the modeled surface k(A) implies an
expectation of higher (lower) concentration of fish within A
and is associated with observed count m(A) through a Pois-
son likelihood. We incorporate the bathymetric covariates
within A, denoted by z1(A), z2(A) . . ., zp(A), to model k(A),
on a log scale, through effect parameters bp, where p refers
to the value associated with the pth covariate or effect. We
also use a spatial process x(�) to explain the similarity

between intensities in nearby cells within D and model it
with a zero-mean Gaussian process (GP) prior such that for
any two points s and s0, cov(x(s), x(s0) = r2exp (�q||
s � s0||), where r and q represent the scale and decay-rate
parameters, respectively, for the spatial process. Thus, we
can write the stochastic model as

m Að Þ�Poisson k Að Þð Þ;
log k Að Þð Þ ¼ b0 þ b1z1 Að Þ þ . . .þ bpzp Að Þ þ x sAð Þ (1)

where sA denotes the coordinates of the center of the
bathymetric cell A.

FIG. 2. Overview of the steps taken in the modeling and simulation approach: (A) Spatial point process model parameters (de-
fined in Table 1) were estimated from empirical data and used to simulate fish spatial distributions; (B) single time step of the inte-
gral projection model (Eqs. 2–6) simulated the changing size structure and abundance of populations; (C) sampling simulations of
ROV transects (dashed lines) that collected annual time series of data using different number of transects within each ROV site (only
3 yr shown here); and (D) simulated sampled data were analyzed at each time step from year 5 onward to test the ability to detect
changes in trajectories between marine protected area sites and reference sites (two example times shown here). MPA, Marine Pro-
tected Area; REF, Reference area.
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We treated the covariate effects as common for all sites
across the reef within the study areas, whereas the inter-
cept and the spatial process parameters varied between
individual ROV sampling sites. As study areas typically
encompass the home range that a brown rockfish may
inhabit, we reasoned that preferred habitat (or other
covariates such as depth) within that range would likely
be preferentially inhabited (or avoided for negative asso-
ciations) by individual fish. We estimated intercepts and
spatial processes within sites, as it was conceivable that
there were effects not captured by the covariates that
influenced abundance and spatial distributions at the
spatial scale of a site.
We estimated the coefficients for all bathymetric

covariates as well as the site-specific intercept, spatial
decay-rate q and spatial variance r2 within a Bayesian
hierarchical framework. We implemented Markov chain
Monte Carlo (MCMC) algorithm via Gibbs sampling
for simulation of the model parameters one-by-one from
their posterior distributions conditioned on the recent
most values of other parameters. Because the condi-
tional posterior distribution of spatial decay-rate param-
eters does not have a standard form to simulate from, we
employed Metropolis-within-Gibbs (e.g., Tierney 1994)
to draw its samples. All MCMC algorithms were coded
using a purpose-built algorithm in the R statistical com-
puting language (RCore Team 2019). In order to handle
the large number of cells, we used a bias-corrected pre-
dictive process approximation (Banerjee et al. 2008, Fin-
ley et al. 2009) for the log-intensity function. Once the
MCMC run was complete, a subset of the original poste-
rior samples, obtained through burn-in and thinning of
the chain, was retained for subsequent use. Medians of
the posterior samples served as a point estimate for that
parameter. We measured significance of each parameter
at a level (1 � a) by whether a (1 � a) probability
region under the empirical posterior distribution (the
credible set) excluded zero. We used an a of 0.10.
Total starting abundances across each site and associ-

ated starting densities (i.e., total abundance/survey area)
were predicted using the set of significant covariates
across each study area. We also calculated densities as
the number of fishes per 100 m2 as this measure of den-
sity has been commonly employed in reporting results of
previous ROV surveys.

Integral projection model (IPM)

An integral projection model is a discrete-time popu-
lation model that follows a continuous population size
distribution, nt(x) over sizes x at each time t (Easterling
et al. 2000, Ellner et al. 2016). IPMs can directly simu-
late changes over time in population size distributions
(which is the type of data collected by ROVs) and can be
parameterized by continuous, size-dependent functions.
Individuals of size x survive each time step according to
the probability density function S(x) and grow to size y
according to the probability density function G(y,x). For

annual larval recruitment, we assume a demographically
open population (White et al. 2016) with recruit density
distribution wt(y). Then the population size distribution
dynamics are

ntþ1 yð Þ ¼ S xð ÞG y; xð Þnt xð Þdxþ wt yð Þ (2)

where the integration is taken over all possible sizes at
time t. To ensure no plausible fish sizes were excluded all
possible sizes ranged from 0 to two standard deviations
above the maximum length, L1. All individuals experi-
ence natural mortality at a rate M regardless of size. In
reference sites, individuals experience fishing mortality
at a rate F with size-selectivity s(x), a normal cumulative
distribution function with mean of the size at entry to
the fishery Lfish and standard deviation rLfish . Therefore,
the annual probability of survival is

S xð Þ ¼ e�Me�Fs xð Þ: (3)

We modeled growth using a normal distribution with
mean of the von Bertalanffy growth over a single time
step starting from size x given growth rate k and maxi-
mum size L1

gmean xð Þ ¼ L1 � ðL1 � xÞe�k: (4)

Because variation around mean size-at-age typically
increases with mean size (e.g., see Cope et al. 2015), we
modeled the standard deviation of size in the next time
step as a coefficient of variation, LCV multiplied by the
mean gmean(x) (keeping in mind that the IPM describes
changes in the population size distribution rather than
individual-scale growth trajectories, which could become
less variable with age) such that

G y; xð Þ ¼ gmean xð Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðLCVgmean xð ÞÞ2

q e
� y�gmean xð Þð Þ2

2 LCVgmean xð Þð Þ2 :

(5)

We modeled reproduction assuming open population
dynamics, i.e., all larval recruitment arrived from exter-
nal sites, because the spatial scale of study areas is large
relative to the movement of adult brown rockfish but
small relative to the predicted spatial scale of dispersal
of the pelagic larval and juvenile brown rockfish (White
et al. 2014b). Thus, the density of new larval recruits of
size y arriving in year t, w t(y), is then an input of Rt

recruits with mean size y0 and standard deviation rR:

wt yð Þ ¼ Rtffiffiffiffiffiffiffiffiffiffiffi
2pr2R

q e
� y�y0ð Þ2

2r2
R : (6)

Note that although larval recruitment can be highly
stochastic and the actual population trajectory in a real
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MPA is affected by the specific temporal pattern of
annual recruitment pulses (Nickols et al. 2019), we simu-
lated constant recruitment as a first approximation to
the expected trajectory of population increase inside an
MPA. In addition, we ignored immigration or emigra-
tion of adult fish from each site.
We parameterized the IPM for brown rockfish using

the same approach taken by White et al. (2016) for the
congener blue rockfish (S. mystinus), using life history
and harvest parameters (e.g., the fishing rate F) from the
published literature and in the most recent brown rock-
fish stock assessment (Love et al. 2002, Cope et al.
2015). All parameter values and their sources are in
Appendix S1: Table S1.
For both MPA sites and reference sites, we initiated

simulations with the initial size structure (at the time of
MPA implementation) based on the stable size distribu-
tion from simulating the IPM for 100 yr with fishing.
We then iterated the IPM to project the trajectory of
recovery in abundance and the changing size structure
for 25 yr post-MPA implementation. For those simula-
tions, F = 0 for MPA sites but remained the same for ref-
erence sites. These simulations were made with an
arbitrary value of recruitment Rt. We then rescaled the
total abundance (i.e., the integral of the size distribution)
in each simulation year by dividing by the integral in
year 0 (the year of MPA implementation) then multiply-
ing by the abundance estimated empirically using the
spatial point process model (see Methods: Spatial point
process model). This procedure ensured that the simu-
lated population dynamics had both realistic total abun-
dances and size structure that reflected the expected
changes after MPA implementation (the value of Rt is
factored out by the rescaling process, so results are not
sensitive to the value chosen; see White et al. (2013) S3–
S5). For presentation purposes, we calculated changes in
total abundance as a ratio at each annual time step com-
pared to time zero (i.e., Nt/N0, where Nt is the total
abundance of fish greater than the minimum size
observed). For the reference sites, we assumed that the
population had reached equilibrium under the constant
fishing mortality, and therefore there was no change in
population abundance or size structure through time.
Finally, we incorporated the length of detection by ROV
survey for brown rockfish based on the minimum size
observed in the ROV data set, Ldetect. We assumed the
detection probability of 100% for all fish over this
length.

Spatial forecasting simulations

We used the parameter estimates from the spatial
models and the IPM as the basis for simulating chang-
ing fish distributions, total abundances, and size struc-
tures through time. Simulated distributions and
simulated sampling designs were conducted across the
bathymetric grids of each site. Bathymetric grids were
convenient for this purpose as each cell contained

values for the covariates used in the spatial models. For
the simulations, the coefficients of the covariates were
set to the medians of their posterior distributions rather
than draws from the joint posterior distribution, as the
focus of the study was testing the effect of sampling
effort. Using different posterior draws would have
resulted in a changing intercept and hence a different
starting abundance for each simulation that would have
been a confounding factor in determining power to
detect change.
We used the rLGCP function within the spatstat pack-

age in R (Baddeley et al. 2015) to create a random real-
ization of the spatial distribution of the brown rockfish
population in each site at each time using the parameter
estimates from the spatial models. The rLGCP function
creates a random realization of points (fish) across the
sites given the underlying covariates and spatial structur-
ing. By creating randomized realizations, the positions
of fish are different for any given time-site combination
over all simulations, thereby representing the movement
of fish between surveys, constrained within the model
parameters. We then assigned sizes to each fish based on
the proportion in each size class estimated from the IPM
for that time step, thereby creating a “marked” point
process. Only the portion of the IPM size distribution
greater than Ldetect (i.e., >20 cm in length) was used for
this process. The step of creating realizations of the point
process was not essential for the simulations, as a Pois-
son realization for the subset of cells traversed by the
ROV for any given survey could be generated indepen-
dently by integrating over the k(s) (see Eq. 1). However,
generating realizations allowed for visual verification of
the patterns generated, which was useful in explaining
the simulation process to a non-statistical audience.
For each site and time, we simulated ROV transects

utilizing the established design, but with a differing num-
ber of transects with a randomized starting point. We
used a range of values (8, 12, 16, and 20) for the number
of transects tested within each site to test different efforts
in terms of the proportion of the survey area sampled at
each site (summarized in Appendix S2: Table S1). The
upper limit (20 transects) is the expected maximum that
could be currently conducted in a single day. The lower
limit (8 transects) was chosen as the number of transects
used in the baseline surveys varied from 4 to 8 (Fig. 1).
We therefore simulated an increase in sampling in order
to test the potential for more effort to improve the power
to detect change. While real transects are likely to rarely
exactly follow the planned survey lines and are also
likely to vary in width along the transect line, we
assumed straight line transects with a constant width for
simplicity. Conveniently, the average transect width for
the ROV surveys was approximately 2 m, which corre-
sponds to the cell widths, and therefore we assumed that
a strip of cells was navigated along each transect line.
In detail, for a total of 100 simulations for each

site-time combination, the simulation steps were as
follows:

January 2021 STATISTICAL POWER FORMPAMONITORING Article e02215; page 7



(1). Create raster stacks (raster package in R; Hijmans
and van Etten 2012) of all covariate layers based on
the 2-m resolution cells.

(2). If the site was an MPA site, adjust the intercept
(representing the mean expected fish count per cell)
from the spatial model based on the time step,
thereby allowing the increased abundance through
time. We achieved this by back-transforming the
intercept (Eq. 1; taking the exponential), multiply-
ing it by the relevant ratio of increase for that time
step (based on the IPM projection of Nt/N0, where
Nt ¼ nt xð Þdx), and then taking the logarithm of this
value as the “new” intercept. For reference sites, the
intercept remains constant.

(3). Multiply site level covariate coefficients that were
statistically significant at the 90% credible interval
level in the spatial model (b estimates for each
covariate) with cell-level covariate values in the ras-
ter stacks and then added to the intercept from step
2 to create a single value for each cell that was a lin-
ear combination of the spatial model estimates and
covariates. We then turned this into an “image”
(function im in the R spatstat package), represent-
ing the intensity surface across the entire site to be
used in simulating the point process.

(4). Apply the rLGCP (spatstat package) function to
the intensity surface image from step 3 and the spa-
tial variance and range parameter estimates from
the spatial model to simulate a random realization
of points (fish) across the site. Cartesian coordi-
nates of each point were stored.

(5). Assign sizes to each simulated fish proportionally
by each 1-cm size bin from the IPM for a given
time, resulting in a “marked” point process.

(6). Choose a random starting point for the transects,
according to the number of transects being simulated,
that allowed equal spacing of the transects across the
survey area. Determine then store the set of 2-m cells
that were intersected by each transect line.

(7). Store the number of and size of all fish “sampled”
within cells for each simulated transect for subse-
quent analysis.

Analysis of the forecasted data

We analyzed the forecasted data by modeling the time
series of abundance and biomass data at each time point
for MPA and reference site pairs and all three study
areas in a combined hierarchical model. A spatial point
process model, as described above could have been fit to
each simulated time point and used to estimate the dif-
ferences through time. However, the spatial models were
computationally intensive, and considering the large
number of simulated data sets, we considered this to be
impractical for the present study. Furthermore, analyz-
ing the simulated data with a model that was structurally
identical to that used to generate the data would have
provided better fits than could be expected with real

world monitoring data. We instead take a conservative
approach and use a simpler analysis such as may be
more commonly taken with this kind of data. Abun-
dance data consisted of the total fish sampled within
each sampling site (either MPA or reference site within a
study area). We calculated biomass Bi,t in site i, time t
given the number of observed individuals Ni,t,x in each
one centimeter size bin with a midpoint length of x2
[xmin�xmax] and length–weight conversion parameters a
and b (see Appendix S1: Table S1 for parameter values)

Bi;t ¼
Xxmax

x¼xmin

Ni;t;xaxb: (7)

To distinguish an MPA effect by comparing MPA sites
to reference sites with fishing (before MPA establishment
and/or outside MPAs), we used generalized additive
models (GAMs). GAMs provide the flexibility of model-
ing the expected nonlinear trends of abundance and bio-
mass through time for the MPA sites (e.g., White et al.
2013, Kaplan et al. 2019). Due to limited adult move-
ment and widespread larval movement, we did not con-
sider “spillover” effects. Also, for simplicity, we did not
consider wholesale increases in reproductive output or
the possibility of displaced fishing effort outside the
MPA, and so reference sites could represent either before
MPA data or outside-MPA data. GAMs were fitted at
each time step from year 5 onward to test for a detect-
able MPA effect. We modeled the expectation, E(�) of
the observed abundance or biomass, yi, where a is an
intercept, mi is the MPA status for the ith site, b1 is the
MPA effect, f1(ti) is a smooth function of time, and f2(ti)
is a smooth deviation from f1(ti) due to the MPA status
of sites. For abundance GAMs the variation around the
fitted expectation was Poisson and for biomass GAMs it
was Tweedie (e.g., Foster and Bravington 2012)

log E kið Þð Þ ¼ aþ b1mi þ f1 tið Þ þ f2 tið Þ: (8)

A generalized additive mixed model (GAMM) was
used for the time series that included all sites, where
model terms were the same as for (8), but with the addi-
tional term ui, which is a study area random effect with
ui ~ N(0,d2)

log E kið Þð Þ ¼ aþ b1mi þ f1 tið Þ þ f2 tið Þ þ ui: (9)

hWe examined model residuals for temporal autocor-
relation in a large subset of models and found no evi-
dence of a consistent temporal lag in correlation.
We determined the statistical power to detect the fore-

casted level of change at each study area by calculating the
proportion of simulations at each time step with a signifi-
cant (at a = 0.05) difference trend f2(ti) in the abundance
or biomass trend between the MPA(s) and the associated
reference site(s). We also calculated the power at each time
step/sampling effort combination. In order to assess the
uncertainty associated with using 100 simulations, a
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random resample with replacement of 100 of the forecasts
was taken and repeated 100 times. Final results are the
mean of these 100 resamples as well as the maximum and
minimum power calculated over the 100 resamples.
We tested the implications of reducing the frequency

of temporal revisits to the “panel” of three study areas to
every two or three years. We subsetted the forecasted
data to the appropriate time intervals across all simula-
tions and analyzed the combined biomass estimates
across the three study areas.
For all combinations of study area/metric/number of

transects/sampling frequency, we assessed the ability of
the sampling design to achieve high power (>80%) within
the time tested (e.g., Urquhart et al. 1993, Urquhart 2012,
Andersen et al. 2019). Sampling schemes that achieve
high power in a shorter timeframe are preferred for a
monitoring program but must be balanced within bud-
getary and time constraints. Where high power is not
achieved in the tested timeframe, sampling schemes that
result in a trajectory that is likely to achieve high power
faster than others are preferred. While an understanding
of the sampling effort required to achieve high power
would be informative, we limited our simulations to the
number of transects that can currently be conducted at a
site within a single day of sampling (i.e., 20 transects). We
did not conduct null hypothesis tests on the simulation
outputs, because the results of such tests depend on sam-
ple size, which is essentially arbitrary in a simulation con-
text (see White et al. [2014a] for additional explanation).
We quantified the precision of estimates of abundance

and biomass dependent on sampling effort by calculat-
ing the coefficient of variation (CV) of estimates for the
reference sites in each study area. The reference sites
were chosen for this purpose as the abundance and bio-
mass were kept constant over all simulations, whereas,
for the MPA sites, abundance and biomass varied for
each year simulated, which would also affect precision.
We calculated the CV (the standard deviation divided by
the mean) of estimated abundance and biomass for each
reference site over the 2,500 simulations (100 simulations
each with 25 yr) for 8, 12, 16, and 20 transects.
Finally, we conducted two additional simulation stud-

ies in order to examine (1) the implications of using the
Bayesian posterior median estimates for our simulations
rather than the full Bayesian posterior distribution and
(2) the level of spatial aggregation when considering the
full simulated point patterns across sites. Full details of
the approaches taken and the results are given in
Appendix S3 (implications of using posterior medians)
and Appendix S4 (level of spatial aggregation in simu-
lated distributions).

RESULTS

Spatial point process and integral projection model results

In the spatial point process models across study areas,
the statistically significant (P < 0.10) bathymetric

covariates predicting brown rockfish density were
depth2, bathymetric position indexes BPI_2_10,
BPI_5_25 and BPI_10_50, curvature, slope, vector
ruggedness measures VRM_5 and VRM_15, eastness,
northness, seafloor character of mixed, and distance to
hard substrate. However, depth2 was the only statisti-
cally significant covariate across all study areas
(Table 1). Other significant covariate effects differed
between study areas.
Predicted starting densities varied considerably across

the three study areas, with Bodega Head having the
highest density, A~no Nuevo having an intermediate den-
sity and Montara having a low relative density, particu-
larly at the reference site (Table 1).
The spatial effects differed across the three study

areas, with the median for the spatial decay-rate parame-
ter q (Table 1) indicating that the practical range (the
distance at which spatial correlation is 0.05) varied from
approximately 37 m at the A~no Nuevo MPA site to
approximately 800 m at the Bodega Head reference site.
The practical range was between 150 and 600 m at the
other sites. The short practical range at the A~no Nuevo
MPA site is related to only four observed brown rock-
fish, with two of these in close proximity. There is also a
much larger uncertainty with the estimate for the spatial
decay-rate parameter at this site (Table 1).
Median values for spatial variance r2 (Table 1) also

differed among sites, with a high at the A~no Nuevo
MPA site of 0.53, and a low at the Montara MPA site of
0.22. This parameter reflects the importance of the spa-
tial field x(�) in explaining the intensity in counts of fish
across the cells, with smaller values indicating the covari-
ates are mostly explaining the distribution. However, the
values for r2 need to be interpreted in relation to the
other model parameters that determine the overall inten-
sity of fish counts and the associated variance at each
site. Therefore, direct comparison of values of r2

between study areas is complicated as covariate effects,
mean intensity and associated variability differ between
study areas.
The IPM for brown rockfish predicted approximately

a 44% increase in abundance and 95% increase in bio-
mass after 25 yr for brown rockfish >20 cm in length
(Fig. 3). These changes were due to a filling in of the ini-
tial truncated size structure of the population in the
MPA sites through previous removal of legal-sized indi-
viduals (Fig. 2B).

Forecasted simulation results

Statistical power to detect increases in abundance at
MPA sites compared to reference sites generally
increased with time and sample size (Fig. 4). As
expected, higher power was achieved with greater sam-
pling effort, with clearer differences where starting densi-
ties were higher; however, high statistical power (>80%)
to detect forecasted changes in abundance between indi-
vidual or aggregate MPA and reference site pairings
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could not be achieved with even the highest sampling
efforts tested (20 transects). The highest power achieved
was for the Bodega Head study area, where mean power
of approximately 50% was achieved with 20 transects

after 25 yr. Mean power to detect the simulated change
in abundance at A~no Nuevo never exceeded 40%, and
never exceeded 25% at Montara, regardless of the level
of sampling effort tested.
Higher mean power was achievable for detecting

changes in biomass compared to abundance for all
study areas (Fig. 5). Similar to abundance, the highest
mean power to detect change in biomass was achievable
at the Bodega Head study area, where a mean 80%
power was achieved with 20 transects at year 25. Mean
power to detect changes in biomass peaked at 73% at
A~no Nuevo and 47% at Montara. However, the com-
bined study area analysis for biomass was capable of
achieving high mean statistical power with all sampling
efforts tested except eight transects. By combining the
three study areas, high mean statistical power was
achieved after 13, 16, and 18 yr with 20, 16, and 12
transects, respectively.
Reduced temporal revisit plans of every two or three

years to the three study areas were able to achieve high
mean statistical power to detect differences in the trajec-
tories for biomass within the 25-yr forecast (Fig. 6).
With the highest sampling effort (20 transects) high
mean power took 3 yr longer with biennial visits com-
pared to annual visits and 5 yr longer with triennial vis-
its (Figs. 6, 5). High mean power could not be achieved
with only eight transects for either revisit scheme.

TABLE 1. Median posterior parameter estimates and 90% credible intervals and starting densities estimated from the spatial
models used in the simulation for each of the three sites.

Bathymetric covariates

Bodega Head A~no Nuevo Montara

Median 5% 95% Median 5% 95% Median 5% 95%

Depth2 0.25 0.06 0.39 0.21 0.05 0.558 0.82 0.21 1.09
BPI_2_10 0.28 0.02 0.43
BPI_5_25 0.16 0.12 0.26
BPI_10_50 0.40 0.12 0.59
Curvature �0.78 �0.94 �0.62
Slope �0.21 �0.33 �0.10 0.37 0.24 0.61
Eastness �0.44 �0.80 �0.20 �0.51 �0.59 �0.35
Northness �0.07 �0.01 �0.01 0.31 0.17 0.70 �0.16 �0.25 �0.09
VRM_5 0.37 0.29 0.49
VRM_15 �0.40 �0.75 �0.27 0.34 0.08 0.50
SF_character_mixed 0.14 0.06 0.26
Distance to hard �0.26 �0.45 �0.12 �0.84 �1.16 �0.22
Intercept MPA �5.10 �6.24 �5.14 �7.47 �7.73 �6.80 �6.90 �7.13 �6.29
Intercept REF �4.90 �6.50 �5.40 �7.11 �7.37 �6.07 �6.87 �7.11 �6.63
Spatial decay-rate parameter (q) MPA 0.01 0.00 0.00 0.08 0.01 1.58 0.01 0.01 0.03
Spatial decay-rate parameter (q) REF 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.01 0.08
Spatial variance (r2) MPA 0.17 0.09 0.51 0.53 0.26 1.12 0.22 0.14 0.53
Spatial variance (r2) REF 0.23 0.13 0.51 0.34 0.24 0.58 0.44 0.26 1.01
Starting density (fish/100 m2) MPA 0.17 0.17 0.17 0.09 0.09 0.09 0.06 0.06 0.06
Starting density (fish/100 m2) REF 0.18 0.18 0.18 0.09 0.09 0.09 0.02 0.02 0.02

Notes: For bathymetric covariates, only values for significant covariates that were used in the final models are provided. Mean
starting and ending abundances were averaged over the 100 simulation runs. Starting and ending abundances for the reference site
were the same. VRM is Vector Ruggedness Measure, a measure of rugosity, with the number referring to the radius (meters) used
for calculation. BPI is Bathymetric Profile Index, a measure of the position in the landscape, with the numbers referring to the inner
and outer radii used for calculation. SF_character_mixed is a categorical variable defining when the seafloor (SF) related to a bathy-
metric cell was classified as being mixed substrate. MPA, Marine Protected Area; REF, Reference area.

FIG. 3. Predicted trajectories for the abundance and bio-
mass of brown rockfish in response to MPA implementation,
based on the integral projection model (N0, abundance at time
0; Nt, abundance at time t; B0, biomass at time 0; Bt, biomass at
time t). Ratio change (vertical axis) represents the ratio com-
pared to the population at time of the baseline survey. The ref-
erence site was assumed to have a constant abundance and
biomass through time under equilibrium condition of constant
fishing pressure. The projection incorporates a length of detec-
tion of 20 cm for brown rockfish.
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CVs attained for both abundance and biomass esti-
mates for each reference site were lower (more precise)
with increased sampling effort. Increased precision was
also correlated with increased starting densities at each
site (Fig. 7 and Table 1). Notably, the decrease in CV
did not show a clear signal of flattening out at a high
number of transects, indicating that even with 20

transects there were not diminishing returns to precision
obtained by adding more sampling effort.
Mean sample sizes (number of predicted fish

observed) achieved over the 100 simulations ranged from
5 fish at the Montara reference site with 8 transects, to
48 fish at the Bodega Head MPA site with 20 transects
at year 25 (Appendix S2: Table S2). The mean sample

FIG. 4. Statistical power to detect forecasted changes in abundance of brown rockfish for each of the three study areas: (A) Bod-
ega Head, (B) A~no Nuevo, (C) Montara, and (D) an analysis combining all three study areas. Different colored lines and polygons
represent different sampling efforts in terms of the total number of ROV transects used in the simulation. Polygons represent the distri-
bution of the maximum and minimum power calculated at each time step by resampling the 100 forecasted data sets 100 times. The
colored dashed lines represent the mean of the 100 resamples. The black dashed line indicates 80% power. Power was assessed at each
year as the proportion of 100 simulations with a significant difference in trajectories between MPA and reference site populations.

FIG. 5. Statistical power to detect forecasted changes in biomass of brown rockfish for each of the three study areas: (A) Bodega
Head, (B) A~no Nuevo, (C) Montara, and (D) an analysis combining all three study areas. Different colored lines and polygons rep-
resent different sampling efforts in terms of the total number of ROV transects used. Polygons represent the distribution of the max-
imum and minimum power calculated at each time step by resampling the 100 forecasted data sets 100 times. The colored dashed
lines represent the mean of the 100 resamples. The black dashed line indicates 80% power. Power was assessed at each year as the
proportion of 100 simulations with a significant difference in trajectories between MPA and reference site populations.
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sizes achieved for a given sampling effort corresponded
with our expectations given the empirical data. For
example, sample sizes from the empirical data with 8
transects at Bodega Head MPA (15 fish observed) and
reference site (16 fish observed) both fell within one
standard deviation of the simulated mean sample abun-
dance with the same sampling effort (Appendix S2:
Table S2).
Our additional simulation study examining the impli-

cations of using posterior medians (Appendix S3)
demonstrates that using our simulation approach cap-
tured the major distributional patterns of brown rock-
fish across sites. Analysis of example mapped point
patterns (i.e., complete distributions simulated across
sites) showed that distributions of brown rockfish in our
study did not display strong levels of aggregation
(Appendix S4).

DISCUSSION

A power analysis before data are collected can inform
choices about sampling design, effort, and length of
study. However, there is considerable debate about how
much power is sufficient for strong inferences (Fair-
weather 1991, Di Stefano 2003), and power analyses rely
on inevitably uncertain predictions of future effect sizes
and how those effects might be detected by a particular
sampling approach. We have introduced an approach for

FIG. 6. Statistical power to detect changes in biomass of brown rockfish combining biomass data from the three study areas
with a reduced revisit sampling design of (A) every 2 yr after year 5 and (B) every 3 yr after year 5. Shaded polygons show the range
of power values obtained by resampling the 100 forecast data sets 100 times. Colored dashed lines show the mean of the 100
resamples.

FIG. 7. Coefficient of variation (CV) for the reference sites
in each study area with 8, 12, 16, and 20 transects for (A) abun-
dance and (B) biomass. CV was calculated as standard devia-
tion/mean over 2,500 simulations (100 simulations 9 25 yr) for
each sampling effort and study area combination.
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conducting power analysis based on predicted effects
and detectability in order to inform temporal and spatial
sampling design for the monitoring and adaptive man-
agement of MPAs. While we have focused on a ROV as
the sampling platform, this approach could be extended
to incorporate other sampling platforms (including
SCUBA diver visual surveys) and other environments,
although it is most suited to survey methods that record
explicit spatial positions of observations.
For our study system, based on our method of com-

bining spatial point process modeling and integral pro-
jection modeling to simulate time-series data sets across
three Californian MPAs, we found the potential for
detectable changes in biomass but not abundance
within 13 yr. In addition to increased within-site sam-
pling and across study area data aggregation,
detectability increased with increasing starting densities
across sites. Reducing sampling frequency had a smaller
effect on detectability than reducing sampling intensity.
These results carry an important message for managers
of California’s network of MPAs, and indeed MPAs
elsewhere, as they (1) clarify the time frames likely to
be required to report change to stakeholders and (2)
explore the factors affecting the statistical power to
detect likely levels of change, thereby providing guid-
ance regarding the selection of indicators and metrics
for long-term monitoring.

Timeframes to achieve high power in detecting MPA
effects

Determining likely timeframes for detecting the effect
of protection from fishing pressure is crucial from the
management perspective of selecting appropriate indica-
tors for MPA monitoring (see Kaplan et al. 2019), and
also for informing stakeholder expectations with respect
to reporting on the effectiveness of MPAs. Our simula-
tions demonstrated that the timeframes to achieve high
mean statistical power to detect change for an example
species with a ROV ranged from 13 yr to over 25 yr.
This was despite testing a considerable increase in sam-
pling effort compared to baseline surveys and incorpo-
rating data from three study areas. The shortest
timeframe was achieved by combining data across study
areas and using biomass as the metric. For individual
study areas, a minimum of 25 yr was required with the
highest within-site sampling effort to detect the pro-
jected trends. Similar timeframes have also been
reported in a study based on hook-and-line surveys of
MPA and reference sites on the central coast of Califor-
nia, where it was concluded that 20 yr or more would be
required to detect changes (Starr et al. 2015). In marine
ecosystems, which are often highly variable in time and
space, considerable “noise” is likely to exist across time
series making trends harder to detect and thus reporting
timeframes may be even longer than those reported here.
When coupled with relatively small sample sizes due to
the technical difficulties of collecting data in marine

ecosystems, long periods of data acquisition will likely
be necessary (e.g., Perkins et al. 2017). Communicating
this fact to stakeholders, including the general public, is
a necessary component of effective management, partic-
ularly when reporting cycles are likely to be much
shorter.

Factors affecting the power to detect change

A complex interplay of factors, such as within-site
sampling effort, the number of study areas, starting
densities, likely levels of change in chosen metrics and
the frequency of revisits, all affect the ability of moni-
toring programs to detect changes in target popula-
tions through time. Simulation studies provide a
powerful means of exploring the importance of differ-
ent factors, and in particular how sampling design
choices influence the length of time necessary to accu-
mulate statistical power for detecting trends (Field
et al. 2005). Therefore, it is surprising that the number
of simulation studies for monitoring programs aimed
at detecting changes in abundance through time is cur-
rently limited (Andersen et al. 2019). By utilizing
empirical data to inform models, our simulation
approach provides a means of assessing the factors
influencing the power to detect change in an MPA
monitoring context. Below, we discuss these factors
and focus on insights concerning improved outcomes
for long-term MPA monitoring.

Level of within-site sampling

Within-site sample size is known to be a key determi-
nant of statistical power for monitoring programs
(Hatch 2003), particularly where target species are rare
and detection probabilities are likely to be low (Strayer
1999). We found that sampling effort strongly affected
the ability to detect change in a timely manner, with the
lowest level of sampling unable to detect change within
the time tested, whereas increasing effort could poten-
tially detect change within 13 yr for our example species.
This agrees with other research showing that insufficient
within-site sampling can have a large impact on the
power to detect trends (e.g., Perkins et al. 2016, Barker
et al. 2019). However, we found that increases in sam-
pling effort in the study area with the lowest starting
densities (Montara, and the reference site in particular)
achieved only marginal increases in power over time,
despite sites at Montara being smaller and thus the per-
centage area sampled with an equivalent number of tran-
sects being almost four times that of the largest sites at
Bodega Head. This was particularly the case for the
Montara reference site, where we found high precision in
both abundance and biomass was difficult to achieve.
Hence, improvements in monitoring outcomes are likely
to be achieved by targeting sampling effort to filling in
gaps where sufficient sample sizes are likely to be
obtained for the target species.
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Initial density of indicator species

We found that the power achievable through time was
correlated with increasing starting densities (i.e., abun-
dance per unit area), with high power being correlated
with higher starting densities. This result is supported by
other simulation studies that found clear relationships
between starting densities and the power to detect popu-
lation trends, with increasing power achievable as start-
ing density increases (Ficetola et al. 2018, Andersen
et al. 2019). While we did not explicitly test the link
between starting densities and power to detect change,
we found the precision of estimates (CVs) of abundance
and biomass for a given sampling effort also correlated
to starting densities. These findings suggest that starting
densities and the associated sample sizes achievable can
be an important consideration when selecting indicator
species for monitoring.

Incorporating data from multiple study areas

We showed that aggregating information across multi-
ple study areas within an MPA network can provide the
best means of increasing the power to detect trends in
the shortest time. In a power simulation study for terres-
trial fauna, Andersen et al. (2019) found that for the
tested sampling effort across space and time, the highest
power to detect changes in abundance was consistently
achieved by maximizing the number of sites. This out-
come was found to hold true irrespective of the different
starting densities tested. Similarly, Ficetola et al. (2018)
in another simulation study found that high power was
achievable for detecting declines in abundance with the
largest number of sites tested for all but the least abun-
dant species. Therefore, when considering panels of sites
to be visited, maximizing the number of sites with higher
densities of target indicators will provide a better chance
of detecting change earlier.
The panel of study areas or sites that are grouped for

analysis needs careful consideration, with higher power
likely to be achieved when grouped sites have similar
responses (Weiser et al. 2018). Our simulations assumed
the same trend across the three study areas, an assump-
tion that is unlikely to hold true, as areas probably expe-
rienced different fishing pressure before MPAs were
established and likely experience different levels of
recruitment. Ideally, an assessment of the larger-scale
spatial correlation among MPAs across a network would
allow for the selection of groups of MPAs that are more
likely to show similar responses. For example, Hamilton
et al. (2010) showed that grouping areas biogeographi-
cally for MPAs around the Channel Islands, California,
improved statistical power to detect trends. Alterna-
tively, different trends can also be included in hierarchi-
cal models for multiple sites (e.g., Urquhart 2012,
Perkins et al. 2017), although power to detect overall
trends may be low when trends among sites differ sub-
stantially (Weiser et al. 2018). Further work exploring

the influence of including a larger number of study areas
with differing levels of response is warranted.

Effect sizes and metrics for detecting change: abundance
versus biomass

The effect size is crucial to the outcome of any power
study but is often uncertain in biological systems that
have considerable natural variability. Our study rein-
forces the expectation that biomass provides a detectable
signal for change in MPAs earlier than abundance
because it captures increases in the proportion of larger
fish as well as population size after fishing ceases (e.g.,
Edgar et al. 2014, Caselle et al. 2015, Friedlander et al.
2017). Our IPM showed that expected increases in bio-
mass were more than double that of abundance of brown
rockfish in MPAs (95% compared to 44%) and was inter-
mediate across the 19 species tested in a study by Kaplan
et al. (2019), providing a representative example. Con-
genic rockfishes, such as blue (S. mystinus) and vermil-
lion (S. miniatus) rockfish, had larger expected biomass
responses than brown rockfish so that differences likely
would be detected even sooner were other factors held
constant. Kaplan et al. (2019) previously showed that
increases in biomass were consistently more detectable
than abundance in the expected recovery of a range of
species across the network of MPAs along the coast of
California. Information regarding likely response levels
could be used in conjunction with our findings to select
indicator-study area combinations that are likely to
show larger responses.
We found that the precision for biomass estimates was

lower compared to abundance estimates across all our
study areas; however, the lower precision was offset over
time by the larger trend, with high power achievable
sooner. In order to convert lengths collected in survey
data to biomass, length is raised by some exponent, typi-
cally approximately 3 (3.07 for brown rockfish), which
compounds errors in both the length measurement and
the original estimation of the allometric exponent. This
issue is seldom addressed and warrants further investiga-
tion. We found biomass estimates had higher precision
at sites with higher densities, where sample sizes were
typically greater than 25 (A~no Nuevo) to 48 fish (Bodega
Head) with the highest sampling tested, compared to
<20 fish typically sampled at Montara. Therefore, sam-
ple sizes of greater than 20 brown rockfish are likely to
achieve high power in detecting expected changes in bio-
mass over periods of 25 yr or less.
High power to detect changes in previously fished

populations could also be achieved by combining data
from multiple species. For example, in assessing the
effects of establishing MPAs in the Channel Islands
using SCUBA surveys, Caselle et al. (2015) grouped bio-
mass of all targeted species, presumably due to the noise
and lack of detectable effect when examining individual
species trajectories. Hence, power is likely to be
increased by grouping species for analysis, although care
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would need to be taken regarding whether these species
and the study areas from which they were being included
would likely follow similar trajectories of recovery. In an
updated analysis examining a wider data set, Caselle and
Cabral (2018) showed that changes in biomass for some
of the more abundant individual species can be detected
with a sufficient time-series of SCUBA transect data.
This aligns with our findings regarding the importance
of considering initial densities and the effect this has on
the precision of estimates of both abundance and bio-
mass.

Temporal revisit design

Reducing the frequency of temporal revisits across our
network of three study areas to every 2 or 3 yr delayed
achieving high power by approximately three to eight
years compared to sampling annually. Andersen et al.
(2019) found similar results in their simulation study,
with high power taking 3 and 6 yr longer with biennial
and triennial sampling, respectively. Whether this trade-
off is an acceptable compromise to including a larger
number of study areas over time is an important man-
agement decision. While high power will take longer to
achieve, reducing the temporal revisit frequency allows
other study areas in a network to be visited in interven-
ing years. Optimal designs that balance spatial and tem-
poral replication of survey effort will likely rely on
incorporating data regarding spatial and temporal vari-
ability across the network of study areas for a given indi-
cator (e.g., Urquhart et al. 1993, Hewitt and Thrush
2007, Perkins et al. 2017). While such data are likely to
be sparse in the early stages of a monitoring program,
incorporating the knowledge gained from ongoing sur-
veys allows for improvements to be made in the design
of future surveys (Lindenmayer and Likens 2010).

The importance of covariates and spatial distributions

As well as the density of an indicator across an area,
its spatial distribution also plays a role in the power to
detect changes in populations through time, with more
aggregated distributions requiring increased sampling
effort to achieve high precision and power (McGarvey
et al. 2016, Perkins et al. 2016). Aggregation could be
the result of covariate associations and the patchiness of
those covariates or to behavioral aspects of species, such
as schooling. Our spatial point process modeling
approach aims to quantify both these aspects for incor-
poration into our simulations.
Many of the covariate effects for brown rockfish var-

ied considerably across our study areas making ecologi-
cal interpretation of these covariates problematic. We
found a consistent effect of increasing abundance with
depth2, indicating a strong depth effect within our study
areas. Including surveys at greater depth to establish the
limits of this relationship would be informative, and we
advise caution in extrapolating these findings outside of

our site boundaries. Other covariates, such as rugosity
measures (VRMs and RDMV) and terrain features
(BPIs, slope, curvature) have been significant in similar
studies for other rockfish species (e.g., Wedding and
Yoklavich 2015, Young et al. 2015), although investiga-
tions spanning multiple study areas or times are cur-
rently lacking. Therefore, whether effects of covariates
really differ between study areas due to intrinsic differ-
ences or whether effects are largely driven by small sam-
ple sizes or temporal variability is currently unclear and
requires further research.
Spatial point process modeling indicated that for

brown rockfish there was not a strong aggregation of
brown rockfish across any of our sites. Where aggrega-
tion does occur, sampling effort needs to be higher to
achieve the same level of precision in estimates (e.g.,
McGarvey et al. 2016, Perkins et al. 2016). The spatial
parameters found in this study for brown rockfish were
similar to other species, including canary rockfish
(Sebastes pinniger), kelp greenling (Hexagrammos deca-
grammus), and lingcod (Ophiodon elongatus) that were
modeled across the same sites (unpublished data). Practi-
cal ranges of spatial correlation for these species were
typically in the order of 70–600 m while covariate coeffi-
cients were also variable between study areas. Examining
the influence of the level of spatial aggregation on sam-
pling precision for these and other species would help
inform whether higher sampling effort may be required.
The randomized systematic survey design employed in

our study has been shown to be capable of relatively high
precision, even when distributions are more highly clus-
tered than those in our simulations (McGarvey et al.
2016). Over many simulations our design covers a wide
range of covariates, thereby further reducing the effect
of the uncertainty around covariate coefficient impor-
tance. Also, the random fields generated in each simula-
tion resulted in different positions for fish at each time
step mimicking fish movement between surveys, further
reducing the importance of the uncertainty in the coeffi-
cients of the covariates for model prediction. The sam-
pling design employed combined with the low level of
aggregation for brown rockfish indicates that patterns in
power achievable between individual study areas are
more likely attributable to differences in starting densi-
ties rather than intra-site differences in habitat or spatial
aggregation.

Model assumptions and caveats

Simulation studies inevitably involve assumptions and
simplifications during model construction. The expected
rate and predictability of the expected recovery in MPAs
depend critically on recruitment variability and the ratio
of local fishing mortality (local F) to the natural mortal-
ity (M) of the indicator (White et al. 2013). For our cho-
sen indicator species, specific local F values were not
available and thus we used a regional value from stock
assessments. Larger or smaller effect sizes due to
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differing pre-implementation levels of F would result in
differing times to reach high power to detect change (see
Nickols et al. 2019). More refined values for localized F
would also improve predictions made at individual study
areas and the ability to test whether recovery rates were
meeting these expectations (White et al. 2016, Nickols
et al. 2019). We also assumed that natural mortality M is
constant across all sizes, a common assumption in the
absence of more detailed data on size-dependent mortal-
ity. This assumption would provide a conservative esti-
mate of reserve response and detectability if natural
mortality decreases with size as then greater abundances
in larger size classes would occur in reserves.
Open population dynamics and constant recruitment

were assumed for the projected rate of population
change. Brown rockfish have extremely broad larval dis-
persal (White et al. 2014b), so we made the conservative
assumption that there was essentially no local retention
of larvae. This assumption is supported by the findings
of Nickols et al. (2019) who found that short-term
(~10 yr) trends in abundance of a cogeneric rockfish in
Californian MPAs were largely driven by interannual
variability in recruitment rather than local larval pro-
duction. Additionally, a genetic parentage analysis of a
different congeneric rockfish species in the Monterey
Bay region found evidence for considerable connectivity
between MPAs and fished areas within their study
domain (Baetscher et al. 2019). Although we did not
explore recruitment variability in our simulations, our
framework is capable of exploring the effects of different
population dynamics through time. In this respect,
annual sampling in the early stages of monitoring is
likely to be valuable in quantifying recruitment variabil-
ity and modifying expectations. High interannual
recruitment variability is likely to result in smaller popu-
lation abundance at a given time (see Botsford et al.
2019), which likely will reduce the ability to detect differ-
ences between MPA and reference sites.
We kept covariate effects fixed for each study area

through time and used posterior medians from our mod-
els for the simulations. Taking posterior draws would
have allowed integration over the uncertainty in parame-
ter estimates, but this would have also resulted in
changes in abundance that were not related to our IPM
projections, which were the focus of detection. Where
bathymetric covariates can be shown to be consistent
predictors, improvements could be made to survey
designs in order to better capture populations of a target
species across a study area; however, single species are
seldom the focus of MPA monitoring programs and
improvements in design for one species may come at the
cost of another target species.
Spatial models were not utilized in analyzing the time

series of simulated data due to the computational
demands of such an analysis and the circularity of using
the same model for data generation and analysis. These
models are likely to provide more precise estimates when
applied to empirical data (e.g., Thorson et al. 2015), and

therefore, increased power to detect change. More com-
putationally efficient approaches to spatial modeling are
constantly being developed (e.g., see Bachl et al. 2019).
Future work examining the utility of these models in a
spatiotemporal setting as a time series of data is accrued
would be informative.

CONCLUSION

Our simulation approach provides a powerful tool to
explore the interaction between sampling design, spatial
distributions of indicators, population dynamics, and
metrics for change. While this work does utilize
advanced modeling techniques, it also provides an intu-
itive means of generating simulated data representing
recovery inside an MPA. The distributions generated by
spatial point processes could be visualized across bathy-
metric profiles and habitat maps so ecologists could
ground truth model outputs for model validation. Also,
simulated data could be compared with eventual moni-
toring data to check if patterns were similar to the
empirical data. Spatial point process models are being
increasingly applied in ecological settings, and new user-
friendly packages are being developed to allow ecologists
access to these tools (e.g., see Bachl et al. 2019). The
extension of these techniques to other species and survey
methodologies can improve and inform design choices
for long-term monitoring of MPAs.
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