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Common Activation of Canonical Wnt Signaling in
Pancreatic Adenocarcinoma
Marina Pasca di Magliano1, Andrew V. Biankin2,3, Patrick W. Heiser1, David A. Cano1, Pedro J. A. Gutierrez1, Therese Deramaudt4, Davendra
Segara2, Amanda C. Dawson2, James G. Kench2, Susan M. Henshall2, Robert L. Sutherland2, Andrzej Dlugosz5, Anil K. Rustgi4, Matthias Hebrok1*

1 Diabetes Center, Department of Medicine, University of California at San Francisco, San Francisco, California, United States of America, 2 Cancer
Research Program, Garvan Institute of Medical Research, St. Vincent’s Hospital Campus, Darlinghurst, New South Wales, Australia, 3 Department of
Surgery, Bankstown Hospital, Sydney, Australia, 4 Gastroenterology Division, Department of Genetics, University of Pennsylvania, Philadelphia,
Pennsylvania, United States of America, 5 Comprehensive Cancer Center, Department of Dermatology, University of Michigan, Ann Arbor, Michigan,
United States of America

Pancreatic ductal adenocarcinoma (PDA) is an extremely aggressive malignancy, which carries a dismal prognosis. Activating
mutations of the Kras gene are common to the vast majority of human PDA. In addition, recent studies have demonstrated
that embryonic signaling pathway such as Hedgehog and Notch are inappropriately upregulated in this disease. The role of
another embryonic signaling pathway, namely the canonical Wnt cascade, is still controversial. Here, we use gene array
analysis as a platform to demonstrate general activation of the canonical arm of the Wnt pathway in human PDA. Furthermore,
we provide evidence for Wnt activation in mouse models of pancreatic cancer. Our results also indicate that Wnt signaling
might be activated downstream of Hedgehog signaling, which is an early event in PDA evolution. Wnt inhibition blocked
proliferation and induced apoptosis of cultured adenocarcinoma cells, thereby providing evidence to support the
development of novel therapeutical strategies for Wnt inhibition in pancreatic adenocarcinoma.

Citation: Pasca di Magliano M, Biankin AV, Heiser PW, Cano DA, Gutierrez PJA, et al (2007) Common Activation of Canonical Wnt Signaling in
Pancreatic Adenocarcinoma. PLoS ONE 2(11): e1155. doi:10.1371/journal.pone.0001155

INTRODUCTION
Pancreatic ductal adenocarcinoma (PDA) is the fourth leading

cause of cancer death in Western societies. The disease usually

presents at an advanced stage, and as a result only 10 to 20% of

patients are suitable for surgical resection [1]. Presently, non-

operative therapies are widely ineffective, contributing to an

overall 5 year survival-rate of less than 5%. There is now

compelling histopathological and molecular evidence to support

the evolution of PDA through a series of non-invasive duct lesions

called pancreatic intraepithelial neoplasia (PanIN) [2]. Progression

of PanIN lesion is associated with molecular aberrations that

increase in frequency and correlate with advancing cellular atypia

from early stages to invasive cancer [3,4]. Recent studies have

identified deregulation of pathways important in vertebrate

pancreas development, including Notch [5] and Hedgehog [6,7],

in the development and progression of PDA.

Interactions between embryonic signaling pathways ensure

proper organ formation during development. Increasing evidence

suggests that these pathways remain active in a subset of cells

within adult organs and that deregulation of their activity

contributes to the development and progression of certain tumors

[8]. Hedgehog and Wnt signaling are involved in the development

of the pancreas [9–13]. Both pathways appear to be regulated in

a very tight manner during embryogenesis. Inappropriate

activation of Hedgehog signaling during pancreas formation

results in agenesis of this organ [14,15]. A similar result is

observed when Wnt signaling is activated at high levels during

early pancreatic development [10,16]. In contrast, activation of

Wnt signaling predominately in acinar cells results in a significant

increase in pancreas mass [10]. Ectopic activation of Wnt signaling

at early stages of pancreas organogenesis increases Hedgehog

activity [10]. While Hedgehog signaling is known to regulate Wnt

activity in other organs [17], such regulation in developing

pancreatic tissue has not yet been reported.

A large body of evidence supports the notion that uncontrolled

activation of the canonical Wnt pathway induces tumor formation

in the distal gastrointestinal tract [18]. Canonical Wnt signaling is

activated when soluble Wnt ligands form a complex with one of

several FRIZZLED receptors and LRP5/LRP6 co-receptors. This

interaction triggers a cascade of events that results in the inhibition

of ß-CATENIN phosphorylation. Non-phosphorylated ß-CATE-

NIN translocates from the cytoplasm to the nucleus where it binds

to the TCF-LEF family of transcription factors to activate the

transcription of Wnt target genes. Upregulation of Wnt signaling,

mediated by specific mutations in the APC or ß-CATENIN genes,

is thought to play a critical role in the development of several

gastrointestinal tumors [18,19].

Sustained tumor growth due to deregulation of Wnt signaling

independent of mutations that increase pathway activity has been

demonstrated in studies on breast and ovarian cancer [20].
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Similarly, mutations in either APC or ß-CATENIN that are

commonly found in other gastrointestinal cancer are rare in PDA

[21]. However, aberrant cytoplasmic and nuclear expression of ß-

CATENIN, both indicative of canonical Wnt signaling activity

[11,22], are present in a substantial group of PDA and PanIN

samples [23,24]. Moreover, heparan sulfate proteoglycans, known

to regulate Wnt activity, are expressed in pancreatic adenocarci-

noma and positively regulate cancer growth [25]. These data

suggest that Wnt signaling may play a role in PDA despite the

absence of signature mutations in APC or ß-CATENIN.

Nevertheless, activation of the Wnt signaling pathway in

pancreatic cancer has remained controversial [24] and functional

studies addressing a potential contribution of Wnt signaling to

PDA development and progression are currently missing.

Here we identify aberrant expression of Wnt signaling

components in a large cohort of patients with PDA. Whilst only

13% of PDA demonstrate nuclear localization of ß-CATENIN,

65% demonstrate either loss of membranous expression and/or

increased cytoplasmic expression. Similar results were obtained

from the analysis of mouse models of pancreatic cancer.

Assessment of PDA cell lines revealed activation of Wnt signaling

and pathway inhibition showed that cancer cell survival and

proliferation depends in part on Wnt activity. Increased levels of

Hedgehog signaling constitute one of the earliest changes in PanIN

lesions. Our results show that Hedgehog signaling activates ß–

CATENIN/Wnt signaling in transgenic mice and untransformed

pancreatic duct cells, suggesting that Hedgehog may play a role in

upregulating Wnt activity in PDA.

RESULTS AND DISCUSSION
A number of recent reports have characterized the role of Wnt

signaling during pancreas development and function of the adult

organ [10–13,26,27]. In contrast, the exact role canonical Wnt

signaling plays in the formation and progression of PDA remains

unclear. While robust activation of the pathway due to signature

mutations in components of the Wnt cascade commonly observed

in other gastrointestinal cancers have not been found in PDA,

immunohistochemical analysis against ß-CATENIN, the key

mediator of this pathway, suggests a contribution of Wnt signaling

during PanIN progression and in PDA [23,24,28]. In normal adult

pancreatic tissue b2CATENIN is exclusively localized to the cell

membrane and both cytoplasmic and nuclear localization of ß-

CATENIN is commonly regarded as an indicator of active

canonical Wnt signaling [11,22]. Our analysis of 136 human PDA

samples revealed nuclear b-CATENIN expression in 17 (13%) and

cytoplasmic expression in 89 (65%) samples (Figure S1). Thus,

abnormal localization of b2CATENIN, either nuclear or

cytoplasmic, was detected in the majority of the tumor samples.

To obtain more quantitative information about the level of Wnt

signaling, we performed expression profiling of Wnt pathway

components in PDA with genechip microarray. This analysis

demonstrated aberrant expression of numerous components of the

Wnt pathway in 12 PDA samples when compared to control tissue

(6 normal specimens from the cancer patients and 12 samples of

healthy pancreas) (Table S1). Expression of members of the

FRIZZLED receptor family (FRIZZLED 2, 7 and 9), their ligands

(WNT 2, 3, 4, 5A, 5B, 6, 8B and 11), and putative inhibitors of

Wnt signalling (SECRETED FRIZZLED-RELATED PROTEIN

3 and 4 and DICKKOPF genes 1, 2 and 3) was increased in PDA

compared to normal pancreas. Central pathway inhibitors such as

ICAT were downregulated. In addition, expression of transcrip-

tional target genes of ß-CATENIN, including CYCLIN D1,

FIBRONECTIN, RETINOIC ACID RECEPTOR c, CYCLO-

OXYGENASE 2, uPAR and MMP-7, were upregulated. Thus,

the overall pattern, particularly the upregulation of direct

transcriptional targets of Wnt signaling, suggests increased

pathway activity. However, it should be noted that the overall

increases in Wnt signaling targets appear smaller than those

observed in other tumors, including colon cancer. This might be

due to the fact that high level Wnt signaling requires mutations in

pathway components, including ß-CATENIN and APC, that are

not commonly observed in PDA. This raised the question of

whether Wnt signaling is controlled by other signaling pathways

known to be deregulated in PanIN and PDA.

Increased Wnt signaling in a mouse model of PDA
Deregulation of Kras activity is observed in the vast majority of

human PDA [1]. Activating mutations in the Kras oncogene have

been observed in PanIN lesions, suggesting that deregulation of

Ras signaling is a key component during the transformation of

epithelial cells [29,30]. Support for this notion comes from studies

in Pdx-Cre;KrasG12D transgenic mice in which expression of the

prevalent KrasG12D mutation in pancreatic epithelial cells results in

the formation of tumors that resemble human PDA [31]. To

determine whether increased Wnt signaling is a common

phenomenon during PDA formation in different species, we

examined pancreata from Pdx-Cre;KrasG12D and Pdx-Cre;K-

rasG12D;p53f/+ mice by immunohistochemistry. In support of the

human data, PanIN lesions in Pdx-Cre;KrasG12D and Pdx-Cre;K-

rasG12D;p53f/+ mice displayed changes in ß-catenin localization and

increased expression of Tcf4, a mediator of canonical Wnt

signaling (Fig. 1A–D and Table S1). Quantitative PCR for Wnt

target genes showed a moderate increase in axin2 expression in

Pdx-Cre;KrasG12D pancreata marked by PanIN lesions (Fig. S2). In

order to determine whether accumulation of b-catenin effectively

correlated with Wnt signaling activity we generated Pdx-Cre;K-

rasG12D;TOPGal mice. Due to the expression of the LacZ-reporter

gene under control of Wnt signaling responsive TCF-binding sites,

the TOPGal mice provide an excellent means to identify cells

within a given tissue that respond to canonical Wnt signaling [32].

While ß-galactosidase staining is absent in pancreata of control

mice (wild type, TOPGal and Pdx-Cre;TOPGal animals were used as

negative controls) (Fig. 1E and data not shown), pronounced ß-

galactosidase activity is noted in epithelial cells of PanIN lesions of

compound Pdx-Cre;KrasG12D;TOPGal mice (Fig. 1F). Thus, immu-

nohistochemical staining, quantitative PCR for canonical Wnt

target genes, and analysis of Wnt reporter mice indicate increased

Wnt/ß-catenin signaling during the formation of PDA in human

samples and mouse models of this disease.

The canonical Wnt signaling arm is active in human

pancreatic adenocarcinoma
To understand whether sustained Wnt signaling is important for

cancer cell proliferation we included established pancreatic cancer

cell lines in our analysis. First, we used RT-PCR to demonstrate

expression of Wnt ligands (WNT 11, WNT 7b, WNT 5b, WNT 2b),

Wnt ligand co–receptors LRP5 and LRP6, and transcription

factors TCF3 and TCF4, in 26 human PDA cell lines derived from

either primary or metastatic PDA (Fig. 2A). Expression of TCF1

and LEF1, transcriptional activators of the canonical Wnt

signaling arm in other tissues, were expressed only in a subset of

cell lines. These data suggest that the proteins necessary for active

Wnt signaling are expressed at significant levels in all PDA cell

lines analyzed.

To quantitatively evaluate the degree of Wnt signaling activity

in a subset of these cell lines (n = 9) we measured luciferase

expression controlled by concatemers of ‘TCF optimal sites’ (Top)

Wnt in Pancreatic Cancer
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upstream of a minimal thymidine kinase (TK) promoter element

[33]. Concatemers of TCF ‘far from optimal sites’ (Fop) upstream

of the TK-promoter served as control for Wnt independent, basal

activity of the reporter construct. We detected activation of the

Top-Flash reporter in each of the nine different adenocarcinoma

cell lines tested (Fig. 2B). The majority of cell lines displayed a 3 to

5 fold relative activation of the Top-FLASH reporter. In

comparison, relative Top-FLASH activity in the SW480 and

HCT116 colon cancer cell lines was greater than that seen in any

PDA cell lines (.6 Top/Fop ratio and .10 Top/Fop ratio

respectively, data not shown), indicating that the majority of PDA

cell lines show a moderate, but significant increase in Wnt activity.

Inhibition of Wnt signaling reduces cell proliferation

and increases apoptosis in pancreatic

adenocarcinoma cells
Four pancreatic adenocarcinoma cell lines were selected for in

depth analysis of the requirement of Wnt signaling in PDA cells.

Two well-established lines (CFPAC, BxPC3), a line with high

metastatic potential (L3.6sl), and a line closely resembling

a primary tumor phenotype (Panc4.21) were examined [34]. All

four lines express significant levels of non-phosphorylated ß-

CATENIN, another reliable marker of active Wnt/ß-CATENIN

signaling (data not shown). The requirement of Wnt/ß-CATENIN

signaling for PDA cell proliferation and survival was assessed by

ectopically expressing known pathway inhibitors. Co-transfection

with the endogenous Wnt inhibitor, Icat [35] or a dominant negative

form of Lef-1 (dn-Lef-1), resulted in reduction of Top-Flash activity in

the 4 PDA cell lines tested (Fig. 3A). In contrast, FOP-Flash activity

was not affected by Icat or dn-Lef co-transfection (data not shown).

Previous studies have shown effective reduction of Wnt/ß-

CATENIN signaling in colon cancer cell lines upon treatment with

siRNAs directed against ß–CATENIN [36]. Using a similar strategy,

we observed a significant and dose dependant reduction in ß-

CATENIN protein levels in pancreatic cancer cell lines transfected

with anti-ß-CATENIN siRNA (Fig. 3B). Thus, Wnt/ß-CATENIN

signaling in PDA cells can be blocked by treatment with three

distinct and well-established pathway inhibitors.

Wnt/ß-CATENIN signaling controls cell proliferation and

survival in tissues other than pancreas. To test whether inhibition

of Wnt signaling is sufficient to block cell proliferation in

pancreatic adenocarcinoma cells, we measured BrdU incorpora-

tion in cells transiently transfected with Wnt inhibitors Icat and dn-

Lef-1. The presence of an IRES sequence driving the expression of

eGFP in the Icat- and dn-Lef-1-constructs allowed sorting and

comparison of GFP/target gene negative control and GFP/target

gene positive cells by flow cytometry. Transfection of the four

pancreatic cancer cell lines with either Icat or dn-Lef-1 led to

a significant decrease in cell proliferation and a marked increase in

apoptosis (Fig. 3C, E). Similar results were obtained when ß-

CATENIN function was specifically blocked with anti-ß-CATENIN

siRNA [36] (Fig. 3D, F and Figure S3). Notably, we found that the

reduction in cell proliferation and the increase in apoptosis upon ß-

CATENIN knockdown was dose-dependent. The significant in-

hibition of cell proliferation and induction of apoptosis via inhibition

of Wnt signaling through three different mechanisms strongly

supports a role for Wnt signaling in PDA growth and survival.

Previous reports have demonstrated an important role for ß-

CATENIN in cell adhesion as part of a protein complex that

includes E-cadherin. Therefore, disruption of this protein

aggregate through ectopic expression of Icat or treatment with

anti-ß-CATENIN siRNAs could affect cell viability by perturbing

critical functions of E-cadherin rather than via decreased Wnt

signaling. The E-CADHERIN expression pattern in the cell lines

was unaffected by ß-CATENIN- siRNA knockdown (data not

shown). In addition, a similar reduction in cell proliferation and

increase in apoptosis was seen with dn-Lef-1 transfection, that

specifically blocks ß-CATENIN mediated transcription (Fig. 3C,

E). These results suggest that inhibition of Wnt/ß-CATENIN

transcriptional activity, rather than alteration in ß-CATENIN/E-

Figure 1. Active Wnt signaling in a mouse model of PDA. A.
Immunostaning for b-Catenin in a control pancreas is confined to the
plasma membrane. B. In contrast, cytoplasmic b-catenin expression is
observed in PanIN lesions and tumor of a 8-week old Pdx-
Cre;KrasG12D;p53f/+ pancreas. The tumor is outlined in red. Note the
accumulation of b-catenin in the epithelial cells (brown staining). Two
PanIN lesions are outlined in light blue. The black arrow points at cells
that have retained membranous b-catenin, while the red arrows point
at areas of accumulation of b-catenin in the cytoplasm. C. Tcf4 is
expressed at a low level in ductal cells in a wild-type mouse pancreas. D.
Elevated expression of Tcf4 in PanIN lesions of a 12-week old Pdx-
Cre;KrasG12D pancreas. E, F. LacZ staining of pancreatic tissue of adult
(6 months old) Top-gal (E) and Pdx-Cre;KrasG12D;Top-gal (F) mice. No
staining is present in the Top-gal pancreas. ß-galactosidase activity is
detected in the PanIN lesions of the Pdx-Cre;KrasG12D;Top-gal pancreas,
indicating activation of the canonical Wnt pathway. The black bar
represents 35 mm in A-D, 67.5 mm in E, F.
doi:10.1371/journal.pone.0001155.g001

Wnt in Pancreatic Cancer
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CADHERIN interaction, is critical for the observed effects on cell

proliferation and apoptosis.

Hedgehog signaling regulates Wnt signaling in

untransformed pancreatic ductal epithelial cells and

in pancreatic cancer cells
Canonical Wnt/ß–catenin signaling is absent from normal mature

pancreata [11] (Figure 1A, E). Our data and previously published

reports show induction of ß-catenin signaling during PanIN

formation, raising the question of the mechanism by which Wnt/

ß-catenin signaling is induced. Hedgehog signaling, another

embryonic signaling pathway, has previously been implicated in

the initiation and growth of pancreatic adenocarcinoma [6,7] as

well as regulation of Wnt activity during mammalian organ

development [37,38]. Pancreatic ductal epithelial cells may

constitute the putative cell of origin for PDA [39]. A previously

described protocol allows the isolation of pancreatic duct cells

(PDCs) from mature murine pancreas [40]. We used these cells to

investigate the effect of Hedgehog signaling on Wnt activity in

non-transformed epithelial cells. Ectopic activation of Hedgehog

activity in PDCs was obtained either through expression of

a dominant-active version of GLI2 [41] or a dominant-active form

of Smoothened (SmoA1). Expression of the transgenes was confirmed

by immunofluorescence (Fig. 4C and data not shown). As

expected, the activity of the Hedgehog pathway was significantly

up-regulated in PDC-SmoA1 and PDC-GLI2 compared to PDCs,

as measured by luciferase activity of a Hedgehog reporter

construct, Gli-BS (Fig 4A and data not shown). Interestingly, the

activity of the Wnt reporter TOP-Flash was also significantly

increased (Fig 4A), thus showing that activation of Hedgehog

signaling upregulates Wnt activity in pancreatic duct cells. These

Figure 2. Wnt signaling is active in human pancreatic adenocarcinoma cell lines. A. RT-PCR analysis for components of the Wnt signaling pathway
in 26 human pancreatic adenocarcinoma cell lines: 1-MiaPaca2; 2-Panc1; 3-CFPAC1; 4-HPAFII; 5-Capan-2; 6-AsPC1; 7-Hs766T; 8-BxPC3; 9-COLO357; 10-
L3.3; 11-L3.6sl; 12-L3.6pl; 13-SW1990; 14-SU86.86; 15-PL45; 16-HPAC; 17-MPanc96; 18-Panc1.28; 19-Panc2.03; 20-Panc2.13; 21-Panc3.27; 22-Panc4.21;
23-Panc5.04; 24-Panc6.03; 25-Panc8.13; 26-Panc10.05. B. Wnt signaling is active in all nine pancreatic adenocarcinoma cell lines tested, as indicated by
the activation of the Top-Flash reporter (black) compared to the basal activity of the Fop-Flash reporter (white). Renilla luciferase was used to
normalize for transfection efficiency. Error bars are shown as St. Dev. P-values were calculated in comparison to control Fop-Flash activity (white bars).
*, p,0.05; **, p,0.01.
doi:10.1371/journal.pone.0001155.g002
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Figure 3. Inhibition of Wnt signaling blocks adenocarcinoma cell proliferation. A. Inhibition of Wnt signaling in four pancreatic adenocarcinoma
cell lines. Cells transfected with Fop-Flash (white) or Top-Flash (light gray) reporter constructs were co-transfected with an empty expression vector or
an expression vector containing the Wnt-inhibitors Icat (dark gray) or dominant-negative Lef1 (dnLef; black). Fop-Flash activity was not affected by
either Icat or dn-Lef co-transfection, thus only one Fop-Flash data point is shown. The significant reduction of Top-Flash activity in cells expressing the
inhibitors indicates inhibition of Wnt signaling in pancreatic cancer cells. P-values were calculated in comparison to Top-Flash activity (light gray bar).
B. Immunofluorescent staining against b-CATENIN in four pancreatic adenocarcinoma cell lines after transfection with a siRNA directed against b-
CATENIN. The b-CATENIN protein levels are dramatically decreased in a dose-dependent manner following b-CATENIN siRNA transfection. Control
siRNA transfected cells have b-CATENIN levels indistinguishable from those found in untransfected cells (untreated). C. Transfection with an Icat–IRES-
eGFP expression vector (Icat, black) or dominant negative Lef – IRES-eGFP (dnLef, gray) strongly inhibits growth of four pancreatic cancer cells lines,
measured as the ability to incorporate BrdU. Control cells (white) were transfected with the IRES-eGFP expression vector; all cells were harvested
48 hrs after transfection. P-values are shown in comparison to control transfected cells. D. Proliferation is reduced in a dose-dependent manner in
cells treated for 48hrs with anti-ß-CATENIN siRNA (dark grey, black,) compared to control cells (white). Untreated (no siRNA), white columns; control
siRNA (300 nM), light grey columns; anti-ß-CATENIN siRNA (100 nM), dark grey columns; anti-ß-CATENIN siRNA (300 nM), black columns. P-values are
shown in comparison to untreated controls (white columns). E. Level of apoptosis, measured as cells with DNA content lower than the diploid
amount, in control transfected cells (white) or cells transfected with Icat (black) or dominant negative Lef (grey). F. Treatment with anti-ß-CATENIN
siRNA increases levels of apoptosis in a concentration-dependent manner. Error bars are shown as St. Dev.; P-values, #, not significant; *, p,0.05;
**, p,0.01.
doi:10.1371/journal.pone.0001155.g003

Wnt in Pancreatic Cancer
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Figure 4. Hedgehog signaling regulates Wnt activity in untransformed duct cells. A. Activity of the Wnt and Hedgehog pathways in control PDCs
and stable clones transfected with dominant-active forms of GLI2 (PDC-GLI2). Activation of the Hedgehog pathway in two PDC-GLI2 clones (#1, #2)
results in significant increase in Wnt signaling activity. B. Activity of the Wnt and Hedgehog pathways in control PDCs and PDCs stably transfected
with a dominant active form of Lef1 (PDC-Lef–da). Activation of the Wnt pathway in the PDC-Lef–da cells does not affect the level of Hedgehog
signaling. Error bars are shown as St. Dev. P-values, #, not significant; **p,0.01. C. PDC cells were stably transfected with a myc-tagged version of the
constitutive active form of GLI2 (GLI2-myc fusion protein). Immunostaining using an anti-myc antibody confirms GLI2 expression in transfected cells.
Untransfected PDC cells are shown as negative control. Immunostaining for Tcf4 is not detectable in wt PDC cells, but it is strongly upregulated in
PDC-GLI2 cells. D. Immunohistochemistry analysis of Panc4.21 and L3.6sl pancreatic cancer cell lines shows that inhibition of the Wnt signaling
pathway using anti-b-CATENIN siRNA (100nM) results in a strong downregulation of TCF4 expression compared to control cells (transfected with an
unrelated siRNA). Similarly, inhibition of the Hedgehog pathway using an anti-GLI1/2 siRNA (100 nM) results in TCF4 downregulation; the same effect
is observed in cells treated with a combination of anti-b-CATENIN and anti-GLI1/2 siRNA (each 100nM). E. Quantification of Tcf4 expression in PDC
(white) and PDC-GLI2 (black) cells. At least 100 cell nuclei were scored for Tcf4 expression and the percentage of positive nuclei is shown in the
histogram. F. Quantification of TCF4 positive nuclei following siRNA treatment in human PDA cell lines. At least 100 nuclei were scored for each
category: control siRNA (white), anti-b-CATENIN siRNA (light gray), anti-GLI siRNA (dark gray) and a combination of both siRNAs (black). Error bars are
shown as St. Dev.; p-values #, not significant; *p,0.05; **, p,0.01. G. In wild-type mouse pancreas tissue, b-catenin is only localized at the cell
membrane. H. Presence of nuclear b-catenin in a fraction of the tumors cells in an undifferentiated pancreatic tumor of a Pdx-Cre;CLEG2 mouse. I.
Cytoplasmic and nuclear b-catenin staining in the PanIN lesions of a Pdx-Cre;CLEG2;KrasG12D pancreas. The black bar represents 35 mm in G-I.
doi:10.1371/journal.pone.0001155.g004
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findings support the notion that the induction of Wnt activity in

human PDA can occur in the absence of signature mutation in

APC or ß-CATENIN that are commonly found in other cancers.

To test whether Wnt signaling regulates Hedgehog activity,

PDCs were transfected with an expression vector coding for

a dominant-active form of Lef1, (Lef1-da) followed by an IRES-

eGFP sequence. Target gene expression in pools of transfected cells

was verified by Western blot and by flow cytometry using eGFP as

a marker (data not shown). Top–Flash reporter assays confirmed

an approximately 4–fold increase in Wnt activity in PDC–Lef1–da

cells compared to PDCs. However, ectopic activation of Wnt

signaling did not induce luciferase activity of the Hedgehog

responsive Gli-BS reporter (Fig. 4B).

Hedgehog signaling regulates expression of TCF4 in

pancreatic duct and cancer cells
While a number of studies have demonstrated that Hedgehog and

Wnt pathways regulate each other’s activity, the molecular

mechanisms underlying this regulation remain unresolved. Activa-

tion of the canonical Wnt pathway requires the physical interaction

of nuclear ß-CATENIN and TCF/LEF transcription factors.

b2CATENIN and factors of the TCF/LEF family of DNA-binding

molecules are the downstream effectors of the Wnt signaling cascade.

TCF4 is expressed in the gastrointestinal tract and in tumors of

gastrointestinal origin. Formation of the b2CATENIN/TCF4

complex is regulated at different levels, such as accumulation and

localization of b2CATENIN [42], interaction between the two

factors, and ability of TCF4 to bind DNA [43]. TCF4 mRNA is

expressed at high levels in all pancreatic adenocarcinoma cell lines

analyzed (Fig. 2A). Little Tcf4 protein was detected in a small

proportion of pancreatic duct cells, however, GLI2-mediated

activation of Hedgehog signaling induced robust Tcf4 expression

in pancreatic duct cells (Fig. 4C, E). To test whether Hedgehog

signaling controls TCF4 expression in pancreatic cancer cells, we

treated Panc4.21 and L3.6sl cells with siRNAs directed against ß-

CATENIN as well as GLI1/GLI2. Interestingly, inhibition of either

Hedgehog or Wnt signaling resulted in loss of nuclear TCF4

expression (Fig. 4D, F). In addition, treatment of the pancreatic

cancer cells with the Hedgehog inhibitor cyclopamine resulted in

a significant down-regulation of TCF4 protein and Top-Flash

activity in the CFPAC, Panc4.21 and L3.6 cell lines (Fig. S4). The

observation that TCF4 levels and Top-Flash activity were not

affected in the cyclopamine insensitive cell line BxPC3 cells further

support the notion that TCF4 expression is regulated in response to

Hedgehog signaling. Thus, Hedgehog signaling regulates the Wnt

pathway at least in part by affecting the concentration of nuclear

TCF4 in pancreatic cancer cells.

To test whether Hedgehog activation is sufficient to induce

Wnt/ß-catenin signaling in vivo, we analyzed transgenic mice

marked by ectopic expression of an activated version of GLI2 in

pancreatic epithelium (Pdx-Cre;CLEG2). We have previously

reported that forced activation of Hedgehog signaling in Pdx-

Cre;CLEG2 mice results in the formation of undifferentiated tumors

[44]. Immunohistochemical analysis revealed that tumor cells are

marked by cytoplasmic and nuclear ß-catenin expression (Fig. 4H).

Thus, epithelial-specific activation of Hedgehog signaling is

sufficient to induce Wnt/ß-catenin signaling in pancreatic cells.

Furthermore, nuclear ß-catenin is observed in PanIN as well as

undifferentiated tumors that form in mice in which both Kras and

Hedgehog signaling are deregulated (Pdx-Cre;CLEG2;KrasG12D,

Fig. 4I). Summarily, our data from human, transgenic mouse

and cell culture experiments suggest that Wnt/ß-catenin signaling

is commonly activated in preneoplastic lesions and PDA and that

the activation of the pathway is regulated at least in part by

increased Hh signaling.

Notably, both Hedgehog and Wnt signaling appear to be

important for the survival of pancreatic adenocarcinoma cells. This

raises the question whether the cooperation between these pathways

is restricted to the pancreas or whether similar mechanisms can also

be found in other tumors. With the exception of the colon where

conflicting results regarding the relationship between Hedgehog and

Wnt signaling have been reported [45,46], activation rather than

inhibition of both pathways is typically correlated with tumor

formation [47]. Hedgehog and Wnt activity have been noted in

a number of different tumors and future studies will analyze whether

combined antagonist treatments could present novel therapeutic

options for these tumors. This is of particular importance as novel,

more efficient and more specific inhibitors of both pathways are

currently being developed [48,49].

MATERIALS AND METHODS

Mouse strains
Pdx1-Creearly mice ([10,50]) were intercrossed with CLEG2 mice (A.
Ermilov et al., in preparation ;[44]) and with LSL-KrasG12D

mice (a gift from David Tuveson referred to as KrasG12D

throughout the text) ([31]) to generate either double or triple

mutants: Pdx-Creearly;KrasG12D , Pdx-Creearly;CLEG2 and Pdx-Creearly;

CLEG2;KrasG12D. Pdx-Creearly;KrasG12D mice were crossed with the

Top-gal Wnt reporter mice ([32]). All studies were conducted in

compliance with University of California IACUC guidelines.

Immunohistochemistry and Immunofluorescence
Histological analysis of tissues was performed as described

previously [44]. The following primary antibodies were used:

mouse anti-ß-catenin (1:200 dilution, Becton and Dickinson, NJ),

mouse anti-Tcf4 (clone 6H5-3, 1:100 dilution, Upstate, NY). For

immunohistochemistry, we used a biotinylated anti-mouse anti-

body (Jackson immunoresearch, PA) at a 1:300 dilution. 3–39-

Diaminobenzidine tetrahydrochloride was used as a chromogen.

Bright-field images were acquired using a Zeiss Axio Imager D1

scope. Alternatively, we used a FITC anti-mouse secondary

antibody (Jackson immunoresearch, PA), and the slides were

mounted using Vectashlield mounting medium vith DAPI (Vector

laboratories, CA). Immunofluorescent images were acquired using

an Axioscop 2 plus microscope (Zeiss, Germany).

X-gal Staining
Mice were perfused with ice-cold fixative [0.25% glutaraldehyde in

phosphate-buffered saline (PBS)]. Pancreas samples were fixed for

90 minutes at 4uC. Tissues were then washed with PBS containing

2 mM MgCl2 for 1 hour and stained with LacZ solution (1 mg/ml

X-gal, 5 mM potassium ferricyanide, 5 mM potassium ferrocyanide,

2 mM MgCl2, 0.02%(v/v) NP40, and 0.01%(w/v) sodium-deox-

ycholate in PBS) at room temperature for 24 hours. After staining,

tissues were post-fixed with buffered formalin, embedded in paraffin,

sectioned, and counterstained with nuclear fast red.

Cell culture and transfection
Tumor cell lines and cell culture protocols were previously

described [7]. PDC cells growth conditions were previously

published ([40] [51]). Cells were transfected using Effectene

reagent (QIAGEN, Germany) according to the manufacturer’s

instructions. For transient transfections, the cells were harvested 24

to 48 hrs after transfection, and the luciferase and renilla acivity

were assayed using the dual luciferase kit (Promega, WI). Stable
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transfectant cells were generated by selecting with G418 at

a concentration of 300 mg/ml. Single clones were isolated and

amplified.

RT-PCR
RNA from pancreatic cancer cells and PDCs was prepared using

TRIzol reagent (Invitrogen, CA). 2 mg of total RNA were treated

with DNAse RQ1 (Promega) prior to cDNA synthesis (using

random hexamers and Superscript II reverse transcriptase,

(Invitrogen, CA). The oligonucleotide sequences are described in

the supplemental information (Methods S1).

Anti-sense RNAs
Anti-b-catenin and anti-GLI1 siRNA sequences were previously

described ([36] [52]). The Gli2 anti-sense siRNA sequence was: 59-

ACACCAACCAGAACAAGCAdTdT-39. The siRNAs were syn-

thesized by Dharmacon, Inc. (CO). The siRNAs were transfected

using oligofectamine reagent (Invitrogen, CA) according to the

manifacturer’s instructions.

BrdU incorporation assay
BrdU incorporation assays were performing using the BD

Biosciences BrdU flow kit according to the manufacturer’s

instructions.

Additional methods are provided in Methods S1.

SUPPORTING INFORMATION

Figure S1 Immunostaining of b-CATENIN in human normal

and cancer tissues. A. In control human pancreas b-CATENIN is

localized at the cell membrane in both acinar and duct cells. B, C,

D. In three different human PDA samples b-CATENIN is

localized predominantly in the cytoplasm (D) and nucleus (B,C).

Found at: doi:10.1371/journal.pone.0001155.s001 (9.42 MB TIF)

Figure S2 Quantitative PCR for Wnt target genes (axin2, Lef1,

Mmp-7, cyclinD1, Dkk2 and Dkk3) in pancreatic samples isolated

from three wild type control and three Pdx-Cre;KrasG12D mice.

All mice analyzed were 6 months old. Data are presented

compared to expression of the household gene GUS.

Found at: doi:10.1371/journal.pone.0001155.s002 (0.36 MB TIF)

Figure S3 Inhibition of Wnt signaling induces apoptosis in

pancreatic cancer cell lines. A. Relative apoptosis is measured by

FACS using an anti-cleaved caspase 3 antibody in cells transfected

with a control siRNA (control, white bars) or b-catenin siRNA

(black bars). B. Immunostaining for cleaved caspase 3 in cells

transfected with a control siRNA or b-catenin siRNA.

Found at: doi:10.1371/journal.pone.0001155.s003 (1.78 MB TIF)

Figure S4 The Hedgehog signaling pathway acts upstream of the

Wnt signaling pathway in pancreatic cancer cells. A. Activity of the

Top-Flash vector in pancreatic adenocarcinoma cells (black bars) is

inhibited in response to cyclopamine (gray bars), an inhibitor of the

Hedgehog signaling pathway. The first P-values indicate statistical

significance in Top-Flash activation (black bars) in comparison to

Fop-Flash activity (white bars). The second P-values show

significance of reduction in Top-Flash activity upon cyclopamine

treatment (gray vs black bars). B. Immunostaining of pancreatic

cancer cells grown in control conditions or treated with cyclopamine

for 24 hrs. With the exception of BxPC# cells, cyclopamine

treatment strongly inhibits TCF4 expression in the cell lines

analyzed. Green: anti-TCF4 antibody; blue: DAPI. C. Quantifica-

tion of the percentage of TCF4 positive nuclei in control cells (white

bars) and in cyclopamine-treated cells (black bars). P-values are

shown in comparison to the control cells. Error bars are shown as St.

Dev.; p-values #, not significant; *p,0.05; **, p,0.01.

Found at: doi:10.1371/journal.pone.0001155.s004 (1.71 MB TIF)

Table S1 Upregulation of Wnt receptors, Wnt ligands and b-

CATENIN itself as well as downregulation of some inhibitors of

Wnt signaling (IDAX and ICAT), together with genes whose

transcription is mediated by b-CATENIN, suggests activation of

Wnt signaling in PDA.

Found at: doi:10.1371/journal.pone.0001155.s005 (0.18 MB

DOC)

Methods S1

Found at: doi:10.1371/journal.pone.0001155.s006 (0.05 MB

DOC)
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