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ABSTRACT OF THE THESIS 

 

Monitoring the Coastal Water Quality of  

Santa Monica Bay Area, Los Angeles, California Using Sentinel-2 

 

by 

 

Yuwei Kong 

 

Master of Science in Civil Engineering 

University of California, Los Angeles, 2021 

Professor Jennifer Ayla Jay, Chair 

 

The application of remotely sensed data to water quality monitoring is an active 

area of research nowadays, as GIS and remote sensing can reduce the cost and enlarge 

the scale of ground observation. However, a major challenge is the calibration of 

satellite-derived data with in situ data, which are sometimes difficult and expensive to 

acquire compared with remote sensing data. This study aims to investigate the 

effectiveness of Sentinel-2 for estimating coastal water quality in the Santa Monica Bay 

(SMB), California. Surface reflectance values are obtained from the Copernicus 

Sentinel-2 and remote sensing derived turbidity values are calculated by ACOLITE. In 

situ total suspended solids (TSS), absorbance, light transmission, and fecal indicator 
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bacteria (FIB) have been tested to compare with the satellite data. The results of 

regression analysis demonstrate that remote sensing can offer preliminary qualitative 

estimates of coastal water quality in the SMB area. 
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1. Introduction 

Accurate and timely remote observation of coastal water quality and its ensuing 

environmental changes in biogeochemistry is of great importance for a wide variety of 

nearshore cities (Ouellette & Getinet, 2016; M. J. McCarthy et al., 2017). Turbidity is 

an optically active water quality parameter related to the presence of suspended 

particles in water bodies – the larger the concentration of suspended particles, the 

higher the turbidity (Ritchie, 1976; Chawla et al., 2020). It affects the attenuation of 

light in water, thereby increasing water opacity, which directly hinders aquatic life by 

influencing photosynthetic activities (Cloern, 1987; Bilotta & Brazier, 2008; Güttler et 

al., 2013; Sebastiá-Frasquet et al., 2019). Turbidity is impacted by weather, climate 

patterns, and human activities along the coasts (M. J. McCarthy et al., 2017; Luis et al., 

2019). Thus, understanding the large-scale spatiotemporal dynamics of turbidity is 

crucial to coastal environment management and protection.  

Coastal water of the Santa Monica Bay (SMB) area is an ecologically important 

marine habitat as well as part of the iconic famed Southern California beaches for 

tourists and visitors. However, according to the 2020 annual California Beach Report 

Card released by Heal the Bay, four out of the top ten “Beach Bummers” – the most 

bacteria-laden beaches – are in Southern California. One of those beaches - Marina del 

Rey Mother’s Beach, located in the SMB area, came in at No. 5 on the list (Ginger et al., 

2021). With over 12 million people living in the bordering coastal counties, millions of 

gallons of domestic, commercial, and industrial wastewater are generated and treated 

daily by the surrounding wastewater treatment plants, and then released directly to the 
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coastal water of the SMB (Gierach et al., 2017; U.S. Census Bureau, 2021). That 

necessitates continuous observation of coastal waters around that area to guarantee 

that water quality meets human health standards. Coastal water monitoring has 

historically relied on in situ measurements, which are time consuming, expensive and 

labor intensive (Glasgow et al., 2004; Akbar et al., 2010). Besides, field observations 

are spatially and temporally limited due to high associated coasts and sparse sampling 

stations and hence may overlook the associated aquatic responses and transport 

related to change of water quality (Gierach et al., 2017).  

Remote sensing techniques are a highly effective way of regarding the state of the 

oceans and coasts due to the limits in ground-based observations. Mapping of water 

quality of coastal waters using remote sensing has been carried out since 1970s (Garg 

et al., 2020), with the launch of first ocean color sensor, Coastal Zone Color Scanner 

(Gordon et al., 1980; Hovis et al., 1980). Photons pass through the atmosphere and 

reach the sea surface, where they will be either scattered or absorbed based on the 

water surface condition (Büttner et al., 1987). Their spectral responses to these various 

surface conditions are detected by ocean color sensors and recorded in a satellite image. 

Satellite observation provides continuous and reasonably accurate data over a 

complete geographic area of water body on a synoptic scale. Plenty of work have been 

done on this topic, illustrating that using satellite data for water quality monitoring is 

feasible. However, it is still difficult to monitor coastal water turbidity due to optical 

complexity of coastal waters and imprecise atmospheric correction of imagery. Most of 

the research have been done focusing on the inland water bodies (Table 1).  
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Many Multispectral Remote Sensing studies of optically active water quality 

parameter retrieval have been conducted using specially designed ocean color sensor 

with a large spatial resolution, such as the Coastal Zone Color Scanner (CZCS) with a 

825 m resolution (Hoge et al., 1995), the Along Track Scanning Radiometer (ATSR) 

with a 1000 m resolution (Donlon & Robinson, 1998), the Sea-viewing Wide Field of 

view Sensor (SeaWIFS) with a 1130 m resolution (Kahru & Mitchell, 2001), the 

Moderate-resolution Imaging Spectroradiometer (MODIS) with a 250-1000 m 

resolution (Nezlin et al., 2007), and the Visible Infrared Imaging Radiometer Suite 

( VIIRS) with a 375-750 m resolution (Cao et al., 2013). Typically, these sensors have 

high temporal resolution, making them more suitable for continuous monitoring but 

resulting in coarse spatial resolution or low spectral resolution. No sensor could have 

a high spectral, spatial, and temporal resolution at the same time: there is a 

compromise needed between types of resolution (Hellweger et al., 2004; Nazeer & 

Nichol, 2016). Sensors with high temporal resolution are ideal for homogeneous areas 

of open ocean but can hardly resolve the near shore environment of a spatially 

complicated coastal area. Hence, compared with current multi-spectral missions, 

Sentinel-2 Multispectral Instrument (MSI) provides an unprecedented combination of 

capabilities with both high temporal and spatial resolution by double satellites orbit. It 

offers the longevity of successive missions with the possibility to resolve complex and 

small-scale features over nearshore regions.  

This study aims to validate the ability of Sentinel-2 data for estimating water 

quality around the coastal areas in the Santa Monica Bay. We first analyzed the existing 
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field data (light transmission) from 2018 to 2019 provided by LA Sanitation to compare 

with the Sentinel-2 derived turbidity. To further verify the results, we collected coastal 

water samples from summer 2021 to fall 2021, and specifically focused on the optically 

active water quality indicator, absorbance. Other in situ parameters including fecal 

indicator bacteria (FIB) and total suspended solids (TSS) are also compared in our 

study as a supplementary validation.  

Table 1. Historical ocean-color sensors used to remotely assess and monitor water 

qualities. 

Water 

bodies 
Sensor 

Water quality 

index 

Performance  

(R2) 
Study area Reference 

Inland 

HICO Chlorophyll-a 0.940 Yangtze River 
(Shanmugam 

et al., 2018) 

AISA 

Turbidity 

Secchi Disk 

Depth 

Chlorophyll-a 

0.937 

 

0.855 

0.891 

Casey Lake 

and Sliver 

Lake 

Sugumaran, 

2007 

ALI 

Colored 

Dissolved 

Organic Matter 

0.830 
Finland and 

Sweden lakes 

Kutser et al., 

2005 

Hyperion Chlorophyll-a 0.707 Lake Atitlan 

Flores-

Anderson et 

al., 2020 

Coastal 

MODIS 

Total 

Suspended 

Solids 

0.859 
Apalachicola 

Bay 

S. Chen et al., 

2011 

Landsat 

8 OLI 
Chlorophyll-a 0.890 

Santa Monica 

Bay 

Trinh et al., 

2017 

Landsat 

8 
Phosphates 0.955 

Playa 

Colorada Bay 

González-

Márquez et al., 

2018 
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2. Study Area 

Los Angeles (latitude/ longitude 34°03′N 118°15′W), with a population of 3.8 

million in 2020, is the second largest city in the United States and the largest city in 

California (U.S. Census Bureau, 2021). It lies in a basin in the Los Angeles basin in 

Southern California, adjacent to the Pacific Ocean, with a Mediterranean climate (Peel 

et al., 2007). The average annual precipitation in Los Angeles is 379 mm, mainly 

occurring from November through March, mostly as moderate rain showers but also 

as heavy rainfall during winter storms. Rainfall is generally higher in the hills and 

coastal slopes of the mountains due to the orographic uplift (Bray et al., 1999). There 

is not much rain in summer days. The semi-permanent high pressure area of the north 

Pacific Ocean is a dominating factor in the weather of Los Angeles. This pressure center 

moves northward in summer, holding storm tracks well to the north, and consequently, 

the coastal area of LA receives little or no precipitation from this source during that 

period. In winter, the Pacific high moves southward, allowing storm centers to swing 

into and across the coast (Climate of Los Angeles, California, 2000). Los Angeles has 

about 75 miles of coastline from Malibu to Long Beach. It has a wide range of beach 

environments, from flat, nondescript stretches of sand to scenic coves, rugged bluffs, 

and rocky tide pools. 

The study area, the coastal waters of Santa Monica Bay, falls within the West Los 

Angeles area. Its marine environment is directly affected by the densely populated Los 

Angeles area. The large urban population produces tons of wastewater from different 

sources, which is treated daily by various local wastewater treatment facilities and 
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discharged directly into the coastal waters of the Santa Monica Bay. Except for being 

the most popular coastal area in the United States, the Santa Monica Bay is also 

considered a heavily polluted coastline area nationwide. Thus, water quality 

monitoring for this area is more frequent and stricter compared with other areas. 

Figure 1. Map of study area and in situ light transmission sampling sites
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3. Materials and Methods 

3.1 Satellite remote sensing data 

3.1.1 Satellite Image Acquisition 

As part of the European Space Agency (ESA) Copernicus Earth Environment 

Monitoring Program, SENTINEL-2 is a high-resolution, wide-swath, multi-spectral 

imaging mission composing of two polar-orbiting satellites: Sentinel-2A and Sentinel-

2B, which were launched on June 23rd 2015 and March 7th 2017, respectively. The 

program provides accurate, timely and easily accessible information to improve the 

management of the environment, understand and mitigate the effects of climate 

change. Both satellites are carried with a Multispectral Instrument with 13 spectral 

bands, ranging from the visible and near-infrared (NIR) to the shortwave infrared to 

help monitoring vegetation, soil, water cover, and inland waterways and coastal areas. 

The MSI for Sentinel-2 satellites has different spatial resolutions depending on the 

spectral bands: four visible and NIR bands at 10 meters, six red edge and shortwave 

infrared bands at 20 meters and three clouds screening/ atmospheric correction bands 

at 60 meters (Table 2). The swath of Sentinel-2 images is 290 km, with a five-day revisit 

time for our study area. Hence, Sentinel-2 is well suited as a data source for water 

quality observations.  

The Sentinel-2 data were downloaded from the United States Geological Survey 

(USGS) EarthExplorer (https://earthexplorer.usgs.gov/) after filtering the images 

with cloud coverage ≤ 70%. We used the Level-1C (T11SLT) tile top-of-atmosphere 

https://earthexplorer.usgs.gov/
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(TOA) reflectance Sentinel-2A/B data for this study, which including radiometric and 

geometric corrections, to maintain the uniformity of atmospheric correction. 

Table 2. Bandwidths of the Sentinal-2 Multispectral Instrument (MSI) sensor 

Band Number Central Wavelength (nm) Bandwidth (nm) Spatial Resolution (m) 

1 443 20 60 

2 490 65 10 

3 560 35 10 

4 665 30 10 

5 705 15 20 

6 740 15 20 

7 783 20 20 

8 842 115 10 

8a 865 20 20 

9 945 20 60 

10 1375 30 60 

11 1610 90 20 

12 2190 180 20 

3.1.2 Atmospheric Correction Methodologies 

The ACOLITE software (https://odnature.naturalsciences.be/remsem/software-

and-data/acolite, version 20210114.0) developed at Royal Belgian Institute of Natural 

Sciences (RBINS) for aquatic applications was used for atmospheric correction (AC). 

The processor outputs several parameters derived from water reflectance and can 

generate RGB composites and PNG maps as well (Vanhellemont & Ruddick, 2014, 

2015, 2016). 

There are two algorithms for AC available in ACOLITE, the default “Dark 

https://odnature.naturalsciences.be/remsem/software-and-data/acolite
https://odnature.naturalsciences.be/remsem/software-and-data/acolite
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Spectrum Fitting (DSF)” algorithm (Vanhellemont & Ruddick, 2018; Vanhellemont, 

2019, 2020) and the older “Exponential extrapolation (EXP)” algorithm 

(Vanhellemont & Ruddick, 2014, 2015, 2016). We used the DSF algorithm for this 

study. This algorithm works better for meter-scale (MR) optical satellite imagery, by 

estimating the atmospheric path reflectance based on multiple targets found in the 

images (typically water pixels and ground-level object shadows), which are selected 

according to the lowest observed top-of-atmosphere reflectances in all bands. The best 

band is selected automatically, which could avoid unrealistic negative reflectances 

after the AC (Vanhellemont & Ruddick, 2018).  

3.1.3 Data Processing 

The Sentinel-2A/B images were processed in ACOLITE to derive turbidity in 

Formazine Nephelometric Units (FNU), by using the Dogliotti et al. (2015) algorithm 

showing below: 

𝑇 =  
𝐴𝑇

𝜆 𝜌𝑤(𝜆)

(1−𝜌𝑤(𝜆)/𝐶𝜆)
                               (1) 

where 𝜌𝑤(𝜆)  is water reflectance at wavelength 𝜆 , 𝐴𝑇  and C are wavelength-

depend calibration coefficients. The red band (645 nm) band is used when 𝜌𝑤(645) <

0.05 , and the NIR band (859 nm) is used when 𝜌𝑤(645) > 0.07 . A linear weighing 

function, of which the weight of the algorithm ( 𝑤 ) changes linearly from 0 at 

𝜌𝑤(645) = 0.05  to 1 at 𝜌𝑤(645) = 0.07 , is used when 0.05 < 𝜌𝑤(645) < 0.07  to 

assure a smooth transition, according to the equation below: 

 𝑇 = (1 − 𝑤) ∙ 𝑇645 + 𝑤 ∙ 𝑇859                         (2) 

The original algorithm was developed based on the Moderate Resolution Imaging 
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Spectroradiometer (MODIS). The wavelengths red band and NIR band were adjusted 

to 664 nm for red and 842 nm for NIR since we are using Sentinel-2.  

Considering the water dynamic nature, the mean turbidity from a 5 × 5  pixel 

window of each station was extracted by Python. The minimum, lower quartile, mean, 

median, upper quartile, and maximum values for each square were also calculated.  

3.2 Ground based measurement  

3.2.1 In situ Light Transmission 

Monitoring of LA coastal water is carried out by the LA Sanitation’s Environmental 

Monitoring Division to determine if Ocean Plan and Basin Plan objectives for physical 

and chemical parameters and bacteria are being met. The water samples were collected 

on a quarterly basis from 54 offshore stations locating from the nearshore to 

approximately 10 kilometers offshore, covering the Los Angeles coastline.  

The in situ light transmission measurements are provided by LA sanitation from 

the 54 stations around the Santa Monica Bay area. Samples were collected from 2018-

2019 and were analyzed using the analytical methods described in 40 CFR § 136 

(ORDER R4-2017-XXXX NPDES NO. CA0109991, 2017). 

3.2.2 Other in situ measurements 

 Beach water was sampled (2 liters) about 50 cm beneath the sea surface from 2021 

summer to 2021 fall. 

Total coliforms (TC), E. coli (EC), and enterococci (ENT) were assessed using the 

IDEXX® (https://www.idexx.com/) chromogenic substrate (CS) method according to 

https://www.idexx.com/
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the manufacturer's instructions. Colilert-18 media were used for enumeration of TC 

and EC, while Enterolert media were used for ENT. Samples were diluted to 1:10 in 

MilliQ water considering the coastal water quality. The FIB results were quantified 

using the most probable number (MPN) method by counting the positive wells in a 96-

well IDEXX Quanti-Tray. 

TSS was determined gravimetrically according to the standard guidelines (2540 

SOLIDS, 2018) by weighing the dried residues after membrane filtration (glass 

microfiber, particle retention 1.5 μm, 47 mm diameter).  

Spectrophotometric analysis was done by the LAMBDA 365 UV/Vis 

Spectrophotometer from PerkinElmer (https://www.perkinelmer.com/). A spectral 

scan focusing on absorption of light was carried out between 190 nm to 1100 nm. The 

spectrophotometer was set to baseline subtraction to account for absorption by blanks 

(MilliQ water samples), after which absorption spectra for respective coastal water 

samples were taken and subtracted from final absorbance measurements.  

  

https://www.perkinelmer.com/
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4. Results 

4.1 Sentinel-2 Data vs. in Situ Light transmission 

 The results of the in situ light transmission and Sentinel-2 derived turbidity (in 

FNU) values are compared and the linear regression between the two variables is 

shown below. The light transmission and turbidity generally show a negative trend 

(Figure 2(a)). The turbidity decreases while the in situ light transmission increasing. 

This result is same as previous studies (J. C. McCarthy et al., 1974; Telesnicki & 

Goldberg, 1995). Figure 2(b) shows a strong negative correlation between the Sentinel-

2 derived turbidity and in situ light transmission (r2=0.6702, Pearson’s r =-0.82).  

Figure 2. (a) Comparison between the in situ light transmission and corresponding 

satellite-derived turbidity from 2018-2019. (b) Linear regression analysis of satellite-

derived turbidity on percent light transmission from 2018-2019. 

 

4.2 Comparison of Sentinel-2 Data vs. in Situ and Laboratory Data 

Results 

To better correspond with the Dogliotti et al. (2015) algorithm, we chose the same 

wavelengths (665 nm and 842 nm) to compare the correlation between in situ 
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absorbance data and satellite-derived satellite data. The spectra curves of the coastal 

waters were obviously different in shape from those of the ocean water bodies from our 

results. Figure 3(a) are linear graphs establishing the positive relationship between 

absorbance at both wavelengths and Sentinel-2 derived turbidity. As can be seen from 

the graph, the absorbance at red band was higher than that at NIR band. The results 

of the correlational analysis are compared in Figure 3(b). It is worth noting that the 

absorbance at 665 nm shows a better correlation (r2=0.6387, Pearson’s r=0.799) with 

the ACOLITE-derived turbidity data compared to the absorbance at 842 nm 

(r2=0.6361, Pearson’s r=0.798), although the difference is not significant of the 

Pearson’s correlation coefficient.  

Figure 3. (a)Comparison between the in situ Absorbance and corresponding satellite-

derived turbidity from 2021 summer - fall. (b) Linear regression analysis of in situ 

Absorbance on satellite-derived turbidity from 2021 summer - fall. 

 

 Table 3 illustrates the intercorrelations among the measurements of water quality 

from in situ samples and remote sensing-derived data. Significance levels for every 

correlation were calculated. Data from this table could be compared with the data in 

Figure 3.  
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Table 3. Pearson’s correlation coefficients for all tested in situ parameters and Sentinel-

2 turbidity. Moderate correlations are highlighted in yellow.  

This set of data shows the high correlation between satellite data and in situ 

observations. A good consistency existed between the remote sensing derived turbidity 

and in situ TSS (Pearson’s r = 0.641), which is consistent with our inference. Positive 

correlations are also found between TSS and FIB, of which r=0.501, 0.464, and 0.582 

for total coliform, E. coli and enterococci, respectively. ENT shows the best correlation 

compared with other two fecal bacteria indicators. TC and EC have a relatively similar 

linear relationship with TSS, while ENT have a better linear relationship but with a 

linear equation different from other two indicators (Figure 4). No significant 

correlation was found between satellite-derived turbidity and fecal indicator bacteria.  

Figure 4. Linear regression analysis for MPN of the in situ FIB vs. in situ TSS. 

 

Parameters ACOLITE 𝝆𝒘(𝟔𝟔𝟓) 𝝆𝒘(𝟖𝟒𝟐) TSS TC EC ENT 

ACOLITE 1 
      

𝜌𝑤(665) 0.799 1 
     

𝜌𝑤(842) 0.798 0.999 1 
    

TSS 0.641 0.450 0.466 1 
   

TC -0.008 -0.187 -0.168 0.501 1 
  

EC -0.058 -0.188 -0.169 0.464 0.996 1 
 

ENT 0.141 0.003 0.021 0.582 0.980 0.977 1 
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5. Discussion 

 The main purpose of this study was to investigate the ability of high spatial 

resolution satellite data for estimating water quality. Many studies have been done on 

to validate the correlation between in situ water quality and remote-sensing water 

quality data using the high-resolution satellite. The possibility of using Sentinel-2 

products to monitor coastal water quality around the Santa Monica Bay, Los Angeles, 

California was examined in this study. We collected field data between 22nd July and 

26th October 2021 on the Sentinel- 2A/B passing days to ensure the consistency. In situ 

water quality variables used in this research included light transmission, TC, E. coli, 

Enterococcus, light absorbance, and TSS, and regression analysis was used to 

investigate the relations between the turbidity derived by Sentinel-2 reflectance data 

and the filed water quality data. Several studies have presented the possibility of 

determining water quality with remote sensing imaginary, especially Landsat-8 (with 

a spatial resolution of 30 meters) (Quang et al., 2017; Trinh et al., 2017; Luis et al., 

2019). Besides, most of the research are focused on inland water bodies (e.g., lakes or 

rivers) (Güttler et al., 2013; Guo et al., 2017; Garg et al., 2020; Zhou et al., 2021). Thus, 

focusing on coastal water around southern California, we evaluate the ability of 

Sentinel-2 for monitoring water quality. To our knowledge, only a few studies can be 

found in the literature exploring the correlation of in situ optical water characteristics 

with remote sensing data.  

 The main results of the study showed a significant relation between the in situ 

optical parameters of water quality and Sentinel-2 turbidity. Aiming at validating 
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whether Sentinel-2 could be used to monitor coastal water quality around Los Angeles, 

we first analyzed the existing field data (light transmission) from 2018 to 2019 

provided by LA Sanitation to compare with the satellite derived turbidity. A high 

negative correlation coefficient (Pearson’s r = -0.82, p<0.001) was found. There are 

studies claiming that turbidity could be surrogated by the transmitted light intensity 

with a negative correlation, due to the greatest ability of scattering centers in the water 

sample scattering the incident light (Sefa-Ntiri et al., 2014; Telesnicki & Goldberg, 

1995). Our results show the same relationship according to current data. 

 To further verify the results, we collected coastal water samples from summer 2021 

to fall 2021, and specifically focused on the water quality indicator, which is optically 

active, absorbance in this case. From the Beer–Lambert Law, absorbance is negatively 

correlated with light transmission (Mäntele & Deniz, 2017): 

 𝐴 = −𝑙𝑜𝑔 𝑇 = 𝑙𝑜𝑔 
𝐼0

𝐼
                           (3) 

 where 𝐴  is absorbance, 𝑇  is transmission, 𝐼0  and 𝐼  are intensity of the 

measuring beam before/after passing through the sample, respectively. Thus, we can 

conjecture that the higher the turbidity is, the higher the absorbance will be. From our 

result in Figure 2 and the Beer-Lambert Law, the in situ absorbance is supposed to 

show a positive relationship with turbidity derived by Sentinel-2. And according to 

Figure 3, the correlation coefficients for both wavelengths are positive (Pearson’s r = 

0.799 and 0.798, respectively), indicating that our assumption is right. The Pearson’s 

r value of 𝜌𝑤(665) has a higher correlation compared with 𝜌𝑤(842), indicating that 

compared with NIR bands, red bands are more sensitive towards turbidity estimation. 
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This is similar with the previous research, which presented that the red bands works 

better for low turbidity levels monitoring (Z. Chen et al., 2007; Bustamante et al., 2009; 

Chawla et al., 2020). 

 We also conducted experiments on other water quality indicators, including FIB 

and TSS. The monitoring of total suspended sediments is critical for analyzing river 

dynamics as it serves as an indicator for water quality and used in sediment discharge 

and transport applications (Petersen et al., 2017). As a parameter directly affected by 

suspended particles concentration in water, turbidity is often used as a proxy of 

sediment concentration in the water body (Rügner et al., 2013). The relationship 

between turbidity and TSS depends on the size, density, shape and type of the 

suspended particles in general, as well as watercolor. Ideally, the TSS, absorbance and 

satellite derived turbidity should all have a positive correlation with each other. FIB, 

generally using as an indicator of fecal pollution in water samples, is a significant water 

quality parameter directly affected human health (LeClerc et al., 1996).  

The summary statistics for the comparison of in situ water quality parameters we 

tested in this study are shown in Table 3. As we can see, TSS have a positive correlation 

with red and NIR band absorbance, all three types of FIB. The result is consistent with 

our assumptions, and also can be seen as a proof that our in situ parameters 

concentrations are reliable. Nevertheless, TC and EC were less correlated with in situ 

TSS than ENT, which may be because ENT is more likely to attach to particles (Soupir 

et al., 2010). It is noticeable that the FIB is always higher for Santa Monica beach than 

other sampling beach sites, which may be due to its high passenger flow as a tourist 
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attraction. In addition, the food tourists leaving on the beach also attract numbers of 

birds, also inducing an increase in the FIB because of the bird fecal. 

 This research provides a validation of the accuracy of satellite derived turbidity 

value compared to the in situ measurements in the Santa Monica Bay area, exhibiting 

the promising capability of Sentinel-2 to support coastal management as a valuable 

tool for turbidity monitoring. Besides, the study also demonstrates that the optical 

properties of in situ water samples could be used as a validation of satellite-derived 

turbidity data. Nonetheless, additional insights must be considered for inspection of a 

wider range of turbidity concentrations and other water quality parameters 

(chlorophyll-a, Colored Dissolved Organic Matter, etc.) to establish a continuous 

framework for the ongoing services relying on both Sentinel-2 twin satellites. In 

general, Sentinel-2 data can be used to help with water quality monitoring in coastal 

areas. However, the disadvantage is that satellites are susceptible to weather and 

turbidity is also relatively susceptible to sand in coastal water.  

 It is well documented that remote sensing may offer preliminary qualitative 

estimates of coastal water quality; however, it is necessary to establish the relationship 

between remotely sensed turbidity values and those observed using samples collected 

at the site of the interest, in this case, the Santa Monica Bay. Research focusing on high 

turbidity coastal areas is also needed, since the research reported here is addressing a 

relatively low turbidity area.  
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