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ABSTRACT OF THE DISSERTATION

Coding Theory in Storage and Network

By

Peng Fei

Doctor of Philosophy in Computer Engineering

University of California, Irvine, 2021

Assistant Professor Zhiying Wang, Chair

The high demand of data storage and data communication brings many new challenges and

concerns, including but not limited to, how to efficiently store data in devices and how to

reliably communicate data between different devices to avoid possible errors. Those two

problems correspond to the two most important concepts in information theory: source

coding and channel coding, where the former compresses data to reduce its size, and the

latter enlarges the data to combat errors. In this thesis, four problems about source coding

and channel coding are presented with applications in information storage and networks.

For source coding, SEAL is presented, which is a novel data compression approach for system

log data and supports causality analysis for system security. Based on information-theoretic

observations on system event data, the approach achieves lossless compression and supports

near real-time retrieval of historic events. In the compression step, the causality graph

induced by the system logs is investigated, and abundant edge reduction potentials are

explored. In the query step, for maximal speed, decompression is opportunistically executed.

SEAL greatly alleviates the exponentially-growing storage demand for causality analysis in

industrial computer security.

For channel coding, an error-correcting code based on low-density parity-check code(LDPC)

for DNA storage is first introduced. In this work, DNA storage that uses affordable and

xii



portable nanopore sequencing is considered as the reading mechanics. Unlike traditional

data storage systems, errors occur asymmetrically among the four types of nucleotide bases

of DNA. Quaternary codes can be employed for error correction, but suffer from high com-

plexity. For this problem, a turbo-like decoder for the DNA storage channel is designed.

Meanwhile, the corresponding density evolution algorithms are designed to prove the opti-

mal bound for the decoders. Simulation results show that the binary LDPC codes have a

similar bit error rate but with a speedup by a factor of 4 compared to quaternary codes.

Next, a source of synchronization errors in DNA storage is identified, which could result in

missing symbols in the read result from nanopore sequencing. To limit such errors, con-

strained codes are presented. Moreover, this work shows encoding algorithms and maximum

a posteriori decoding algorithms in the presence of additive Gaussian noise and deletions.

The simulation shows a trade-off between the coding rate and the missing-symbol rate.

The decoding simulation results show that the algorithms can correct missing-symbols er-

ror efficiently. Meanwhile, simulated data from DeepSimulator by Y. Li et al. [67] and

the real-world data also show that the constrained DNA strings have fewer missing-symbol

errors.

Finally, coding for network synchronization is investigated. This work studies the problem

of clock synchronization in an arbitrary network, viewed as a graph. Each server is a node,

and two nodes are connected by an edge if their time discrepancy (edge weight) is measured.

The time discrepancy is known by one or both of these two servers. The goal is to reduce

the communication cost between server nodes and the master node, which collects the dis-

crepancy information to eliminate the loop-wise offset surplus in the network. For the two

important cases where each time discrepancy is known by both adjacent servers and by only

one of the adjacent servers, the optimal schemes are found.

xiii



Chapter 1

Introduction

With the coming of modern information age, the sharp increase in the amount of information

raises high demands for data storage and management. While technology enables the increase

of the storage capacity of the current devices such as hard disk, solid-state drives, and random

access memory, other possible storage devices and materials may offer orders of magnitude

improvement in storage density, for example, DNA storage. Moreover, is it common to

coordinate multiple storage devices together to build the data center and coordinate multiple

data centers together to build the data center network. During those procedures, many new

challenges and concerns have appeared, including but not limited to, how to efficiently store

data in devices, and how to reliably communicate data between different devices to avoid

possible errors. Those two problems correspond to the two most important concepts in the

information theory: source coding and channel coding. In 1948, Shannon stated the source

coding theorem and channel coding theorem [101] that quantify the fundamental limits of

data compression and data communication, respectively.

This thesis introduces four works about coding theory with application in data storage and

networks. Chapter 2 introduces a work about the usage of source coding in the security

1



analysis field, Chapter 3 and 4 introduce two works about the usage of channel coding in

DNA storage and chapter 5 introduces a work about the usage of network coding for network

clock synchronization.

1.1 Source coding for security analysis

Causality analysis automates attack forensic and facilitates behavioral detection by associ-

ating causally related but temporally distant system events. Despite its proven usefulness,

the analysis suffers from the innate big data challenge to store and process a colossal amount

of system events that are constantly collected from hundreds of thousands of end-hosts in a

realistic network. In addition, the effectiveness of the analysis to discover security breaches

relies on the assumption that comprehensive historical events over a long span are stored.

Hence, it is imminent to address the scalability issue in order to make causality analysis

practical and applicable to the enterprise-level environment.

In Chapter 2, we present SEAL, a novel data compression approach for causality analysis.

Based on information-theoretic observations on system event data, our approach achieves

lossless compression and supports near real-time retrieval of historic events. In the compres-

sion step, the causality graph induced by the system logs is investigated, and abundant edge

reduction potentials are explored. In the query step, for maximal speed, decompression is

opportunistically executed. Experiments on two real-world datasets show that SEAL offers

2.63x and 12.94x data size reduction, respectively. Besides, 89% of the queries are faster

on the compressed dataset than the uncompressed one, and SEAL returns exactly the same

query results as the uncompressed data.

2



1.2 LDPC code in DNA storage

DNA becomes an attractive storage medium in recent years for its ultra-high density, millennia-

long endurance, and efficient replication. In Chapter 3 we consider DNA storage that uses the

affordable and portable nanopore sequencing as the reading mechanics. Unlike traditional

data storage systems, errors occur asymmetrically among the four types of nucleotide bases

of DNA. Quaternary codes can be employed for error correction, but suffer from high com-

plexity. In this work, we design binary LDPC codes with a turbo-like decoder for the DNA

storage channel. We also design the corresponding density evolution algorithms to prove the

optimal bound for our decoders. Simulation results show that our binary LDPC codes have

a similar bit-error rate but with a speed up by a factor of 4 compared to quaternary codes.

1.3 Constrained code in DNA storage

As mentioned, Nanopore sequencing is an attractive reading technology for DNA storage due

to the ease of access. However, sequencing errors greatly affects the reliability of the stored

information. In Chapter 4, we identify a source of synchronization errors, which could result

in missing symbols in the read-out sequences. Then we present constrained codes to limit

such errors. We show encoding algorithms and maximum a posteriori decoding algorithms

in the presence of additive Gaussian noise and deletions.

Our simulation shows a tradeoff between the coding rate and the error rate. The exper-

iment over DeepSimulator [67] data and the real world data also shows that the encoded

DNA strings have less errors during the nanopore sequencing. Specifically, our encoded

data improve deletion rate of base-calling accuracy of DeepSimulator from 1.76% to 0.59%.

The decoding simulation results show that the algorithms can correct missing-symbols error

efficiently.
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1.4 Channel Coding for Clock Synchronization

In Chapter 5, we study the problem of clock synchronization in arbitrary networks, viewed

as a graph. Every pair of adjacent servers has a time discrepancy (edge weight) that is

agreed by both servers and only known by these two adjacent servers. Server nodes send

this time discrepancy information to a master node. After collecting the information, the

master node aims to coordinate otherwise independent clocks of servers, i.e., to eliminate the

loop-wise offset surplus in the network. We focus on the communication cost between server

nodes and the master node. For the two important cases where each time discrepancy is

known by both adjacent servers and by only one of the adjacent servers, we find the optimal

schemes. It is interesting to note that for the former case, our scheme is also straggler (slow

or fail server) robust. For the rest of the cases, we propose an algorithm that outperforms

the trivial solution.
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Chapter 2

SEAL: Storage-efficient Causality

Analysis on Enterprise Logs with

Query-friendly Compression

2.1 Introduction

System logs constitute a critical foundation for enterprise security. The latest computer

systems have become more and more complex and interconnected, and attacker techniques

have advanced to take advantage and nullify the conventional security solutions which are

based on static artifacts. As a result, the security defense has turned more to pervasive

system event collection in building effective security measures. Research has extensively

explored security solutions using system logs. Causality analysis in the log setting (or attack

provenance), as defined in [122], is one such direction that reconstructs information flow

by associating interdependent system events and operations. For any suspicious events,

the analysis automatically traces back to the initial penetration (root-cause diagnosis), or
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measures the amount of the impact by enumerating the system resources affected by the

attacker (attack ramification). Encouragingly, the security solutions based on pervasive

system monitoring and causality analysis no longer remain as a research prototype. Many

proposed ideas have actualized as commercial solutions[24, 34, 7].

However, due to their data-dependent nature, the effectiveness of the above security solutions

is heavily constrained by the system’s data storage and processing capability. On one hand,

keeping large volumes of comprehensive historical system events is essential, as the security

breach targeting an enterprise tends to stay at the network over a long span: an industry

report by TrustWave [116] shows, on average, an intrusion prolongs over 188 days before

the detection. On the other hand, the size of a typical enterprise network and the amount

of system logs each host generates could put high pressure on the security solutions. For

instance, our industrial partner reported that on average 50 GB amount of logs are produced

from a group of 100 hosts daily, and they can only sustain at most three months of data

despite the inexpensive storage cost. There is a compelling need for a solution that can scale

storage and processing capacity to meet the enterprise-level requirement.

Lossless compression versus lossy reduction. Compression techniques [117] come

in handy for improving the storage efficiency of causality analysis. Existing approaches

[111, 122, 62, 52] tend to carry out lossy reduction, which removes logs matching pre-defined

patterns, leading to unavoidable information loss. Although they showed that the validity

of causality analysis is preserved on samples of investigation tasks, there is no guarantee

that every task will derive the right outcome. In Section 2.2.3, we show examples about

when they would introduce false positives/negatives. In addition, the accuracy of other

applications such as behavioral detection [74, 48] and machine-learning based anomaly de-

tection [88, 89, 125, 12, 29, 69] would be tampered, when they use the same log data. Alter-

natively, lossless compression [117] allows any information to be restored and thus causality

analysis is preserved. Though the standard tools like Gzip [28] are expected to achieve a
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high compression rate, they are not applicable to our problem, because high computation

overhead of decompression will be incurred when running causality analysis.

In this work, we challenge the common belief that lossless compression is inefficient for

causality analysis, by developing SEAL (Storage-Efficient Analysis on enterprise Logs) under

information-theoretic principles. Compared to the previous approaches, logs under a wider

range of patterns can be compressed in a lossless fashion without the need for carefully

examining conditions such as traceability equivalence or dependence preservation, while the

validity and efficiency of any investigation task of causality analysis are preserved.

Contributions. The main contributions of this paper are as follows.

• We develop a framework of query-friendly compression (QFC) specialized for causality

analysis. In this framework, the dependency graph is induced from the logs, and lossless

compression is applied to the structure (vertices and edges) and then to the edge properties,

or attributes (e.g., timestamp). QFC ensures every query is answered accurately, while the

query efficiency is guaranteed as the majority of operations required by queries are done

directly on the compressed data.

• We design compression and querying algorithms according to the definition of QFC. For

graph structures, we define merge patterns to be subgraphs whose edges are combined into

one new edge. For edge properties, delta coding [81] and Golomb codes[45] are applied to

exploit temporal locality, meaning that consecutively collected logs have similar timestamps.

To return answers to a causality query, the proposed method obviates decompression unless

the relationship between the timestamps of a compressed edge and the time range of the

query cannot be determined.

• A compression ratio estimation algorithm is provided to facilitate the decision of using

the compressed or uncompressed format for a given dataset. We show that the compression

ratio can be determined by the average degree of the dependency graph. Our algorithm
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estimates the average degree by performing random walk on the dependency graph with

added self-loops, and randomly restarting another walk during the process. If the estimated

compression ratio of a given dataset is smaller than a specified threshold, compression can

be skipped.

• The above algorithms are implemented in SEAL, which consists of the compression system

that is applied to online system logs and the querying system that serves causality analytics.

Due to the large amount of merge patterns in the dependency graphs, SEAL can compress

online log data into a significantly smaller volume. In addition, the query-friendly design

reduces the required decompression operations. We evaluate SEAL on system logs from 95

hosts provided by our industrial partner. The experiment results demonstrate an average of

9.81x event reduction, 2.63x storage size reduction. Besides, 89% of the queries are faster on

the compressed dataset than the uncompressed one. We also evaluate SEAL on DARPA TC

dataset [25] and achieved 12.94x size reduction. Causality analysis to investigate attacked

entities is shown to return accurate results with our compression method.

2.2 Background

We first describe the concepts of system logs and causality analysis. Then, we review the

existing works based on lossy reduction and compare SEAL with them.

2.2.1 System Logs

To transparently monitor the end-host activities in a confined network, end-point detection

and response (EDR) has become a mainstream security solution [51]. A typical EDR system

deploys data collection sensors to collect the major system activities such as file, process and

network related events, as well as events with high security relevancy (e.g., login attempts,
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privilege escalation). Sensors then stream the collected system events to a centralized data

back-end. Data collection at end-host hinges on different operating systems’ (OS) kernel-level

supports for system call level monitoring [79, 95, 13].

In this study, we obtained a dataset from the real-world corporate environment. Data sources

are the system logs generated by kernel audit [95] of Linux hosts and Event Monitoring for

Windows (ETW) [79] of Windows hosts respectively. The system events belong to three

different categories: (i) process accesses (reads or write) files (P2F), (ii) process connects

to or accepts network sockets (P2N), and (iii) process creates other processes, or exits it

executions. These system events captured from each end-host are transferred to the back-end

and represented in a graph data structure [60] where nodes represent system resources (i.e.,

process, file, and network socket) and edges represent interactions among nodes. Our system

labels edges with attributes specific to system operations. For instance, amounts of data

transferred for file and network operations, command-line arguments for process creations.

The dataset comprises of various workloads that range from simple administrative tasks to

heavy-weight development and data analysis tasks and also includes end-user desktops and

laptops as well as infra-structural servers.

Among the three categories of system events (file, network, and process) in the dataset, file

operations account for the majority, taking over 90% portions, therefore become the primary

target for SEAL compression. In particular, the file operation like create, open, read, write

or delete is logged in each file event, alongside its owner process, host ID, file path, and

timestamp. All file events have been properly anonymized (no user identifiable information

exists in any field of the table) to address privacy concerns.

Despite its improved visibility, data collection for in-host system activity results in a pro-

hibitive amount of processing and storage pressures, compared to other network-level mon-

itoring appliances [89]. For instance, our data collection deployment on average reported

approximately 50 GB amount of logs for a group of 100 hosts daily. Given that a typical
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enterprise easily exceeds hundreds of thousands of hosts for its network, it is imminent to

address the scalability issues in order to make causality analysis practical and applicable to

a realistic network.

2.2.2 Causality Analysis in the Log Setting

After the end-point logs are gathered and reported to the data processing back-end, different

applications are run atop to produce insights to security operators, such as machine-learning

based threat detection [12], database queries [37, 39, 38] and causality analysis (or data

provenance) [122]. Although our approach mainly focuses on the causality analysis, which

requires high fidelity on its input data, it also benefits other analyses as our approach reduces

data storage and computational costs.

To its core, causality analysis automates the data analysis and forensic tasks by correlating

data dependency among system events. Using the restored causality, security operators

accelerate root cause analysis of security incident and attack ramification. The causality

analysis is considered to be a de facto standard tool for investigating long-running, multi-

stage attacks, such as Advanced Persistent Threat (APT) campaigns [80]. For any suspicious

events reported by users or third-part detection tools, the operator can issue a query to

investigate causally related activities. The causality analysis then consults to its data back-

end to restore the dependencies within the specified scope. The accuracy of causality analysis

relies on the completeness of data collection, and the analysis response time and usability

depend on the data access time. In Section 2.3.1, we demonstrate a causality analysis where

our compression approach addresses the scalability issues without deteriorating accuracy and

usability.
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Figure 2.1: Comparison of our method SEAL to LogGC [62], NodeMerge [111], methods by
Xu et al. [122] and Hossain et al. [52]. In NodeMerge (the second graph in the middle
column), the node T represents a new node. In SEAL (the right column), the blue solid
circles represent new nodes.

2.2.3 Comparison with Lossy Reduction

To reduce the storage overhead in supporting causality analysis, prior works advocated lossy

reduction [62, 111, 122, 52], which removes logs of certain patterns before they are stored by

the back-end server. Here we show the reduction rules of the prior works and compare their

scope to SEAL.

LogGC [62] removes temporary files from the collected data that are deemed not affecting

causality analysis. NodeMerge [111] merges the read-only events (Read events in our data)

during the process initialization. The approach proposed by Xu et al. [122] removes repeated

edges between two objects on the same host (e.g., multiple read events between a file and

a process) when a condition termed trackability equivalence is satisfied. Hossain et al. [52]

relaxes the condition of [122] such that more repeated events (e.g., repeated events cross

hosts) can be pruned, which tends to be more conservative to maintain graph trackability.

SEAL is more general compared to any of the existing works. Our lossless compression schema
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Figure 2.2: A dependency graph (see Section 2.3.1) under Full Dependency (FD) preservation
reduction [52], where one edge is removed. The timestamp of each event is labeled on the
edge. When querying for nodes dependent on Node A after time 15, the reduced dataset
returns the empty set but the original dataset returns B,C,D. From the example we see
that FD can return less number of nodes for causality analysis under time constraints.

is agnostic to file types and is therefore complementary to LogGC. SEAL also processes Write

and Execute events, compared to NodeMerge, and therefore covers the whole life-cycle of a

process. Compared to Xu et al. and Hossain et al., SEAL is more aggressive, e.g., merging not

only the edges repeated between a pair of nodes. Figure 2.1 also illustrates the differences.

In Section 2.5, we compare the overall reduction rate, with Hossain et al., which is the most

recent work.

In terms of data fidelity, none of the prior works can guarantee false negative/positive would

not occur during attack investigation. For LogGC, if the removed temporary files are related

to network sockets, data exfiltration done by the attacker might be missed. For NodeMerge,

the authors described a potential evasion method: the attacker can keep the malware waiting

for a long time before the actual attack, so that the malware might be considered as a

read-only file as determined by their threshold and break the causality dependencies (see

[111] Section 10.4). PCAR of Xu et al. introduces false connectivity in two (out of ten)

investigation tasks (see [122] Section 4.3). Similarly, false negatives could be introduced

to the system of Hossain et al. when the query has a time constraint, and we provide an

example in Figure 2.2.

On the other hand, as SEAL ensures the completeness of logs, it can mitigate any of the

above issues.
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Field Exemplar Value
starttime 1562734588971
endtime 1562734588985

srcid 15
dstid 27

agentid -582777938
accessright Execute

Table 2.1: On example entry of FileEvent.

2.3 Log Compression

SEAL aims to compress the dependency graph constructed from system logs, as illustrated in

Figure 2.3, while supporting the causality analysis without sacrificing query efficiency and

analysis accuracy. If every analysis task results in decompressing a large portion of data, the

goal of query efficiency will not be achieved. If compression causes significant information

loss, the forensic analysis might lead to incorrect conclusion. Therefore, we design SEAL

to compress the vertices and edges of a large amount of redundant information, and the

compressed sets of edges are chosen such that we can restrain the frequency or overhead of

decompression.

In this section, we first describe the dataset to be processed and the query to be run by an

analyst. Then, we introduce the concept Query-friendly Compression (QFC) and show how

it can be applied to system logs. Moreover, we introduce the compression algorithms that

can be applied on the logs and compare them with the prior research. Finally, we propose

an algorithm to estimate the compression ratio based on which one can determine when to

compress.
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2.3.1 Dataset and Event Query

Table 2.1 shows the primary dataset (FileEvent) we need to compress and the main fields.

The start and end timestamp of each event are logged by starttime and endtime. An

event links a source object and a destination object, distinguished by srcid (Source ID) and

dstid (Destination ID). The object associated with each event can be file or process. All

events occur within a host, denoted by agentid, and there is no cross-host event. There

are three types of operations associated with an event, including Execute, Read and Write,

recorded by accessright. To notice, the properties of objects, like the filenames and paths,

are stored in other tables. But because the other tables’ volume is small, we do not process

them specifically.

Causality analysis on FileEvent. We assume that a dependency graph G = (V,E) can be

derived from FileEvent, in which the vertices (V ) are the objects and the directed edges (E)

are the events. Causality analysis uncovers the causality dependency of edges, and we define

its computation paradigm below, in a way similar to the definition from Wu et al. [122].

Definition 1 (Causality dependency). Given two adjacent directed edges e1 = (u, v)

and e2 = (v, w), there is a causality dependency between them, denoted by e1 → e2, if and

only if fe(e1) < fe(e2), where fe extracts starttime of an event. Dependency is also defined

for non-adjacent edges by transitivity: if e1 → e2 and e2 → e3, then e1 → e3.

To conduct causality analysis, the analyst issues a query specifying the constraints to find

the POI (Point-of-Interest) vertex v. The set of edges directly linked to v (termed Ev) and

the ones with causality dependency to Ev will be returned. To notice, both forward-tracking

(i.e., finding efwd such that e→ efwd) and back-tracking (i.e., finding ebck such that ebck → e)

can be supported, and in this work we focus on back-tracking [60], which is a more popular

choice. Usually, newly discovered vertices/edges are returned to the analyst in an iterative

way. The process will terminate when no more vertices/edges are discovered or the maximum
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Figure 2.3: An example of dependency graph (left) and its compressed version after applying
SEAL (right). Edges are merged if and only if they share the same destination node. To facili-
tate causality queries, the smallest starttime and the largest endtime are defined as the first
two fields in the new edge. The ellipsis mark represents the time for all the compressed edges.
For example, the edge between a and D is [25,55,a,D,Read,(25,55),(35,45);(25,45)].
We use comma to separate repeated edges and use semicolon to separate different edges.
Therefore, combining with the node map in Table 2.2, we can see the compression is lossless.
The edge properties will be further compressed as described in Section 2.3.4.

New Node Represented Nodes
a A, B

b B, C

c G, H

Table 2.2: Node map for the example in Figure 2.3.

depth specified by the analyst has been reached. In each iteration, the analyst can refine the

query constraints to reduce the analysis scope.

Figure 2.3 (left) shows an example of a dependency graph generated from FileEvent. There

are three file nodes (A, B and C) and five process nodes (D, E, F, G, H). The edge is formatted

as [starttime, endtime, srcid, dstid, accessright]. Given a back-tracking query about

POI vertex F and starttime ranged in [45, 100], three causal events will be reported: [70,

80, E, F, Execute], [65, 85, E, F, Execute], and [50, 60, B, E, Read]. The other edges do not

satisfy the definition of causality analysis.
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2.3.2 Query-friendly Compression

While compression is a well-developed area, with numerous methods available, many of them

will introduce prominent overhead to causality analysis, as they require decompression every

time a vertex/edge is examined. In this work, we adopt a concept from the data-mining

community, termed Query-friendly Compression (QFC) [78, 31, 71], and develop compression

techniques around it. In essence, the techniques under QFC should compress graphs “in a

way that they still can be queried efficiently without decompression” [78]. For example,

4 types of queries can be supported with QFC algorithms of [31], including neighborhood

queries, reachability queries, path queries, and graph pattern queries. Causality analysis can

be considered as an iterative version of neighborhood queries.

Yet, the QFC schema of prior works cannot be directly applied to our setting. Firstly, some

mechanisms require significant change on the data structures [78]. For our deployment,

regular SQL queries have to be supported as well so the data format after compression

has to adhere to the database schema. Secondly, the edges in all prior works have no

associated properties [78, 31, 71], therefore only merging vertices is sufficient to fulfill their

goal. While we can follow the same approach and keep the edge properties concatenated

without compression, such a design is not optimal. Moreover, the queries on dependency

graphs depend on not only the connectivity of the nodes but also the edge properties like

starttime, leading to the challenge of retrieving the answers.

Therefore, we modify QFC according to causality analysis, which enforces “decompression-

free” compression on graph structure and “query-able” compression on edge properties. Be-

low we define the adjusted QFC based on the definition from [31].

Definition 2 (Query-friendly Compression). Assume a dependency graph G = (V,E)

is to be compressed. Let the class of causality analysis queries be Q, and let Q(G) be the

answer to the query Q ∈ Q. A QFC mechanism is a triple < R,F, P >, where R is a
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compression method, F : Q → Q re-writes Q to accommodate the compressed data, and P

is a post-processing function. Compression can be expressed as R(G) = Rp(Rs(G)), where

Rs compresses the structures (vertices and edges), and Rp compresses the edge properties or

fields. Denote by Gr = R(G) = (Vr, Er) the graph after compression, such that |Er| ≤ |E|.

QFC requires that for any query Q ∈ Q,

•Q(G) = P (Q′(Gr)), whereQ′ = F (Q) is the query on the compressed graph, and P (Q′(Gr))

is the result after post-processing the query answer on Gr.

• With only Rs applied, any algorithm for evaluating Q can be directly used to compute

Q′(Gr) without decompression.

• When both Rs and Rp are applied, decompression is needed only when the relationship

between the timestamps of a compressed edge e ∈ Er and the time range of the query cannot

be determined.

Next, we describe our choices of Rs and Rp in Section 2.3.3 and Section 2.3.4. The query

transformation F and the post-processing P are investigated in Section 2.3.5. Figure 2.3

(right) overviews the graph compressed with SEAL.

2.3.3 Compression on Graph Structure

We design the function Rs such that multiple edges (from one pair of nodes or multiple

pairs) can be reduced into a single edge. In particular, our algorithm finds sets of edges

satisfying a certain merge pattern and combines all edges in the set. By examining the

fields of FileEvent, one expects a higher compression ratio if edges with common fields

are merged. Moreover, edges within proximity can be merged without sacrificing causality

tracking performance. As illustrated in Figure 2.3, we choose the merge pattern to be the

set of all incoming edges of any node v ∈ V , which will share properties such as dstid
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or agentid. Correspondingly, a new node is added in the new graph Gr, representing the

combination of all the parent nodes of v, if the number of parent nodes is more than 1.

We give an example in Figure 2.3. The new node a is generated to correspond to two

individual nodes {A,B}, and the new edge [25, 55, a, D, Read, (25, 55), (35, 45);

(25, 45)] is generated to correspond to three individual edges {[25, 55, A, D, Read], [35,

45, A, D, Read], [25, 45, B, D, Read]}. Similarly, we merge the two incoming edges of

node B, merge the two incoming edges of node E, and create new nodes c, b, respectively.

We also merge the two repeated edges between nodes E, F, but no new node needs to be

created for them. Individual edges are removed in the compressed graph Gr if they are

merged into a new edge. However, as can be seen in Figure 2.3, individual nodes should

not be removed. For example, even if the individual node B is included in the new node a,

it cannot be removed because of its own incoming edges. The new nodes are recorded in a

node map, shown in Table 2.2.

Our algorithm for Rs is shown in Algorithm 1. It takes all the events as input, and creates

two hash maps: (i) NodeMap, child node with all its parent nodes, and (ii) EdgeMap, a

pair of nodes with all its corresponding edges. Then for each child node v ∈ V , all its parent

nodes and the corresponding incoming edges are identified and merged. Meanwhile, the

node map as in Table 2.2 is also updated. The time complexity of this algorithm is linear in

the size of the graph, namely, O(|V | + |E|). When responding to queries, decompression is

selectively applied to restore the provenance, with the help of NodeMap and EdgeMap.

2.3.4 Compression on Edge Properties

For all the properties or fields for a merged edge, they should be combined and compressed

due to the redundant information, which is the focus of the compression function Rp. We

propose delta coding for merged timestamp sequence, and Golomb code for the initial value
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Algorithm 1 Graph structure compression.

Input: a set of edges E.
Output: a set of new edges E ′, a node map NodeMap.

1: NodeMap ← ∅ . hash map (key = a node, value = parent nodes)
2: EdgeMap ← ∅ . hash map (key = a pair of nodes, value = edges)
3: for e = (u, v) ∈ E do
4: NodeMap.put(v, u)
5: EdgeMaps.put((u, v), e)
6: end for
7: E ′ ← ∅
8: for v ∈ NodeMap.keys do
9: e′ = ∅ . a new edge

10: U ← NodeMap.get(v)
11: for u ∈ U do
12: e′ ← e′ ∪ {EdgeMap.get((u, v))}
13: end for
14: E ′ ← E ∪ {e′}
15: end for

in the sequence.

Delta coding. Delta coding represents a sequence of values with the differences (or delta).

It has been used in updating webpages, copying files online backup, code version control

and etc. [81]. We apply delta coding on timestamp fields (starttime, endtime) , as they

usually share a long prefix. For instance, as shown in Figure 2.4, the starttime field is a

long integer, and merged individual edges have values like 1562734588980, 1562734588971,

1562734588984, 1562734588990. Those values usually share the same prefix as the events to

be compressed are often collected in a small time window, hence delta coding can result in

a compact representation.

As shown in Figure 2.4, assume a node x has d incoming edges and p parent nodes, 1 ≤ p ≤ d.

Let the starttime of the j-th edge be tjstart, 1 ≤ j ≤ d. We first construct a sequence

tstart = [t0start; t1start; t2start, t
3
start; ...; tdstart :]
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y1 y2 y3

x

yc x
1562734588980

1562734588971 1562734588984

1562734588990

[1562734588980,1562734588971,
1562734588984,1562734588990]

[1562734588971; 9; -9, 13; 6:]

Delta Encoding

[1562734588971; 9; -9, 13; 6:]

Figure 2.4: Delta coding for starttime. The first number in the combined time vector is
the minimum time among the edges.

where t0start = min1≤j≤d(t
j
start). Here comma is used to separate different edges from the

same parent node, and semicolon separates different parent nodes. The colon at the end is

used to separate the timestamp fields. For endtime, we choose the initial entry t0 to be the

maximum among the edges. Then we concatenate both fields into one sequence.

Then, we compute the delta for every consecutive pair of timestamps: for 1 ≤ j ≤ d,

∆j
start = tjstart − t

j−1
start. The resulting coded timestamp of the merged edge is:

[t0start; ∆1
start; ∆2

start,∆
3
start; ∆4

start; ..., ∆d
start :]

and delta coding is also applied to the other timestamp fields. The time complexity of delta

coding is O(d) where d is the number of edges.

To conform to the uncompressed FileEvent format, the t0start and t0end are stored in the

starttime and endtime field of the new edge ec respectively, and the generated delta-coded

starttime and endtime are stored in a new delta field.

Golomb coding. Delta coding can compress all the elements of the combined time sequence

except t0 which is still a long integer. Moreover, if an individual edge is not merged, its
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timestamps are also long integers. We choose to employ Golomb coding [45] to compress

long integers to relatively small integers. Alternatively, a more aggressive approach is to

use delta coding to compress t0 of different merged events, but the database index will be

updated [23] and the query cost will be high. One favorable property of Golomb coding is

that the relative order of the numbers is not changed, which fits well with the requirements

of QFC. That is, if t > t′, then we have the Golomb coded variable Gol(t) > Gol(t′).

Golomb code uses a parameter M to divide an input datum N into two parts (quotient q

and reminder r) by

q = bN − 1

M
c, r = N − qM − 1. (2.1)

Under the standard Golomb coding schema, the quotient q is then coded under unary coding,

and the reminder r is coded under truncated binary encoding to guarantee that the value after

coding (called codeword) is a prefix code. In our case, however, the truncated binary encoding

is not necessary because the codewords are separated by different entries automatically. As

such we use a simpler mechanism, binary coding, for r. The coded data is then calculated

by concatenating p and r. For instance, given a long integer 1562734588980 (64 bits) and

a M = 1562700000000, the binary form of p and r after coding will be 10 (2 bits) and

10000011111100100100110100 (26 bits). In this example, 32 bits are sufficient to store the

Golomb codeword.

2.3.5 Query and Decompression

As defined by QFC, decompression is only necessary when the relation between the time range

specified in the query and in the edge cannot be determined. If there are no intersections

of these two ranges, decompression can be skipped. In our back-tracking queries, the above

property holds for two reasons. First, due to the order preservation property of Golomb
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coding, it is unnecessary to decode all Golomb codes in the database to answer a query with

a timestamp constraint. The specified timestamp can be simply encoded by Golomb code,

and used as the new constraint issued to the database. Second, the minimum starttime t0start

is recorded in a merged edge. Hence, if we back-track for events whose starttime is smaller

than some given tquery, then all individual edges of an combined edge with t0start > tquery will

be rejected. Therefore, the database does not need to decompress and can safely reject this

combined edge.

Here we use the example shown in Figure 2.3 to demonstrate how the query and decompres-

sion work. Assume a query tries to initiate back-tracking on E to find the prior causal events

whose starttime is less than tquery = 65. First, tquery will be Golomb coded into Gol(65).

And the database needs to find events such that Gol(t0start) < Gol(65) and the destination

node is E. For the merged event [50, 80, b, E, Read], its t0start = 50 value is stored as

Gol(50). By order preservation of Golomb code, Gol(50) < Gol(65). Thus this merged event

will be identified. Second, we decompress this merged event for further inspection. We ex-

tract starttime Gol(t0start) = Gol(50) and Golomb decoding is applied to obtain t0start = 50.

Then we recover the timestamp sequence tstart by calculating tjstart = tj−1
start+∆j

start, j ≥ 1. In

this example, t1start = 50, t2start = 70. Comparing the individual timestamps now is feasible.

It will be found that only the first individual edge is a valid answer. The final step is to find

the individual nodes corresponding to the valid edges from the node map in Table 2.2. After

that, the result [50, 60, B, E, Read] is returned.

It can be seen that if tquery = 30, all incoming edges of E can be rejected without Golomb or

delta-code decompression (tquery still needs to be Golomb encoded before issuing the query).
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2.3.6 Compression Ratio Estimation

Applying compression to the log data may be desirable only if the compression ratio is higher

than a threshold. As a result, it is important to obtain the compression ratio or its estimate

before compression. While a full scan of the causality graph gives a precise compression ratio,

the overhead is significant. As a result, we develop an algorithm to estimate the compression

ratio. To that end, we show that this estimation is reduced to obtaining davg, the average

degree of the undirected version of the causality graph (Appendix 6.4). A degree estimator

is developed with a sample size only depending on the required accuracy rather than on the

number of nodes or the number of edges. As described in Section 2.4, we implement SEAL

for online compression, this algorithm is applied to chunks of data sequentially.

Compression ratio estimation. Let Gundirected denote the undirected graph which is

identical to the dependency graph except that edge directions are removed. Let davg be its

average node degree. From Appendix 6.4, we find that the compression ratio is an explicit

function of davg. The compression ratio estimation reduces to estimating the average degree.

To minimize the data access and query time during estimation, we present an average degree

estimation algorithm that samples nodes in an undirected graph H based on random walk

(see Algorithm 2). The algorithm can be applied to H = Gundirected and outputs davg. In the

following, we use the notation dH for the average degree of H, and d̂ the estimated average

degree. For any vertex v of H, denote by dv its degree.

One way to estimate the average degree is to uniformly sample nodes in H and get their

degrees, and obtain the average of the sampled degrees [32]. The estimator from the sample

set S is:

d̂ =

∑
v∈S dv

|S|
=

∑
v∈S dv∑
v∈S 1

. (2.2)

This method can be improved when we also obtain a random neighbor of each sampled nodes
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[44]. The required number of samples (sample complexity) is O(
√
n) to obtain a constant-

factor estimation, where n is the number of nodes. Another way is to sample nodes according

to the node degree, and use collisions in the samples to obtain the estimate [57], where the

required sample complexity is Ω(
√
n). Our algorithm is inspired by the ’Smooth’ algorithm

of [26], where a node v is sampled proportional to its degree plus a constant, dv+c, where the

constant c = αdH is a coarse estimate of the average degree with a multiplicative gap α. The

coarse estimation c can be obtained from history or a very small subgraph in our problem.

The resultant sample complexity is no more than max(α, 1
α

) 6
ε2

log 4
δ
, and the average degree

estimate d̂ satisfies

Pr
(

(1− 4ε)dH ≤ d̂ ≤ (1 + 4ε)dH

)
≥ 1− δ, (2.3)

for all 0 < ε ≤ 0.5, 0 < δ < 1, α > 0.

In large graphs, it is hard to sample nodes in the entire graph according to some distribution

as we do not know the number of nodes and the node degrees. To overcome such difficulty,

the Smooth algorithm can be modified such that the sampled nodes are obtained by random

walk [26]. However, it makes some assumptions that do not readily fit the dependency graph

problem: (i) The graph needs to be irreducible and aperiodic. However, the dependency

graph naturally contains disconnected components. (ii) The sample complexity needs to

be high enough to pass the mixing time and approach the steady-state distribution, which

varies depending on the structure of the graph.

To overcome these issues, two techniques are used in Algorithm 2. First, random walk

with escaping [5] jumps to a random new node with probability pjump and stays on the

random walk path with probability 1− pjump (see Line 4). Therefore, we can reach different

components of the graph. Second, thinning [57] takes one sample every θ samples as in Line

7. We obtain θ groups of thinned samples. If the samples are indexed by 0, 1, 2, . . . , then in
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our algorithm the j-th group, denoted by Sj, contains samples indexed by j, j+θ, j+2θ, . . . ,

for 0 ≤ j ≤ θ− 1. Each group produces its own estimate (Line 13), and the final estimate is

the average of these groups (Line 14). Since the sample distribution is not uniform, we cannot

directly use the estimator of Equation (2.2). The sampled degrees need to be re-weighted

using the Hansen-Hurwitz technique [49] to correct the bias towards the high degree nodes,

corresponding to the term dv + c in the numerator and the denominator of Line 13. Note

that due to the difficulty to sample a node from the entire graph, the sample distribution is

not specified in Lines 2 and 9.

Algorithm 2 Average degree estimation.

Input: undirected graph H, sample size r, coarse average degree estimator c, thinning
parameter θ, jumping probability pjump
Output: average degree estimator d̂

1: Sj ← ∅, j = 0, 1, . . . , θ − 1
2: Randomly sample a node vpre of H
3: for i = 0 to r − 1 do
4: rnd ∼ Bernoulli(pjump)
5: if rnd = 0 then
6: Uniformly sample a neighbor v of vpre assuming vpre also has c added self loops
7: Si mod θ ← Si mod θ ∪ {v}
8: else
9: Randomly sample a node v of H

10: end if
11: vpre ← v
12: end for

13: d̂j =

∑
v∈Sj

dv/(dv+c)∑
v∈Sj

1/(dv+c)
, j = 0, 1, . . . , θ − 1

14: d̂ = 1
θ

∑θ−1
j=0 d̂j

2.4 Architecture

Design rationale. Figure 2.5 shows the architecture of SEAL and how it is integrated

into the log ingestion and analysis pipeline. SEAL resembles the design [111] at the very

high level. In [111], the compression system mainly includes three elements: computing
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components, caches, and the database. In this work, we redesign those elements according

to our algorithm for both the compression system and the query system. The compression

system receives online data streams of system events, encodes the data, and saves them into

the database. The query system takes a query, applies the query transformation and recovers

the result with post-processing, and returns the result. The information flow follows closely

the definition of QFC in Section 2.3.2 and includes the structure and property compression

Rs, Rp, the query transformation F , and the post-processing P , which are explained in details

in Sections 2.3.3 – 2.3.5.

Due to the current monitoring system structure of our industrial collaborator, SEAL is solely

deployed at the server-side by the data aggregator. Note that, alternatively, one can choose

to compress the data at the host end before sending them to the data aggregator. Since

there are no cross-host events in FileEvent, the compression ratio will be identical for both

choices.

Online compression. While offline compression can achieve an optimized compression

ratio with full visibility to the data, it will add a long waiting time before a query can be

processed. Given that causality analysis could be requested any time of the day, offline

compression is not a viable option. As such, we choose to apply online compression.

The online compression system is built by the following main components: (i) The optional

compression ratio estimator. If the estimated ratio as described in Section 2.3.6 is more than

the given threshold, data is passed through the following components. Otherwise, data is

directly stored in the database. (ii) Caching. It organizes and puts the most recent data

stream into a cache. When the cache is filled, the data will be compressed. The cache size

is configurable, called chunk size. (iii) Graph structure compression. It merges and encodes

all the edges that satisfy the edge merge pattern as in Section 2.3.3. It also generates the

node mapping between the individual nodes and the new nodes, shown in Table 2.2. (iv)

Edge property compression. It encodes each event timestamp entry using delta coding and
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Golomb codes as in Section 2.3.4.

Next, we remark on some design choices. The configurable chunk size provides a tradeoff

between the memory cost and the compression ratio. The larger the chunk size, the more

edges can be combined. We found in our experiments as in Section 2.5 that 134 MB per

host is a large enough chunk size offering sufficiently high compression capability.

Query. The query system comprises three main components. (i) Query transformation.

Given a query Q, SEAL transforms it into another query Q′ that the compressed database

can process. In particular, it needs to transform the queried timestamp and the srcid

constraints, if there are any. The timestamp constraint is encoded into a Golomb code-

word, which is used as the new constraint as in Section 2.3.5. If a srcid is given, then

this individual node is mapped to all the corresponding new nodes using the node map. (ii)

Querying. The transformed query Q′ is issued to the database and the answer is obtained.

(iii) Post-processing. The combined edges are decompressed from delta codes, the times-

tamp constraint is checked, the merged node is mapped to individual nodes, and the valid

individual edges are returned as described in Section 2.3.5.

Note that, in the query transformation component, if dstid is a query constraint, then no

node mapping is required since only source nodes are merged during compression. In our

work, we focus on back-tracking, where srcid is not a query constraint, hence the query

transformation is simplified. Moreover, the node mapping progress is fast due to the small

number of objects compared to the events.

For each given destination ID, at most one combined edge will be returned as an answer

in each chunk (containing 105 to 106 events depending on the chunk size). This observa-

tion combined with the fact that the dependency graph is much smaller after compression

effectively controls the query overhead in our experiments.

To quickly access the node map as in Table 2.2, it is cached using a hash map. Given that
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Figure 2.5: The SEAL architecture of online compression and querying.

the number of nodes is much smaller than the number of edges, the memory size of this hash

map is a small fraction of the database size.

2.5 Evaluation

2.5.1 Experiment Setup

Our evaluation about compression is primarily on a dataset of system logs collected from

95 hosts by our industrial partner, which we call DSind. This dataset contains 53,172,439

events and takes 20GB in uncompressed form. For querying evaluations, we select a subset of

DSind covering 8 hosts, with 46,308 events and a total size of 8 GB. As DSind does not have

ground-truth labels of attacks, we use another data source under the DARPA Transparent

Computing program [25]. The logs are collected on machines with OS instrumented, and a

red team carried out simulated APT attacks. Multiple datasets are contained, and each one

corresponds to a simulated attack. We use CARDETs dataset, which simulates an attack on

Ngnix server, with a total of 1,183M events (27% write, 25.8% read and 47.2% execute), and

we term this dataset DSdtc. Since our system focuses on event merging, we only compress

the edges and a subset of the attributes, with 233GB data size.
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We implemented SEAL using JAVA version 11.0.3. We use JDBC (the Java Database Con-

nectivity) to connect to PostgreSQL Database version Ubuntu 11.3-1.pgdg18.04+1. For

DSind, we run our system on Ubuntu 14.04.2, with 64 GB memory and Intel(R) Xeon(R)

CPU E5-2640 v3 @ 2.60GHZ. To run the queries, one machine with AMD Ryzen 7 2700X

Eight-Core Processor and 16GB memory is used. For DSdtc, we run the system on Ubuntu

16.04, with 32 GB memory and Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz.

Section 2.2.3 compares the designs between SEAL and other systems, and demonstrates when

other systems introduce errors to attack investigation. In this section, we quantify the dif-

ference, and select the method of Full Dependency (FD) preservation [52] as the comparison

target, which strikes a good balance between reduction rate and preservation of analysis re-

sults. Under FD, A node u is reachable to v if either there is an edge e = (u, v) or there is a

causality dependency eu → ev, where eu is an outgoing edge of u, and ev is an incoming edge

of v. We implement a relaxed FD constraint, where repeated edges (between any pair nodes)

are merged such that the reachability for any pair of nodes in the graph is maintained. The

corresponding compression ratio is better than FD since it is a relaxation. We compare the

relaxed FD with our method SEAL.

Our evaluation focuses on the following aspects. In Section 2.5.2, we study the data compres-

sion ratio and the number of reduced events for different hosts and different accessright

operations (read, write, and execute). We demonstrate the impact of the assigned chunk

size (for caching events) on the reduction factor. We compare our method to relaxed FD

on compression rate. In Section 2.5.3, we compare the processing time of running back-

tracking queries on the compressed and uncompressed databases. For the compressed case,

the time for the database to return the potential merged events and the time for SEAL to

post-process them are investigated. We show the accuracy advantages of lossless compres-

sion under queries with time constraints. Finally in Appendix 6.4, we evaluate the accuracy

of the average degree estimator and compare it with direct uniform sampling.
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Host ID Event Count / Reduction Read % / Reduction Write /Reduction Execute / Reduction
5 278913 / 9.25x / 5.85x 61% / 6.6x / 4.1x 11% / 9.2x / 8.4x 28% / 65.3x / 33.0x
23 880162 / 25.45x / 19.14x 91% / 37.7x / 26.9x 8% / 5.3x / 4.5x 1% / 35.8x / 13.2x
52 523671 / 41.45x / 17.36x 70% / 39.1x / 14.8x 22% / 54.9x / 47.5x 8% / 36.6x / 14.7x
3 312392 / 15.37x / 13.31x 36% / 12.6x / 10.8x 29% / 8.8x / 8.4x 34%/ 125.8x / 52.3x
94 517978 / 78.82x / 26.9x 20% / 19.8x / 6.1x 8% / 200.6x / 96.3x 72% / 346.0x / 209.1x
All 53172439 / 9.81x / 5.71x 65% / 10.3x / 5.5x 19% / 5.3x / 3.7x 15% / 76.3x / 38.7x

Table 2.3: Example hosts and the reduction factors. The reduction factors are measured for
two chunk sizes: 106 and 105. The last row shows the overall result for the 95 hosts.

2.5.2 Compression Evaluation

Compression ratio. We measure the compression ratio as the original data system over

the compressed data system using the above two chunk sizes. For DSind, when the chunk

size (number of cached events) is 106, the compressed data is reduced to 7.6 GB from 20

GB, resulting in a compression ratio of 2.63x. For DStpc, the chunk size equals one file size

and contains around 5 × 106 events. The compressed size is 18 GB reduced from 233GB,

resulting in a compression ratio of 12.94x.

Reduction factor for different operations and hosts. To further understand the com-

pression results, we investigate the reduction factor, defined as the number of original events

divided by the number of compressed events. We focus on DSind, and some examples of the

hosts and the average reduction factors from 95 hosts are illustrated in Table 4.2. In the

table, we list results for the chunk size of 106 as well as 105.

It can be observed that the types of events (read, write, and execute) differ by the hosts. We

observed that in DSind, read is the most popular operation among most of the hosts, where

72 hosts have more than 50% read events. Write is much less prevalent in general, where 67

hosts have between 10% to 30% write events. Finally, execution varies by the host, and 69

hosts have between 10% to 60% executions.

On average, the reduction factor of execute events is higher than reads, and writes have the
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Figure 2.6: The cumulative distribution of the reduction factors for the 95 hosts in DSind.
The reduction factor is calculated for all three types of operations, read, write, and execute,
and the overall events in each host.

lowest reduction factor, as can be seen from the last row of Table 4.2. However, for each

host, this ordering changes depending on the structure of the dependency graph, e.g., if there

exist many repeated events between two nodes. Host 5 is an example that has reduction

factors similar to the average case. Hosts 23, 52, 3 see higher reduction factors of read,

write, and execute events, respectively. Host 94 is an example of high reduction factors for

all events. In Figure 2.6 we plot the cumulative distribution of the reduction factors among

the 95 hosts.

The number of events of a host affects the reduction factor to some extent. In particular, if

the number of events is less than the chunk size, as occurred for a few hosts when the chunk

size is 106, the cache is not fully utilized, and fewer merge patterns may be found. However,

some hosts with a small number of events still outperform the overall case as the last row in

Table 4.2, due to their high average degree.

Previous works like NodeMerge focus on one type of operation, such as read [111], and show

a high data reduction ratio on their dataset. Our result suggests such an approach is not

always effective, when compressing data from different types of machines (e.g., Host 94). As

such, SEAL is more versatile to different enterprise settings.

Chunk size. When the chunk size is increased from 105 to 106, the overall reduction factor

is increased by 1.7 as in the last row of Table 4.2. Correspondingly, the consumed memory
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Figure 2.7: The cumulative distribution of the improvement over the 95 hosts when the
chunk size is increased from 105 to 106. The improvement for Read, write, execute, and
overall events in each host is calculated.

size is increased from 134 MB to 866 MB. The cumulative distribution of the reduction

improvement, which is the reduction factor of chunk size 106 divided by that of chunk size

105, is plotted in Figure 2.7. The improvement is due to the fact that when more events

are considered in one chunk, more edges exist in the dependency graph, but the number of

nodes does not increase as fast. A larger average degree and hence a larger reduction factor

is achieved. It can be seen that the execute events change the most with a larger chunk size,

while the write events change the least with the chunk size. This also is consistent with the

fact that executions have more repeated edges between processes while write events operate

on different files over time.

Comparison to FD. We use DSdtc to compare SEAL and FD, as the DARPA data is

also used by Hossain et al. [52]. Figure 2.8 shows the compression ratio of four methods:

1) “optimal” – keeping only one random edge between any pair of nodes, which violates

causality dependency but gives an upper bound on the highest possible compression ratio

when repeated edges are reduced, 2) “FD” – removing repeated edges under relaxed full

dependency preservation, 3) “SEAL repeat edge” – our method that only compresses all

repeated edges, and 4) “SEAL” – our method that compresses all incoming edges of any

node.

Figure 2.8 shows that if we only compress the repeated edges by SEAL, we can get almost the

same compression ratio as FD. Both methods are close to the minimum possible compressed
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Figure 2.8: Comparison between our methods and FD.

size under repeated edge compression. Besides, if we compress all the possible edges using

SEAL, we get a compression ratio of 12.94x compared to 8.96x for FD preservation.

2.5.3 Query Evaluation

We measured the querying and decoding time cost of SEAL as well as the querying time

of the uncompressed data. We use a dataset with 830,235 events under DSind and run

back-tracking through breadth-first search (BFS) to perform the causality analysis for every

node. We use BFS here as it can be seen as a generalization of causality analysis: if no

additional constraints are assumed, causality analysis is BFS under causality dependency.

In particular, starting from any POI node x, we query for all incoming edges e1, e2, . . . , ed

and the corresponding parent nodes y1, y2, . . . , yd, where d is the incoming degree of x. Then

for each node yi, 1 ≤ i ≤ d, we query for its incoming events whose starttime is earlier

than that of ei. The process continues until no more incoming edge is found.

Figure 2.9 shows the performance of this evaluation. The querying and the decoding time

on the compressed data normalized by the querying time on the uncompressed data are

plotted. We obtain 133 start nodes each of which returns more than 2,000 querying results.

We observe that 89% starts nodes (118 out of 133) use less time than the uncompressed
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NID
Number of Reachable Nodes/Edges

Uncmp SEAL Cnstrnd
Uncmp

Cnstrnd
SEAL

1 1093/4302 1093/4302 293/779 293/779
2 9496/379449496/379441457/59991457/5999
3 178/616 178/616 116/358 116/358
4 45/3739 45/3739 11/2113 11/2113

Table 2.4: The results of back-tracking starting from 4 nodes. “NID”, “Uncmp” and “Cn-
strnd” are short for “Node ID”, “Uncompressed” and “Constrained”.

data, and 30 start nodes use less than half the time of the uncompressed data. Moreover, on

average decompression only takes 18.66% of the overall time, because only potentially valid

answers are decompressed. It is also observed that the querying time of SEAL is only 63.87%

of the querying time for uncompressed data. For DSdtc, SEAL runs on about 5.27M nodes,

15.47% nodes use less time than the uncompressed data, and on average takes 1.36x time of

the uncompressed data.

Note that queries usually have a restrictive latency requirement while compression of col-

lected logs can be performed at the background of a minoring server. Our method tradeoff

the computation during compression for better storage efficiency and query speed.

Evaluation of attack provenance. Here we use the simulated attacks of DSdtc to evaluate

whether SEAL preserves the accuracy for data provenance. We use four processes on two hosts

(two for each) which are labeled as attack targets (ta1-cadets-2 and ta1-cadets-1) as the

starting nodes. Then we run the BFS queries, and count 1) the number of nodes reachable

from a starting node (reachable is defined in Section 2.5.1) and 2) the number of edges

from a starting node to all its reachable nodes. Table 2.4 (Columns 2 and 3) shows the

number of reachable nodes and edges in the BFS graph. It turns out SEAL returns the exact

same number of reachable nodes and edges as the uncompressed data, indicating it preserves

provenance accuracy. Next, we demonstrate the versatility of our lossless method for queries

with time constraints, for example, when the analyst knows that the attack occurred in

34



0 20 40 60 80 100 120

Start Node Index

20%

40%

60%

80%

100%

120%

Q
u
e
ry

in
g
 a

n
d
 D

e
c
o
m

p
re

s
s
io

n
 T

im
e

Querying

Decoding

Figure 2.9: Querying and decompression time of back tracking with 133 start nodes that
return the largest result sizes, normalized by the querying time of the uncompressed data.
The nodes index are sorted by the query time.

an approximate time period [t1, t2]. Since our lossless compression can restore all the time

information, we can add arbitrary constraints to our analysis without any concerns, which

is verified by the last two columns (Column 4 and 5) of Table 2.4. Lossy reduction methods,

such as FD, even though preserve certain dependency, still lose time information once edges

are removed, and thus might introduce false connectivity under time constraints (see Figure

2.2 for an example).

2.6 Discussion

Limitations and future works. DSind is collected for a small number of days and a

subset of all hosts from our industrial partner. Therefore, a larger dataset may provide a

more comprehensive understanding of the performance for SEAL. The compression ratio can

be further improved through two possible methods. First, the proposed algorithms reduce the

number of events, but the properties of all merged events are losslessly compressed together.

Even though such compression produces a hundred percent accuracy for log analytics and

the merge patterns can be easily found, dependency-preserving timestamp lossy compression

may improve the storage size. Second, domain-specific knowledge can be explored such as
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removing temporary files [62]. Another limitation is the memory overhead to store the node

map as in Table 2.2, which is the only extra data other than the events. Our experiment

results show that the node map takes 114 MB on disk, but consumes 1.4 GB when loaded

into memory. The memory cost can be reduced by replacing generic hash maps of Java with

user-defined ones.

Potential attacks. When the adversary compromises end-hosts and back-end servers, she

can pro-actively inject/change/delete events to impact the outcome of SEAL. Log integrity

needs to be ensured against such attacks, and the existing approaches based on cryptography

or trusted execution environment [11, 56, 102, 91, 83] can be integrated to this end.

One potential attack against SEAL is denial-of-service attack. Though delta coding and

Golumb coding are applied to compress edges, all timestamps have to be “remembered” by

the new edge. The adversary can trigger a large number of events to consume the storage.

This issue is less of a concern for approaches based on data reduction, as those edges will

be considered as repeated and get pruned. Moreover, knowing the algorithm of compression

ratio estimation, the adversary can add/delete edges and nodes to mislead the estimation

process to consider each block incompressible. On the other hand, such denial-of-service

attack will make the performance of casualty analysis fall back to the situation when no

compression is applied at most. The analysis accuracy will not be impacted. Besides, by

adding/deleting an abnormal number of events, the attacker might expose herself to anomaly

detection methods.

Out-of-order logs. Due to reasons like network congestion, logs occasionally arrive out of

order at the back-end analysis server [125]. Since the dependency graph possesses temporal

locality, such “out-of-order” logs result in potential impact on the compression ratio. This

issue can be addressed by the method described as follows. Assuming the probability of

out-of-order logs is p, the server can reserve pN temporary storage to hold all out-of-order
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logs in a day, where N is the daily uncompressed log size. During off-peak hours, the server

can process each out-of-order log. For log from Node u to Node v, we 1) retrieve in the

compressed data the merged edges to v and decompress the timestamps, and 2) merge the

edge (u, v) with the retrieved edges and compress the timestamps. Since the probability

p is typically small and off-peak hours are utilized, out-of-order logs can be handled with

smoothly.

Generalizing SEAL. Though SEAL is designed for causality analysis in the log setting, it can

be extended to other graphs/applications as well. Generally, SEAL assumes the edges of a

graph have attributes of timestamp, and the application uses time range as a constraint to

find time-dependent nodes/edges. Therefore, the data with timestamp and entity relations,

like network logs, social network activities, and recommendations, could benefit from SEAL.

Besides forensic analysis, other applications relying on data provenance, like fault localiza-

tion, could be a good fit. We leave the exploration of the aforementioned data/applications

as future work. In terms of the execution environment of SEAL, we assume SQL database

stores the logs on a centralized server, like prior works [111, 122, 62, 52]. It is possible that

the company deploying SEAL in a distributed environment (e.g., Apache Spark) with non-

SQL-based storage. How to adjust SEAL to this new environment worth further research as

well.

2.7 Conclusion

Causality analysis reconstructs information flow across different files, processes, and hosts to

enable effective attack investigation and forensic analysis. However, it also requires a large

amount of storage, which impedes its wide adoption by enterprises. Our work shows the

concern about storage overhead can be eased by query-friendly compression. Comparing to

prior works based on data reduction, our system SEAL offers similar or better storage (e.g.,
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9.81x event reduction and 2.63x database size reduction on DSind) and query efficiency

(average query speed is 64% of the uncompressed form) with guarantee of no false positive

and negative in casualty queries. We make the first attempt to integrating the techniques in

the coding area (like Delta coding and Golumb coding) with a security application. We hope

in the future more security applications can be benefited with techniques from the coding

community and we will continue such investigation.
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Chapter 3

LDPC Codes for DNA Storage with

Nanopore Sequencing

With the fast growth of data, DNA storage attracts much attention for its extremely large

data densities, integrity in non-ideal conditions over millennial, and efficient data replication

(e.g., [21, 43, 124, 10, 123, 90, 70]). In DNA storage, the writing process is called synthesis,

which joins neulitide symbols and produces the desired DNA string. Reading is completed

through DNA sequencing that reads the string and translates it to digital data.

Among the DNA sequencing technologies, nanopore sequencing performed on the MinION

device [121] is a promising one due to its low cost, scalability, and portability, and has

been demonstrated suitable for DNA storage. In nanopore sequencing, a DNA sequence is

passed through a nano-sized hole and current variation is measured to estimate the sequence

symbols. While many proposed DNA storage systems and research use short strands of DNA

to store information, the “third-generation” technologies including Oxford Nanopore[55] can

provide reads with thousands of nucleotides. Short strands introduces high loss in coding

efficiency and underutilized the nanopore sequencing [123]. Therefore, it can be suitable for
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long-codeword methods such as low-density parity-check (LDPC) code, which is the focus

of our paper.

Data storage using nanopore sequencing was first demonstrated in [123]. To accommodate

the use of nanopore sequencing, 17 identical long DNA fragments (1000 base pairs(bp))

encoding for a 3kB file were synthesized, and subsequently sequenced and decoded using

ONT MinION platform. The work in [70], arguing that existing scalable approaches for

synthesis rely on short oligonucleotides (i.e. 100 - 200 bases in length), stored 1.67 Mb

file in 111.499 short oligonucleotides and used Gibson Assembly[41] to concatenate short

oligonucleotides to large one (5000 bp) for sequencing reads.

Moreover, errors in nanopore sequencing [33] should be addressed in order to maintain data

integrity. In [99] burst deletion errors are considered and associated codes are constructed.

In [75] a channel model of nanopore sequencing is established capturing non-linear inter-

symbol interference, deletions, and substitutions. In [22] the measured current is modeled

as a quaternary amplitude modulation with additive white Gaussian noise. In [36] it is

observed that substitution errors occur asymmetrically among the four bases of nucleotides

(A, T,G,C), and the minimum asymmetric Lee distance are studied. In [16] it is mentioned

that most previous works rely heavily on a large number of mulitple reads which leads to

a high reading cost. One strategy to deal with this problem is working with the the raw

nanopore signal and hence the convolutional code[119] has been used in its work.

The goal of this work is to design LDPC codes for the asymmetric substitutions of nanopore

sequencing. Instead of studying the minimum code distance as in [36], we focus on the

performance in terms of bit error rate, and LDPC codes are chosen for its near-capacity

performance, low encoding/decoding complexity and availability working with the soft in-

formation. As the DNA string is a sequence of alphabet size 4, a quaternary code is a natural

candidate for error correction. Although the LDPC code supports non-binary alphabets, it

suffers from slow speed in decoding compared to the binary case. Hence, we focus on binary
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LDPC codes for DNA storage, and address the following questions: How to utilize the special

structure of the asymmetric channel to design binary decoding methods? Can such methods

approach the fundamental limits of the channel?

The key ideas in our techniques are that we can view each quaternary symbol as two bits, and

the asymmetric channel introduces a Boolean constraint on the two bits with high probability

given certain channel outputs. As a result, the two bits can exchange information during

the decoding process and guide each other to reach the correct codeword symbol. The

effectiveness of such decoding methods in the asymptotic regime of large block length can be

verified using density evolution [97], however the challenge is to make proper modifications

to accommodate the information exchange steps and the asymmetry of the channel.

The contributions of the paper are as below.

• We present an asymmetric nanopore channel model for both continuous/soft and dis-

crete/hard channel output. The continuous output corresponds to the analog current

signals measured for each nuceotide, and is modeled by 2-dimensional Gaussian random

variables. The discrete output corresponds to maximum likelihood hard decision from

the Gaussian output. The channel capacities are calculated for independent uniformly

distributed (i.u.d.) inputs.

• We propose to use two binary LDPC codes for one quaternary DNA sequence, and show

decoding algorithms that exchange information between the two LDPC codes. The

information exchange step is inspired by Turbo codes, and addresses the asymmetry

in the channel errors. We design three information exchange methods and also utilize

a fourth decoding method proposed for multiple access channel [92].

• Density evolution algorithms are derived for the above decoding methods. In particu-

lar, two main challenges are considered: 1. We need to add exchange information for

two density evolution corresponding to our decoding algorithms. 2. Density evolution
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assumes the all-zeros codeword is sent due to the symmetry condition. Our method,

although satisfies the symmetry condition of density evolution, can not make the iden-

tical input assumption because it only passes the extrinsic information under a specific

condition. For the information exchange issue, we design the density evolution algo-

rithms correspondingly for the three information exchange methods. For the all-zeros

codeword issue, we design algorithm to average the i.u.d inputs.

• We also consider multiple reads collected for the same codeword, a performance-

boosting technique commonly seen in sequencing. When a codeword is read M times,

we model the channel output as 2M -dimensional Gaussian under soft coding, where

the multiple reads are assumed to be independent.

• Simulation shows that our method has a 20X speed-up compared to the quaternary

codes and comparable bit error rates. Moreover, soft decoding has over 104X lower bit

error rate compared to the hard decoding in our methods. Also, the multiple reads

provide over 104X lower bit error rate compared to the original methods.

• Density evolution results show that our methods can approach the capacity of the

Gaussian channel for nanopore sequencing with a gap of 0.0234. For the discrete hard

decision channel, our method is also close to the i.u.d. capacity, with a gap of 0.0684.

Related work. Motivated by improving the reliability of DNA synthesis and sequencing,

there has been quite a few research works on coding for DNA storage. The work in [110]

presents an algorithm that maps digital data to three DNA nucleotides. The algorithm avoids

the repeating identical nucleotide symbols. The authors in [8] developed a forward-error-

correcting scheme that could be used to avoid multiple errors during the DNA synthesis.

The work in [50, 104] writes data in many DNA sequences that are stored without order and

investigates the corresponding channel capacity. It proves that the simple scheme of adding

an index to each sequence is optimal. The work in [105] analysed the minimal redundancy
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of binary codes for the same channel under substitution errors. It also presented an optimal

code construction for a single substitution up to constants. The work in [108] introduced

a new metric for sets of unordered sequences. The work in [64] used a mechanism called

anchoring to combat the ordering loss of short sequences. The work of [103] presents a

clustering-correcting codes that ensures if the distance between the index fields of two DNA

strands is small, then the distance between the their data fields will be large. To realize the

random acess in DNA storage, Yazdi et al. [124] attached spacial address sequences called

primers for each DNA sequences. In [17], a construction of error-correcting codes for those

primers is designed.

The work in [16] introduced a single large block code strategy which uses LDPC code to

encode the data into long codewords and then segment them into short sequences which are

suitable for DNA synthesized. They read the short sequences by Illumina iSeq technology

and concatenate short sequences by index. Our work can follow the strategy, however, focus

on designing LDPC code for the nanopore sequencing. The work in [20] introduced an

algorithm and a coding scheme, given deletion and edits, how many sequences are needed to

perfectly construct the original sequence. Our problem is different, we don’t have to get the

original sequence perfectly, as another decoding step will follow reconstruction. Reference

[14] shows that soft information improves the multiple sequence reconstruction by using 3X

lower read cost compared to hard information.

The rest of the paper is organized as follows. Section 3.1 gives the channel model and

an overview of conventional LDPC decoder. Section 3.2 proposes a binary LDPC and a

dedicated decoder for DNA storage. Simulation results are presented in Section 3.5. Finally,

we draw concluding remarks in Section 4.5.

Notation. For a matrix Σ, denote by Σt its transpose. For a square matrix Σ, denote

by |Σ| its determinant. Vectors are represented by bold font letters. However, a vector of

length 2 is represented by normal font if it corresponds to one nucleotide symbol (e.g. the
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Figure 3.1: Left: Measurement distribution in nanopore sequencing. Right: Area that our
methods are used

Table 3.1: Hard error rate and channel capacity from the 2D Gaussian model with Variance
1 and uniform input

Pac Pat Pag Pcg Pct Ptg Cap

0.01285 0.0583 0.0181 0.0124 0.2828 0.0907 0.4162

binary representation of a nucleotide symbol, or the current and dwell time of one nucleotide

symbol). For two sets I, J , denote by I − J = {i : i ∈ I, i /∈ J} the set difference. If not

specified, log represents the natural logarithm ln.

3.1 Asymmetric Channel Models

We first introduce the asymmetric channel models of nanopore sequencing. Nanopore se-

quencing can read the nucleotide symbol in an DNA strand by monitoring small changes

in the ionic current flowing through the pore and dwell time in the nanopore [33], and

the sampled measurements are shown in Fig. 3.1. The channel takes quaternary input

X ∈ {A, T,G,C}, and similar to [36] is assumed to be memoryless following the same chan-

nel transition probabilities for each input symbol. We consider the i.u.d. inputs where the

input symbols are independent and uniformly distributed. Depending on the accuracy of the

decision on the output, we propose three channel models.
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2D Gaussian model. We first consider that the channel output Y ∈ R2 corresponds to both

current and dwell time data. The distribution of Y conditioned on a channel input symbol is

modeled to be 2D Gaussian following the experiment data from [33]. In particular, given the

channel input symbol x ∈ {A, T,G,C}, the output Y a two dimensional Gaussian random

vector. Let µx ∈ R2,ΣX ∈ R2×2 be the corresponding mean vector and the covariance

matrix, respectively. Moreover, we use superscripts 1 and 2 to denote the time and the

current component of the output. For example, given the channel input x = A, the output

is YA = (Y 1
A , Y

2
A)t, with mean µA = E[YA] = (µ1

A, µ
2
A)t, and covariance matrix

ΣA = E[(YA − µA)(YA − µA)t] =

σ11
A σ12

A

σ12
A σ22

A

 , (3.1)

where σ11
A , σ

22
A , σ

12
A represent the variance of the time and the current component and their

covariance, respectively. The probability density function of Y conditioned on the input x

therefore is

f(y|x) =
1

2π
√
|Σx|

e−
1
2

(y−µx)tΣ−1
x (yx−µx), (3.2)

for x ∈ {A, T,G,C}, y ∈ R2.

The corresponding channel capacity under i.u.d. input is calculated by

Cap = I(X;Y ) (3.3)

= h(Y )− h(Y |X) (3.4)

= −
∫∫ ∑

x∈{A,T,G,C}

f(y|x)

4
log2

 ∑
x∈{A,T,G,C}

f(y|x)

4

dy − ∑
x∈{A,T,G,C}

1

8
log2((2πe)2|Σx|).

(3.5)

The last step follows from the definition of differential entropy and the formula for mutli-
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Figure 3.2: 1-D Guassian channel of current drop of nannopore sequencing. The mean and
variance data is from [33].

dimensional Gaussian differential entropy, where e is the natural number. The parameters

and the capacity of the 2D Gaussian model can be found in Section 3.5.

1D Gaussian Model. In some cases, if the only the ionic current value is available from

the nanopore sequencing, we can only build a 1-D Gaussian channel, the output is Y ∈ R.

For each input symbol x ∈ {A, T,G,C}, the mean of Y corresponds to the first componont

of µx in the 2D model, and the variacne corresponds to var1
x in the 2D model. The capacity

can be calculated similarly as the 2D case.

Fig 3.2 shows the 1D Gaussian channel of current drop.

Hard decoding model. In some cases, if soft information is not necessary or unavailable,

we can employ hard coding. For hard coding, the maximum likelihood estimation decision

of each input symbol is made from the current and the time measurements, resulting in

substitution errors. Therefore, the channel output Y ∈ {A, T,G,C}. The error probabilities

between the 4 symbols A, T, C,G are shown in Fig. 3.3. To simplify the model, we assume

that the channel transition probability P (Y = y|X = x) = P (Y = x|X = y), for all

x, y ∈ {A, T,G,C}, which is denoted by pxy or pyx. The parameters and the corresponding
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Figure 3.3: Error probabilities in the hard decoding nanopore channel.

channel capacity under i.u.d. channel input is shown in Table 3.1.

Remark. In order to approach channel capacity for the general case, we need to optimize

the mutual information of the channel input and output, among the possible distributions

for the transmitted symbols. However, for LDPC code, we must have uniform input. We

now demonstrate that the i.u.d. input is near optimal under hard decoding model. For

this purpose, we consider the error probabilities as in Fig 3.3. Denote by Cap the channel

capacity, and X, Y the random variables of the channel input and output. Let p(x) denote

the probability distribution for the channel input X. The capacity

Cap = max
p(x)

I(X;Y ) (3.6)

= max
p(x)

H(Y )−H(Y |X) (3.7)

is maximized as 0.4030, when the percentage of X = [A,C, T,G] is [37,19,19,25]. The mutual

information of the uniform distribution is 0.3876. We can see those probabilities are closed.

Thus one can use the uniform distribution for the transmitted symbols, hence a linear block

code with uniform information symbolsis suitable for such channels.

We map the four types of nucleotide to two bits according. When a quaternary code is used,

these two bits correspond to the vector representation of elements in the finite field GF (4);

when a binary code is used, they are viewed as a 2-bit vector in {0, 1}2. In this paper, the
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mapping is chosen to be

A 7→ (0, 0), G 7→ (1, 1), T 7→ (1, 0), C 7→ (0, 1). (3.8)

According to the channel model in Fig. 3.3, there are total 4! mappings can be done. In

section 3.5 we compare the BERs between different mappings and find that the mapping

with the lowest raw BER does not give a better result under our methods.

The same quaternary to binary mapping will be used under soft decoding.

3.2 Binary LDPC codes for DNA Storage

In this section, we present the binary LDPC codes for DNA storage. We introduce the

hard decoding model first for simplicity. We propose our decoder that is inspired by Turbo

decoder.

3.2.1 Review of LDPC code decoding

Next, we briefly review the LDPC code decoding sum-product algorithm (SPA) (see, e.g.,

[98]). For simplicity, we describe the algorithm for the binary case. Consider a binary LDPC

code defined by an (n− k)× n parity-check matrix H. Let its (i, j)-th element be hi,j. The

code can be represented by a Tanner graph, with n variable nodes (VNs) and n − k check

nodes (CNs). An edge exists between the j-th variable V Nj and the i-th check CNi if and

only if hi,j = 1. Let N(i) denote the set of neighboring nodes of the node i. When the

Tanner graph has no cycles, SPA can be proved to be the bit-wise maximum a posteriori

(MAP) decoder [96].
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Let x1 = (x1
1, x

1
2, . . . , x

1
n), y1 = (y1

1, y
1
2, . . . , y

1
n) be the transmitted and the received binary

words, respectively. The superscript 1 is added to be consistent with the notation in the next

subsection for quaternary symbols. In SPA, the log-likelihood ratio (LLR), log
p(x1

j=0|y1)

p(x1
j=1|y1)

, is

passed between neighboring variable nodes and check nodes in iterations. The LLR passed

from node i to node j in the algorithm, called extrinsic information, is the aggregated

information of the incoming messages to node i from its neighbors except j, i.e., N(i)−{j}.

Let iter be the index of the current iteration. Define the information passed from the

variable node V Nj to the check node CNi by Literj→i, where 1 ≤ j ≤ n and i ∈ N(i). Define

the information passed from the check node V Ni to the variable node CNj by Literi→j, where

1 ≤ i ≤ n− k and j ∈ N(i). In the 0-th iteration, L0
j→i is initialized by L0

j→i = Chj, where

for the given received yj, Chj is the channel information defined by

Chj = log
p(y1

j |x1
j = 0)

p(y1
j |x1

j = 1)
. (3.9)

The message from a CN to a VN is given by

Literi→j = 2 tanh−1(
∏

j′∈N(i)−{j}

tanh(
1

2
Liter−1
j′→i )). (3.10)

The message from a VN to a CN is be updated by

Literj→i = Chj +
∑

i′∈N(j)−{i}

Liter−1
i′→j . (3.11)

Then the overall soft information is obtained for each V Nj, 1 ≤ j ≤ n:

Lsoft,iterj = Chj +
∑

i′∈N(j)

Liter−1
i′→j , (3.12)

and the corresponding symbols is decoded as x̂1,iter
j = 1 if Lsoft,iterj < 0, and decoded as 0
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otherwise. Let x̂1.iter = (x̂1,iter
1 , x̂1,iter

2 , . . . , x̂1,iter
n ). The algorithm stops if x̂1.iter ·HT = 0 or

the maximum number of iterations is reached.

3.2.2 Encoding

In an (n, k) DNA code, 2k bits of information are encoded into a DNA codeword x =

(x1, x2, . . . , xn), xj ∈ {A, T,G,C}, 1 ≤ j ≤ n. By abuse of notation, xj also denotes the two-

bit binary representation as in (3.8). The construction of the binary codes is straightforward:

we take k bits of information, and encode them into a binary LDPC codeword of length n.

Repeat for a second binary LDPC code. The two LDPC codes are denoted by C1,C2, and

have the same rate k/n and distribution. The parity check matrix of C1,C2 are different.

The two codewords are denoted by xi = (xi1, x
i
2, . . . , x

i
n), for i = 1, 2, respectively. Then we

store xj = (x1
j , x

2
j) as one DNA quaternary symbol, for all 1 ≤ j ≤ n. After the nanopore

sequencing, we receive the channel output, yj, 1 ≤ j ≤ n. The alphabet of yj can be 2D, 1D

real numbers, or quaternary symbols, depending on the channel model.

Below, we use notations similar to the sum-product algorithm described in Section 3.1,

except that we add a superscript 1 or 2 to denote the corresponding notation for the first

or the second LDPC code. For example, denote by V N1
j , V N

2
j the j-th variable node in

the first and the second LDPC codes, respectively; denote by L1,iter
j→i , L

2,iter
j→i the information

passed from note j to node i in the two codes.

We refer the above encoder as the separate encoder. The decoding algorithms are designed

for the separate encoder. However, we demonstrate our decoders under joint encoding in

Section 3.5 as well.
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3.2.3 Proposed Decoding Algorithms

The baseline decoder. We propose a baseline decoder that runs two SPAs on the two

codewords independently, with some modifications to the channel information Ch1
j , Ch

2
j .

Conditioned on the received quaternary y, the bit-wise MAP rule of the first LDPC is:

x̂1
i = arg max

x1
i∈{0,1}

p(x1
i |y) (3.13)

= arg max
x1
i∈{0,1}

∑
∼x1

i

p(x1|y) (3.14)

= arg max
x1
i∈{0,1}

∑
∼x1

i

p(y|x1)P (x1) (3.15)

= arg max
x1
i∈{0,1}

∑
∼x1

i

(
n∏
j=1

p(yj|x1
j))1x1∈C1 , (3.16)

where ∼ x1
i means all possible binary vectors x1 ∈ {0, 1}n such that x1

i is fixed, and 1x1∈C1 is

the indicator function that x1 is a codeword of the second LDPC code C1. Here (3.15) follows

from Bayes’ rule and y being fixed, and (3.16) follows from the memoryless channel and the

uniformity of the transmitted codewords. In a conventional binary LDPC, the bit-wise MAP

rule has the term
∏

j p(y
1
j |x1

j) instead of
∏

j p(yj|x1
i ) in (3.16), corresponding to the channel

information. Effectively, the nanopore channel has the binary input x1
i and the quaternary

output yi = (y1
i , y

2
i ), and the channel information of (3.9) is modified to

Ch1
j = log

p(yj|x1
j = 0)

p(yj|x1
j = 1)

. (3.17)

The same analysis can be applied to the second LDPC. Much like conventional LDPC, for

cycle-free Tanner graphs, the baseline decoder is a bit-wise MAP decoder, conditioned on y,

for each individual LDPC.

In the computation of the channel information (3.17) for the baseline decoder, it is assumed
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that a priori distribution of x2
j is uniform. However, we will also propose other improved

algorithms which use soft information for x2
j from the second LDPC code.

Observe that in Fig. 3.3, if the received symbol is yj = C = (0, 1), and the first bit is

decoded to be 1, then it is much more likely that the transmitted symbol is xj = T = (1, 0)

than the case of xj = G = (1, 1). One can verify that given yj = C or T , the probability

of having complementary bits (x1
j = 1 − x2

j) is much larger than identical bits (x1
j = x2

j).

We note that Turbo codes (e.g., [98]) have a similar property. In particular, the Turbo

codes can be viewed as two separate convolutional codes, sharing identical but permuted

information bits. The two identical information bits pass extrinsic information between each

other hence connecting the two convolutional codes. Inspired by Turbo codes, we propose

to pass auxiliary information between the two bits when receiving C or T .

In our proposed decoders, the two LDPC codes run their sum-product algorithms as in

Section 3.1 concurrently, with the modifications as below. If a received symbol yj is C or

T , then an auxiliary term is passed from V N1
j to V N2

j in each iteration. We note that

different from Turbo codes, the auxiliary term does not appear as an addend in the overall

soft information of (3.12) due to two reasons: (i) the two bits y1
j , y

2
j are not deterministically

complementary of each other, (ii) the function in (3.10) is nonlinear. Therefore, we cannot

eliminate the auxiliary term entirely when information is passed back from V N2
j to V N1

j ,

and the algorithm for the auxiliary information exchange is not straightforward. Regardless,

we call the auxiliary term extrinsic information to highlight the resemblance to Turbo codes.

Next, we propose four decoding algorithms.

Algorithm 1. Our first decoding algorithm is shown in Algorithm 3. In this algorithm, we

pass the extrinsic information from V N1
j to V N2

j if the received quaternary symbol yj = C
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or T , and the extrinsic information of the j-th variable node is defined as

Le1→2
j =

∑
i′∈N1(j)

L1,iter−1
i′→j . (3.18)

In every iteration, the extrinsic information is passed from the first LDPC to the second

LDPC. To generate the message from a variable node V N2
j to a check node CN2

i in the

second LDPC code, we combine the above extrinsic information, the channel information of

(3.17), and the messages from V N2
i′ , i

′ ∈ N2(j). Specifically, equation (3.11) is modified to

L2,iter
j→i = Ch2

j +
∑

i′∈N2(j)−{i}

L2,iter−1
i′→j − αLe1→2

j , (3.19)

for some constant parameter 0 < α < 1. Here Ch2
j is the channel information similar to

(3.17). Moreover, to generate the overall soft information of V N2
j , (3.12) is modified to

L2,soft,iter
j = Ch2

j +
∑

i′∈N2(j)

L2,iter−1
i′→j − αLe1→2

j . (3.20)

Equivalent to (3.19) (3.20), define the new channel information as

Ch
2,iter

j = Ch2
j − αLe1→2

j , (3.21)

and simply replace Ch2
j by Ch

2,iter

j in the sum product algorithm of Section 3.1. The extrinsic

information from V N2
j to V N1

j is defined similarly, and the algorithm of the first LDPC uses

the new channel information similar to (3.21).

In expression (3.18) of the extrinsic information, the coefficient −α captures the fact that

x1
j and x2

j are complementary with a large probability. Note that Le1→2
j is the overall

soft information at V N2
j as in (3.12) except the channel information term. The channel

information is excluded because it is unchanged during the iterations, and would be amplified
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over the iterations during the extrinsic information exchange.

Algorithm 3 Binary LDPC decoder for DNA storage

Initialize:
1: For 1 ≤ j ≤ n, i ∈ N(j) initialize L1,0

j→i = Ch1
j and L2,0

j→i = Ch2
j by (3.17)

2: for iter = 1 : Imax do
3: Stop if x̂1,iter(H1)T = 0, x̂2,iter(H2)T = 0 or iter = Imax

Message passing between two codes
4: for 1 ≤ j ≤ n do
5: if yj = C = (0, 1) or yj = T = (1, 0) then

6: Ch
1,iter

j = Ch1
j − α

∑
i′∈N(j) L

2,iter−1
i′→j

7: Ch
2,iter

j = Ch2
j − α

∑
i′∈N(j) L

1,iter−1
i′→j

8: else
9: Ch

1,iter

j = Ch1
j

10: Ch
2,iter

j = Ch2
j

11: end if
12: end for

Check node update
13: for 1 ≤ i ≤ n− k, j ∈ N(i) do

14: L1
i→j = 2 tanh−1(

∏
j′∈N(i)−{j} tanh(

1

2
L1
j′→i))

15: L2
i→j = 2 tanh−1(

∏
j′∈N(i)−{j} tanh(

1

2
L2
j′→i))

16: end for

Variable node update
17: for 1 ≤ j ≤ n, i ∈ N(j) do

18: L1
j→i = Ch

1,iter
j +

∑
i′∈N(j)−i L

1
i′→j

19: L2
j→i = Ch

2,iter
j +

∑
i′∈N(j)−i L

2
i′→j

20: end for

21: for i = 1 : n do

22: L1,soft,iter
j = Ch

1,iter
j +

∑
i′∈N(j) L

1,iter
i′→j

23: x̂1
j =

1, if L1,soft,iter
j < 0,

0, else.

24: Compute x̂2
j similarly

25: end for

26: end for

Algorithm 2. In the second algorithm, we derive an alternative channel information ex-

pression. In the following, we assume yj = C, but the derivation for the case yj = T is

similar and hence omitted.
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We define Le1→2
j the same as (3.18), and we treat it as the LLR of x1

j given yj = C:

log
p(x1

j = 0|yj = C)

p(x1
j = 1|yj = C)

= Le1→2
j . (3.22)

Since x1
j ∈ {1, 0}, the corresponding probability can be computed from LLR:

p(x1
j |yj = C) =

e
−Le1→2

j
2

1 + e−Le
1→2
j

e
x1
jLe

1→2
j

2 . (3.23)

Assume yj = C, from (3.17), a new channel information from the extrinsic information Le1→2
j

in iteration iter is set to be

Ch1→2,iter
j = log

p(yj = C|x2
j = 0)

p(yj = C|x2
j = 1)

(3.24)

= log
p(x2

j = 0|yj = C)

p(x2
j = 1|yj = C)

, (3.25)

which follows from Bayes’ rule and the uniformity of x2
j . Moreover,

p(x2
j = 0|yj = C)

=
∑

γ∈{0,1}

p(x2
j = 0|x1

j = γ, yj = C)p(x1
j = γ|yj = C) (3.26)

When γ = 0,

p(x2
j = 0|x1

j = 0, yj = C) (3.27)

=
p(x2

j = 0, x1
j = 0, yj = C)

p(x1
j = 0, yj = C)

(3.28)

=
p(xj = A, yj = C)∑

β∈{0,1} p(x
1
j = 0, x2

j = β, yj = C)
(3.29)

=
1
4
p(yj = C|xj = A)

1
4
p(yj = C|xj = A) + 1

4
p(yj = C|xj = C)

(3.30)

=
pAC

1− pCG − pCT
(3.31)
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where (3.30) follows from the uniformity of the the transmitted symbol xj and (3.31) follows

from the channel transition in Figure 3.3. Similarly, we can calculate for the case γ = 1, and

thus obtain

p(x2
j = 0|yj = C) =

pAC
1− pCG − pCT

p(x1
j = 0|yj = C) +

pCT
pCG + pCT

p(x1
j = 1|yj = C).

(3.32)

In the above calculation, the probability p(x1
j |yj = C) should be computed based on the

extrinsic information from the first LDPC as in (3.23). Similarly, we have

p(x2
j = 1|yj = C) =

1− pAC − pCG − pCT
1− pCG − pCT

p(x1
j = 0|yj = C) +

pGC
pCG + pCT

p(x1
j = 1|yj = C).

(3.33)

Finally, we use the new channel information

Ch
2,iter

j = Ch2,iter
j + Ch1→2,iter

j (3.34)

by equations (3.17) (3.25) (3.32) (3.33) (3.23) in our SPA. As a special case, if pAC = pCG = 0,

then we have Ch
2,iter

j = Ch2,iter
j + log

P (x1
j=1|yj=C)

P (x1
j=0|yj=C)

= Ch2,iter
j − Le1→2

j , corresponding to

complementary bits of x1
j , x

2
j and α = 1 in algorithm 1.

Algorithm 3. In the third decoding algorithm, we add an imaginary variable node uj and

an imaginary check node ej in the Tanner graph, for every j such that yj = C or T . The

imaginary nodes serve the purpose of extrinsic information exchange. As Fig. 3.4 shows,

after iteration iter− 1, we pass the variable message from V N1
j and uj to the check node ej.

Then we pass the check message from ej to V N2
j . The message from V N1

j to ej is Le1→2 as

in (3.18). Note that the channel information is not included at this step. The variable node
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CN𝑛−𝑘1  VN𝑛1 VN𝑛2 CN𝑛−𝑘2  

Figure 3.4: Tanner graph for Algorithm 3. In this example, for j = 1, 2, the observed symbol
yj is C or T , and new nodes uj, ej are added.

uj indicates that V N1
j ,V N2

j are complementary with a large probability. In particular,

uj + x1
j + x2

j = 0, (3.35)

where uj is set to have a fixed LLR of

Luj = log
p(uj = 0|yj = C)

p(uj = 1|yj = C)
=

pAC + pCG
1− pAC − pCG

. (3.36)

Here (3.36) is due to (3.35) and the uniformity of xj. One can see that the message from

the check node ej to V N2
j is a function of the extrinsic information Le1→2.

Algorithm 4. Palanki et al. [92] proposed an algorithm for two separate LDPC codes

on a binary-input two-user channel which has a similar idea to our decoder. Inspired by

[92], we derive the joint decoding for the nanopore channel model. Algorithm 4 corresponds

to the bit-wise MAP decoder when the two LDPC codes are considered jointly and the

corresponding factor graph (Tanner graph together with the joint channel node) is cycle-

free. Different from previous methods, information is exchanged between the two LDPC

codes regardless of the received symbol yj.
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The bit-wise MAP decoder is

x̂1
i = arg max

x1
i∈{0,1}

p(x1
i |y) (3.37)

= arg max
x1
i∈{0,1}

∑
∼x1

i

p(x1,x2|y) (3.38)

= arg max
x1
i∈{0,1}

∑
∼x1

i

p(y|x1,x2)p(x1,x2) (3.39)

= arg max
x1
i∈{0,1}

∑
∼x1

i

(
n∏
j=1

p(yj|x1
j , x

2
j)

)
1(x1,x2)∈C. (3.40)

Here C represents the overall LDPC code for (x1,x2). In particular, (3.40) holds regardless

whether the bits of x1 and x2 are coded separately or jointly. However, for the ease of

notation, we assume that separate coding is used. The bit-wise MAp problem reduces to

calculating the marginalization with respect to x1
i as in (3.40). Different from the traditional

LDPC code, the channel information p(yj|x1
j , x

2
j) is a function of two variable nodes. In the

Tanner graph, we connect one joint channel node to both V N1
j and V N2

j , while in the first

3 algorithms we construct two individual channels nodes for V N1
j and V N2

j , respectively.

Thus, the joint channel node is responsible for exchanging information between the two

LDPC codes in Algorithm 4.

Instead of expressing the messages as log likelihood ratios, we view them as simply the

likelihood. We will denote the node indices in the subscript, and the first/second LDPC

index in the superscript. The iteration index is omitted. The j-th channel node is denoted

by ch and we omit the index j as it is clear from the context. For example, we denote by

p1
j→i(x

1
j) the message about the probability of x1

j from V N1
j to CN1

i .

According to the message-passing rule, the message from V N1
j to the j-th channel node is

p1
j→ch(x

1
j) =

∏
i′∈N1(j)

p1
i′→j(x

1
j). (3.41)

58



After that, the message from the j-th channel node to V N2
j is

p2
ch(x

2
j) , p2

ch→j(x
2
j) =

1∑
x1
j=0

(
p(yj|x1

j , x
2
j)p

1
j→ch(x

1
j)
)

(3.42)

=
1∑

x1
j=0

p(yj|x1
j , x

2
j)

∏
i′∈N1(j)

p1
i′→j(x

1
j)

 . (3.43)

Thus we have obtained the channel information in Algorithm 4. Representing it using LLR,

Ch
2,iter

j (3.44)

= log
p(yj|x1

j = 0, x2
j = 0)

∏
i′∈N1(j) p

1
i′→j(x

1
j = 0) + p(yj|x1

j = 1, x2
j = 0)

∏
i′∈N1(j) p

1
i′→j(x

1
j = 1)

p(yj|x1
j = 0, x2

j = 1)
∏

i′∈N1(j) p
1
i′→j(x

1
j = 0) + p(yj|x1

j = 1, x2
j = 1)

∏
i′∈N1(j) p

1
i′→j(x

1
j = 1)

(3.45)

= max∗(log p(yj|x1
j = 0, x2

j = 0) +
∑

i′∈N1(j)

L1,iter−1
i′→j , log p(yj|x1

j = 1, x2
j = 0))

−max∗(log p(yj|x1
j = 0, x2

j = 1) +
∑

i′∈N1(j)

L1,iter−1
i′→j , log p(yj|x1

j = 1, x2
j = 1)) (3.46)

where max∗(a, b) , log(ea+eb). Note that
∑

i′∈N1(j) L
1,iter−1
i′→j = Le1→2

j which is the extrinsic

information defined in (3.18). As can be seen, Algorithm 4 utilizes the extrinsic information

in a non-linear fashion.

3.2.4 1-Dimensional Gaussian

Next, we briefly explain how to apply the proposed algorithms to channels with soft informa-

tion. First, we consider the 1D Gaussian channel as in Fig 3.2. Different from hard decoding

channel model, we can directly recognize the received symbol yj as C or T . Instead, yj

is a continuous random variable. We use the maximum likelihood hard decision to decide

whether yj corresponds to C, T and, correspondingly, whether the extrinsic information is

exchanged. For example, we set a threshold yth which is the current drop such that the chan-
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nel transition probabilities satisfy f(yth|A) = f(yth|T ). Here f(y|x) represents the Gaussian

density function of the channel output given that x is the channel input. The intersection

of the probability density of A and that of T to help deciding whether to send the extrinsic

information or not.

In the sum-product algorithms, we can simply replace all the channel transition probabilities

by the Gaussian density function. For example, the channel information in (3.17) is replaced

by

Ch1
j = log

f(yj|A) + f(yj|C)

f(yj|G) + f(yj|T )
(3.47)

Algorithms 1 and 4 are identical to the hard decoding model after the channel information

modification (3.47). Next we only point out the modified steps for Algorithms 2 and 3.

Algorithm 2. Equation (3.32) is changed to

p(x2
j = 0|yj) =

f(y|A)

f(y|A) + f(y|C)
p(x1

j = 0|yj) +
f(y|T )

f(y|G) + f(y|T )
p(x1

j = 1|yj). (3.48)

where p(x1
j |yj) is again computed using the extrinsic information from the first LDPC code

by (3.23).

Algorithm 3. We modify Equation (3.36), the LLR of the variable node uj, as below,

Luj = log
f(yj|A) + f(yj|G)

f(yj|C) + f(yj|T )
. (3.49)
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3.2.5 2-Dimensional Gaussian

when the channel output is 2D Gaussian, the decoding algorithms are exactly the same as

the 1D Gaussian case, except that the density fucntion f(y|x) corresponds to the 2D vector

y = (y1, y2) for the dwell time and the current drop.

In the algorithms, we first make maximum likelihood hard decision given yj. If yj corresponds

to C, T , then extrinsic information is exchanged. For example, if f(y|A) > f(y|C), the

symbol is more likely to be A than C. Using the Gaussian density expression, the boundary

between A,C is

1√
|ΣA|

e−
1
2

(y−µA)Σ−1(y−µA)t =
1√
|ΣC |

e−
1
2

(y−µC)Σ−1
C (y−µC)t . (3.50)

log(|ΣA|) + (y − µA)Σ−1(y − µA)t = log(|ΣC |) + (y − µC)Σ−1(y − µC)t. (3.51)

Simplifying the expression, we get

P1(y1)2 + P2(y2)2 + P3(y1y2) + P4y
1 + P5y

1 + P6 = 0, (3.52)

where the constant coefficients are

P1 = σ11
A − σ11

C , (3.53)

P2 = σ22
A − σ22

C , (3.54)

P3 = 2σ12
A − 2σ12

C , (3.55)

P4 = −2µ2
Aσ

12
A − 2µ1

Aσ
11
A + 2µ2

Cσ
12
C + 2µ1

Cσ
11
C , (3.56)

P5 = −2µ1
Aσ

12
A − 2µ2

Aσ
22
A + 2µ1

Cσ
12
C + 2µ2

Cσ
22
C , (3.57)

P6 = (µ1
A)2σ11

A + 2σ12
A µ

1
Aµ

2
A + (µ2

A)2σ22
A + log(|ΣA|) (3.58)

− (µ1
C)2σ11

C − 2σ12
C µ

1
Cµ

2
C − (µ2

C)2σ22
C − log(|ΣC |). (3.59)
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3.3 Multiple Reads

As shown in Section 3.5, the code rate is barely higher than 0.5 when we use the channel

model according to [33]. Fortunately, DNA storage can provide multiple reads of the same

sequence relatively easily. Namely, one can duplicate the sequence, and then apply the

sequencer multiple times. As a result, the coding rate is expected to be improved. For

example, the work in [16] used counts for 0’s and 1’s at a particular nucleotide position

from multiple reads to obtain the channel information. On the contrary, we obtain the soft

information from each of the reads, and calculate the overall log likelihood ratio for the

channel information. For comparison, we also explain a simple method using the mean of

the soft measurements from the reads. In this section, it is assumed that for each read the

dwelling time and the current drop are measured.

3.3.1 Multivariate Gaussian Channel

Let f(y|x) be the 2D Gaussian density function Consider M independent reads for the se-

quence. Let y , (y1,1, y1,2, y2,1, y2,2, . . . , yM,1, yM,2) be the channel output from M reads

for the j-th corrodinate of the DNA sequence, 1 ≤ j ≤ n. The index j is omitted in the

following discussion for the ease of notations. Assume that yi = (yi,1, yi,2), i = 1, 2, . . . ,M,

are independent and identically distributed according to the 2D Gaussian density function

f(yi,1, yi,2|x), given that x is the correct nucleotide symbol. The parameters of the 2D Gaus-

sian distribution are from section 3.5. Denote the overall multivariate Gaussian distribution

as

f(y|x) =
M∏
i=1

f(yi,1, yi,2|x). (3.60)

Note that the notation f is abused but its meaning is clear from the arguments.
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The channel capacity will be calculated by

Cap = I(X;Y ) (3.61)

= H(Y )−H(Y |X) (3.62)

= −
∫
· · ·
∫

2M

∑
x∈{A,C,G,T}

f(y|X)

4
log2

 ∑
x∈{A,C,G,T}

f(y|x)

4

 dy (3.63)

−
∑

x∈{A,C,G,T}

1

8
log2

(
(2πe)(2M)|Σx|

)
(3.64)

In order to run the proposed decoding algorithms, we replace the channel transition proba-

bilities in Section 3.2.3 by the multivariate density function. For example, similar to (3.47),

the channel information for the first LDPC channel will be calculated by

Ch1 = log
f(y|A) + f(y|C)

f(y|G) + f(y|T )
(3.65)

= log

M∏
i=1

f(yi,1, yi,2|A) +
M∏
i=1

f(yi,1, yi,2|C)

M∏
i=1

f(yi,1, yi,2|G) +
M∏
i=1

f(yi,1, yi,2|T )

(3.66)

(3.67)

Let

mi
A = ln f(yi,1, yi,2|A) (3.68)

= ln c+ hA(yi,1, yi,2), (3.69)

where c = 1√
|ΣA|(2π)2

, hA = −1
2
(yi−µA)Σ−1

A (yi−µA)t. Similarly, mi
T ,m

i
C ,m

i
G can be defined.
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Then we can have

Ch1 = max∗

(
M∑
i=1

mi
A,

M∑
i=1

mi
C

)
−max∗

(
M∑
i=1

mi
T ,

M∑
i=1

mi
G

)
, (3.70)

where max∗ is define after (3.46). Similarly, we have

Ch2 = max∗

(
M∑
i=1

mi
A,

M∑
i=1

mi
T

)
−max∗

(
M∑
i=1

mi
C ,

M∑
i=1

mi
G

)
. (3.71)

3.3.2 Simple Mean

Alternatively, we use the mean of M reads,

y1 =
1

M

M∑
i

yi,1, (3.72)

y2 =
1

M

M∑
i

yi,2. (3.73)

In this case, the distribution given x ∈ {A, T,G,C} is stored can be easily verified to be

(y1, y2) ∼ N(µx,
1
M

Σx). Here µx = (µ1
x, µ

2
x) is the original mean of dwelling time and current

from the 2D Gaussian model. And Σx is the original covariance matrix.

The decoding algorithms can be run according to the above channel transition distribution.

3.4 Density Evolution

In order to quantify the effectiveness of the proposed algorithms in the asymptotic regime

for large block length, we investigate density evolution for the asymmetric nanopore channel

and for our Turbo-like algorithms in this section. We first briefly review the density evolution
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algorithm (see, e.g.[98]) which can compute the asymptotic average performance of LDPC

codes. The algorithm models the messages passed during decoding as random variables.

It tracks the evolution of the probability density function of the messages in the iterative

decoder.

If channel symmetry conditions (e.g., binary symmetric channel) are satisfied, then the den-

sity evolution algorithm assumes that the all-zeros codeword c = [0 0 . . . 0] is sent. Therefore,

no error will be made if

lim
l→∞

∫ 0

−∞
f iterv (τ)dτ = 0 (3.74)

where the f iterv denotes the probability density function of a message ξv to be passed from

variable node v to some check node in the iter-th iteration. The f iterv depends on the

channel parameter α, for instance, crossover probability in BSC and variance factor var of

the Gaussian model in our model. Then decoding threshold α∗ can be calculated by

α∗ = sup{α : lim
l→∞

∫ 0

−∞
f iterv (τ)dτ = 0} (3.75)

Then the f iterv is calculated by

f iterv = fch ∗
dv∑
i=1

λi(f
iter−1
c )∗(i−1) (3.76)

where the dv is the maximum VN degree. fch denotes the pdfs for the channel message which

is initialed to be zero. fc denotes dv − 1 messages from neighboring CNs. Note that, those

dv messages are the same because the algorithm assumes that all-zeros codeword is sent.

The f iterc can then be updated by f iterv corresponding to the equation 3.10 in LDPC decoding
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algorithm:

f iterc = Φ(f iterv ) (3.77)

where the Φ is the computation of the pdfs f iterc for a generic message ξc from a check node.

The detail of calculation of Φ(x) has been introduced in [98] page 391. We can then update

f iterv and check if equation 3.74 is satisfied.

Next we introduce the density evolution for our decoders.

Let f iterch , denote the channel information probability density distribution(pdf) for the correct

message, f itervc denote the pdf for the message from variable node to check node, f itercv denote

the pdf for the message from check node to variable node and f iterE denote the pdf extrinsic

message from the first bit to the second bit.

3.4.1 Input information Assumption

Density evolution assumes the all-zeros codeword is sent due to the symmetry condition.

Our method, although satisfies the symmetry condition, can not make the identical input

assumption because our algorithms only pass the extrinsic information under a specific con-

dition(for instance, C or T in hard decoding). For instance, if we assume the input codeword

c = [A,A, ...A], our method will not work. As a result, We have to average the message for

the four symbols as shown in (3.78). We add ω to transfer all the correct message to the

positive part of the pdf to satisfy the (3.78). Similar ideas have been applied to interference

channels in [58].

Note that, because the codeword and the received hard decision symbols are i.u.d. The

message distribution is defined over all the uniform codeword bits. For example, define the

random variable Chi, i = 1, 2 as the channel message for the i-th LDPC code. Here we
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compute the distribution of Chi among all i.u.d. codewords. In order to obtain a unified

stopping criteria as in (3.74), we follow the method of [58] and map Chi to −Chi if the

corresponding codeword bit xi = 1. For simplicity, we drop the superscript and use Ch to

represent the message of the first bit. The derivation for the second bit is similar. Let ` ∈ R

denote a realization of Ch.

fCh =
∑

x=A,C,T,G

1

4
fch(ωξ|x) (3.78)

ω =


1, if x1 = 0,

−1, if x1 = 1.

(3.79)

Since the message is now for the “correct message” ωCh, the steps for check node to variable

node and variable node to check node are the same as if all x1 = 0.

Note that, the average method we use is node perspective but not edge perspective. In

note perspective, the notation λ̄i and ρ̄i refers to the fraction of all variable nodes and

check nodes that have degree i. The polynomials are denoted by λ̄(x) =
∑Lmax

i=1 λ̄ix
i and

ρ̄(x) =
∑Rmax

i=1 ρ̄ix
i, respectively. Similar to equation 3.76, the pdf of the message ξv is

calculated by

f iterv = fch ∗
dv∑
i=1

λ̄i(f
iter−1
c )∗(i−1) (3.80)

3.4.2 Algorithm 1

In algorithm 1, we add an coefficient −α to captures the fact that the two bits x1 and

x2 are complementary with a large probability when x = C or T . Similarly, the extrinsic
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information from ξE is denoted by .

ξE = i


−αξv, if y = T or C

0, otherwise

(3.81)

Let f iterα be the pdf of ξE. Correspondingly, we have

f iterα (ξv) =
1

α
f iterv (− 1

α
ξv) (3.82)

The pdf for the extrinsic information will be caculated by

f iterE =
dv∑
i=1

λ̄i(
1

2
f iterα +

1

2
σ(ξ))∗(i−1) (3.83)

σ(ξ) =


1, if ξ == 1

0, otherwise

(3.84)

Similar to (3.19) (3.20), calculate the f 2,iter+1
v for channel 2

f 2,iter
v = f 1,iter

E ∗ f 2,iter
v (3.85)

The rest calculation for updating f iterc will follow the traditional density evolution algorithm

we showed in Algorithm 4.
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Algorithm 4 Binary LDPC Density Evolution for DNA storage

1: Set the variance factor var to some value expected to be less than threshold var∗. Set
the iteration counter iter = 0. Initialize the channel information pdf f 1

ch, f
2
ch for both

LDPC codes by (3.78).
2: Given f 1

ch, f
2
ch, obtain f 1,iter

v , f 2,iter
v via (3.80) with f 0

c = 0 because the initial message is
0..

3: Given message ξv, obtain f 1,iter
E , f 2,iter

E via (3.82) (3.83)
4: Given f 1,iter

E , f 2,iter
E , update f 1,iter

v , f 2,iter
v via (3.85)

5: Increase iter by 1. Given f 1,iter−1
v , f 2,iter−1

v , obtain f 1,iter
c , f 2,iter

c by (3.77).
6: Given f 1,iter

c , f 2,iter
c , obtain f 1,iter

v , f 2,iter
v via (3.80).

7: If ∫ 0

−∞
f iterv (τ)dτ ≤ fe and

∫ 0

−∞
f iterv (τ)dτ ≤ fe (3.86)

for some predefined error probability fe(e.g. fe = 10−6) and iter < itermax. increase the
channel parameter β by some small value and go to 2.

8: If (3.86) does not hold but iter < itermax then go back to 3.
9: If (3.86) does not hold and iter >= itermax then previous β is the threshold β∗.

3.4.3 Algorithm 2

In Algorithm 2, similar to (3.23), we have

ξ(x1|yj = C) =
e
−ξ1→2
v
2

1 + e−ξ1→2
v

e
x1
j ξ

1→2
v
2 . (3.87)

.

Use the similar ideas from (3.17) (3.25) (3.32) (3.33) (3.23), we have

ξE = log
p(x2

j = 0|yj = C)

p(x2
j = 1|yj = C)

, (3.88)
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where the

p(x2
j = 0|yj = C) =

PAC
1− PCG − PCT

ξ(x1 = 0|yj = C) +
PCT

PCG + PCT
ξ(x1

j = 1|yj = C).

(3.89)

p(x2
j = 1|yj = C) =

1− PAC − PCG − PCT
1− PAC − PCT

ξ(x1
j = 0|yj = C) +

PAC
PAC + PCT

ξ(x1
j = 1|yj = C).

3.4.4 Algorithm 3

In Algorithm 3, we change (3.81) to

ξE = 2tanh−1(tanh(
1

2
Lu)tanh(

1

2
ξv)) (3.90)

3.4.5 Joint Code

In joint code, (3.81) is changed to

ξE = max∗(log pch(x
1 = 0, x2 = 0) + ξv, log pch(x

1 = 0, x2 = 1))

−max∗(log pch(x
1 = 1, x2 = 0) + ξv, log pch(x

1 = 1, x2 = 1)) (3.91)

We can then calculated the pdf of ξE correspondingly for those different methods. Since the

calculations are similar and hence omitted.
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Figure 3.5: Bit error rate comparison between our three algorithms with hard decoding,
quaternary LDPC and the baseline algorithm.

3.5 Simulation Results

3.5.1 Quaternary Code

We first compare our three methods with the quaternary code. We construct the LDPC

code with the commonly used (3, 6) distribution, Namely, every variable node has degree 6,

and every check node has degree 3. To construct the quaternary code, we first choose the

same degree distribution as the binary code. Then in the parity check matrix the ones are

randomly changed to one of the three non-zero elements of GF (4).

The bit error rate of quaternary codes, the 3 proposed decoding algorithms, and the baseline

binary decoder is shown in Fig. 3.7c. The code has code n = 2000 bits code length and

k = 1000 bits data length. For Algorithm 1, we pick the best parameter α = 0.1. We can

see that the error rate of Algorithms 2,3,4 are better than the baseline binary decoder and

comparable to the quaternary codes. The Algorithm 4 performs best because the two LDPC

codes are considered jointly.

Moreover, the simulation time of the algorithms are shown in 3.6a and 3.6b. Algorithms 1,2,3

are 20 times faster on each iteration and 14 times faster on each codeword than quaternary
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Figure 3.6: Average running time comparison between our methods and quaternary LDPC.

codes. Given the demand of high-volume data storage, the speed-up can improve system

performance significantly. Within our methods, algorithm 4 performs slowest due to the

marginalized calculation. The iteration round may affect the running time on each codeword.

For example, in 3.6a, when variacne factor is bewteen 0.6 and 0.65, the simulation time of

method 1 is larger than method 4 due to the higher bit error rate.

3.5.2 Soft Decoding

The soft channel parameter we used is based on the from [33] : µA = (0.5, 0.62)t, µC =

(0.06, 0.31)t, µT = (0.09, 0.49)t, µG = (0.15, 0.83)t, ΣA =

 0.01 0

0 0.01

, ΣC =

 0.0225 0

0 0.0196

,

ΣT =

 0.04 0

0 0.04

, ΣG =

 0.0194 0.0054

0.0054 0.0131

. The channel capacity is 1.2454 calcu-

lated from (3.5). The simulation results are shown in Fig. 3.7. We use (3,6),(3,8),(3,10)

codes to see how our methods perform under different code rate. From the results we can

see that the comparison between different methods in soft decoding is similar to hard decod-

ing. All methods perform better BER in soft decoding than hard coding, which shows that

working with the raw nanopore signal is beneficial to decoding.

72



0.7 0.75 0.8 0.85 0.9 0.95

Variance Factor

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o

r 
R

a
te

base

method1

method2

method3

method4

(a) (3,6) code, soft decoding, 2D Gaussian
Model.

0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8

Variance Factor

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o

r 
R

a
te

baseline

method1

method2

method3

method4

(b) (3,8) code, soft decoding, 2D Gaussian
Model

0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66

Variance Factor

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o

r 
R

a
te

baseline

method1

method2

method3

method4

(c) (3,10) code, soft decoding, 2D Gaussian
Model

0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66

Variance Factor

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
it
 E

rr
o

r 
R

a
te

method4,  = 2

method4,  = 5

method4,  = 10

baseline,  = 2

baseline,  = 5

baseline,  = 10

(d) (3,6) code, soft Decoding, General Model
shown in Fig. 3.8.

Figure 3.7: Bit error rate comparison between our methods and baseline algorithm. Code
parameters n = 2000, k = 1000.
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Table 3.2: Bit error rate comparison between Multivariate distribution and simple mean
with different numbers of reads M . The code rate is 0.8754, variance factor is 1. Raw data
length is 2000 bits.

M 2 5 8 10 100

Simple Mean 0.253 0.208 0.195 0.185 0.125

Multivariate Distribution 0.220 0.0799 6.12e-4 0 0

3.5.3 Multiple Reads

We simulate the decoding algorithms by different multiple reads M = 2, 5, 8, 10, 100. We

use irregular LDPC code with the distribution in table 3.4 with the code rate 0.8754. The

variance factor of the 2D Gaussian channel is 1, raw data length is 2000 bits. The result

is shown in table 3.2. We can obviously see that Simple Mean does not work efficiently

compared to the Multivariate Distribution. The Multivariate Distribution significantly im-

prove the decoding as M goes larger, which means our code with high code rate can work

efficiently with the help of multiple reads.

3.5.4 Other Similar Model

From table 3.1 we design a simplied channel model shown in Fig. 3.8 where PAC = PCG =

PTG = PAT = PAG = λ ∗ PCT . Simulation results in fig. 3.7d shows that our decoding

methods can work effectively on different λ and they work better when λ gets larger.

3.5.5 Density Evolution

We first compare the largest capacity of the four methods and the baseline method by using

density evolution algorithm under the (3,6) LDPC code. The result is shown in table 3.3. We

can see that our methods have considerable improvement compare to the baseline method.
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Figure 3.8: Error probabilities in the hard decoding nanopore channel.

Table 3.3: Density evolution comparison between the four methods with (3,6) code.

Baseline Method 1 Method 2 Method 3 Method 4

Cap 0.7684 0.6792 0.6460 0.6044 0.5774

σ 0.3493 0.2638 0.2260 0.1727 0.1340

Then we pick some irregular LDPC codes with different code rates for our methods. The

result is shown in table 3.4.

We implement the our density evolution methods based on [1]. The code quantifies all the

pdf functions into an array with 6001 elements ranging from −30 to 30.

To find the optimized distributions, we first use exhaust search to find some good initiations.

Then use the optimization method introduce by [97] to further optimize those distributions.

Table 3.4 shows the capacity-approaching distributions under different rates and distribu-

tions. R is the code rate and σ = 1− R
C

[112] is the rate-capacity ratio that shows how close

the rate close to the capacity.

The results show that our methods can reach the same threshold which is also closed to the

channel capacity.

To see how the extrinsic information work during the density evolution, we track the f̄ =∫ 0

−∞ f
iter
v (τ)dτ during each iteration of the algorithm for method 3 and the baseline method.

which is shown in Fig 3.9. We can see that Channel 1 of baseline stops with a high f̄ .
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Table 3.4: GOOD DEGREE DISTRIBUTION PAIRS WITH MAXIMUM VARIABLE
NODE DEGREES 15, 20, 30, AND 50. FOR EACH DEGREE DISTRIBUTION PAIR
THE CODE RATE, THE CAPACITY, THE VARIANCE PARAMETER var ,THE COD-
ING TYPE(i.e, HARD CODING OR SOFT CODING), AND THE CORRESPONDING
σ

λ2 0.2340 0.2558 0.036 0.4222 0.4460 0.4627

λ3 0.3051 0.2625

λ4 0.0096

λ5 0.0355 0.0164

λ9 0.1286

λ11 0.2346

λ19 0.1570

λ20 0.3038 0.1709

λ43 0.4136 0.0170

λ48 0.4978

λ50 0.2464 0.4574 0.3667 0.5202

ρ8 0.7188 0.7188 0.7188 0.7188

ρ9 0.2812 0.2812 0.2812 0.2812

ρ10

ρ28 1

ρ58 1

Rate 0.5 0.7506 0.8754 0.5 0.5 0.5

Cap 0.5350 0.7687 0.8838 0.5120 0.5120 0.5120

σ 0.0684 0.0235 0.0095 0.0234 0.0234 0.0234

var 0.58 0.4 0.28 1.27 1.27 1.27

Type hard hard hard soft soft soft

method 3 method 3 method 3 method 2 method 3 method 4
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Table 3.5: Graph Circle Number Comparison using a (3,6) parity check matrix with n =
1000.

Circle Number 4 6 8 10 12 14 16 18 20

Original Graph 0 2124 25882 245094 1811744 7087066 8105732 833956 2402

Joint Graph 72 2996 41836 443792 3479830 13117742 12978814 2045578 41340

Method 3’s f̄ keep decreasing with the ’help’ of channel 2.

3.5.6 Joint Coding

The joint code has a longer codeword, however suffer from more circles under our methods

due to the information exchange. We add the imaginary check node in the parity check

matrix H and find all the circles in the corresponding tanner graph as shown in table 3.5 .

We can see an explicit growing of the circle number comparing to the original graph.

The simulation results show that when the variance factor is from 0.85 to 0.95, joint encoding

is worse than separate encoding by a factor of 4.9371X to 1.4271X in (3,6) soft Coding.
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3.6 Conclusion

In conclusion, we present binary LDPC codes for DNA storage to combat asymmetric se-

quencing errors. Our decoding algorithms utilize the extrinsic information exchange to

accommodate the dependency of the errors of the two bits in a nucleotide symbol. We

demonstrate the desirable performance of our codes in terms of bit error rate and decoding

speed.

We modify the density evolution for our decoding methods and prove that our methods can

approach the capacity of the nanopore channel models.

We use multiple reads to improve our codes with higher code rate.

Our work only considers the substitution errors because we assume that the current alignment

technique can solve the deletion error perfect. However, those technique all works for hard

information. One future work is to consider soft information alignment for soft decoding.
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Chapter 4

Constrained Codes for

Nanopore-based DNA Storage

4.1 Introduction

DNA storage has been a promising alternative storage method in recent years following the

works of Church et al. [21] and Goldman et al. [43]. Among the DNA sequencing (reading)

technologies, Oxford Nanopore sequencing enables portable and affordable applications [123,

70, 19]. When a DNA sequence passes the nanopore sequencer, an analog current signal is

generated, and an estimation algorithm (called base-calling) is used to detect the associated

DNA sequence. However, effective coding methods are essential in order to combat the high

rate of errors in nanopore. In this paper, a source of synchronization errors is identified, which

leads to potential missing symbols and even error propagation. Accordingly, constrained

codes are developed to alleviate such errors.

Related work. There are several pioneering DNA storage techniques created based on

nanopore sequencing. For example, Yazdi et al. [123] create a random access DNA-based
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data storage system using error-prone nanopore sequencers. Lopez et al. [70] develop al-

gorithms that increase the throughput of nanopore sequencing and decode 1.67 MB of in-

formation in DNA. Organick et al. [90] use nanopore sequencing to develop an applicable

and large-scale system that stores over 200 MB of data in DNA. Chen et al. [19] develop

nanopore-based DNA hard drives which can store, operate and read data in the changeable

three-dimensional structure of DNA.

In order to improve the reliability of the DNA storage process, several coding methods

have been proposed, among which the constrained code is an important class. Chee and

Ling [18] study the GC-content constraint, meaning the fraction of G and C nucleotides of

DNA codewords should be approximately 50% to prevent insertion and deletion errors in

polymerase chain reaction (PCR) [76]. Immink and Cai [54] focus on the homopolymer (or

the run-length) constraint, which does not allow consecutive identical nucleotides in DNA

codewords to prevent sequencing errors [21, 30]. There are some works that have been done

to satisfy both of those two constraints. The work of [109] calculates the optimal average bits

that can be stored by one nucleotide under both constraints. It also implements its own code

which satisfies the those two constraints. The work of [120] develops a GC-balanced run-

length limited code that uses both short constrained sequences and an encoding algorithm

to map information data to long DNA sequences for the constraints. Limbachiya et al. [68]

develop an error correcting code based on greedy exhaustive search and Reed–Solomon code

for those two constraints. Nguyen et al. [84] also develop coding techniques that account

the two constraints but with a higher coding rate than the existing methods.

Our paper studies a different constraint, which is posed to reduce the potential synchro-

nization errors during identification of the sequencing signals. Figure 4.1 shows a simulated

current signal of a DNA sequence using a k-mer model [113], where every k = 6 DNA bases

(called a 6-mer) generates one fragment of current signal. The length of a fragment is a ran-
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Figure 4.1: Current signal of the DNA sequence ’ACCAGATTGGGGGGGG’. The signal
is generated from the Gaussian model in [113]. Each 6-mer corresponds to a segment of
random time duration and current.

dom variable 1. In our example, ACCAGA corresponds to the first fragment for time from

0 to 11, CCAGAT corresponds to the second fragment from 12 to 19, and so on. Within

a fragment, all current values are independent and identically distributed Gaussian random

variables, whose mean and variance depend on the 6-mer. Synchronization errors happen

when the current difference between adjacent 6-mers is small. For example, the mean current

values of CAGATT and AGATTG are 66.6 and 66.5, shown for time from 20 to 42. It is

difficult to distinguish the two fragments, leading to potential synchronization errors during

base-calling. For example, we may miss AGATTG. Note that two adjacent 6-mers overlap

by 5 symbols. When some 6-mer is missing, the estimation of the following multiple 6-mers

are subject to errors, leading to possible error propagation.

In order to avoid the above synchronization errors, we propose constrained codes where

adjacent 6-mers are allowed only if the difference of their Gaussian means are above a

threshold. As a special case, our constraint includes the homopolymer constraint, because

consecutive 6-mers of the same base have the same Gaussian mean. For example, in Figure

4.1, the homopolymer GGGGGGGG generates indistinguishable signals from time 78 to 145.

The main contributions of this paper are as follows. First, we define our constraints on DNA

1In practice, the current signal can be first segmented into events, where several events correspond to
one k-mer [27]. In this case, one can view each signal value for one unit of time in Figure 4.1 as the average
current of one event.
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Figure 4.2: a constrained code system for synchronization error correction. a: DNA infor-
mation is encoded by label graph of the constrained encoder to the constrained codeword.
b: current information from nanopore sequencing is decode by viterbi decoder back to the
codeword. c: overall encoding and decoding procedure.

sequences for the synchronization errors during nanopore sequencing. The DeepSimulator

[67] data shows that by using constrained code, the deletion error decreases between 0.74%

and 1.27% depends on different parameter settings. Then, based on the classical constrained

coding algorithms [77], we design algorithms for the quaternary code and present methods

to reduce the time and space complexity. Moreover, we develop a decoder based on Viterbi

algorithm [35] and Needleman–Wunsch algorithm [82] for the constrained code that allows

opportunistic correction of additive Gaussian noise and deletions. Simulation results show

that our decoder at the cost of 16.7% in the coding rate achieves less than 10−4 when deletion

rate is less than 5% and the Gaussian noise factor is 0.2.

Figure 4.2 shows the overall encoding and decoding procedure of constrained code. First, the

information will be encoded by constrained code labeled graph. Then, the output current

information from nanopore channel will be be decoded by Viterbi Algorithm to the original

encoded constrained code. Last, the encoded constrained code which will be further decoded

to the original information.

The rest of the paper is organized as follows. In Section 4.2, we introduce the constrained

code for nanopore sequencing, construct efficient encoders and decoder for error correction

of the constrained code. In section 4.3, we present simulation and experiment results. Con-
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t = 2, p/q = 4/5. In Parts a, b, and c, the edge label denotes codeword. In Parts d and e,
the edge label denotes information/codeword.

clusions are made in Section 4.5.

Notation. Let {A,C,G, T}n denote all DNA sequences of length n. We denote by {A,C,G, T}∗

all possible DNA sequences whose length is unspecified. We use bold font, for example G,

to denote a graph. The number of states (vertices) and the number of edges of the graph

is denoted by NS(G), NE(G), respectively. When the graph is clear from the context, they

are simply written as NS, NE.

4.2 Models and Methods

4.2.1 Synchronization Errors and the Threshold Constraint

Our nanopore sequencing model is simplified from the k-mer model of [113], where k is set

to be 6. A DNA sequence x = (x1, x2, ..., xn) ∈ {A,C,G,T}n generates a current value from

every k nucleotides. The current signal is denoted by y = (y1, y2, ..., yn−5) ∈ Rn−5, where yi

is a realization of a Gaussian random variable Yi ∼ N(µui , σ
2
ui

), whose mean µui and variance

σ2
ui

are determined by the k-mer ui , (xi, xi+1, ..., xi+5), 1 ≤ i ≤ n − 5. In the model, each

yi equals the average of the segment of the signal for the k-mer ui (see Figure 4.1). We say

that the current signal has additive Gaussian noise. There are two types of deletion errors

83



such that yi is absent from y. First, the segment corresponding to yi is skipped entirely,

which is called a skipping error. Assume the deletion errors are independent and identically

distributed for each k-mer, and Pr(deletion) = ε. Second, the segments corresponding to yi−1

and yi are indistinguishable during base-calling, and erroneously detected as one fragment,

which is called a synchronization error. For two k-mers ui−1 and ui, it is more likely to have

a synchronization error when |µui − µui−1
| is smaller.

Our main goal is to reduce the number of synchronization errors by imposing the threshold

constraint on the DNA sequence. In particular, we choose a threshold t ≥ 0 and only allow

adjacent k-mers such that

|µui − µui−1
| ≥ t,∀1 ≤ i ≤ n− 5. (4.1)

Verification of the threshold constraint. A simple mathematical model is developed

in the supplemental material to measure the synchronization error rate as a function of

the threshold t. Below we justify the threshold constraint from two sets of data. We use

DeepSimulator [67] to test the probability of deletion errors as a function of the threshold.

DeepSimulator uses a deep neural network to generate the current for a given DNA sequence

and then uses a nanopore base-calling algorithm (we used guppy 3.1.5 base-caller [47]) to

decode the current to the DNA sequence. Finally, Deepsimulator uses minimap2 [65] to

check the sequencing accuracy. In our simulation, we randomly generate 4000-long DNA

sequences with several thresholds (for t > 0, the sequences are generated using encoding

methods introduced in Section 4.2.3). We compare the average sequencing accuracy by

minimap2 [65] and the average insertion, deletion, and substitution error rates by using the

Needleman–Wunsch algorithm [82]. From Table 4.1 we can see that the threshold constraint

reduces the average error rates.

Moreover, we tested the relation between deletion errors and adjacent k-mer mean difference
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Figure 4.4: Deletion error rate improvement from threshold constraint on human genome
data. Horizontal axis represents the adjacent k-mer signal mean difference or the threshold
t. Blue bars show the cumulative percentage of adjacent k-mers with the give t. Yellow bars
represent the cumulative percentage of errors with the corresponding t.

with the NA12878 human genome reference on the Oxford Nanopore MinION using 1D

ligation kits (450bp/s) with R9.4 flow cells, which is also used by [67]. Figure 4.4 shows

our simulation on the human genome data. We first get the distribution of the adjacent

k-mer mean from the human DNA sequence of [67], represented cumulatively by the blue

bars. For example, 31% of the adjacent mean difference is no less than 8. Then, we use

guppy 3.1.5 base-caller to get the estimated DNA sequence from the current signal of [67],

and run Needleman-Wunsch algorithm to find deletions in the estimated sequence. The

cumulative deletion percentage is shown by the yellow bars. For instance, 50% of deletions

happen when the k-mer mean difference is smaller than or equal to 8. Notice that when

designing a DNA sequence for storage, unlike human genome, we can choose any sequence

as desired. Therefore, from Figure 4.4, it can be observed that a significant percentage of

deletions can be avoided if we apply the threshold constraint with a small constant t. We

first check the raw current data from human DNA of [67] and get the distribution of current

difference between every two 6-mers which is represented by the blue bar. For example, the

31% of the signal difference is smaller than 8. Then, we use Needleman-Wunsch algorithm to

check deletions of the output DNA string from the basecaller. The deletion result is shown

from the yellow bar, which means that 50% of deletions happen when the signal difference

is smaller than 8.
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4.2.2 Constrained Codes for Nanopore Sequencing

To effectively convert arbitrary information into DNA sequences satisfying the threshold

constraint, we adopt the concepts of constrained codes [77]. We first introduce the represen-

tation of DNA sequences by graphs and calculate the coding capacity, and then present our

encoder and decoder constructions.

The possible transitions between adjacent k-mers in a DNA sequence can be naturally rep-

resented by a labeled graph, as partially shown in Figure 4.3.a. There are a total of NS = 46

states (or vertices) and NE = 47 directed edges, and each state corresponds to a 6-mer.

Every state has four outgoing edges that are linked to the next possible 6-mers. Thus,

state u = (x1, x2, ..., x6) has an outgoing edge e linked to state (x2, x3, ..., x7), for any

x7 ∈ {A,C,G,T}, and the edge label is defined as L(e) = x7. To define the constrained

code, we also include the mean of the current signal µu generated by nanopore sequencing

for each state u in Figure 4.3.a.

As mentioned, if two adjacent 6-mers generate similar current values, a synchronization error

may occur. We thus define forbidden words as adjacent 6-mers whose current mean difference

is less than a given threshold t:

Cf , {(x1, x2, . . . , x7) : |µu − µv| < t,

u = (x1, . . . , x6), v = (x2, . . . , x7)}. (4.2)

Notice that homopolymers such as AAAAAAA (seven A’s) are automatically forbidden by

the above definition.

Our constrained code C ⊆ {A,C,G, T}∗ is defined to be all DNA sequences that do not

contain any forbidden word as a subsequence. The constrained code can be represented by

the labeled graph by removing the edges between states u and v when |µu − µv| < t. Let
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us denote the corresponding graph by G. Figure 4.3.b shows an example when we set t = 2

and remove three edges. All allowed DNA sequences (codewords) of the constrained code

can be generated by reading the edge labels of each possible path in G.

Next, we quantify the highest possible coding efficiency of a constrained code. Let C(`) be

the set of codewords of C whose length is `, ` ∈ N. Let AG be the adjacency matrix of size

NS×NS, whose (u, v)-th entry equals to the number of edges from state u to state v for any

labeled graph G.

The Shannon capacity of the constrained code C is define as the asymptotic number of

information symbols per codeword symbol:

cap(C) = lim sup
`→∞

log4 |C(`)|
`

.

It is well known that the capacity can be computed from the adjacency matrix [77] by

cap(C) = log4 λ(AG), (4.3)

where λ(AG) is the largest eigenvalue of AG for a graph G that has distinct labels for the

outgoing edges of each state. It is apparent our graph G satisfies the above condition.

Moreover, we can in fact find a connected subgraph of G whose capacity is equal to cap(C).

Hence from here on, G simply denotes this connected graph. For the examples we tested,

the number of states in the connected graph and the capacity are listed in the second and

the last columns of Table 4.2.

It can be seen that for a larger threshold t, more edges and paths (words) are removed, hence

the capacity is reduced. In Table 1 of supplemental material, we show the trade-off between

the synchronization error rate and the capacity.
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Table 4.1: DeepSimulator result for DNA sequence with threshold t = 0, 3, 5, 10.

t = 0 t = 3 t = 5 t = 10

Base-calling accuracy 97.44% 98.28% 98.67% 98.98%
Deletion error rate 1.76% 1.02% 0.75% 0.59%
Insertion error rate 0.34% 0.33% 0.28% 0.12%
Substitution error rate 2.15% 1.59% 1.11% 0.77%

Table 4.2: The number of states of the labeled graphs G, Gm, Gs, for t = 3, 5, 10. The
chosen code rate p/q is also listed.

signal threshold initial merged split p/q symbol capacity

t = 3 2952 185 185 5/6 0.9166
t = 5 2021 116 167 4/5 0.8494
t = 10 751 98 157 3/5 0.6338
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Figure 4.5: Symbol error rates after Viterbi decoder for different constraint threshold t. (a)
Symbol error rate using single-path Viterbi algorithm. The variance factor of the additive
Gaussian noise ranges from 0.25 to 0.5, and there are no deletions. (b) Symbol error rate
using single-path and 3-path Viterbi algorithm. The variance factor equals 0.2 and the
deletion rate varies from 1% to 5%. (c) Symbol error rate using single-path and 3-path
Viterbi algorithm. The deletion rate equals 1% and variance factor varies from 0.2 to 0.5.
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4.2.3 Encoder

While the paths of the labeled graph represent all possible codewords, an efficient en-

coder/decoder is to be constructed. We apply the methods in[77] and obtain a finite-state

encoder with a fixed rate p/q that is arbitrarily close to the capacity, where p, q are integers

such that p/q < cap(C). Our encoder is built by creating another labeled graph through

two operations: graph power and state splitting. In the resulting graph, each edge has an

output label (codeword) of length q, and from each state there are 4p edges, corresponding

to an input label (information) of length p. Moreover we present how to generate a graph

representation of our constrained code with a small number of states. In all the above graph

operations, the original constraints of forbidden words are still maintained.

Graph power. Once the code rate p/q and the reduced labeled graph G have been decided

upon, the q-th power of G, denoted by Gq, is generated. It has the same states as G, but the

edges from u to v correspond to all q-hop paths in G from u to v. Each edge label becomes

length q and corresponds to the q-hop path label. The adjacency matrix can be obtained

from the matrix power AqG. Figure 4.3.c shows an example of Gq. It can be seen that the

codewords of G and Gq are identical.

Although the matrix power calculation is mathematically simple, two issues arise when the

power q and the number of states NS = NS(G) = NS(Gq) are large: time and space

complexity. The time complexity would be O((q − 1)N3
S) if we directly use the matrix

multiplication. We can reduce it to no more than O(NS + NE(G)) = O(NS) by using the

Breadth-First-Search (BFS) algorithm with fixed q hops for each state, where NE(G) ≤ 4NS.

However, the space complexity to store the powered graph is O(NS+NE(Gq)), where NE(Gq)

can be close to 4qNs for small t. For example, when q = 8, there are more than 108 edges in

the powered graph. We propose the following 3 methods to alleviate the memory problem.

First, use efficient representation for the edges, e.g., the nucleotide symbol is stored as 2
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bits instead of one character. Second, partition the states into subsets, and store the edges

from one subset to another as a block in main storage. When processing the graph, handle

the states according to the subsets. It must be noted that the graph partition increases the

running time due to the lower I/O speed of main storage. Third, reduce the graph size by

state merging explained below.

State merging. State merging algorithm [77] reduces the graph by merging the states of

Gq such that the resulting codewords are a subset of the original set of codewords (hence

the constraints are maintained), and the code rate p/q is still achievable.

The follower set FGq(u) is defined as the set of all the words that can be generated starting

from state u in Gq.

We merge state u′ into state u if they satisfy FGq(u) ⊆ FGq(u′) and have identical approx-

imate eigenvector (see details in [77]). The merging process is to remove all the outgoing

edges of u′, redirect all the incoming edges of u′ to u, and then remove state u′.

Denote the graph after state merging by Gm. See Figure 4.3.d for an example. The third

column of Table 4.2 shows the result of state merging. We can see that the state number

NS dramatically decreases.

State splitting. Up to now, if each state in Gm has 4p or more outgoing edges, we are

done with graph transformations. Otherwise, we apply the state splitting algorithm [77] to

get the graph Gs with minimum out-degree 4p and then attain the desired p/q encoder. The

high-level idea is to find certain states, duplicate the states and their incoming edges, and

then split their outgoing edges among the duplicated states. Figure 4.3.e shows an example

of how state splitting increases the out-degree of some states: After we split S2 into two new

states in green, the out-degree of its parent state S1 increases by one.

In each iteration of splitting, one state is picked and split. The total number of states NS

90



is hence increased by one. There are usually multiple candidate states for splitting in each

iteration, which may result in different numbers of states and different decoding delay.

However, since the aim of splitting one state is to increase the out-degrees of its parents,

if these degrees are already larger than or equal to 4p, then the split is unnecessary. Due

to this reason, we improve the state splitting algorithm by checking the out-degrees of the

parents. Simulation results show that the improved algorithm reduces around 20% for the

splitting iterations as well as the number of additional states. The fourth column of Table 4.2

shows that the number of states NS does not have a substantial increase after the improved

splitting algorithm.

Encoding. We are now ready to build the encoder. We remove edges in Gs such that the

out-degree of every state is exactly 4p. The q-symbol label of each edge is now called the

output label, corresponding to a codeword. We can simply construct the encoding graph by

adding one p-symbol input label to each edge, representing the input information, as shown

in Figure 4.3.e. For example, the information sequence AAAA will be encoded into CATCG

if the current state is S1, and then the next state will be S2. Hence, we have a rate p/q

finite-state encoder. The encoding can then be accomplished as follows.

1. Initialize an arbitrary state u0 as the current state u. Initialize the stage number to

be i = 0.

2. Get p-symbol subsequence s = (sip+1, sip+2, . . . , sip+p) from the input information se-

quence, and find the edge e from u with the input label s. Append the q-symbol output

label of e to the output codeword. Update the current state u as the destination state

of e. Increase i by one.

3. Repeat Step 2 until the input information is exhausted.

The required memory size is 2(p + q)4pNS bits, which is around hundreds of KBs in our
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experiment.

4.2.4 Viterbi Decoder

Assume there are additive Gaussian noise and deletions (including residual synchronization

errors after the constrained code) in the current signal from nanopore sequencing. Even

though constrained code is not designed for error correction, we design a two-step decoder

to exploit the code redundancy and opportunistically correct errors. Specifically, the current

signal can be viewed as a realization of a hidden Markov model for which the maximum

a posteriori codeword and the hidden state of the labeled graph can be found by Viterbi

algorithm.

Given the current signal, we assign scores to each possible state transition (q additional

codeword symbols), and choose the overall codeword with the optimal score. To avoid

exponential increase in complexity due to the large number of possibilities, the decoder

consists of two dynamic programming steps. First, we use Needleman–Wunsch algorithm

[82] to find the highest score for each edge at every stage where potential deletions are taken

into consideration. Second, Viterbi algorithm [35] is used to obtain the best path given the

edge scores. Information is then decoded from the best path.

Viterbi algorithm. We apply Viterbi algorithm to find the best path for the given edge

scores.

Figure 4.6 shows the stages in Viterbi algorithm. Each stage has NS states and each state

has 4p outgoing edges to the next stage. The edges between two stages correspond to the

same transitions as the labeld graph Gs. Each edge is associated with a score corresponding

to the posterior probability to be discussed later. For state Si at a stage, we compare the

scores of all its incoming paths and keep the one with the highest score.
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Figure 4.6: Viterbi algorithm. The wrong path converges back to the correct state after two
stages.

Errors might happen during this process when a wrong edge has a higher score than the

correct edge at some stage. However, after a few stages the wrong path is likely to accumulate

more and more errors unless it converges to the correct state. When the signal noise is

moderate, simulation confirms that Viterbi algorithm does not propagate the error. An

example is shown in Figure 4.6. In Stage i+ 2, the optimal edge into State S3 is the wrong

(red) one due to an erroneously high score of the red edge in Stage i + 1. However, the

correct (green) edge in Stage i+ 3 is found regardless of the previous errors.

We note that Viterbi algorithm has been used in several works for nanopore base-calling.

Timp et al. [115] uses Viterbi algorithm to decode the current signal from 3-base-pair-

resolution nanopore electrical measurement. The work by Chandak et al. [15] uses viterbi

algorithm as an error correcting decoder which enables the basecaller to directly work on

the soft information. David et al. [27] builds a basecaller where Viterbi decoding is applied

to find the 6-mer as the hidden state.

Needleman–Wunsch algorithm. Viterbi algorithm requires a score for each edge, for

instance hamming distance under the hard decoding model. To correct deletion errors, we

apply Needleman–Wunsch algorithm [82], which is a global sequence alignment algorithm.

To accommodate the soft information (analog current signal), we design the scoring system

based on posterior probabilities.
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Consider one edge e in Figure 4.6 between two stages. Let x̂ ∈ {A,C,G, T} be the potential

present codeword symbol to be scored. Let y ∈ R denote the current signal for the present

digit. Notice that due to possible deletions, the present digit can vary for different edges.

Denote by “prefix” the previous 5 codeword symbols, only with which can we decide the

Gaussian distribution of the signal under our 6-mer model. Initially, prefix is the last 5

codeword symbols corresponding to the source state of e. After that, prefix is updated by

one symbol at a time according to the alignment.

The posterior probabilities without and with deletion are then

Pr(x̂, no del|y, prefix)

=
f(y|prefix, x̂)P (x̂|prefix)(1− ε)

f(y|prefix)
, (4.4)

Pr(x̂, del|y, prefix) = εP (x̂|prefix), (4.5)

where ε is the deletion error rate, f(y|prefix, x̂) is the Gaussian density function for the 6-mer

(prefix, x̂), and P (x̂|prefix) is the transition probability of the present digit computed from

the labeled graph Gs, assuming all 4p out-going edges from one state are equally likely.

Figure 4.7 shows the Needleman–Wunsch algorithm. For 0 ≤ j ≤ i ≤ q−1, the (i, j)-th score

sc(i, j) in the diagram can be calculated from its diagonal neighbor’s score sc(i − 1, j − 1)

and the probability in (4.4), or its vertical neighbor’s score sc(i−1, j) and the probability in

(4.5). If the former score is larger, we say there is no deletion error. Otherwise, there is one

deletion. Note that the vertical neighbor does not exist if i = j. The yellow path in Figure

4.7 shows the alignment with the largest score. We can see that there is one deletion error

at the last digit.

To simplify the algorithm, we observe that 1 − ε ≈ 1, and P (x̂|prefix) ≈ 1/4 can be both
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Figure 4.7: Needleman–Wunsch algorithm for output edge label GATCC with prefix
AAAAA. The numbers on the top represents the current signal. The DNA sequences on
the left means the current 6-mer. The rows and columns are indexed from 0 to q − 1 = 5.

discarded in (4.4) and (4.5). In particular, the deletion score (4.5) becomes ε, and the no-

deletion score (4.4) becomes f(y|prefix,x̂)
f(y|prefix)

. Denote by pi,j the no-deletion score computed from

f(y|prefix,x̂)
f(y|prefix)

on the (i, j)-th entry in Figure 4.7. The following theorem presents a new score

and the proof is shown in supplemental material.

Theorem 4.1. Define a new score sc′(i, j) as:

sc(i, j)

=


sc(i, 0) = εi, 0 ≤ i ≤ q − 1, j = 0,

sc(i, i), i = j,

max{sc′(i− 1, j − 1)pi,j, sc
′(i− 1, j)}, i > j.

(4.6)

Then under the approximations 1− ε ≈ 1, and P (x̂|prefix) ≈ 1/4, the score satisfies

sc(i, j) = sc′(i, j)εi−j. (4.7)

Since the highest edge score is chosen among the last row in Figure 4.7, and ε is multiplied i

times in the (q− 1− i)-th column and the last row, for 0 ≤ i ≤ q− 1, we can just update the

new score sc′(i, j) according to Theorem 4.1 and multiply εq−1−i in the last row. The powers
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of ε can be pre-computed and hence this simplified algorithm roughly halves the number of

multiplications.

Multi-path Viterbi decoder. When the variance of the additive Gaussian noise becomes

larger, simulation shows that the error rate will dramatically increase even with a small

deletion rate. This is because the Gaussian noise causes false positive detection of deletions

in the Needleman-Wunsch algorithm. To solve this issue, we improve the Viterbi decoder by

saving multiple paths instead of one optimal path. The method is also know as list decoding,

which is proven to be effective to improve the accuracy of Viterbi Algorithm [100, 85].

Decoding. Our decoder first obtains the maximum a posteriori codeword using dynamic

programming explained above. After that, the input/output labels on the optimal path are

read out as information/codeword.

1. For each stage, run Needleman–Wunsch algorithm to obtain the edge scores, and

Viterbi algorithm to obtain the incoming edge with the highest score for every state,

given the current signal y = (y1, y2, . . . ).

2. In the final stage, select the state with the highest score. Back track across all stages

to find the optimal path.

3. For each edge on the optimal path, obtain the codeword (xjq+1, xjq+2 . . . , xjq+q) and

the information (ijp+1, ijp+2, . . . , ijp+p), for Stage j = 0, 1, . . . .

Besides Viterbi decoder, a direct decoder with lower complexity can be applied to decode

constrained codes, where at each stage the q-symbol codeword is directly decided by the

q-symbol current signal. However, to uniquely determine the information, some delay may

be introduced due to state splitting. This is captured by the notation of anticipation and

methods to decrease anticipation are discussed in supplemental material.
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4.3 Accuracy of Viterbi Decoder

We test the Viterbi decoder under additive Gaussian noise and random deletion errors. Here,

deletion errors consists of mostly skipping errors but also the residual synchronization errors

after constrained coding, and are assumed to be independent and identically distributed for

each 6-mer. We employ the 6-mer model in [113], but control the strength of the Gaussian

noise as follows. We keep the mean of the 6-mer unchanged, but multiply every variance by

a constant between 0 and 1, called the variance factor. The variance factor can be thought

as the result of increasing the read depth. In particular, let Y ∼ N(µ, σ2) be the Gaussian

random variable for some 6-mer. If the 6-mer is sequenced M times independently, we get

M independent and identically distributed samples of Y , whose average follows the Gaussian

distribution N(µ, σ
2

M
). Under this simple model, the variance factor is inversely proportional

to the read depth.

Our simulation results are shown in Figure 4.5. In the experiments, the constrained codes are

choose from Table 4.2 and the codeword length is set to be around 500. Figure 4.5.a shows the

symbol error rate with no deletion and different Gaussian variance factors. A higher threshold

t in (4.2) reduces the capacity, but leads to a higher redundancy and hence potentially better

error correction. The result combined with Table 4.1 shows that a threshold of t = 5 gives

almost 5X better symbol error rate and 1.36X better synchronization error rate compared

to t = 3 at the expense of only 7.3% loss of capacity.

Figure 4.5.b shows the simulation results with deletion error rate from 1% to 5% and the

variance factor 0.2. The result shows that t = 5 gives almost 3X better error rate compared

to t = 3. Meanwhile, three-path Viterbi decoder improves the error rate by 10X to 100X.

The gain of the multi-path decoder becomes more noticeable as the deletion rate increases.

Figure 4.5.c shows the simulation results where the deletion error rate equals 1% and the

variance factor varies from 0.2 to 0.5. We can see that high variance causes very poor error
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rate when considering deletion errors. As discussed in Section 4.2.4, this is because high

variance causes more false positive deletion errors. We can solve this issue by applying

multi-path Viterbi decoder, which gives us more than 10X better error rate.

4.4 Discussion and Future Work

Comparison with deletion correction codes. General deletion correction code still has

a large gap between the lower bound and the explicit constructions in terms of redundancy.

As a result, we only consider the simple case where single-deletion correction codes are

used. Grigory Tenengolts [114] proposes nonbinary codes that can correcting single deletion

or insertion. Its best known redundancy is n̄ − log4( q
n̄

qn̄
) where n̄ is the block size of the

code. Next, we construct a code with a similar rate and length as our 4/5 constrained code.

Assume now we set codeword length n = 512 and partition it into blocks of size n̄ = 16.

There will be 3 redundant symbols per block. The code rate is 81.25% which is close to our

4/5 constrained code. However, the deletion correction code can only tolerate 1 deletion in 16

symbols. Consider the raw deletion rate of 1.76% from Table 4.1. Each 16-symbol block has

2.89% chance to have more than 1 deletions, resulting in a failure of deletion correction. For

the overall 32 blocks the failure rate will be over 60.9%, which is apparently unacceptable.

If we further would like to correct a substitution error, we need to use single-deletion single-

substitution code. Its best known redundancy is 10 log2(n) + 17 [106], resulting in a rate of

78.7% for n = 500 which is slightly worse than our 4/5 constrained code. However, this code

only corrects either one deletion or one substitution. From Table 4.1, the expected number

of extra deletions between no coding and t = 5 is (1.76 − 0.75)% × 500 = 5.05. Therefore,

constrained code is far more efficient in removing synchronization errors.

Combination with error correction. It should be noted that although constrained codes
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can lower the deletion error rate and reduce the symbol error rate using Viterbi decoder, it is

not designed specifically to correct errors. In fact, error correction codes can be concatenated

with constrained codes [77] to further improve the reliability of DNA storage. For example,

the standard concatenation is to let the information first be encoded by an error-correction

code and then a constrained code and vice versa for decoding. Moreover, for multi-path

Viterbi decoder, it is beneficial to add a layer of error correction in order to select the

correct path among the multiple candidates.

Given the deletion insertion and substitution rates, the optimal choice of error correction

code and/or constrained code remains an interesting open problem.

4.5 Conclusion

In conclusion, we present constrained codes for nanopore sequencing in order to limit the

synchronization errors. Our encoder improves the state splitting algorithm and achieves a

relatively small number of states. Our decoding algorithm uses Viterbi algorithm based on

the labeled graph of the constrained code, which makes the code capable for error correc-

tion. Simulation result shows that the constraints can reduce the synchronization errors and

the proposed decoder is effective in limiting errors caused by additive Gaussian noise and

deletions.
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Chapter 5

Communication Efficient and

Straggler Robust Clock

Synchronization

5.1 introduction

Clock synchronization is broadly used in distributed systems for many network and database

applications [118, 59]. To achieve the increasing performance requirements of those appli-

cations, the state-of-the-art techniques have improved the synchronization accuracy to mi-

crosecond or even nanosecond level [40, 42, 93, 66]. As a result, there is a higher requirement

on speed and stabilization for the implementation of the synchronization techniques. For

example, the long information transaction during the implementation will significantly affect

the accuracy of the synchronization [40]. Our work, from coding theory prospective, inves-

tigate an efficient way to collect and calculate the information for the clock synchronization

problem.
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Most research on the clock synchronization problem in a distributed system focuses on two

aspects, two-clock synchronization and multiple-clock synchronization for a whole graph con-

sensus. The two-clock synchronization addresses the reduction of one-way delay between two

servers which is raised by multiple factors such as path length, temperature and fluctuations

of switch times. Several protocols and algorithms are designed for this issue. The multiple-

clock synchronization uses the information from the whole network to generate approximate

global time [61] of the system [40, 63, 72, 107, 73].

Among the latest multiple-clock synchronization algorithms, HUYGENS [40] enables delay-

sensitive applications by achieving an accuracy of tens to hundreds of nanoseconds. To obtain

one-way delay, or clock time discrepancy, between a pair of connected servers, HUYGENS

proposes a coded probe filter to purify the training data and uses support vector machines

(SVM) [86] to estimate the synchronization time between two clocks. Then, it develops a

loop-wise algorithm to eliminate the asymmetric mistakes between multiple loops.

To implement HUYGENS algorithm, each server node exchanges time information with

its neighbouring nodes, and then all server nodes send information to a master node who

runs the synchronization algorithm. As the clocks drift constantly, it is essential to ensure

timely communication between the servers and the master to guarantee the synchronization

accuracy. In this work, we focus on how to optimize the information transfer in this network

from coding prospective.

We summarize HUYGENS algorithm [40] as follows: The network is described by the graph

G = (V,E), where V represents server nodes, and E is the set of edges. Each edge is associated

with a weight representing the time discrepancy, also called the edge information. Every node

only knows the edge information of its incident edges. A master wants to collect all the edge

information and compute a particular linear function of such information.

Based on the above algorithm, we raise a new coding problem: assuming each server can
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linearly code its edge information, what is the fundamental limit on the communication cost

from the servers to the master, and can we achieve the optimal cost?

This problem is closely related to the network computing problem where source nodes in a

directed acyclic graph generate independent messages and a single master node computes a

target function of the messages [3, 4, 126, 2, 53, 46]. In general, network computing considers

arbitrary graphs and arbitrary target functions. Some upper bounds are proposed based on

the min-cut bound. Our clock synchronization problem can be regarded as the special case

of network computing, i.e., computing linear functions by linear coding over a particular

graph. Suppose there are |E| sources, each holds the time discrepancy. Each server node

is regarded as the intermediate node in the graph that receives the information from the

sources and sends information to the master. The target function of clock synchronization

is a linear function of the time discrepancy. Appuswamy et al. investigate linear function

computing over networks [2]. They focus on the converse bound and formulate an algebraic

test to determine whether an arbitrary network can compute linear functions using linear

codes.

In this work, we attempt to find the optimal solution for the clock synchronization problem.

Our contributions consist of three parts. First, for the case where each time discrepancy is

known by both incident servers, we propose a novel coding scheme that achieves the best

rate. It is interesting that our scheme can also tolerance a straggler (slow or failed server)

with no extra cost. Second, for the case where each time discrepancy is known by only one

of the incident servers, we show that the optimal solution is the trivial solution, i.e., sending

all the time discrepancy information to the master. At last, we design an algorithm for the

rest of the scenarios. Our algorithm outperforms the trivial solution and is optimal for some

cases.

Notation: We use calligraphic characters to denote sets and bold characters to denote matrix.

For positive integer N , [N ] stands for the set {1, 2, . . . , N}. For a set S, |S| represents its
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cardinality.

5.2 Problem Statement

We first review the concept and HUYGENS algorithm of clock synchronization [40]. Then,

we introduce our communication model for the algorithm.

5.2.1 Clock synchronization

HUYGENS algorithm [40] first implements the pair-wise synchronization algorithm between

two neighboring server clocks. It then builds a synchronization algorithm that considers the

whole network effect.

Let G = (V,E) be the server network with server nodes V and communication links (edges)

E. For convenience, every edge has a predefined direction. The edge from Node U to Node

V is denoted as UV , for U, V ∈ V.

In the first step of HUYGENS algorithm, the edge information, or the time discrepancy, is

agreed between every pair of adjacent nodes. We assume the edge information is only known

by one or both of the two incident nodes. The edge information for Edge UV is denoted as

lUV . In Figure 5.1.a, for example, Servers A and B both believe that B’s time is 20 time

units earlier than A and the time discrepancy lAB = 20 is only known by Node A and/or

Node B. In Figure 5.1.a, the original time discrepancy vector

∆P = [lAB, lBC , lCA, lBD, lDA]T = [20,−15, 5, 25,−15]T (5.1)

corresponds to the time discrepancy on directed edges AB,BC,CA,BD, and DA.
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Figure 5.1: HUYGENS algorithm. The figure is redrawn from [40].

However, notice that in the loop A → B → C → A, Server C is 5 time units later than A

and 15 time units later than B. Then B should be only 10 time units earlier than A. This

means that there are 10 time units loop-wise offset surplus, due to inaccuracy of the clock

measurement.

The second step of HUYGENS algorithm is to eliminate the loop-wise offset surplus in the

clocks network. It calibrates the original discrepancy vector ∆P to the final time discrepancy

vector

∆F = [10,−15, 5, 15,−25]T

as shown in Figure 5.1.b. The transformation from ∆P to ∆F is explained below.

Remark. From the example above, we see that if the graph G has several connected com-

ponents, then the loop-wise surplus can be eliminated for each component independently.

Moreover, if some nodes are not included in any loops, they can be ignored during clock

synchronization. Therefore, we assume G is connected and all nodes are in loops without

loss of generality.

Given a server network graph G, denote A as the loop-composition matrix. Each column of

A represents an edge and each row represents a loop. The columns of A are indexed by the

edges. The rows are indexed by the largest set of linearly independent loops in G. If an edge

occurs in a loop, directly or reversely, the corresponding entry in A is 1 or −1; otherwise,
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the entry equals 0. For a connected graph, matrix A has full row rank:

rank(A) = |E|+ |V| − 1. (5.2)

For example, in Figure 5.1, let the 5 columns of A be indexed by edges AB,BC,CA,BD,DA.

The three loops A→ B → C → A, A→ B → D → A, and A→ C → B → D → A can be

denoted respectively by the three rows below:



AB BC CA BD DA

1 1 1 0 0

1 0 0 1 1

0 −1 −1 1 1

. (5.3)

The last row (loop) is dependent on the first two, and hence the loop-composition matrix is

A =


AB BC CA BD DA

1 1 1 0 0

1 0 0 1 1

. (5.4)

The vector Y = A∆P gives the original loop-wise surplus in each independent loop of A. In

order to apply the loop-wise correction, we look for a vector N which also solves Y = AN

and posit the correction to be ∆F = ∆P −N. As a result, the final loop-wise surplus vector

is A∆F = 0. Now, A has full row rank, since the loops are all linearly independent. Further,

since the number of linearly independent loops in G equals |E| − |V| + 1 which is less than

|E|, the equation Y = AN is under-determined and has multiple solutions. We look for the

minimum-norm solution since this is most likely the best explanation of the errors in the
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loop-wise surpluses:

min
N:Y=AN

||N||2. (5.5)

Since the pseudo-inverse is well-known to give the minimum-norm solution [94]:

N = A−1
rightY = AT (AAT )−1A∆P , (5.6)

where the A−1
right is the right pseudo-inverse of A[87], HUYGENS algorithm can be concluded

in the following formula:

∆F = ∆P −N = (I−AT (AAT )−1A)∆P , (5.7)

where I is a |E| × |E| identity matrix. Since both A and I are determined by the known

graph structure, we can simplify Equation (5.7) by defining

B = I−AT (AAT )−1A. (5.8)

Then we have

∆F = B∆P . (5.9)

It can be easily checked that the final time discrepancy in Figure 5.1.b satisfies (5.9).

5.2.2 Communication model.

As proposed by HUYGENS, the calculation of Equation (5.9) is run on a master [40]. Assume

each edge information is known by one or both incident server nodes, and each server node
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can linearly code its known edge information. We aim to minimize the communication cost

(CC), defined as as the number of symbols communicated from all the server nodes to the

master node, such that (5.9) can be calculated.

Trivial scheme. We can see that HUYGENS algorithm relies on ∆P which is gathered

from every pair of neighboring nodes. To obtain ∆F , a trivial solution is for each edge,

one of the incident nodes should send the information to the master. In this scenario, the

communication cost is CC = |E| symbols.

To motivate the general communication scheme, let us consider the matrix B in Figure 5.1’s

example,

B =



0.5 −0.25 −0.25 −0.25 −0.25

−0.25 0.625 −0.375 0.125 0.125

−0.25 −0.375 0.625 0.125 0.125

−0.25 0.125 0.125 0.625 −0.375

−0.25 0.125 0.125 −0.375 0.625


. (5.10)

In this case, rank(B) = 3. It means that the potential optimal communication cost is 3

symbols. If every clock knows all the time discrepancies, it is obvious that the communication

cost CC = 3 because one node can calculate 3 (row) bases of B, denoted by B1,B2,B3,

and send to the master B1∆
P ,B2∆

P ,B3∆
P . The master can obtain ∆F = B∆P from

B1∆
P ,B2∆

P ,B3∆
P .

However, each node only has the information of edges that are connected with it. Then, is

it possible to achieve the potential optimal communication cost of rank(B)? We will answer

this question affirmatively if the edge information is known by both of the incident nodes.

Next, we describe an equivalent matrix representation of any linear communication scheme,

and define the corresponding communication cost. For any graph G = (V,E), consider a
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matrix

X′ ∈ R|V|×|E|, (5.11)

whose rows are indexed by the nodes and columns are indexed by the edges. The entry

in Row U ∈ V and Column e ∈ E equals 0 if Node U does not have the time discrepancy

information of Edge e. Otherwise, the entry can be set as any value. Denote by xU the

row corresponding to Node U . If Node U transmits a symbol to the master, it must be in

the form of xU∆P . The overall transmitted symbols must be in the form of X∆P , where

rows of X are chosen from rows of X′ (a row may be chosen multiple times but the non-

zero entries can be set differently). Finally, the master obtains B∆P = MX∆P for some

transformation matrix M. The communication scheme consists of the matrices X and M,

such that B = MX. The communication cost equals the number of rows in X.

5.3 Communication-efficient Clock Synchronization

In this section, we show our main results for the communication cost under three cases: the

edge information is known by 1) both incident nodes, 2) one incident node, and 3) either

one or two incident nodes.

For the first case, we claim that the minimum potential communication cost rank(B) is

achievable.

Theorem 5.1. For any connected graph G = (V,E), if every node has all its edges infor-

mation, there exists an optimal solution where all but one node sends one symbol, and the

desired B∆P is recovered at the master. The total communication cost CC = rank(B) =

|V| − 1.
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For our purpose, in the matrix X′ described in (5.11), row

xU , U ∈ V, (5.12)

is defined such that each column (edge) starting from U has entry 1, each column going to

U has entry −1, and other columns are 0.

We first demonstrate Theorem .1 using the example in Figure 5.1. It can be checked that

the following communication scheme satisfies B = MX:

M =



0.25 −0.25 0

−0.125 0.125 −0.5

−0.125 0.125 0.5

0.375 0.625 0.5

−0.625 −0.375 −0.5


, (5.13)

X =


xA

xB

xC

 =



AB BC CA BD DA

1 0 −1 0 −1

−1 1 0 1 0

0 −1 1 0 0

. (5.14)

The transmitted symbols are

X∆P =


lAB − lCA − lDA

−lAB + lBC + lBD

−lBC + lCA

 =


30

−10

20

 . (5.15)

This means that we let Nodes A,B,C send a linear combination of the time discrepancies of
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all their neighbouring edges. In total, the communication cost is 3 = |V| − 1 symbols which

equals to the potential optimal communication cost rank(B). After the master receives these

symbols, it can get ∆F = MX∆P = [10,−15, 5, 15,−25]T .

In fact, for [xA
T ,xB

T ,xD
T ]T , [xA

T ,xC
T ,xD

T ]T , [xB
T ,xC

T ,xD
T ]T , we can also find the corre-

sponding M. In general, it is sufficient to have any |V| − 1 nodes send coded information to

the master. Therefore, this scheme tolerances 1 straggler.

The proof of Theorem .1 is broken into several steps. We first show a rank condition in

Lemma 1. Then we show the achievability in Lemma 2 and the converse in Lemma 3.

Lemma 1. Let E ∈ Cm×n,F ∈ Cn×p be two matrices such that EF = 0, and the null space

of E lies in the column span of F. Then

rank(E) + rank(F) = n. (5.16)

Proof. Since null space of E is in the column span of F,

n− rank(E) ≤ rank(F). (5.17)

On the other hand, the rank of the product of E, F satisfies Sylvester inequality:

0 = rank(EF) ≥ rank(E) + rank(F)− n. (5.18)

Combining (5.17) and (5.18) we see the lemma is proved.

Define a loop set to be a set of loops. We allow disjoint loops as well as loops with common

edges. Define the corresponding loop vector y of length |E| to be a column vector that lists

the number of times (with signs) each edge appears in the loop set, which are called the

weights of the edges. The negative sign means that the edge is in reverse direction. For
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example, in Figure 5.1, {A → B → C → A,A → B → D → A} is a loop set. The loop

vector is

AB BC CA BD DA

(2 1 1 1 1)T .
(5.19)

The weight of AB is 2, and the weight of BC is 1, etc. For each loop vector, there can be

multiple associated loop sets. By the definition of the loop-composition matrix A, a loop

vector is a vector in the column span of AT .

Lemma 2. Let X be the matrix of size (|V|−1)×|E|, and its rows be any |V|−1 rows from

(5.12). Then, B = MX for M = BXT (XXT )−1 = XT (XXT )−1.

Proof. We first show BT is in the column span of XT , and hence B = MX for

M = BX−1
right, (5.20)

where X−1
right is the right preudo-inverse of X. Then we find the formula for M.

Assume a is any column of AT , which corresponds to a loop. Let xU be the row vector

as in (5.12) for Node U , whose ±1 entries corresponds to all incident edges of Node U . If

the loop does not pass Node U , then there is no overlap edges in xU and a. In this case,

xUa = 0. Otherwise, every time the loop passes Node U , exactly one edge goes into node U ,

and exactly one edge goes out from node U . In this case, we also have xUa = 0. Therefore,

XAT = 0.

Now let us prove rows of X are linearly independent. Consider a vector y in the null space

of X, i.e., Xy = 0. We show y is a loop vector. Since xUy = 0, for any Node U , the sum

weight in y for Node U ’s incoming edges equals the sum weight of its outgoing edges. By

Veblen’s theorem [9], a directed graph admits a decomposition into directed cycles if and

111



only if the sum weight of the incoming edges equals the sum weight of the outgoing edges

for every node. Therefore, y must be a loop vector, which is in the column span of AT .

Combining the fact that XAT = 0, we use Lemma 1 and (5.2) to conclude that

rank(X) = |E| − rank(A) = |V| − 1, (5.21)

which equals to the number of rows in X.

Since matrix A of size (|E| − |V| + 1) × |E| is full row rank, its null space has dimension

|V| − 1. Due to AXT = 0 and (5.21), we known the null space of A equals the column span

of XT . Moreover, consider B as defined in (5.8),

BAT = AT −AT (AAT )−1AAT = AT −AT = 0. (5.22)

Therefore, BT is in the null space of A, and hence is in the column span of XT . Thus,

Equation (5.20) holds.

Finally, since X is full rank, we apply the pseudo-inverse formula to get

M = BX−1
right (5.23)

= (I−AT (AAT )−1A)XT (XXT )−1 (5.24)

= XT (XXT )−1. (5.25)

In the last step, we used AXT = 0.

Lemma 3. rank(B) = |V| − 1.

Proof. We will show the null space of BT is in the column span of AT, and BTAT = 0 so
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as to use Lemma 1. In that case,

rank(B) = |E| − rank(A) = |V| − 1. (5.26)

First,

AB = A−AAT (AAT )−1A = A−A = 0, (5.27)

and thus BTAT = 0. Second, let y be any vector in the null space of BT , namely, yTB = 0.

Then

yT = yT I = yT
(
B + AT (AAT )−1A

)
=
(
yTAT (AAT )−1

)
·A, (5.28)

which belongs to the row span of A. Namely, y is in the column span of AT .

Proof of Theorem .1. We can see that the scheme in Lemma 2 has a communication cost of

CC = rank(X) = |V| − 1, matching the minimum potential cost of rank(B) in Lemma 3.

Therefore, Theorem .1 is proved.

We notice that in our optimal scheme, only |V| − 1 nodes transmits one symbol, and we can

tolerate 1 straggler.

Lemma 4. Let X′ contain all |V| rows as in (5.12). If the master obtains X′∆P , then it can

perform row operations to get B∆P . Moreover, rank(X′) = rank(B) = |V| − 1.

Proof. From Lemma 2, it is obvious that X′, which includes all rows of X, can be transformed

into B by row operations.
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By the same argument as Equation (5.21), one can show that X′AT = 0, and the null space

of X′ is in the column span of AT . By Lemma 1 and Lemma 3

rank(X′) = |E| − rank(A) = |V| − 1 = rank(B). (5.29)

In general, notice that X′ is the incidence matrix of graph G, its rank is

rank(X′) = |V| − n, (5.30)

where n is the number of connected components of G [6, Prop. 4.3].

The above lemma indicates that the master’s desired information B∆P can be equivalently

represented by X′∆P . From now on, the desired dimensions refers to either B or X′ inter-

changeably.

Next, we consider the cases where the edge information is known by one or both of the

incident nodes. We will state in Lemma 5 a converse of the communication cost, whose

proof directly follows from the min-cut bound of linear network computing [2].

To that end, define E(U) as the set of the edges which are in E and known by Node U ,

for U ∈ V. For a set of nodes U ⊆ V, define E(U) as the set of the edges known by

Nodes U. Denote matrix X′E(U) as the sub-matrix of X′ obtained by choosing the columns

corresponding to the edges in E(U). It represents the master’s desired dimensions restricted

to information known by U . Sub-matrix X′E(U) is similarly defined.
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For example, in Figure 5.1,

X′ =



xA

xB

xC

xD


=



AB BC CA BD DA

1 0 −1 0 −1

−1 1 0 1 0

0 −1 1 0 0

0 0 0 −1 1


. (5.31)

Assume the edge information symbols lAB, lCA, lDA are known by Node A. Then the desired

dimensions known by node A is

X′E(A) =



AB CA DA

1 −1 −1

−1 0 0

0 1 0

0 0 1


, (5.32)

which contains a diagonal matrix (ignoring the first row) and has full rank 3. It can be easily

seen that for any Node U ∈ V, X′E(U) always contains a diagonal matrix and is full rank:

rank(X′E(U)) = |E(U)|. (5.33)

Lemma 5 (Min-cut bound.). Denote CCU the communication cost from Server U . The

total communication cost satisfies

CC ≥ min
∑
U∈V

CCU , (5.34)

s.t.
∑
U∈U

CCU ≥ rank(X′E(U)), for all U ⊆ V. (5.35)
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For example, if we choose U = V in (5.35), we get the aforementioned communication cost

bound CC ≥ min
∑

U∈VCCU ≥ rank(X′) = rank(B).

The following theorem states that when each edge information is known by only one node,

the trivial scheme is optimal.

Theorem 5.2. For graph G = (V,E), if each edge information is only known by one of its

incident nodes, the optimal solution for the master to obtain the desired B∆P is to send all

the edge information individually. The total communication cost is CC = |E|.

Proof. The achievability is obvious. We only need to show the converse, i.e., CC ≥ |E|.

The communication cost of any Node U must satisfy

CCU ≥ rank
(
X′E(U)

)
= |E(U)|, (5.36)

based on the min-cut bound with U = {U} in (5.35) and Equation (5.33). The total com-

munication cost

CC ≥ min
∑
U∈V

CCU (5.37)

≥
∑
U∈V

rank
(
X′E(U)

)
(5.38)

=
∑
U∈V

|E(U)| (5.39)

= |E|, (5.40)

where the last equality holds since each edge is only known by one node.

Finally, let us consider the case where each edge information is known by either one or both

incident nodes. We say the time discrepancy information on an edge is singleton if it is
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known by just one node.

We provide an achievable scheme in Algorithm 5. It trivially sends singletons to the master,

and removes the corresponding edges. Call the remaining graph H, Then it solves the

remaining desired dimensions on graph H as in Lemma 2.

Algorithm 5 Algorithm for graph G = (V,E), where some edge information are singletons.

1: Send the singletons directly from the corresponding servers. Let Es be the corresponding
edges.

2: Let H be the graph (V,E\Es).
3: Let n be the number of connected components of H.
4: Let X′ be as in (5.12) for graph H. Let X be |V| − n rows of X′ such that one row is

excluded from X′ for each connected component.
5: Let M = XT (XXT )−1.
6: Use the communication scheme X,M.
7: Combine the singletons and MX∆P to obtain B∆P .

The following lemma is straightforward from the algorithm.

Lemma 6. Let m be the number of singletons. Let n be the number of connected compo-

nents of H. Algorithm 5 achieves communication cost of CC = |V| − n+m.

Algorithm 5 is optimal for certain cases. For example, in Figure 5.1, let E(A) = {AB,CA},

E(B) = {BD,BC}, E(C) = {CA}, E(D) = {DA,BD}. There are m = 3 singletons, i.e.,

lAB, lDA, lBC . After removing the singleton edges, the graph H consists of all the 4 nodes but

only 2 edges C → A and B → D. Then H contains n = 2 connected components, such that

the first component contains Nodes A,C, and the second component contains Nodes B,D.

The communication cost of Algorithm 5 is CC = |V| − n + m = 5. On the other hand, set
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U = {A,C} and U = {B,D} in (5.35),

X′E({A,C}) =



AB CA

1 −1

−1 0

0 1

0 0


, (5.41)

X′E({B,D}) =



BC BD DA

0 0 −1

1 1 0

−1 0 0

0 −1 1


. (5.42)

We obtain the lower bound

CCA + CCC ≥ rank
(
X′E({A,C})

)
= 2,

CCB + CCD ≥ rank
(
X′E({B,D})

)
= 3,

CC ≥ min
∑
U∈V

CCU ≥ 5.

Therefore, the algorithm gives the optimal communication cost in the example.

In general, we have the following sufficient condition for Algorithm 5 to be optimal.

Theorem 5.3. Algorithm 5 is optimal under the following condition: H contains n ≥ 2

connected components, each component has more than 1 nodes, every singleton edge is

between different components, and singleton edges known by distinct nodes in one component
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are not connected.

Proof. We show that the cut-set bound matches the communication cost in Lemma 6. Let

Vi,Ei be the nodes and edges in the i-th connected component of H, and E′i the singleton

edges known by Vi, 1 ≤ i ≤ n. Then, the edges known by the i-th component is E(Vi) =

Ei ∪ E′i. Set U = Vi in (5.35),

X′E(Vi)
=


Ei E′i

Vi X1 ∗

V\Vi 0 X2

, (5.43)

where we list rows (nodes) in the i-th component on the top. The matrix ∗ is not of interest.

Matrix X1 is the matrix X′ as in (5.12) for the graph (Vi,Ei), whose rank is |Vi| − 1.

Matrix X2 corresponds to the singletons known by the i-th component. Due to the given

condition on the singletons in the theorem, the subgraph induced by edges E′i is simply several

disconnected star graphs (one center node connected to other nodes), where nodes in the

i-th component are the centers. Hence, it can be seen that X2 it is a diagonal block matrix,

and every block corresponds to one star. Since X2 does not include the rows corresponding

to the center nodes in Vi, by (5.30) each block is full rank, which equals to the number of

vertices in the star minus 1, or the number of edges. Overall, the diagonal block matrix

satisfies rank(X2) = |E′i|. Therefore, the cut-set bound gives

∑
U∈Vi

CCU ≥ rank(X′E(Vi)
) = |Vi| − 1 + |E′i|. (5.44)
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The communication cost satisfies

CC ≥ min
∑
U∈V

CCU (5.45)

= min
n∑
i=1

∑
U∈Vi

CCU (5.46)

≥
n∑
i=1

(|Vi| − 1 + |E′i|) (5.47)

= |V| − n+m. (5.48)

5.4 Discussion

Besides the clock synchronization, the idea of this work may have other applications. For

example, given pairwise evaluations by customers for how much more one item is worth

than another, our method can give a communication-efficient global evaluation of all values,

subject to minimum norm perturbation.
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Chapter 6

Conclusion

In this dissertation, we focus on the the source coding and channel coding from coding theory

in the data storage and network. Specifically, we investigate the data compression problem in

security analysis, information error correcting code in DNA storage and the communication

efficiency in clock synchronization problem.

6.1 Source coding in data compression for security anal-

ysis

Causality analysis reconstructs information flow across different files, processes, and hosts to

enable effective attack investigation and forensic analysis. However, it also requires a large

amount of storage, which impedes its wide adoption by enterprises. Our work shows the

concern about storage overhead can be eased by query-friendly compression. Comparing to

prior works based on data reduction, our system SEAL offers similar or better storage (e.g.,

9.81x event reduction and 2.63x database size reduction on DSind) and query efficiency

(average query speed is 64% of the uncompressed form) with guarantee of no false positive
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and negative in casualty queries. We make the first attempt to integrating the techniques in

the coding area (like Delta coding and Golumb coding) with a security application. We hope

in the future more security applications can be benefited with techniques from the coding

community and we will continue such investigation.

6.2 LDPC code in DNA storage

We present binary LDPC codes for DNA storage to combat asymmetric sequencing errors.

Our decoding algorithms utilize the extrinsic information exchange to accommodate the

dependency of the errors of the two bits in a nucleotide symbol. We demonstrate the desirable

performance of our codes in terms of bit error rate and decoding speed.

6.3 Constrained code in DNA storage

In conclusion, we present constrained codes for nanopore sequencing in order to limit the

synchronization errors. Our encoder improves the state splitting algorithm and achieves a

relatively small number of states. Our decoding algorithm uses Viterbi algorithm based on

the labeled graph of the constrained code, which makes the code capable for error correction.

Simulation result shows that the proposed decoder is effective in limiting errors caused by

additive Gaussian noise and deletions.
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6.4 Communication efficiency in clock synchronization

of distributed system

We study the problem of clock synchronization in arbitrary networks. We find the optimal

schemes for the two important cases where each time discrepancy is known by both adjacent

servers and by only one of the adjacent servers. For the former case, our scheme is also

straggler (slow or fail server) robust. For the rest of the cases, we propose an algorithm that

outperforms the trivial solution.
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Supplemental Material

Compression Ratio as a function of Average Degrees

In this section, we derive explicit expressions for the compression ratio. We show that the

compressed graph size is always smaller than the original size, though new vertices might be

introduced.

In a dependency graph G = (V,E), the number of vertices (nodes) is denoted by n = |V |,

and the number of edges is denoted by m = |E|. Recall that the edges are directed and

multiple edges (repeated edges) may exist from one node to another. For node v ∈ V ,

let its number of parent nodes be pv, and its number of incoming edges be mv. We have

m =
∑

v∈V mv. Moreover, denote by p =
∑

v∈V pv the total number of parent nodes for

all nodes in V . Therefore, p represents the number of edges of G after removing repeated

ones. Let Gundirected denote the undirected graph which is identical to G except that edge

directions are removed. Let Gsimple denote the simple graph obtained by removing the edge

directions and the repeated edges from G. The average degree of the graph Gundirected is

denoted by davg. Then,

davg =
2m

n
=

2
∑

v∈V mv

n
. (1)

The average degree of Gsimple is denoted by pavg, which is

pavg =
2p

n
=

2
∑

v∈V pv

n
. (2)

Denote by Sevent, Snode the event and node sizes before compression, and by S ′event, S
′
node the
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sizes after compression. They can be calculated by

Sevent =
∑
v∈V

mvCevent, (3)

S ′event =
∑

v∈V :mv>1

(
Cevent + 2mvC∆

)
+

∑
v∈V :mv=1

Cevent, (4)

Snode = nCnode, (5)

S ′node = nCnode + size map. (6)

Here Cevent = 105 (measured in bytes) is the size of all attributes of an event in the uncom-

pressed format. In our database, Cevent includes the sizes of starttime , endtime, agentid,

etc. C∆ is the delta-encoded data and separator size for each time entry, and the factor 2

reflects that two time attributes are recorded for every event. For most of the cases we have

observed, C∆ ≤ 4 bytes. Cnode is the size of one node entry in the uncompressed format,

including the size of nodeid, nodename, etc. Finally, size map is the node map shown in

table 2.2, and can be expressed as

size map =
∑
v∈V

CID(pv + 1). (7)

Here CID = 4 is the constant size required for each nodeid. The above size parameters

depend on the particular database attributes, and to allow for an arbitrary database design,

we use the general expressions instead of the particular sizes. In our experiments, Snode and

S ′node take a negligible fraction of the total storage. As a result, we ignore the node sizes in

the following calculations. However, an exact calculation can be carried out if the node size

is comparable to the event size.
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The difference between the original size and the compressed size is:

Sevent − S ′event (8)

=
∑

v∈V :mv>1

(
mv(Cevent − 2C∆)− Cevent

)
. (9)

It is obvious that the compressed size is always smaller than the original size if Cevent > 2C∆,

which is true in our deployment. The compression ratio can be expressed as

ratio =
Sevent
S ′event

(10)

≥
∑

v∈V mvCevent∑
v∈V

(
Cevent + 2mvC∆

) (11)

=
mCevent

nCevent + 2mC∆

(12)

=
davgCevent

2Cevent + 2davgC∆

(13)

Equation (11) holds because we remove the condition mv > 1 in the denominator, and thus

we obtain a lower bound on the ratio. In Equation (13) we multiply the numerator and the

denominator by 2
n

and used Equation (1). If the node size is also included, the ratio will also

depend on pavg defined in Equation (2).

Remark. 1) Let us call the dependency graph “incompressible” if its compression ratio is

lower than a given threshold. It is often unacceptable to compress graphs that are incom-

pressible. Therefore, our estimated compression ratio is a lower bound of the exact ratio

(e.g., the inequality of Equation (11)). 2) The discussion in Section 2.3.6 assumes that the

node map size is negligible. If it is not, we also need to estimate pavg. Note that pavg corre-

sponds to the average degree of the simple graph Gsimple, one can simply apply Algorithm 2

to H = Gsimple.
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Average Degree Estimator Evaluation

We measure the performance of the compression ratio (or average degree) estimator on our

dataset following Algorithm 2. We run the algorithm on 8 chunks, each containing 106

events. For each chunk, 20 independent trials are conducted. The parameters are chosen

to be θ = 10, pjump = 0.1, such that the estimation error is minimized for the chunks in

the experiment. We measure the mean squared error (MSE) between the estimated average

degree d̂ and the true average degree davg, averaged over all trials and all chunks in the

experiment. The results are shown in Figure 1. The MSE value has an obvious drop as the

sample size percentage grows up to 5% and quickly converges when the samples cover half

of the whole trunk. We then set 5% as the sample size.

Figure 1 also shows that our method has better accuracy compared to the naive estimator,

which estimates davg by directly calculating the average degrees of uniformly sampled nodes.

0% 10% 20% 30% 40% 50%

Sample Percentage

10 1

10 2

10 3

10 4

M
S

E

Proposed Estimator

Naive Estimator

Figure 1: The y axis is the mean square error distance between the estimated average degree
from the sampled data and the true average degree, averaged over all trials and all chunks
in the experiment. The x axis is the percentage of the sample.
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A Simple Model for the Synchronization Error Rate

While the synchronization error probability is different among base-calling algorithms, we

assume the following simple model to capture the fact that the synchronization error rate

increases with the similarity of adjacent current signals:

Pr(yi syn err|yi−1, yi) =
1

1 + e−k(|yi−yi−1|−d0)
. (14)

Here k0 > 0, d0 ≥ 0 are parameters dependent on the base-caller, controlling the steepness

and the midpoint of the curve, respectively. The overall synchronization error rate can be

computed as

Pr(syn err) =
∑

(xi−1,...,xi+5)

(
P (xi−1, . . . , xi+5)

×
∫ ∞
−∞

∫ ∞
−∞

f(yi−1|xi−1, . . . , xi+4)f(yi|xi, . . . , xi+5)

× Pr(yi syn err|yi−1, yi)dyi−1dyi.
)

(15)

Here P (xi−1, . . . , xi+5) is the probability the 7-mer occurs in a DNA codeword, which is 1
47

when there are no constraints and all nucleotide sequences are equally likely. And f(·|·) is

the probability density function of the Gaussian random variable.

We show the relation of synchronization error rate Pr(syn err) in (15) and the capacity

cap(C) in (4.3) with different t in Table 1. For a fixed t, our code is constructed from the

encoder described in Section 4.2.3. When applying Eq. (15), the term P (xi−1, . . . , xi+5) is

computed as the steady-state probability of the 7-mer assuming all the outgoing edges of

one state has equal transition probability. We set d0 = 0 in Eq. (14) to cover the most

effective base-callers. We also notice that different k0 has minor effect for Pr(syn err), so we

only show the result when k0 = 1. It can be seen from the table that one can reduce the
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synchronization error by one quarter at the expense of 12.7% capacity, when t is increased

from 1 to 5.

Table 1: The relation between the synchronization error rate and the capacity for different
threshold t.

t = 1 t = 3 t = 5 t = 8 t = 10

syn error rate 0.02502 0.02561 0.01872 0.01563 0.01063
symbol capacity 0.9726 0.9166 0.8494 0.7391 0.6338

Proof of Theorem 1

Proof. We prove the statement by induction on the row index.

Base case: It is easy to see that for j = 0 or j = i, sc(i, j) = sc′(i, j)εi−j.

Induction step: assume for rows i − 1, (4.7) holds. Then the score of the (i, j)-th entry

(for i > j) becomes

sc(i, j) = max{sc(i− 1, j − 1)pi,j, sc(i− 1, j)ε} (16)

= max{sc′(i− 1, j − 1)pi,jε
i−j, sc′(i− 1, j)εi−1−jε} (17)

= max{sc′(i− 1, j − 1)pi,j, sc
′(i− 1, j)}εi−j (18)

= sc′(i, j)εi−j. (19)

The proof is completed.
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Anticipation

When no deletions are considered, one can employ a direct constrained code decoder: Set the

initial state as u0, which is the same as the initial state of the encoder. For Stage j = 0, 1, . . . ,

given the q current signals (yjq+1, yjq+2, . . . , yjq+q), select the edge from uj whose output label

has the highest posterior probability, and set uj+1 as the corresponding destination state.

The direct decoder is optimal for every particular stage, but not for the entire sequence. It

is suitable when there are no deletions, and low complexity is required due to, e.g., limited

computing resources. However, certain cases cause ambiguity in decoding the information

unless the decoder “looks ahead” at several stages, as explained below.

In Figure 4.3.e, state splitting creates a pair of edges with the same output label CATCG

for S1. It brings a problem for the direct decoder: we can not know whether the input label

is AAAA or AAAT if the current state is S1 and the maximum a posteriori codeword is

CATCG. In this case, we have to check the next stage from both S2 and S ′2 to help identify

the correct input label. The number of stages to look ahead in order to determine the input

label is directly related to the delay and the complexity of the decoder, which is captured

by the notion of anticipation.

The anticipation of State u is defined as the smallest integer a(u) such that any two paths

starting from u of length a(u) + 1 and with the same output label must have the same initial

edge. In other words, we can determine the initial edge of a path if we know the initial state

u and the first a(u) + 1 output labels that it generates. The anticipation of the graph is the

largest anticipation of the states.

In our transforms of graphs in Figure 4.3, the anticipation remains 0 until spitting. In

particular, anticipation of a state possibly increases only when the child state is split. We

have the following bounds on the anticipation for every splitting step.
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Theorem .1. Let State v be any of the parents of State u. Let a(u) and a(v) be their

anticipation before splitting. After splitting State u, the new anticipation of v is bounded as

anew(v) ≤ max{a(v), a(u) + 1}. (20)

In order to prove the theorem, we introduce a few notations and formally present the state

splitting rule.

Notation. Suppose an edge e in the labeled graph is from state v to state u, then we write

e = (v, u). For some integer index i, let pi = (pi1, pi2, . . . , piN) be a path connecting edges

pi1, pi2, ..., piN .

State splitting rule:

• Let u be the state to be split. It is replicated into states u1, u2.

• Each incoming edge of u excluding self-loops is duplicated. Namely, e = (v, u), v 6= u,

is duplicated to be e1 = (v, u1), e2 = (v, u2).

• Let the outgoing edges of u be Eu and partition it as Eu = E1
u∪E2

u. For each outgoing

edge of u, e = (u, v) is changed to e1 = (u1, v) if e ∈ E1
u, or e1 = (u2, v) if e ∈ E1

u. The

superscript of e is 1 because the edge is not duplicated.

• For any remaining edge e, it is not changed. Denote by e1 the corresponding edge after

splitting.

• The label of e1 (and e2 if it exists) remains L(e), for any edge e.

Proof of Theorem 2. Let H be the graph before splitting state u, and H′ the graph after

one step of splitting.
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We prove the theorem by contradiction. Assume the anticipation anew(v) ≥ max{a(v), a(u)+

1} + 1. Then by the minimality of anticipation, there exist two paths in H′ from State v

of length N = max{a(v), a(u) + 1} + 1, and of identical labels but their initial edges are

different. Denote them as

p′1 = (pi11
11 , p

i12
12 , . . . , p

i1N
1N ),

p′2 = (pi21
21 , p

i22
22 , . . . , p

i2N
2N ),

where each edge p
i`,j
`,j corresponds to edge p`,j in H and some index i`,j ∈ {1, 2}, 1 ≤ ` ≤

2, 1 ≤ j ≤ N .

Consider the following two paths in graph H

p1 = (p11, p12, . . . , p1N),

p2 = (p21, p22, . . . , p2N).

It can be easily seen that the above are indeed paths in H by the splitting rule. They both

start from state v and are of identical labels. We will show they violate the anticipation of

state v or state u.

Since the initial edges are different, i.e., pi11
11 6= pi21

21 , there are two possible cases.

Case I. p11 6= p21. Thus, paths p1, p2 have different initial edges, but their length is at least

a(v) + 1, violating the anticipation of v.

Case II. p11 = p21, i11 6= i21. Assume without of generality that i11 = 1, i21 = 2. In this case,

the edge p11 = p21 must start from v and end at u. Hence, p12 and p22 must be outgoing

edges of u and must belong to different partitions: p12 ∈ E1
u, p22 ∈ E2

u, and i21, i22 must be 1
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Figure 2: Case II for the proof of Theorem 2. The top graph shows the two paths after
splitting. The bottom graph shows the corresponding paths before splitting.

(see Figure 2). Thus p12 6= p22. Now consider the paths in H:

p3 = (p12, . . . , p1N),

p4 = (p22, . . . , p2N).

They both start from u, have length at least a(u) + 1, but have different initial edges, which

violates the anticipation of u.

According to Theorem .1, our greedy splitting ordering rule is as follows. Let H represent the

induced subgraph of Gm including all states to be split and the edges between them. Choose

the state with the least number of parents in H and split it, and remove that state from H.

Repeat until there is no state to split. In our experiment, the maximum anticipation is only

2.
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