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Abstract

Nature of the spin-glass phase in models with long-range interactions

by

Matthew C. Wittmann

Despite decades of effort, our understanding of low-temperature phase of spin

glass models with short-range interactions remains incomplete. Replica symme-

try breaking (RSB) theory, based on the solution of the Sherrington-Kirkpatrick

mean-field model, predicts many pure states; meanwhile, competing theories of

short-range systems, such as the droplet picture, predict a single pair of pure

states related by time-reversal symmetry, analogously to the ferromagnet. Since

RSB certainly holds for the mean-field (infinite-range) model, it is interesting to

study short-range models in high dimensions to observe whether RSB also holds

here; however, computer simulations of short-range models in high dimensions

are difficult because the number of spins to equilibrate grows so rapidly with the

linear size of the system.

A relatively recent idea which has been fruitful is to instead study one-dimensional

models with long-range (power-law) interactions, which are argued to have the

same critical behavior as corresponding short-range models in high dimensions,

but for which simulations for a range of sizes (crucial for finite-size scaling analy-

sis) are feasible. For these one-dimensional long-range (1DLR) models, we fill in

a previously unexplored region of parameter space where the interactions become

sufficiently long-range that they must be rescaled with the system size to maintain

the thermodynamic limit. We find strong evidence that detailed behavior of the

1DLR models everywhere in this “nonextensive regime” is identical to that of the

Sherrington-Kirkpatrick model, lending support to a recent conjecture.

x



In an attempt to distinguish the RSB and droplet pictures, we study recently-

proposed observables based on the statistics of individual disorder samples, rather

than simply averaging over the disorder as is most frequently done in previous

studies. We compare Monte Carlo results for 1DLR models which are proxies for

short-range models in 3, 4, and 10 dimensions with previously-obtained data for

the 3D and 4D short-range models and the SK model. For one statistic, which is

expected to sharply distinguish between the two pictures in the thermodynamic

limit, we find that larger system sizes than those currently feasible to simulate are

needed to obtain an unambiguous result. We also find that two other recently-

proposed statistics, the median of the cumulative overlap distribution and the

“typical” overlap distribution, are not particularly helpful in distinguishing be-

tween the RSB and droplet pictures.

If there are many pure states in the spin-glass phase, we need to carry out

some sort of statistical average over them to obtain the thermodynamics. One

such prescription for doing this is called the “metastate.” Motivated by similar-

ities between the average over pure states specified by the metastate theory and

that presumably generated by the nonequilibrium dynamics, we study a 1DLR

model which is a proxy for a short-range model in d = 8 dimensions and mea-

sure the evolution of dynamical correlations. We find that the spatial decay of

the correlations at distances less than the dynamical correlation length ξ(t) agrees

quantitatively with the predictions of the metastate theory, evaluated according to

the RSB picture. We also compute the dynamic exponent defined by ξ(t) ∝ t1/z(T )

and find that it is compatible with the mean-field value of the critical dynamical

exponent for short-range spin glasses.

Finally, we present a unified view of finite-size scaling (FSS) in dimensions d

above the upper critical dimension du, for both free and periodic boundary con-

xi



ditions. For d > du, a dangerous irrelevant variable is responsible for both the

violation of hyperscaling and the violation of “standard” FSS. We find that the

modified hyperscaling proposed to allow for this applies only to k = 0 fluctu-

ations, while standard FSS applies to k 6= 0 fluctuations. Hence the exponent

η describing the power-law decay of correlations at criticality is unambiguously

η = 0. With free boundary conditions, the finite-size “shift” is greater than the

rounding. Nonetheless, using T − TL, where TL is the finite-size pseudocritical

temperature, as the scaling variable, the data do collapse onto a scaling form that

includes the behavior both at TL, where the susceptibility χ diverges like Ld/2,

and the bulk Tc, where it diverges like L2. We support these claims with data

from large-scale simulations of the five-dimensional Ising model.
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Chapter 1

Introduction

The behavior of large and
complex aggregates of elementary
particles, it turns out, is not to be
understood in terms of a simple
extrapolation of the properties of
a few particles.

Philip W. Anderson
More is Different (1972)

1.1 Motivation

With the widespread adoption and rapid advancement of the digital computer in

the mid-20th century have come new, powerful approaches to modeling systems

using numerical simulations. Before the advent of computers, models of physical

systems were restricted to those that could be solved analytically, or at least those

for which a suitable approximation, or expansion in some small parameter, can

be made while retaining the essential physics. Numerical simulations expand the

space of practical models significantly, while simultaneously bringing a different

set of challenges and limitations. With the present technology numerical simula-
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tions of classical systems are limited to sizes many orders of magnitude below the

macroscopic scale. For quantum systems the situation is much more difficult, as

the computational resources required expand exponentially in the size of the sys-

tem; furthermore, simulations of fermionic systems suffer from the “sign problem”

in evaluating oscillatory integrals which also induces an exponential penalty in

the size of the system. Nevertheless, numerical simulations have become a crucial

complement to traditional theory and experiment as computing technology has

advanced, allowing the simulation of progressively larger systems, and techniques

such as finite-size scaling analysis (described in Section 2.6) have been developed

to extrapolate results for finite systems into the thermodynamic (infinite-size)

limit. It is hoped that an eventual practical quantum computer could efficiently

simulate quantum systems.

Numerical simulations have been especially useful in the study of “complex sys-

tems,” systems consisting of a large number of strongly-interacting parts whose

aggregate behavior is strongly nonlinear, meaning (roughly) that the overall be-

havior cannot be approximated simply as the sum of its parts. Examples of such

systems in science are numerous, including models of high-temperature supercon-

ductivity in many-body physics, the behavior of ant colonies and the interaction

of cells in the immune system in biology, and neural networks in neuroscience and

machine learning. In this thesis we focus on models of magnetism in statistical

physics, which are among the simplest examples of complex systems to study from

an analytical and numerical perspective.

2



1.2 Ising model of ferromagnetism

In the early 1920s, William Lenz gave his student Ernst Ising a simple mathe-

matical model of ferromagnetism, now known as the Ising model, which was to be

the topic of Ising’s dissertation. The model consists of discrete variables, “spins,”

which can take one of two values, +1 or −1, and are arranged on a regular lattice

with pairwise nearest-neighbor interactions. In addition to the nearest-neighbor

interactions, the spins also interact with an externally-applied field Hi, which in

general can be nonuniform. The Hamiltonian is given by

H = −1

2

∑

ij

JijSiSj −
∑

i

HiSi, (1.1)

where the first sum is over all pairs of spins, and Jij = J , a positive constant, if i

and j are nearest neighbors on the lattice and 0 otherwise.

As the temperature is decreased through the Curie temperature Tc, a ferro-

magnet in zero external field undergoes a continuous phase transition from the

paramagnetic phase, in which the magnetization is zero, to the ferromagnetic

phase, in which the magnetization is finite and can be either positive or negative.

This is an example of spontaneous symmetry breaking, where a symmetry, in this

case time-reversal symmetry Si → −Si, is “broken” as the system undergoes a

transition into a phase with lower symmetry. In his 1924 dissertation, Ising solved

the one-dimensional version of the model that now bears his name and showed that

it did not have a ferromagnetic phase at any positive temperature. From this he

(incorrectly) concluded that the model does not admit a finite-temperature phase

transition in any number of dimensions, and thus was not a suitable model of

ferromagnetism (Ising 1925).

This assumption was proven incorrect by Peierls (1936), who gave an argument

based on the free energy of domain walls (the boundaries separating regions of

3



positive and negative magnetization) showing that phase transitions do occur in

the model for dimensions greater than two. The argument goes as follow. In one

dimension, the energy cost of a domain wall is 2J since the energy of a pair of spins

has magnitude J and changes sign when one of them is flipped. But the entropy

added by the domain wall goes like the logarithm of the number of spins L, since

there are L places1 where it could go. Thus, in one dimension, the free energy cost

of a domain wall is negative for any positive temperature in the infinite-size limit,

so the system will form domain walls on all scales, destroying the ferromagnetic

order. However, in two dimensions, the energy cost of a domain wall is 2Jn, where

n is the number of spins on the boundary. An upper bound on the number of

ways to form a closed loop is (z − 1)n, where z is the coordination number of the

lattice. This is an upper bound because it allows for self-intersections, which are

not possible for a real domain wall. The free-energy cost ∆Fn to form a domain

wall of length n is then bounded from below as

∆Fn >
[
2J − T log(z − 1)

]
n. (1.2)

Thus, for small positive T the formation of domain walls of any size is suppressed,

and the system will develop ferromagnetic order. This also gives a lower bound

on the transition temperature Tc at which the system transitions to ferromagnetic

order, Tc > 2J/ log(z− 1) ≈ 1.82J in two dimensions. A similar argument can be

made for all dimensions d ≥ 2.

It turns out that it is a general feature of phase transitions in diverse systems

that there is a number of dimensions dl, called the lower critical dimension, below

which a transition does not occur at finite temperature, so the above result can be

stated as dl = 2 for the Ising model. In fact, this result holds for all systems in the

1assuming periodic boundary conditions
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Ising universality class, which includes systems with a scalar order parameter near

a continuous phase transition, including (e.g.) magnetic systems and liquids. We

will motivate the phenomenon of universality in the discussion of Landau theory

in Section 1.2.2; it is now understood within the framework of the renormalization

group.

Two decades after the introduction of the Ising model, in a remarkable mathe-

matical achievement, Onsager (1944) gave an analytic solution of the two-dimensional

Ising model in zero field. The exact transition temperature is given by

Tc =
2J

log(1 +
√

2)
≈ 2.269J. (1.3)

Onsager’s solution is very complicated and the techniques do not generalize well.

Subsequent attempts at an analytical solution in two dimensions with a field or

in three and higher dimensions have been unsuccessful, and in fact recently argu-

ments have been made from computational complexity theory that these problems

are intractable.2

The Ising model is ubiquitous in the literature of statistical mechanics because

it is a relatively uncomplicated model which, thanks to the phenomemon of uni-

versality, exhibits critical behavior identical to other systems in the same number

of dimensions and with scalar order parameters, and thus provides a convenient

setting for the study of phase transitions in a wide variety of systems.

1.2.1 Mean-field theory

Despite the apparent simplicity of Ising model, exact solutions do not appear to

be possible in dimensions d > 2. The source of the difficulty is the spin-spin

interactions, which preclude a solution by factorizing the partition function as a

2Istrail (2000) shows that computing the partition function for d = 2 with a field or for d > 2
belongs to the class of NP-complete problems, which are unlikely to have closed-form solutions.
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product of single-site factors. This is a general problem in many-body statistical

physics; as a result, exact analytical solutions are few and far between.

Mean-field theory (MFT) is the simplest possible approximation of an interact-

ing system aside from ignoring the interactions altogether. The resulting model

is usually straightforward to solve analytically, although there are exceptions (for

example, the Sherrington-Kirkpatrick model discussed in Section 1.3.2.) There

are many equivalent ways to generate a mean-field theory for a given system, but

all are based on the same essential approximation of ignoring the interaction of

fluctuations.

For example, following Cardy (1996), we can generate a mean-field theory

of the Ising ferromagnet as follows. We write for the interacting part of the

Hamiltonian

Hint ≡ −
1

2

∑

ij

JijSiSj

= −1

2

∑

ij

Jij
[
M + (Si −M)

] [
M + (Sj −M)

]

≈ −1

2

∑

ij

Jij
[
−M2 +M(Si + Sj)

]

=
1

2
NzJM2 − zJM

∑

i

Si,

where M ≡ 〈S〉 is the magnetization and zJ =
∑

j Jij. The mean-field approxima-

tion comes in third step, where we have discarded the term which is quadratic in

the fluctuations, i.e. (Si−M)(Sj−M). Thus we have decoupled the spin degrees

of freedom and can solve the problem by factorizing the partition function,

Z = Tr exp


−1

2
βNzJM2 − β(H + zJM)

∑

i

Si




= e−
1
2
βNzJM2 [

2 cosh β(H + zJM)
]N
.
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The free energy per spin is then

f =
1

2
zJM2 − β−1 log cosh β(H + zJM), (1.4)

dropping the constant which vanishes in the thermodynamic limit. This expression

depends on the magnetization M , which we have not yet specified. But since

M = −∂f/∂H, we have the following self-consistency condition

M = tanh β(H + zJM). (1.5)

Note that this has the same form as the Curie law, which we would expect to obtain

had we set the spin-spin couplings Jij = 0, but with the external field H replaced

by H + zJM . The additional term zJM has the simple interpretation as the

“molecular field” generated by a spin’s neighbors, neglecting fluctuations about

the mean M . Note that for H = 0 and high temperature (small β), Eq. (1.5) has

only a single solution at M = 0, corresponding to the paramagnetic state, while

at low temperatures two additional solutions appear at M = ±M0 corresponding

to the two pure states of the paramagnetic phase. Thus the mean field model

demonstrates a continuous phase transition with spontaneous symmetry breaking.

The (mean-field) transition temperature TMF
c is given by the limit M → 0+ in

Eq. (1.5), from which we obtain M ≡ zJM/TMF
c , or

TMF
c ≡ zJ ≡

∑

j

Jij. (1.6)

For a hypercubic lattice z = 2d and thus the corresponding result for the two-

dimensional Ising model is TMF
c = 4J , an overestimate of the exact transition

temperature [see Eq. (1.3)]. Mean-field theories give an upper bound on the tran-

sition temperature because they neglect the effect of fluctuations, which drive the

transition at lower temperatures. Hence, from the Peierls argument described
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above and mean-field theory, we have (correctly) bounded the transition tem-

perature for the two-dimensional Ising model as 1.82 / Tc/J < 4. Mean-field

theory becomes more accurate as the dimensionality of a system is increased. An

intuitive explanation for this is that in higher dimensions, each spin couples to

more neighbors and thus fluctuations are averaged out to a greater degree. For

example, in Chapter 6 we will find that Tc ≈ 8.78J for the five-dimensional Ising

model, whereas the mean-field prediction is TMF
c = 10J , a relatively small error.

To understand the nature of the broken symmetry it is helpful to consider the

behavior of the mean-field free energy near the transition. In zero field, Eq. (1.4)

has the expansion

f =
1

2
zJ(1− βzJ)M2 +O(M4), (1.7)

where the coefficient of the M4 term is positive. As shown in Fig. 1.1b, for

temperatures above Tc the coefficient of the quadratic term is positive and there

is a single minimum at M = 0, corresponding to the paramagnetic state. As the

temperature is lowered through Tc, the M = 0 solution of the minimum equation

becomes unstable and is replaced by two new minima at ±M0(t) which shift

continuously from M = 0 as the temperature is lowered. The system will choose

one of these minima, which correspond to the “up” and “down” pure states of the

ferromagnetic phase. This situation describes a continuous phase transition with

spontaneous symmetry breaking. Now consider what happens when a nonzero

external field H is applied. For T < Tc, as H passes through zero from negative

to positive, the global minimum of the free energy shifts discontinuously from

−M0 to M0. This exemplifies a first-order phase transition.

Phase transitions are characterized by a set of critical exponents, which de-

scribe how various quantities vary asymptotically near the critical point. For
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example, in magnetic systems, the critical exponent β is defined as

M ∝ (Tc − T )β (1.8)

in the limit T → T−c . We can estimate this exponent from the mean-field theory

developed above. Expanding Eq. (1.4) in M , we find the form

f ∝ atM2 +
1

2
bM4 −HM, (1.9)

where a, b, and c are constants which depend only weakly on the reduced tem-

perature t = (T − Tc)/Tc (Cardy 1996). Minimizing with respect to M we find

that, near Tc, M
2 = (a/2b)t, from which we read off the mean-field value of the

critical exponent β = 1/2. This is not all that accurate compared with values

measured in experiment, β ≈ 0.32, but this is not surprising given the seemingly

crude approximation that led to this result.

What is surprising is that the determination of the critical exponents from

mean-field theory seems not to rely on any details of the model, e.g. the co-

efficients in Eq. (1.9), but only on the form of the expansion. In fact, Landau

showed that such a form follows for systems with a scalar order parameter under-

going a continuous phase transition, from only simple symmetry arguments and

assumptions of analyticity. Thus the disagreement between the critical exponents

predicted by Landau theory and those observed in experiment was at first consid-

ered paradoxical, seemingly a violation of dimensional analysis (Goldenfeld 1992).

The existence of so-called “anomalous dimensions,” the differences between criti-

cal exponents observed in experiment and those predicted by Landau theory, was

to be explained by the renormalization group. In the next section we will give

a brief review of Landau theory and discuss how it breaks down near a critical

point.
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(a)

T = Tc
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T > Tc

M
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(b)

Figure 1.1: Panel (a) shows the right-hand side of the self-consistency condition,
Eq. (1.5), as a function of the magnetization M for H = 0. Above the criti-
cal temperature Tc there is a single self-consistent solution corresponding to zero
magnetization, while below Tc there are two solutions with nonvanishing magne-
tization M = ±M0 in addition to the solution at M = 0. Panel (b) shows the free
energy as a function of M , showing that for T < Tc, the solution with M = 0 is
unstable.

Finally, we emphasize that there are many ways to generate equivalent mean-

field theories for a given system. For example, we could have arrived at Eq. (1.5)

by supposing that each spin behaves as an isolated spin in an external field equal

to H+zJM , where, ignoring fluctuations, we approximate the contribution of the

neighbors as zJM . Note that this is equivalent to an (infinite-size) model where

every pair of spins is coupled by an interaction J/N , because the thermal average

M is equivalent to the average over an infinite number of neighbors in the latter

case.

1.2.2 Landau theory

The Landau theory of phase transitions is a phenomenological theory based on a

few simple assumptions about the behavior of the relevant order parameter η in

the vicinity of a phase transition. We define a function L(η), called the Landau

free energy, whose global minimum is supposed to give the equilibrium state of

the system, and postulate that
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1. The order parameter η = 0 in the disordered phase; η is small and nonzero

in the ordered phase close to the transition.

2. L respects the symmetries of the underlying Hamiltonian.

3. L is an analytic function of both η and the set of couplings {K} describing

the interactions; thus it can be expanded as a power series in η near the

critical point.

4. L is a local function of η, i.e. it only involves derivatives to a finite order.

For the Ising model an appropriate choice of order parameter is η = M , the

magnetization. Because of the time-reversal (Si → −Si) symmetry of the Hamil-

tonian, we require that the Landau free energy L(η) be symmetric about η = 0 in

the absence of an external field. Expanding L(η) in powers of η near the critical

point, we obtain the form

L = atη2 +
1

2
bη4 −Hη, (1.10)

where the last term is the leading-order contribution to the energy in a field H and,

as can be seen from Item 1, a and b are independent of the reduced temperature

t to leading order. Note that this is the same form as Eq. (1.9), which we derived

before by solving a mean-field model of Ising model Hamiltonian. Here, we arrive

at the same form using only the postulates of Landau theory. The only details of

the Ising model that were relevant to the derivation are the fact that the order

parameter is a scalar, and that the Hamiltonian obeys time-reversal symmetry in

zero field.

To calculate correlation functions in Landau theory, we allow η to vary in space.

We may define a spatially-varying order parameter for the Ising model by using a

coarse-graining procedure whereby η(r) is defined to be the average of the spins
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in a block of size Λ−1 centered at r. Choosing Λ−1 ∼ ξ, the correlation length,

ensures that spins within a given block have similar values. The coarse-grained

Landau free energy is then defined as the sum of the Landau free energies of the

individual blocks, plus interaction terms that act to penalize differences in η(r)

between adjacent blocks. The latter are what give rise to spatial correlations. In

the spirit of Landau theory we consider only the lowest-order (quadratic) term in

the expansion of the interactions, and thus obtain for the coarse-grained Landau

free energy

LΛ[η] =
∑

r


∑

δ

γ′

2

(
η(r)− η(r + δ)

Λ−1

)2

+ atη2 +
1

2
bη4 −H(r)η(r)


 , (1.11)

where the second sum is over adjacent blocks with centers at r+δ, |δ| = Λ−1, and

γ′ is a coupling constant. Near a critical point, the correlation length ξ is much

larger than the lattice spacing a; in this limit η(r) is a continuous, slowly-varying

function of position, and we obtain the Ginzburg-Landau free energy,

LΛ[η] =

∫
ddr

{
γ

2
(∇η)2 + atη2 +

1

2
bη4 −Hη

}
. (1.12)

Note that η(r) and LΛ[η(r)] both depend on the length scale Λ−1 over which the

coarse graining is performed. To make a connection between the Ginzburg-Landau

free energy and the thermodynamic free energy, we note that

e−βLΛ[η(r)] = Tr′ e−βH{Si}, (1.13)

where Tr′ indicates that the trace is to be taken over only those microscopic

configurations which are compatible with the coarse-grained order parameter η(r).

Then the partition function is obtained by averaging over all configurations of the

coarse-grained order parameter, i.e. by the functional integral

Z =

∫
Dη e−βLΛ[η(r)], (1.14)
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called the Ginzburg-Landau-Wilson (GLW) functional. If we drop the quartic

term in Eq. (1.12), then Eq. (1.14) reduces to a (functional) Gaussian integral

which can be evaluated straightforwardly. The resulting Gaussian approximation

corresponds to the assumption that the fluctuations of the order parameter are

distributed as Gaussian random variables. From the resulting approximation of

the free energy we obtain critical exponents characterizing the phase transition,

which we refer to hereafter as the mean-field exponents.

In principle we should be able to improve on the Gaussian approximation by

perturbatively including the quartic term in Eq. (1.12). First, we need to find a

small, dimensionless parameter in which to expand. From Eq. (1.12) we define

the Ginzburg-Landau-Wilson effective Hamiltonian,

Heff [φ] ≡ βLΛ =

∫
ddr

[
1

2
(∇φ)2 +

1

2
r0φ

2 +
1

4
u0φ

4

]
, (1.15)

where we have rescaled the order parameter φ ≡ (βγ)1/2η so that the coefficient

of the derivative term is just 1/2, and r0/2 ≡ at/γ, u0/4 ≡ b/(2βγ2) (Goldenfeld

1992). Because Heff is dimensionless, we find from the first term in Eq. (1.15) that

φ must have dimensions L1−d/2, where L is a unit of length. Hence we find that

r0 has dimensions of L−2 and u0 has dimensions of Ld−4. To write this in terms of

dimensionless variables we use as a length scale L ≡ r
−1/2
0 , which is proportional

to the correlation length in the Gaussian approximation since ξ ∝ t−1/2. Thus,

Heff [ϕ] =

∫
ddx

[
1

2
(∇ϕ)2 +

1

2
ϕ2 +

1

4
u0ϕ

4

]
(1.16)

where

x ≡ r/L ϕ = φ/L1−d/2 u0 = u0/L
d−4. (1.17)
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Now, to perturbatively include the quartic term, we define

H0 ≡
∫

ddr

[
1

2
(∇ϕ)2 +

1

2
ϕ2

]
(1.18)

Hint ≡
∫

ddr

[
1

4
u0ϕ

4

]
, (1.19)

where H0 is corresponds to the Gaussian approximation, and expand the partition

function in powers of Hint,

Z =

∫
Dφ e−Heff

=

∫
Dφ e−H0e−Hint

=

∫
Dφ e−H0

(
1−Hint +

1

2
H2

int − · · ·
)
.

Such an expansion is reasonable when the coefficient of the quartic term, u0, is

small. However, using dimensional analysis, we have shown that u0 ∝ t(d−4)/2.

This means that, in dimensions d < 4, the “perturbation” actually diverges as

we approach the critical point; consequently, while keeping additional terms in

the perturbation series may improve the accuracy of the theory away from the

critical point, mean-field theory, the Gaussian approximation, and any theory

based on keeping a finite number of terms in the perturbation series will fail to

accurately describe the critical phenomena. On the other hand, for d > 4, the

perturbation vanishes in the limit t → 0, and hence including additional terms

in the perturbation series has no effect on the asymptotic form of the solution.

The conclusion is that the mean-field critical exponents are exact in dimensions

d > 4 for systems described by the same Landau theory as the Ising model (i.e., the

Ising universality class). For a given universality class, we define the upper critical

dimension du to be the dimension above which the mean-field critical exponents

are exact. Hence this result corresponds to du = 4 for the Ising universality class.
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1.3 Disorder and spin glasses

Historically, much progress has been made in the theory of condensed matter

physics by studying idealized models in which atoms lie on a regular crystal lattice.

For example, the theory of electronic band structures, which successfully explains

many physical properties of solids, arises from Bloch waves in a periodic potential.

However, real crystals have some degree of disorder in the form of distortions,

impurities, and, at finite temperature, thermal fluctuations of the atoms about

their mean positions. One manifestation of this which is observed in experiment is

a small positive correction to the resistivity of metals and semiconductors relative

to the prediction of band theory. However, the effect of disorder can be drastic in

some cases. In a seminal paper, Anderson (1958) demonstrated the phenomenon

now known as Anderson localization, in which the diffusion of electrons is entirely

suppressed in three-dimensional (and higher) systems when the amount of disorder

exceeds a certain threshold. Furthermore, in one and two dimensions, diffusion

is suppressed for any amount of disorder. The realization that the presence of

disorder may result not just in quantitative corrections to an idealized theory, but

in entirely new qualitative behavior, motivates the study of disordered systems.

In the early 1970s, experimental studies of magnetic ordering in a class of

materials called “dilute magnetic alloys” found surprising results. The materials

in question consist of a nonmagnetic “host” metal (e.g. Au, Ag, Cu, Pt) with a

low concentration of magnetic impurities (e.g. Fe or Mn) occupying random sites.

One historically-important result concerns the behavior of such a material at low

temperature subjected to an oscillating magnetic field. Measuring the (ac) suscep-

tibilty, defined as the time average of χ = ∂M/∂H, Cannella and Mydosh (1972)

found that a cusp occured at a specific temperature which depended strongly on
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the concentration of impurities. Below the cusp they found no evidence of ferro-

magnetic order, excluding the possibility of a ferromagnetic transition. Neither

was this consistent with emergence of anti ferromagnetic order, where we would

expect a peak in the susceptibility at the transition temperature, but this tem-

perature should not to depend strongly on the concentration of impurities.

A unique feature of the “classical spin glasses” described above is the RKKY-

type3 interaction between the dilute magnetic impurities, mediated by conduction

electrons. Thus, the effective exchange coupling J(r) between two impurity atoms

separated by a distance r has the form

J(r) ∼ cos(2kF r)

r3
, (1.20)

where kF is the Fermi wavenumber of the host metal (Binder and A. P. Young

1986). The important feature here is the oscillation of the sign of the interaction

with distance which, when combined with the spatial disorder of the impurity

atoms, leads to interactions between each pair of impurity atoms which are ran-

domly ferromagnetic or antiferromagnetic. In a seminal paper which initiated the

modern theory of spin glasses, Edwards and Anderson (1975) identified this com-

petition between ferromagnetic and antiferromagnetic interactions as the essential

physics responsible for the surprising behavior of spin glasses.

1.3.1 Edwards-Anderson model

Edwards and Anderson (1975) proposed the following simple-looking model of a

spin glass, whose Hamiltonian has the same form as that of the Ising model,

H = −1

2

∑

ij

JijSiSj −
∑

i

HiSi, (1.21)

3named for Ruderman, Kittel, Kasuya, and Yosida
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but where the nearest-neighbor couplings Jij are independent, Gaussian random

variables with mean zero and variance σ2, which is usually taken to be unity. As

for the Ising model, the spins take values ±1 and are arranged on a hypercubic

lattice in d dimensions.

The Edwards-Anderson (EA) model captures the two essential features of spin

glasses, frustration and quenched disorder. Frustration means that there is no

configuration of the system which simultaneously minimizes all terms in the en-

ergy. A simple example of this is an Ising antiferromagnet (i.e. the Ising model

with coupling J < 0) defined on a lattice with odd cycle lengths, for example

on a hexagonal lattice as shown in Fig. 1.2a. Quenched disorder means that the

interactions are random and expected to be independent of time, at least on ex-

perimental time scales. Figure 1.2b shows how the random interactions in EA

model lead to frustration.

Within the framework of the EA model, we now return to the mystery of the

apparent spin-glass phase transition observed in experiment. In (anti)ferromagnetism,

the broken symmetry is characterized by a scalar order parameter, the (staggered)

magnetization, but this is identically zero in the EA model. It is not at all obvi-

ous what is the nature of the broken symmetry in the spin glass phase and what

is an appropriate order parameter to describe it. Edwards and Anderson (1975)

proposed to use the sum of the squared thermal averages of the spins,

qEA =
1

N

N∑

i=1

〈Si〉2 , (1.22)

which vanishes at high temperature, where the behavior is paramagnetic, but is

certainly finite at zero temperature, where the spin settle into some (not necessar-

ily unique) energy-minimizing configuration. It is now known that, in dimensions

d > 2, there is a finite-temperature transition to a “spin-glass phase” accompanied
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Figure 1.2: Examples of frustrated Ising systems. On the left (a) is an antiferro-
magnet on a lattice with odd cycles. On the right (b) is the EA model on a lattice
which does not necessarily have odd cycles, but will in general have cycles with an
odd number of antiferromagnetic bonds. In each example there is no assignment
of “?” which simultaneously minimizes all terms of the Hamiltonian.

by a finite value of qEA.

It is important to note that it is still unsettled issue whether this scalar order

parameter fully characterizes the broken symmetry of the spin-glass phase. In fact,

there are several competing theories which make quite different predictions as to

the nature of the broken symmetry. For example, “replica symmetry breaking”

(RSB) theory predicts that there are infinitely many “pure” states,4 unrelated by

any symmetry, and thus an infinite number of order parameters are necessary to

describe the broken symmetry. In contrast, the “droplet picture” predicts that

there is only a single pair of pure states, as for the ferromagnet, and thus a scalar

order parameter is sufficient to describe the broken symmetry. These two theories

will be discussed in more detail in Section 1.3.4.

As alluded to above, despite its apparent simplicity and decades of study, the

EA model remains poorly understood. In contrast to the Ising ferromagnet, which

is found to have a (finite-temperature) phase transition in dimensions d ≥ 2, the

4That is, states analogous to the “up” or “down” states observed in an Ising ferromagnet
below the transition temperature. See Section 5.1 for a discussion of this idea.
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EA model has a finite-temperature transition only for d > 2.5 But computing

spin glass partition function, and even finding the ground state, for d > 2 appears

to be intractable; in fact, both problems have been shown to be NP-hard by

Barahona (1982), suggesting that an eventual closed-form solution is unlikely.

This is unsurprising because the presence of frustration and disorder means that

finding the ground state is a nontrivial optimization problem.

Even defining a mean-field theory for spin glasses in the way discussed pre-

viously does not seem at first straightforward, since it is not clear how to deal

with the quenched disorder. Sherrington and Kirkpatrick (1975) made an impor-

tant contribution to the theory of spin glasses by proposing a solvable mean-field

model of a spin glass. The solution they provided successfully explained some

features observed in experiment, such as the susceptibility cusp, but opened new

important questions and deepened the mystery in some ways.

1.3.2 Sherrington-Kirkpatrick mean-field model

As noted above, one way to generate a mean-field theory is to extend interac-

tions to be infinite-range, so that every degree of freedom interacts equally with

all others, while rescaling the interactions with the inverse system size to pre-

serve a sensible thermodynamic limit. In this way the model of Sherrington and

Kirkpatrick (1975) is the mean-field counterpart of the EA model. That is, the

Sherrington-Kirkpatrick (SK) model differs from the EA model in that all pairs

of spins interact, with the variance of the couplings given by σ2 ∝ 1/N regardless

of distance (by convention the constant of proportionality is taken to be one).

While the analogous mean-field model has a straightforward solution for the

5In fact, evidence suggests that the lower critical dimension is between 2 and 3 for short-range
models (Hartmann and A. P. Young 2001). Models with long-range interactions correspond to
short-range models with non-integral effective dimension.
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case of the ferromagnet, the introduction of disorder makes the solution of the SK

model much more difficult. The difficulty arises in carrying out the average over

the quenched disorder to obtain a result which does not depend on the particular

realization of the random couplings. To obtain the disorder-averaged free energy,

formally

[F ] ≡
∫
DJ P (J )F (J ) (1.23)

(where [· · · ] indicates a disorder average and J ≡
{
Jij
}

denotes a set of cou-

plings), we need to carry out a disorder average of the logarithm of the partition

function. Sherrington and Kirkpatrick (1975) did this in clever way, using the

so-called “replica trick,” which is based on the identity

logZ = lim
n→0

Zn − 1

n
. (1.24)

Using this to write

− β [F ] = [logZ] = lim
n→0

[Zn]− 1

n
, (1.25)

we have reduced the problem to computing

[Zn] =

[
n∏

α=1

TrSα e
−βH({Sα},J )

]

=
[
TrS1 · · ·TrSn e

−β∑n
α=1H({Sα},J )

]

= TrS1 · · ·TrSn
[
e−β

∑n
α=1H({Sα},J )

]
,

for which the disorder average can be computed analytically. Finally, we take the

limit n→ 0 to obtain the disorder-averaged free energy. The replica trick gets its

name because the disorder average is done over a compound system of n replicas,

all with the same realization of the disorder J , described by the partition function

Zn. Interestingly, the effective Hamiltonian of the n-replica system Hn, defined

by

e−βHn =
[
e−β

∑n
α=1H({Sα},J )

]
, (1.26)
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is not just the sum of the Hamiltonians of the individual replicas; therefore, the dis-

order average couples the replicas. Because the effective Hamiltonian is symmetric

under the permutation of replicas (after all the “replicas” were only introduced

as a mathematical trick), the solution of Sherrington and Kirkpatrick makes the

(reasonable) assumption that replicas may be treated on equal footing; theirs is a

replica-symmetric solution.

The solution given by Sherrington and Kirkpatrick predicts a transition tem-

perature

TMF
c =

∑

j

[
J2
ij

]
≡ 1, (1.27)

and successfully explains some of the features observed in experiment, for example

the cusp in ac susceptibility. However, it soon became clear that it could not be

a correct description of the low-temperature phase, where it was found to be at

odds with simulation results and furthermore predicted an unphysical negative

entropy at zero temperature (Kirkpatrick and Sherrington 1978). An important

piece of the puzzle was provided by de Almeida and Thouless (1978), who showed

that the replica-symmetric solution of the SK model becomes unstable for T < 1

in zero field.6 The replica-symmetric solution is therefore not observed, just as

the paramagnetic solution of the mean-field Ising model is not observed in the

ordered phase. Instead, the replica symmetry is spontaneously broken.

1.3.3 Replica symmetry breaking

The correct stable solution of the SK model in the low-temperature phase was

discovered and developed by Giorgio Parisi in a series of seminal papers.7 The

6In fact, they show that the replica-symmetric solution is unstable in a region of the T -H
plane for T < 1 and small fields, thus predicting a line of transitions known as the de Almeida-
Thouless line.

7Parisi (1979), Parisi (1980a), Parisi (1980b), and Parisi (1983)
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breakthrough idea was that, to find a stable solution in the low-temperature phase,

the replicas can no longer be considered to be equivalent; although the effective

Hamiltonian is symmetric under the permutation of replicas, this symmetry is

spontaneously broken in the spin-glass phase. More precisely, Parisi considered

the overlap between the configurations of two replicas α and β, defined as

qαβ =
1

N

∑

i

〈
Sαi S

β
i

〉
n
, (1.28)

where the average is taken with respect to the n-replica effective Hamiltonian.

The replica-symmetric solution of Sherrington and Kirkpatrick assumes that qαβ

is independent of which replicas α and β are chosen, and is just equal to the

Edwards-Anderson order parameter qEA. By contrast, in Parisi’s replica symmetry

breaking (RSB) solution, the replicas are not equivalent; instead, each corresponds

to one of an infinite number of distinct pure states8 in the thermodynamic limit;

thus qαβ depends on which α and β are chosen, giving the overlap between the

corresponding pure states. The self-overlap of a replica with itself qαα = qEA,

but in general −qEA < qαβ < qEA. Note that pure states come in symmetry-

related pairs, so for states α, β, the time-reversed versions α, β are also pure

states, and qαβ = −qαβ = qαβ. Thus the distribution of the overlap q between two

independent equilibrium spin configurations is an even function, consisting of a

superposition of delta functions with weights and positions which depend on the

disorder realization J ,

PJ (q) =
∑

αβ

WαWβ δ(q − qαβ), (1.29)

where Wα and Wβ are the probabilities (“weights”) of the states α and β respec-

tively. Now we consider what this looks like at low temperature, where presumably

8That is, thermodynamic states in which connected correlations vanish in the limit of large
distance; the “up” and “down” states of the ferromagnetic phase are examples of pure states.
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−qEA +qEA

q

PJ (q)

(a) single sample

−qEA +qEA

q

P (q)

(b) disorder average

Figure 1.3: Sketches of the overlap distribution for (a) a single sample and (b)
the sample average, according to replica symmetry breaking (RSB) theory. The
support in the region −qEA < q < qEA in the disorder-averaged P (q) in (b) comes
from the many pairs of pure states for each sample, e.g. in (a).

only a few of the (infinite number of) pure states have significant weight. The

distribution is bimodal, with the largest weights occurring at ±qEA; these corre-

spond to self-overlaps, and thus have weight
∑

αW
2
α. Between −qEA and qEA are

smaller peaks corresponding to overlaps of distinct pairs of pure states α, β with

weights WαWβ. This is sketched in Fig. 1.3a.

One surprising result of RSB theory is that the overlap distribution for a sin-

gle disorder realization PJ (q) is non-self-averaging, meaning that it depends on J

even in the thermodynamic limit. This is at first a little unsettling, because the

whole procedure of carrying out the disorder average is justified by the thermody-

namic assumption that we can determine the properties of a macroscopic system

as an average over subsystems. But this turns out not to be contradictory, as

all observable properties are self-averaging within the RSB framework (Stein and

C. M. Newman 2013). Carrying out the disorder average, we obtain an overlap

distribution that has two delta-function peaks at ±qEA and is finite everywhere

in between. This is sketched in Fig. 1.3b. The weight of the sample-averaged

distribution at q = 0 is found to be a constant independent of system size for

large L.
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The RSB solution appears to be the correct description of the low-temperature

phase of the SK model, and several of its predictions (although notably not the

non-self-averaging of the overlap distribution) have more recently been proven

rigorously for the SK model (Talagrand 2003). This has led Parisi and others

to conjecture that RSB also provides an accurate description spin-glass phase in

more realistic, short-range models such as the Edwards-Anderson model. This

is at odds with other competing theories of the spin-glass phase in short-range

models.

1.3.4 Theories of short-range spin glasses

The RSB solution of the Sherrington-Kirkpatrick mean-field model predicts sev-

eral surprising features, such as non-self-averaging of the order parameter dis-

tribution and the existence of a line of transitions in nonzero field (i.e. the de

Almeida-Thouless line), that are not observed in systems without disorder. It has

been a controversial issue whether these exotic features, which certainly exist in

the SK model, persist in more realistic models with short-range interactions, or

whether they are artifacts of the infinite-range interactions, and the nature of the

spin-glass phase in short-range models can be explained by a simpler phenomeno-

logical picture.

One well-known alternate scenario is the “droplet picture” (DP) introduced

by Fisher and Huse (D. S. Fisher and Huse 1986; D. S. Fisher and Huse 1987;

D. S. Fisher and Huse 1988), based on the phenomenological scaling arguments

of McMillan (1984). The central ansatz is that lowest-energy excitations of a

ground state which have spatial extent L have an energy cost which scales as Lθ,

where θ is a positive (“stiffness”) exponent. Consequently, in the thermodynamic

limit, excitations which flip a finite fraction of the spins cost an infinite amount
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of energy. Additionally, the excitations are predicted to have a fractal surface,

with dimension ds < d. Both of these statements are at odds with the predictions

of RSB, according to which excitations have an energy which is independent of L

and hence excitations which flip a finite fraction of spins can have finite energy

cost in the thermodynamic limit; also, excitations in RSB are predicted to be

space-filling, i.e. to have a dimension ds = d.

Further analysis reveals that, in the droplet picture, there can be only a single

time-reversed pair of pure states in the thermodynamic limit, in contrast to the

infinitely-many predicted by RSB theory. Hence the droplet picture predicts an

overlap distribution which is sharply different from the prediction of RSB in the

thermodynamic limit. As discussed previously, RSB theory predicts finite proba-

bility everywhere between −qEA and qEA. In contrast, the droplet picture predicts

finite probability in the region −qEA < q < qEA only for finite systems; P (q) in this

region is expected to vanish as L−θ (Moore, Bokil, and Drossel 1998) in the ther-

modynamic limit, leaving a trivial distribution with two delta functions at ±qEA

and vanishing weight in between. Both distributions are sketched in Fig. 1.4.

Because P (q) is relatively easy to measure in simulations, many numerical

studies9 have attempted to find evidence for one picture or the other by studying

the overlap distribution near q = 0 for a range of system sizes L and looking for a

L−θ decay as predicted by the droplet picture. The results appear consistent with

RSB in that P (0) varies only very slowly with L; however, it has been argued

that the sizes accessible to simulation are too small to observe the asymptotic

behavior, and the droplet picture cannot be ruled out (Moore, Bokil, and Drossel

1998; Middleton 2013). In Chapter 4 of this thesis we study alternate statistics of

the overlap distributions of individual samples, PJ (q), in an attempt to distinguish

9e.g. Marinari, Parisi, Ricci-Tersenghi, et al. (2000), Reger, Bhatt, and A. P. Young (1990),
Katzgraber, Palassini, and A. P. Young (2001), and Katzgraber and A. P. Young (2003)
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P (q)

(a) droplet picture
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P (q)

(b) RSB picture

Figure 1.4: Comparison of disorder-averaged overlap distributions in the thermo-
dynamic limit for (a) the droplet picture and (b) the RSB picture. The droplet
P (q) is trivial in the thermodynamic limit, with two delta functions at ±qEA. In
contrast, the RSB P (q) has finite weight everywhere in the region−qEA < q < qEA.

the behavior as RSB-like or droplet-like.

C. M. Newman and Stein (1996) lend some support for the argument that

RSB is not a realistic description of short-range spin glasses with a proof that

non-self-averaging cannot occur based on simple symmetry considerations. Thus

the “standard” RSB scenario, in which the single-sample overlap distribution is

non-self-averaging, cannot be correct for short-range spin glasses. Newman and

Stein (NS) argue that a flaw lies in the assumption of convergence to a unique

mixed state [i.e. a unique distribution PJ (q)] in the thermodynamic limit; in-

stead, they argue, the mixed state which is observed has the property of chaotic

size dependence (C. M. Newman and Stein 1992), meaning that it wanders contin-

ually with increasing L, sampling from all possible mixed states. The fundamental

object, then, is the probability distribution which is sampled, called the “metas-

tate.” In Chapter 5 we investigate the connection between the metastate and the

sampling of pure states generated by nonequilibrium dynamics.

Within the metastate description, C. M. Newman and Stein (1997) show that it

is possible to recover the many-states picture of RSB, i.e. an overlap distribution

P (q) like that shown in Fig. 1.4b. In this “non-standard RSB” (which is actually
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the only viable form of RSB for short-range spin glasses), the disorder-averaged

overlap distribution of standard RSB theory is instead obtained from a metastate

average for a single disorder realization. Thus the NS description avoids the

property of non-self-averaging which is the downfall of the standard RSB picture

applied to short-range spin glasses.

While NS have provided an interpretation of RSB which is viable for short-

range spin glasses, results concerning the invariance of the metastate under a

change of boundary conditions strongly suggest that it cannot occur in realistic

spin glasses, and instead a simpler picture (which is still consistent with chaotic

size dependence) holds (C. M. Newman and Stein 1998). One such proposal is

the chaotic pairs picture (C. M. Newman and Stein 1996) which, like the droplet

picture, predicts a trivial structure for the sample-averaged overlap distribution,

with a pair of delta function peaks at ±qEA (i.e. the same as Fig. 1.4a). However,

in contrast to the droplet picture, in the chaotic pairs picture this distribution

arises from a pair of pure states which exhibit chaotic size dependence but whose

overlaps converge to ±qEA in the thermodynamic limit.

1.4 Organization of the dissertation

In Chapter 2 we give an overview of the numerical methods used in the research.

In Chapter 3, we study one-dimensional long-range (1DLR) spin glass models

to fill in a previously unexplored region of parameter space in which the interac-

tions become sufficiently long-range that they must be rescaled with the system

size to maintain the thermodynamic limit. We find strong evidence that detailed

behavior of the 1DLR models everywhere in this “nonextensive regime” is iden-

tical to that of the Sherrington-Kirkpatrick model, lending support to a recent
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conjecture.

In Chapter 4 we attempt to distinguish the RSB and droplet pictures by study-

ing recently-proposed observables based on the statistics of individual disorder

samples, rather than simply averaging over the disorder as is most frequently done

in previous studies. We compare Monte Carlo results for 1DLR models which are

proxies for short-range models in 3, 4, and 10 dimensions with previously-obtained

data for the 3D and 4D short-range models and the SK model. For one statistic,

which is expected to sharply distinguish between the two pictures in the thermo-

dynamic limit, we find that larger system sizes than those currently feasible to

simulate are needed to obtain an unambiguous result. We also find that two other

recently-proposed statistics, the median of the cumulative overlap distribution and

the “typical” overlap distribution, are not particularly helpful in distinguishing

between the RSB and droplet pictures.

In Chapter 5 we study the evolution of dynamical correlations in a 1DLR model

which is a proxy for a short-range model in d = 8 dimensions. We find that the

spatial decay of the correlations at distances less than the dynamical correlation

length ξ(t) agrees quantitatively with the predictions of the metastate theory,

evaluated according to the RSB picture. We also compute the dynamic exponent

defined by ξ(t) ∝ t1/z(T ) and find that it is compatible with the mean-field value

of the critical dynamical exponent for short-range spin glasses.

Finally, in Chapter 6 we present a unified view of finite-size scaling (FSS) in

dimensions d above the upper critical dimension du, for both free and periodic

boundary conditions. For d > du, a dangerous irrelevant variable is responsible

for both the violation of hyperscaling and the violation of “standard” FSS. We

find that the modified hyperscaling proposed to allow for this applies only to

k = 0 fluctuations, while standard FSS applies to k 6= 0 fluctuations. Hence
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the exponent η describing the power-law decay of correlations at criticality is

unambiguously η = 0. With free boundary conditions, the finite-size “shift” is

greater than the rounding. Nonetheless, using T − TL, where TL is the finite-size

pseudocritical temperature, as the scaling variable, the data do collapse onto a

scaling form that includes the behavior both at TL, where the susceptibility χ

diverges like Ld/2, and the bulk Tc, where it diverges like L2. We support these

claims with data from large-scale simulations of the five-dimensional Ising model.
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Chapter 2

Numerical methods

2.1 Importance sampling

The aim of numerical simulations in statistical physics is often to compute the

probability distribution of some observable X when a system, described by a

Hamiltonian H, is in equilibrium with a heat bath at temperature T ≡ 1/β,

P (x) =
Tr δ(X̂ − x) exp (−βH)

Tr exp (−βH)
, (2.1)

where δ(X̂ − x) is a projection onto the subspace of states where X has the

particular value x. But computing Eq. (2.1) as written, that is, by summing over

all the states of the system, is infeasible in practice. This is because the volume

of the phase space over which we must average grows at least exponentially in

the size of the system (for quantum systems the situation is even worse, with

the dimension of the Hilbert space growing exponentially). To have any hope

of studying systems with more than just a few degrees of freedom, we need an

approximate method that doesn’t require considering all of the possible states.

Importance sampling exploits the observation that most of the states of the

system have vanishingly small probability for a given temperature, and thus most

30



of the terms in Eq. (2.1) can be neglected. By averaging over only the most prob-

able states, which represent a small fraction of the overall phase space, we can in

practice get an excellent approximation of the equilibrium probability distribution.

2.2 Markov Chain Monte Carlo

But how do we determine which states are the most probable without first enu-

merating all the possible states and computing the probability of each one? A

solution is provided by Markov Chain Monte Carlo methods, which are essentially

random walks in phase space where, at each iteration, the system transitions to a

new state drawn from a probability distribution which depends only on the cur-

rent state of the system. If the system is in a state l at time t, then the probability

of a transition to state m at time t + 1 is written wl→m. The the change in the

probability that the system is in state l after one iteration is given by

Pl(t+ 1)− Pl(t) =
∑

m:m 6=l

(
Pm(t)wm→l − Pl(t)wl→m

)
, (2.2)

called the “master equation” in the literature. This can be understood intuitively

by considering a large number of random walkers traversing the phase space ac-

cording to the transition probabilities wl→m. We then interpret Pl(t) as the frac-

tion of walkers at state l at time t. Then the first term on the right represents

the gain in probability from walkers transitioning into l, while the second term

represents the loss in probability from walkers transitioning out of l.

It turns out that, after an initial “relaxation time,” the random walkers will

sample states from a steady-state distribution πl which depends on the transition

probabilities wl→m. Given a target distribution πl, how do we choose the transition

probabilities to achieve this? Clearly, a necessary condition is that the target
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distribution πl be a fixed point of Eq. (2.2), i.e.

∑

m:m6=l
(πmwm→l − πlwl→m) = 0. (2.3)

A stronger condition is obtained by requiring that each term in the sum vanish,

i.e.

πmwm→l = πlwl→m (2.4)

for all l, m. Although not strictly necessary for convergence, wl→m is often chosen

to satisfy the latter condition, called detailed balance. Note that Eq. (2.4) does not

uniquely determine the transition probabilities, but only the ratio wl→m/wm→l of

the probability of a transition to the probability of the reverse transition. Of the

many ways to satisfy Eq. (2.4), one of the most useful is the choice of Metropolis

et al. (1953),

wl→m = min
{

1, πm/πl
}

(Metropolis). (2.5)

Another useful choice is the “heat-bath” probability,

wl→m =
1

1 + πl/πm
(heat bath), (2.6)

which has the nice property of being a smooth function of probability ratio.

However, with a few exceptions, the “Metropolis probability” of Eq. (2.5) is

most frequently used in practice because it leads to higher transition probabil-

ities (see Fig. 2.1) and hence faster convergence. For Monte Carlo simulations

in statistical physics, the target distribution is often the Boltzmann distribution,

πl ∝ exp (−βEl). In this special case the Metropolis transition probability is given

by

wl→m = min
{

1, e−β(Em−El)
}
. (2.7)
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Figure 2.1: Comparison of the Metropolis and heat-bath transition probabilities
as a function of the probability ratio of two states in the stationary distribution,
πm/πl. Note that use of the Metropolis probability leads to larger transition
probabilities and thus faster convergence to the stationary distribution.

2.2.1 Constructing a Markov chain

Clearly the detailed balance condition (2.4) is insufficient for convergence, as can

be seen by considering the trivial case wl→m = 0. It turns out that convergence

also requires ergodicity, which is the property that for any pair of states (l,m) it

is possible to reach l from m in a finite number of steps.

Note that it is possible for most of the wl→m to be zero while maintaining

ergodicity. In other words, rather than considering moves from the current state

to every other state at each iteration, we can consider just a handful of “neigh-

boring” states. It is useful to imagine a graph where each vertex corresponds

to a state of the system and an edge is drawn between two vertices if there is a

nonzero probability of transition between the corresponding states. Then, as long

as there is a path between every pair of vertices (states), the system is ergodic, and

if the transition probabilities additionally satisfy Eq. (2.3), the Markov process

will converge to the desired steady-state distribution. Monte Carlo algorithms

in statistical physics exploit this fact because it is computationally infeasible to

33



consider transitions to all possible states at each iteration (actually, this would be

no more efficient than directly computing Eq. (2.1)) and in any case the transition

probabilities are vanishingly small for the vast majority of them.

In practice, Monte Carlo algorithms in statistical physics usually split each

iteration into two parts: first, starting from initial state l, the algorithm selects

or “proposes” a transition to state m with some probability gl→m; the proposed

move is then accepted with probability Al→m, so that the overall probability of

a transition from l to m is the product wl→m = gl→mAl→m (E. J. Newman and

Barkema 1999). To satisfy detailed balance (2.4) we must have

gl→mAl→m
gm→lAm→l

=
πm
πl

= e−β(Em−El). (2.8)

In order for the algorithm to converge, the selection probabilities gl→m must allow

for ergodicity; that is, there must be a path between every pair of states such

that at each step the selection probability is nonzero. The acceptance probabil-

ities Al→m can then be adjusted to satisfy, e.g., detailed balance. This allows

us considerable freedom in the choice of the selection probabilities; however, this

choice is paramount to efficiency—the algorithm should propose moves that have

reasonably large acceptance probabilities, otherwise it will waste many iterations

“stuck” in the same state. On the other hand, the proposed moves should take us

“far enough” in phase space that we explore the relevant regions efficiently . The

tradeoff between these somewhat vague notions will be clarified in the following

two examples of Monte Carlo algorithms for the Ising model.

2.3 Algorithms for the Ising model

Recall from Section 1.2 that the Ising model in d dimensions consists of N classical

spins Si, i ∈ {1, . . . , N}, which take values Si = ±1. The spins are put on a
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hypercubic lattice of linear size L so that the number of spins N = Ld. The

system is described by the Hamiltonian

H = −1

2

∑

ij

JijSiSj −
∑

i

HiSi, (2.9)

where Jij = J if i and j are nearest neighbors and zero otherwise, and Hi is the

external field.

2.3.1 Single-spin flip dynamics

The classic example of a Monte Carlo method in statistical physics is the Metropo-

lis algorithm, introduced by Metropolis et al. (1953). In this algorithm the pro-

posed states differ from the current state by a single spin flip (i.e. Si → −Si) and

have uniform probability. That is,

gl→m =





1/N l and m differ by a spin flip,

0 otherwise.

(2.10)

Note that, because of the symmetry gl→m = gm→l, the selection probabilities drop

out of detailed balance condition (2.8); consequently the acceptance probabilities

satisfy detailed balance,

Al→m
Am→l

= e−β(Em−El). (2.11)

Suppose m[i] differs from l by a flip of Si. Then the change in energy is

Em[i] − El = 2


J

∑

j∈N [i]

Sj +H


Si, (2.12)

where the sum is over the neighbors of i. Finally, using the Metropolis conven-

tion (2.5) we obtain the acceptance probabilities

Al→m[i] = min
{

1, e−β(Em[i]−El)
}
. (2.13)
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Since the allowed moves are given uniform probability independent of the state

of the system, it makes no difference whether updates are done randomly or

sequentially; for simplicity we usually update the spins sequentially. A single

iteration over the N spins is called a sweep and is often taken as the basic unit

of Monte Carlo time. Algorithm 1 is a minimal implementation of a Metropolis

sweep, the core of the algorithm.

Algorithm 1 Minimal implementation of the Metropolis sweep.

procedure Metropolis-sweep(S)
for i← 1, N do

HS ← J
∑{

Sj : j neighbor of i
}

. sum neighbor spins
∆E ← 2 (HS +H)Si . compute change in energy
if ∆E < 0 or rand < exp

(
−∆E/T

)
then

Si ← −Si . flip i-th spin
end if

end for
end procedure

2.3.2 Cluster dynamics

Another important class of Monte Carlo algorithms are cluster algorithms, which

flip not just a single spin at a time but clusters of many spins. One of the first

algorithms to make use of this idea is that of Swendsen and Wang (1987). Recall

that in the Metropolis algorithm, the selection step is trivial and the physics

enters through the acceptance probabilities. On the other hand, the Swendsen-

Wang (SW) algorithm has a nontrivial selection step in which the spins are divided

into clusters by a method that depends on the temperature and couplings, while

the acceptance step is relatively simple: each cluster is flipped with probability

1/2.

Cluster algorithms such as SW are especially effective at temperatures near the
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transition temperature, where the correlation length becomes large. Here cluster

algorithms have a significant advantage over single-flip algorithms because they

are able to realize long-distance correlations in a single move (by flipping large

clusters of spins) whereas single-flip algorithms take many moves to propagate

the effective interaction between two spins separated by a large distance. Thus

cluster algorithms avoid the slow dynamics associated with the phenomenon of

critical slowing down near a critical point. Farther from a critical point, cluster

algorithms lose this advantage and in fact may become less efficient than single-flip

algorithms: at high temperatures cluster algorithms essentially reduce to single-

flip algorithms (with the additional overhead of rejected cluster-growth attempts);

at low temperatures, clusters become comparable to the size of the system and,

considering the up-down symmetry of the Ising model, the overall effect is to flip

only a few spins at each iteration. In the latter case, the efficiency of the cluster

algorithm is much worse than that of a single-flip algorithm, because each move

involves an O(N) cluster-growth procedure to essentially flip a few spins.

A variant of the SW algorithm which is simpler to implement but with similar

good performace near the critical point is due to Wolff (1989). In this algorithm,

we choose a random “seed” spin and “grow” a cluster outwards, adding like spins

adjacent to the cluster with a probability padd(T/J) which depends only on the

(dimensionless) temperature. When cluster growth is complete, all of the spins in

the cluster are flipped.

To derive the value of padd corresponding to a given temperature, we return

to the detailed balance condition (2.4). Note that it is the ratio of selection

probabilities of the forward and reverse moves that is relevant. In general there

are many ways to grow the same cluster; for example, the seed spin could be any

spin in the cluster. Following E. J. Newman and Barkema (1999), we consider a
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particular way of growing the cluster which takes us from state l → m, that is a

particular seed spin and sequence of additions to the cluster. Consider also the

particular reverse move which takes us from m → l starting from the same seed

spin and with the same sequence of additions to the cluster.

Now, the change in energy when the cluster is flipped depends only on the

relative orientations of the spins at its boundary. Suppose that nf bonds are

“broken” by the forward move, meaning that nf pairs of spins that were formerly

aligned are anti-aligned after the cluster flip, and nr bonds are broken by the

reverse move. Then the change in energy in going from l→ m is 2J(nf − nr). To

see this, note that broken bonds each contribute 2J to the energy, and also that

the changes of energy of the forward and reverse moves must sum to zero. Thus,

to satisfy detailed balance, we must have

gl→mAl→m
gm→lAm→l

= e−2βJ(nf−nr). (2.14)

We now compute the selection probability for forward and reverse moves in terms

of the parameter padd. Broken bonds represent like spins that were rejected for

addition to the cluster. Since the probability of each rejection is 1 − padd, the

probability of selecting a cluster with n broken bonds is (1 − padd)n. Thus, the

ratio of selection probabilities for the forward and reverse moves is (1−padd)nf−nr .

Finally, we insert this into Eq. (2.14) to find the relationship between padd and

the ratio of acceptance probabilities,

(1− padd)nf−nr
Al→m
Am→l

= e−2βJ(nf−nr). (2.15)

Then comes a remarkable simplification: if we set

padd = 1− e−2β, (2.16)

Equation (2.15) is satisfied with Al→m/Am→l = 1. This means that we can simply

accept all moves and still satisfy detailed balance!
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A minimal implementation of the Wolff cluster update is given in Algorithms 2

and 3. This is a recursive implementation which uses a depth-first search to grow

the cluster. The choice of search order makes no difference in the overall efficiency

of the algorithm (E. J. Newman and Barkema 1999), but comparison of results

obtained using different search orders can be a useful check for correctness, and

some hybrid approaches are more memory-efficient (Martın-Herrero 2004).

Note that spins are flipped as the cluster is grown rather than at the end of

cluster growth. This is equivalent to the procedure described above, but does not

require an additional size O(N) buffer to keep track of the cluster.

Algorithm 2 Minimal implementation of the Wolff cluster algorithm.

procedure Wolff-cluster-update(S)
p← 1− e−2/T . probability to add a spin to the cluster
i← rand-int(1, N) . choose random spin to seed the cluster
σ ← Si . save the cluster spin
grow-cluster(S, i) . grow a cluster starting from the seed

end procedure

Algorithm 3 Recursive cluster-growth procedure for the Wolff algorithm.

procedure grow-cluster(S, i)
Si ← −Si . flip spin
for all j ∈ neighbors of i do

if Sj = σ and rand < p then . check if like spin and flip coin. . .
grow-cluster(S, j) . recurse. . .

end if
end for

end procedure

2.4 Convergence to equilibrium

Having seen several practical applications of Markov Chain Monte Carlo algo-

rithms in statistical physics, in this section we return to the general problem of
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convergence. We have seen how to choose transition probabilities wl→m to guaran-

tee that the target distribution πl is a fixed point of the master equation, Eq. (2.2).

But so far there has been no guarantee that, starting from an arbitary inital dis-

tribution, the iterations will converge to the desired steady-state distribution. As

we stated earlier, this will only be the case if the system is ergodic, which is the

only case we consider here.

It is convenient to define the transition probability matrix Γ with off-diagonal

elements Γlm = wl→m and diagonal elements Γll = 1 −∑m 6=l wl→m representing

the probability to stay in state l. The rows of Γ are probability distributions and

therefore must sum to one,
∑

m

Γlm = 1. (2.17)

Using this notation we can write Eq. (2.2) in a form suggestive of matrix multi-

plication,

Pl(t+ 1) =
∑

m

Pm(t)Γml. (2.18)

Let Pt be the (row) vector with components Pl(t). Then Pt+1 = PtΓ, and the

steady-state vector π is a left-eigenvector of Γ with eigenvalue one,

πΓ = π. (2.19)

The assumption of ergodicity is then equivalent to the statement that there exists

some power p such that Γp has strictly positive entries

(Γp)lm > 0. (2.20)

Then p can be interpreted as the minimum number of steps required for a random

walker to reach state m from state l, maximized over all pairs l, m.

One strategy to prove the convergence of Eq. (2.18) is to show that Γp has

a one-dimensional eigenspace, spanned by π, with eigenvalue one, and all other
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eigenvalues less than one in magnitude. Then, as long as P0 has some nonzero

projection onto π (which is necessarily the case in classical Monte Carlo simula-

tions1), the components of Pt orthogonal to π will decay exponentially in t and,

because right-multiplication by Γ conserves probability according to Eq. (2.17),

Pt → π as t→∞. We now proceed with the proof.

First, note that the column vector of ones 1 is a right eigenvector of Γ with

eigenvalue one. Given an arbitrary vector u, note that Eqs. (2.17) and (2.20)

imply that each component of Γpu is a convex combination2 of the components

of u, and thus can be no larger in magnitude than the largest component of u.

That is, ∣∣∣∣∣∣
∑

j

(Γp)ij uj

∣∣∣∣∣∣
≤ max

k

{
|uk|
}

(2.21)

for all i. But equality for any i implies that the components of u are all equal,

or, in other words, u is an element of the one-dimensional eigenspace spanned by

1. Therefore Γpu = λu implies that either u ∝ 1 or |λ| < 1.

The above argument unfortunately doesn’t appear to have a clear interpreta-

tion in terms of random walkers moving between states. Narayan and A. P. Young

(2001) give a direct proof in this language, which also provides the intuition that

deviations from the stationary probability of each state eventually meet and anni-

hilate as long as the system is ergodic, so that the overall distribution eventually

converges to the stationary distribution.

1In classical Monte Carlo simulations, we start in some initial state m so Pl(0) = δlm. By the
assumption of ergodicity, Eq. (2.20), the stationary state π must have all components nonzero
and thus P (0) has a nonzero projection onto π.

2That is, a linear combination in which the coefficients are all positive and sum to one.
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2.4.1 Estimating the relaxation time

We have argued that Monte Carlo simulations of ergodic systems eventually con-

verge to a steady state, but in practice we need to estimate the number of Monte

Carlo steps necessary to achieve convergence. This is called the relaxation time

or equilibration time and is denoted in the following by τ .

By the above arguments the rate of convergence is related to the magnitude

of the second-largest eigenvalue λ2 of Γ, which controls the exponential decay of

the components of Pt orthogonal to π. Thus in theory τ can be estimated by

τ ∼ − 1

log|λ2|
. (2.22)

In practice, the number of states in a typical Monte Carlo simulation is far too

large to calculate λ2, and we instead estimate τ empircally.

A simple but effective way to estimate τ is to plot thermal averages of the

quantity of interest, 〈x〉, against the Monte Carlo time and estimate τ from the

onset of a plateau. In one particulary useful scheme, we start with some initial

number of updates M0 without computing any averages. We then do an additional

M0 updates, computing the average 〈x〉1. Finally, we compute 〈x〉n by averaging

between t = 2n−1M0 and t = 2nM0. In other words, 〈x〉n represents the average

taken over the last half of the updates. We then plot 〈x〉n as a function of n

(which is just the logarithm of the Monte Carlo time) to estimate τ .

While the simple method of estimating τ from a plateau is often adequate,

a more robust approach is possible if we can find an “indicator” quantity that

necessarily vanishes in equilibrium, but is nonzero in the initial, nonequilibrium

state. The vanishing of the indicator, in conjunction with a plateau in the quan-

tity of interest, provides additional evidence for equilibration. This method has

proven useful in the study of spin glasses with Gaussian couplings, for which such
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a quantity is known (Katzgraber and A. P. Young 2003). Below we derive the

equilibrium relationship between measurable quantities on which this indicator is

based.

2.4.2 Equilibration test for Gaussian spin glasses

Consider the equilibrium energy per spin averaged over samples,

U = − 1

2N

∑

ij

[
Jij
〈
SiSj

〉]
av
≡ − 1

2N

∑

ij

Uij, (2.23)

For Gaussian Jij with mean zero and variance σ2
ij, we can compute the bond

average in closed form to obtain an equilibrium relationship between measurable

quantities. Integrating by parts with respect to Jij, noting that the boundary

term vanishes,

Uij =
σ2
ij√

2πσ2
ij

∫
dx e−x

2/2σ2
ij

d

dx
C2(x), (2.24)

where C2(Jij) ≡
〈
SiSj

〉
, and thus

U = − 1

2N

∑

ij

σ2
ij

[
d

dJij

〈
SiSj

〉
]

av

. (2.25)

In equilibrium at temperature T ≡ 1/β,

〈
SiSj

〉
=

TrSiSje
−βH

Tr e−βH
. (2.26)

Taking the derivative and using the identity d
dJij

e−βH = βSiSje
−βH, we find

T
d

dJij

〈
SiSj

〉
= 1−

〈
SiSj

〉2
. (2.27)

Thus we find the equilibrium relationship

U = − 1

2NT

∑

ij

σ2
ij

(
1−

[〈
SiSj

〉2
]

av

)

= −
(
TMF
c

)2

2T


1− 1

N

∑

ij

σ2
ij

(TMF
c )2

[〈
SiSj

〉2
]

av


 (2.28)
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where in the second line we use the identity
(
TMF
c

)2
= (1/N)

∑
ij σ

2
ij. The second

term in the parentheses,

ql ≡
1

N

∑

ij

σ2
ij

(TMF
c )2

[〈
SiSj

〉2
]

av
, (2.29)

is a generalized form of the link overlap, so named because the average
〈
SiSj

〉2

measures the tendency for a bond, or “link”, to be simultaneously satisfied in

independent replicas. Equation (2.28) can be rewritten as

U = −
(
TMF
c

)2

2T
(1− ql) , (2.30)

or

∆(U, ql) ≡ U +

(
TMF
c

)2

2T
(1− ql) = 0 (equilibrium). (2.31)

However, for a nonequilibrium state at time t with link overlap ql(t) and energy

U(t), the quantity ∆(t) ≡ ∆
[
U(t), ql(t)

]
does not necessarily vanish. For example,

consider putting the system in a random state at t = 0 by flipping each spin with

probability 1/2 (which is how we typically initialize Monte Carlo simulations).

Then ql(t = 0) ≈ 0, less than the equilibrium value ql(t → ∞), and furthermore

U(t = 0) > U(t→∞). Thus

∆(t = 0) > 0, (2.32)

and, from Eq. (2.31),

∆(t→∞) = 0. (2.33)

Therefore a useful test for equilibration is to plot ∆(t) and infer the time at which

the system reaches equilibrium from the onset of a plateau at ∆ = 0. An example

of such an “equilibration plot” is shown in Fig. 2.2.
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Figure 2.2: Example equilibration plots for the one-dimensional diluted spin glass
with σ = 0.6. On the left, the left- and right-hand sides of Eq. (2.30), computed
from Monte Carlo averages, as a function of sweeps t on a log-linear scale. The
plateau of both quantities at a common value is consistent with the onset of
equilibrium. On the right, the quantity ∆, defined in Eq. (2.31), as a function of
t for different sizes on a log-linear scale. Here, the plateau at zero is consistent
with the onset of equilibrium.

2.5 Parallel tempering

For systems with slow dynamics and at low temperatures, the rate of convergence

is significantly improved by parallel tempering (also known as replica exchange)

Monte Carlo, introduced by Hukushima and Nemoto (1996). The idea is to si-

multaneously simulate several copies (replicas) of the system, each at a different

temperature, and, in addition to the usual (e.g. spin-flip) updates, allow a new

type of “replica exchange” update which swaps the entire spin configurations of

a pair of replicas.

The advantage of parallel tempering is realized in systems with “rough” energy

landscapes, with many local optima separated by energy barriers on many scales.

Replicas at low temperatures tend to settle into local minima which are difficult

to escape, leading to slow dynamics. Parallel tempering helps by allowing “stuck”

replicas at low temperature to “jump up” to a higher temperature where they are
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T1

1

2

configuration

E

Figure 2.3: Replicas at different temperatures T1 < T2 exploring a non-convex
energy landscape. In this scenario, the replica at the lower temperature T1 has
become trapped in a local minimum. At the next iteration of parallel tempering,
the configurations of the two replicas will be swapped with high probability (cor-
responding to exchanging the positions of “1” and “2” in the figure). The replica
at temperature T1 will then be able to explore the low-energy region.

able to escape local minima and more efficiently explore the phase space. Once

a region of lower energy is found, a replica can then “drop down” to a lower

temperature. See Fig. 2.3.

We now derive the transition probabilities for the replica exchange moves as-

suming detailed balance. Suppose we have two replicas in states l, m and at

temperatures β1, β2 respectively. According to the Boltzmann distribution, the

joint probability of this configuration is

P (l, β1)P (m,β2) ∝ e−β1El−β2Em . (2.34)

Exchanging l and m, we obtain for the ratio of joint probabilities

P (m,β1)P (l, β2)

P (l, β1)P (m,β2)
=

exp (−β1Em − β2El)

exp (−β1El − β2Em)
= e(β1−β2)(El−Em). (2.35)

To define a Markov process which converges to a distribution satisfying Eq. (2.34),

it is sufficient to satisfy the detailed balance condition and, using the Metropolis

convention of Eq. (2.5), we obtain for the transition probability

wX→X′ = min
{

1, e(β1−β2)(El−Em)
}
. (2.36)
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where the configuration X =
{

(β1, l), (β2,m)
}

and X ′ =
{

(β1,m), (β2, l)
}

.

Note that the average transition probability of a replica exhange move depends

on the amount of overlap of the energy distributions of the two replicas. In other

words, the condition for parallel tempering to be effective is ∆E/δE . 1, where

∆E is the difference between the average energies and δE is the width of the

distributions. This is sketched in Fig. 2.4. Differentiating the partition function

we find NcV = (δE)2/T 2, where cV is the heat capacity per spin. Combining this

with ∆E = NcV ∆T , the condition becomes

∆T

T
.

1√
NcV

. (2.37)

Thus, at least in cases where the specific heat cV doesn’t vary too much over

the temperature range we wish to study, a geometric series of temperatures is an

appropriate choice.3 In practice, we usually adjust ∆T/T to obtain acceptance

probabilities for swaps between each pair of neighboring temperatures of about

20–30%, near optimal values found by Rathore, Chopra, and Pablo (2005) and

Kone and Kofke (2005). Recently Katzgraber, Trebst, et al. (2006) have proposed

an adaptive method which optimizes the round-trip time for a replica to explore

the entire temperature space, which avoids bottlenecks in swap probabilities that

may occur for example if the heat capacity exhibits singular behavior within the

range of temperatures studied.

2.6 Finite-size scaling

Using state-of-the-art Monte Carlo algorithms running on modern hardware we

can (optimistically) simulate systems of sizes up to roughly N ∼ 109, limited by

3One must use caution for example in the vicinity of a critical point, where the specific heat
may diverge, leading to vanishingly small transition probabilities between pairs of replicas near
the critical point.

47



T1

T2

T3
T4

∆E

δE

E

P (E)

Figure 2.4: Overlap of energy distributions of replicas of a system at nearby
temperatures. For parallel tempering to be effective, temperatures must be chosen
such that the difference ∆E between average energies of neighboring replicas is of
the order (or smaller than) the width of the energy distributions δE.

available processing speed and memory. For equilibrium simulations of systems

glassy systems, this number is much smaller, about 104, as the time required to

equilibrate the system grows rapidly with size. There is a big gap between the

sizes we are able to simulate and N ∼ 1023 observed in laboratory experiments!

Thus it would be very useful to know in which situations finite-size effects become

important and how to use results for finite systems obtained from simulations to

extrapolate the behavior in the thermodynamic limit.

A very important result of the theory of phase transitions is that phase tran-

sitions can only occur in the thermodynamic limit, i.e. for infinite systems. This

is because the non-analytic behavior at a critical point observed in infinite (or

near-infinite, macroscopic) systems, for example the divergence of the susceptibil-

ity as χ ∝ (T − Tc)−γ, cannot arise from a partition function which is a sum of a

finite number of (analytic) terms. In finite systems what is actually observed is a

“rounding” effect, whereby the measured critical exponents initially approach the

their true asymptotic values as T → Tc, but then enter a “crossover” regime close

to Tc, where the behavior of the quantity which is singular in the thermodynamic

limit smoothly transitions to the asymptotic behavior below Tc.
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Plausibly, finite-size effects become important when the relevant length scale of

the fluctuations, i.e. the correlation length ξ, becomes large relative to the linear

size of the system L. The basic assumption of standard finite-size scaling (FSS)

theory is that finite-size corrections only involve the ratio of the bulk correlation

length ξ (i.e. the correlation length that would be observed in an infinite system)

to the size L. This assumption is correct for systems below the upper critical

dimension, d < du. Above the upper critical dimension, d > du, this simple pic-

ture is complicated by the presence of a “dangerous irrelevant variable,” (Binder,

Nauenberg, et al. 1985) and we have to proceed more carefully using a renormal-

ization group approach. This situation is discussed in detail in Chapter 6. Here

we will assume d < du, so that standard FSS applies.

Finite-size effects are particularly important near a critial point, which is

marked by the divergence of the bulk correlation length ξ. Near the critial tem-

perature Tc, the correlation length scales like ξ ∼ t−ν , where t = T − Tc, so by

the basic assumption of FSS, the size dependence enters only through the ratio

t−ν/L, or, equivalently, through L1/νt. For a susceptibility which diverges (in the

bulk) like χ ∼ t−γ at the critial temperature, we then infer the finite-size scaling

form

χ(L, t) ∼ Lγ/νχ̃
(
L1/νt

)
, (2.38)

where ∼ indicates asymptotic equality for large L, and χ̃ is a scaling function

which depends on L only through its argument. The prefactor Lγ/ν is justified by

the assumption that χ(∞, t) ∼ t−γ, which requires that χ̃(x)→ x−γ as x→∞.

The FSS form is particulary simple for dimensionless quantities since there

can be no prefactor power of L. For a dimensionless quantity g, the FSS form is

simply

g(L, t) ∼ g̃
(
L1/νt

)
(2.39)
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One commonly-studied dimensionless quantity is the “Binder ratio,” defined as a

ratio of moments of the order parameter m,

g =
1

2

(
3−

〈
m4
〉

〈m2〉2

)
. (2.40)

Equation (2.39) is useful in practice to estimate the the bulk transition temper-

ature Tc, because the right-hand side is independent of L only at T = Tc (i.e.

t = 0). Thus we can estimate Tc from the temperature at which data for different

sizes intersect. However, note that Eq. (2.39) is only asymptotically correct—in

practice corrections to scaling are significant and data for different sizes do not all

intersect at a single temperature. However, if the form of the leading correction

to scaling is known, for example as in Section 3.3, we can extrapolate to estimate

the bulk Tc, see Eq. (3.27).

Remarkably, the scaling functions X̃, g̃ predicted to be universal (up to non-

universal factors multiplying argument and Lγyt . This follows from the renormalization-

group derivation of the scaling relationships.

2.7 Statistical error analysis

In this section we briefly review some of the most important statistical methods

used in the research. The derivations presented here closely follow P. Young

(2015), to which we refer the reader for an in-depth discussion.

In experimental physics and in numerical simulations, we typically have a set

of N independent measurements {xi} of some quantity X. We assume the data

are sampled from the same (unknown) underlying distribution with probability

density p(x), and our goal is to estimate the mean of the underlying distribution,

µ ≡
∫

dx x p(x), (2.41)
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and determine the statistical error in the estimate. For the purpose of discussing

bias and statistical error it is useful to imagine performing many identical ex-

periments, each time obtaining a new set of N measurements {xi}. The average

of xi over an infinite number of experiments, which we denote 〈xi〉, is equal to

the true mean, i.e. 〈xi〉 = µ. The assumption of independence means that
〈
xixj

〉
= 〈xi〉

〈
xj
〉

if i 6= j.

An unbiased estimator of the true mean µ is the sample mean,

x ≡ 1

N

N∑

i=1

xi. (2.42)

By unbiased we mean that the average over many identical experiments of the

sample mean x converges to true mean 〈x〉, because

〈x〉 =
1

N

N∑

i=1

〈xi〉 = µ. (2.43)

The variance of the sample mean is

σ2
x ≡

〈
x2
〉
− 〈x〉2

=
1

N2

∑

ij

(〈
xixj

〉
− 〈xi〉

〈
xj
〉)

=
1

N2

∑

i

(〈
x2
i

〉
− 〈xi〉2

)

≡ σ2

N
. (2.44)

Thus, to give an statistical error in our estimation of the true mean µ by the sample

mean x, we also need to estimate σ2, a parameter of the underlying distribution.

We expect this to be related to the sample variance,

s2 ≡ 1

N

N∑

i=1

(xi − x)2 , (2.45)

which can also be written as s2 = (1/N)
∑

i x
2
i − (1/N2)

∑
ij xixj. To find the

relationship between the sample variance s2 and the variance of the underlying
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distribution σ2, we evaluate

〈
s2
〉

=
1

N

∑

i

〈
x2
i

〉
− 1

N2

∑

ij

〈
xixj

〉

=
〈
x2
〉
−
(

1

N

〈
x2
〉

+
N − 1

N
〈x〉2

)

=
N − 1

N

(〈
x2
〉
− 〈x〉2

)

=

(
N − 1

N

)
σ2, (2.46)

where in the second line we split the double summation into a sum of N terms with

i = j and N(N − 1) terms with i 6= j, and use the assumed independence of the

data. Thus we find that Ns2/(N − 1) is an unbiased estimator of σ2. Combining

Eqs. (2.44) and (2.46), our final result for the estimate of the true mean µ from

the data is

µ ∼ x, σx ∼
√

s2

N − 1
, (2.47)

where, in this section, “∼” means “is an unbiased estimator of.”

2.7.1 Manual error propagation

Often we would like to estimate the value of a function f evaluated at the mean

µ. In general, f(x) is not an unbiased estimator of f(µ), unless f is linear. In

fact,
〈
f(x)

〉
= f(µ) +

1

2
f ′′(µ)

〈
δ2
〉

+ · · · (2.48)

where δ ≡ x − µ and we have used that 〈δ〉 = 0, but
〈
δ2
〉

and higher moments

do not generally vanish. In fact,
〈
δ2
〉

= σ2
x and thus, using Eq. (2.47), we can

eliminate the leading bias by estimating

f(µ) ≈ f(x)− s2

2(N − 1)
f ′′(x). (2.49)

52



The statistical error in our estimate follows from the variance,

〈
f(x)2

〉
−
〈
f(x)

〉2
= [f ′(µ)]2σ2

x + · · · (2.50)

and hence

σf(x) ≈
(

s2

N − 1

)1/2

f ′(x). (2.51)

The correction term in Eq. (2.49) is usually unnecessary in practice because the

bias falls off like 1/N asymptotically, so for reasonably large N it is insignificant

compared to the statistical error, which is seen to fall off like 1/
√
N . If N is

sufficiently large, as is usually the case, we can ignore the bias and estimate f(µ)

and the associated statistical error by

f(µ) ≈ f(x), σf(x) ≈
(

s2

N − 1

)1/2

f ′(x). (2.52)

This result generalizes straightforwardly to functions of multiple averages. For

example, consider a function f(x, y) and suppose we want to estimate f(µx, µy),

where µx = 〈xi〉 and µy = 〈yi〉. As before, bias arises from the quadratic terms in

the expansion of f about the mean values,

〈
f(x, y)

〉
= f(µx, µy) +

1

2
fµxx
〈
δ2
x

〉
+ fµxy

〈
δxδy

〉
+

1

2
fµyy

〈
δ2
y

〉
+ · · · (2.53)

where e.g. fµxx is shorthand for the second derivative ∂2
xf(x, y) evaluated at µx,

µy. The average in the cross term,
〈
δxδy

〉
, is equal to the covariance of the sample

means, σ2
xy. Analogously to Eq. (2.44), we find σxy = σxy/N . The covariance σxy

is related to the sample covariance, defined by

s2
xy =

1

N

N∑

i=1

(xi − x)(yi − y). (2.54)

Analogously to Eq. (2.46) we find

〈
s2
xy

〉
=

(
N − 1

N

)
σ2
xy. (2.55)
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Finally, we can eliminate the leading bias by estimating f(µx, µy) as

f(µx, µy) ≈ f(x, y)− 1

2(N − 1)

(
s2
xxf

µ
xx − 2s2

xyf
µ
xy − s2

yyf
µ
yy

)
. (2.56)

As before, the leading statistical error arises from the first derivatives, and we find

σ2
f(x,y) =

1

N − 1

(
s2
xf

µ
x + s2

yf
µ
y

)
. (2.57)

2.7.2 Resampling methods

In practice, the function f can be complicated, making manual computation of the

derivatives required for error propagation a tedious and error-prone process. In

some cases we may not be able to compute the necessary derivatives analytically,

and must resort to numerical approximation, for example when the function we

are evaluating involves a complex nonlinear fit. Therefore we would like to have

an “automatic” numerical procedure that can be used to compute an unbiased

estimate of f(µ) and associated statistical error, which does not require computing

the derivatives directly. Here we briefly summarize two such methods, called

resampling methods, which were used extensively in the research presented in

this thesis. The basic idea is to generate from the original N data points {xi}

a number of resampled data sets {xαi } similar to those that would be obtained

by performing the experiment many times. We can then use averages computed

from these resampled data sets to form an unbiased estimate of f(µ) and obtain

a statistical error in the estimate. For a detailed discussion we refer the reader to

P. Young (2015).

Jackknife

Using the jackknife method, we generate N resampled data sets {xαi }, α ∈

{1 . . . N} simply by leaving out a single point of the original data set in each
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one. That is, {xαi } ≡
{
xj : j ∈ {1 . . . N} , i 6= j

}
We call the averages of the re-

sampled data sets jackknife averages,

xα ≡ 1

N − 1

∑

i 6=α
xi, (2.58)

which is just the average over the original data set leaving out data point xα. We

then estimate f(µ) by the average

f ≡ 1

N

∑

α

f(xα). (2.59)

Note that (1/N)
∑N

α=1 x
α = x. If f is linear, then f = (1/N)f

(∑
α x

α
)

= f(x).

However, if f is not linear, then f 6= f(x) and both are biased estimates of f(µ).

From Eq. (2.48) we note that
〈
f(x)

〉
has an expansion of the form

〈
f(x)

〉
= f(µ)− A

N
− B

N2
− · · · (2.60)

Following P. Young (2015) we note that, since the jackknife data sets xα have the

same distribution as the original data set (after all, they are the original data set

with one point left out), the coefficients A and B are the same in the expansion of
〈
f
〉

, only N is replaced with N − 1. Thus we can eliminate the leading O(1/N)

bias by estimating

f(µ) ≈ Nf(x)− (N − 1)f. (2.61)

We define the variance of the jackknife estimates by

s2
f ≡ f 2 − f 2

. (2.62)

With some algebra, it can be shown that, to leading order in N ,

σ2
f
≈ (N − 1)s2

f . (2.63)

Thus we obtain an estimate of f(µ) and statistical error equivalent to Eq. (2.52)

without the need to compute partial derivatives. Relative to other resampling

55



methods, such as bootstrap, jackknife is simple and efficient. However, roundoff

error can be a problem with large data sets, where the jackknife averages will

be very close together. In particular, the computation of the standard devia-

tion, which involves subtracting large, almost-equal numbers when N is large, is

susceptible to roundoff error.

In the work presented here we have mainly used jackknife to obtain error bars

for estimates of ratios of various moments. The most frequently-occurring example

is the Binder ratio

g ≡ 1

2

(
3−

〈
x4
〉

〈x2〉2

)
, (2.64)

for which we compute an estimate and error bar from Eqs. (2.59) and (2.63).

Bootstrap

Using the bootstrap method, we generate M resampled data sets {xαi }, each with

N points, by random selection with replacement from the original data set. Here

we state the results which are useful for estimating f(µ) and the statistical error

from the bootstrap data sets. For the derivations we refer the reader to P. Young

(2015). As for the jackknife method, the bootstrap estimate of f(µ) is given by

Eq. (2.59), with xα here denoting the averages of the bootstrap data sets. The

statistical error in this estimate is given by

σf =

√
N

N − 1
sf (2.65)

where sf is defined as in Eq. (2.62) but with the averages done over the bootstrap

data sets. When N is large, the square-root factor can be neglected, so that the

bootstrap estimate of the error is just the standard deviation of the bootstrap

estimates f(xα).
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The chief advantage of the bootstrap method compared with jackknife is that

it samples the full range of the distribution of f(x). It is thus useful to produce

error bars on fits when (a) the statistical errors are non-Gaussian or (b) we fit a

nonlinear model and the variance of the distribution is sufficiently large that an

effective linear model is not applicable P. Young (2015).
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Chapter 3

Nonextensive spin glasses

3.1 Motivation

In the study of phase transitions, it is often desirable to study models in a range

of spatial dimensions between the lower critical dimension dl, below which there

is no finite-temperature transition, and the upper critical dimension du, above

which the critical behavior is mean-field-like, meaning that the critical exponents

are determined by mean-field theory.

But numerical simulations with large d are difficult because the number of

spins, and hence the time and space required for the simulation, grows rapidly

with size as N = Ld. For glassy systems, situation is especially difficult because

the characteristic time scales, and thus the amount of simulation time required

to equilibrate the system, also grows rapidly with size. Presently the best-known

Monte Carlo methods for glassy systems are able to equilibrate up to about 104

spins in a reasonable amount a computer time, which limits system sizes at du = 6

to L . 10. For such small sizes finite-size scaling analysis is difficult or impossible,

not only because we lose the ability to study a range of L from which to infer the
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bulk behavior, but also because corrections to scaling become significant for small

L.

3.1.1 Long-range interactions

Some of these difficulties can be avoided by instead studying one-dimensional

models with long-range interactions, as proxies for higher-dimensional models with

short-range interactions. For example, consider the Ising chain with only nearest-

neighbor interactions, which is below the lower critical dimension dl = 2 for the

Ising ferromagnetic transition and therefore does not have a finite-temperature

phase transition. However, with the addition of long-range interactions falling off

as r−σ, there is a finite-temperature transition for σ ≤ 2 and, furthermore, the

critical behavior is mean-field-like for σ < 4/3 (Dyson 1969). Thus we establish a

correspondence between the lower- and upper-critical dimensions dl = 2 and du =

4 of the short range model, and the lower- and upper-critical ranges σl = 2 and

σu = 4/3 of the chain with long-range interactions. The continuous parameter σ of

the chain plays a role analagous to the dimensionality d of the short-range model

(Katzgraber and A. P. Young 2003), which is plausible because both parameters

essentially control the degree of the coupling between spins.

Note that increasing σ decreases the range of the interactions, and thus plays a

similar role of reducing the connectivity of the spins as decreasing d. The extreme

case σ = 0 is the “infinite-range” model which is solved exactly by mean-field

theory, while the opposite extreme σ → ∞ is the short-range model. We define

the “effective dimension” deff(σ) such that a one-dimensional model with long-

range interactions falling off as r−σ has the same critical behavior as the equivalent

short-range model with d = deff . In the mean-field regime (e.g. σ < 4/3 for the

Ising ferromagnet) we can derive deff(σ) in closed form by equating the singular
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parts of the free energy density for the two models (Larson et al. 2010). This is

discussed in Section 3.1.3, where we compute deff(σ) for the one-dimensional spin

glass with long-range interactions.

One-dimensional models with long range interactions have the important ad-

vantage that, since N = L, there is no difficulty in studying many different sizes

for finite-size scaling (FSS) analysis. But although we can feasibly study large L

using this method, it is important to note that finite-size effects are not reduced—

we have traded small L and short-range interactions for large L and long-range

interactions, so that the ratio of the length scale of fluctuations to the system size

is essentially unchanged.

3.1.2 Nonextensive regime

Considering the general case of a d-dimensional model with long-range interactions

falling off as r−σ, we note that, if 0 ≤ σ ≤ d, the free energy is nonextensive, i.e.

grows faster than N in the thermodynamic limit. We call this region of parameter

space the nonextensive regime.

For example, the mean-field transition temperature for an Ising ferromagnet

with long-range interactions, given by

TMF
c ≡

∑

j

Jij = c
∑

j 6=i
r−σij , (3.1)

behaves asymptotically like

TMF
c /J ∼

∫
ddr r−σ ∝





1 + a1L
d−σ if d 6= σ,

1 + a2 logL if d = σ,

(3.2)

where a1 and a2 are constants. Therefore if we take c in Eq. (3.1) to be independent

of N , the mean-field transition temperature diverges in the thermodynamic limit
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unless σ > d. Nevertheless it is possible to define a model with σ ≤ d and a

sensible thermodynamic limit provided we also take c→ 0 in such a way that the

mean-field transition temperature remains finite (Cannas and Tamarit 1996). For

σ < d we require

c = c(σ,N) ∝ Nσ/d−1. (3.3)

To fix the constant of proportionality we adopt the convention TMF
c = 1, which

for the ferromagnet gives

Jij =
c(σ,N)

rσij
, c(σ,N) =


∑

j 6=i
r−σij



−1

. (3.4)

The nonextensive regime for ferromagnets has already been explored. In one

of the earliest studies of ferromagnets with long-range interactions, Hiley and

Joyce (1965) showed that the transition temperature approaches the mean-field

prediction in the limit σ → d from above. This led Cannas and Tamarit (1996)

to conjecture that, for a ferromagnetic model in which the interactions are appro-

priately scaled in the nonextensive regime, the mean-field transition temperature

is exact not only for σ = 0 and σ → d+, but in the entire range 0 ≤ σ ≤ d.

This conjecture was subsequently verified numerically (Cannas, De Magalhães,

and Tamarit 2000; Campa, Giansanti, and Moroni 2000).

It is interesting to ask if the same is true for spin glasses. Mori (2011) argues

that this is the case; that is, the behavior throughout nonextensive regime is

identical to that of the mean-field model of spin glasses, provided the couplings are

appropriately scaled so that the mean-field transition temperature is independent

of system size. Our motivation will be to test this conjecture using Monte Carlo

simulation. First, we introduce a long-range spin glass model and define the

corresponding nonextensive regime.
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3.1.3 Spin glasses with long-range interactions

Long-range spin glass models may be defined by taking the variance of the in-

teractions to fall off with distance. Such a model was first studied by Kotliar,

Anderson, and Stein (1983), who considered a one-dimensional Ising chain with

the Hamiltonian

H = −1

2

∑

i,j

JijSiSj, Jij = εij/r
σ
ij, (3.5)

where εij are independent, identically-distributed Gaussian random variables. For

this model they found a finite-temperature phase transition for σ < 1 and mean-

field behavior for 1/2 < σ < 2/3; that is, σl = 1 and σu = 2/3.

The extreme case σ = 0 corresponds to the Sherrington-Kirkpatrick mean-field

model (see Section 1.3.2), for which the transition temperature is exactly

(
TMF
c

)2

≡
∑

j

[
J2
ij

]
av

= c
∑

j 6=i
r−2σ
ij , (3.6)

where [· · · ]av denotes an average over bonds. Compared with Eq. (3.1) for the

ferromagnet, note that Jij (∝ 1/rσij), which is zero on average for a spin glass, is

replaced by the variance
[
J2
ij

]
av

(∝ 1/r2σ
ij ).

For 0 ≤ σ ≤ 1/2 the free energy diverges in the thermodynamic limit unless

the interactions are scaled by an inverse power of the system size.

Again adopting the convention TMF
c = 1, the analog of Eq. (3.4) for the spin

glass is

[
J2
ij

]
av

=
c(σ,N)

r2σ
ij

, c(σ,N) =


∑

j 6=i
r−2σ
ij



−1

. (3.7)

In the mean-field regime (σ < 4/3) we can make a precise connection between

the power σ of the one-dimensional long-range (1D LR) model and the dimen-

sionality d of the short-range (SR) model by equating the singular parts of the

free energy density for the two models (Larson et al. 2010). The singular part of
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the free energy density scales with L like

1

Ld
f̃ (LyT t, LyHh, Lyuu) (3.8)

where f̃ is a scaling function, t = (T − Tc)/Tc is the reduced temperature, and h

is the magnetic field. Eliminating L (using N = L for the LR model and N = Ld

for the SR model) and equating the resulting expressions for the two models gives

the following relationship between the LR and SR exponents:

yLR(σ) = ySR(d)/d. (3.9)

In the mean field regime, where the FSS exponents for the SR and LR models are

given by

ySR
T = 2

ySR
H = (d+ 2)/2

ySR
u = (6− d)/2

yLR
T = 2σ − 1

yLR
H = σ

yLR
u = 3σ − 2

(Harris, Lubensky, and Chen 1976; Kotliar, Anderson, and Stein 1983), we obtain

the following relationship between the power σ of the 1D LR model and the

corresponding effective dimension,

deff =
2

2σ − 1
, (3.10)

consistently for each pair of exponents.

3.2 Models

We study the Hamiltonian

H = −1

2

∑

i,j

JijSiSj (3.11)
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d
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d
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θLR = θSR

NE MF LR SR

SRLR

σ

d

Figure 3.1: Adapted from Katzgraber and A. P. Young (2003). Schematic phase
diagram in the d-σ plane for the one-dimensional Ising spin glass with power-
law interactions, following D. S. Fisher and Huse (1988). In the shaded regions
there is a transition with Tc > 0. The line d = 2σ separates the nonextensive
(NE) region from the mean-field (MF) region. The critical exponents in both
the NE and MF regions are those of mean-field theory. The line d = 3σ/2 (red)
separates the mean-field region from the long-range (LR) region where the critical
exponents differ from mean-field theory, but the dominant contribution to the
energy comes from the long-range interactions. On the far right are the short-
range (SR) regions where the energy is dominated by the short-range interactions.
These are separated from the long-range regions by the curve θLR = θSR (red),
where θLR and θSR are the stiffness exponents corresponding to the long- and
short-range interactions respectively, see Section 1.3.4.

where the couplings Jij are sampled from a distribution with mean zero and

variance that falls off with a power of the distance rij,

[
Jij
]

av
= 0,

[
J2
ij

]
av
∝ r−2σ

ij , (3.12)

where to define rij we put the spins on a ring and use the chord distance,

rij =
L

π
sin

(
π|i− j|
L

)
(3.13)

(see Fig. 3.2).
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Figure 3.2: Representation of the (undiluted) one-dimensional long-range spin
glass with rij defined as the chord distance when the spins are arranged on a ring.

We choose a particular distribution P (Jij), introduced by Leuzzi et al. (2008),

that satisfies Eq. (3.12) asymptotically while allowing for efficient computer sim-

ulation. In the resulting model, which we refer to as the diluted model, the inter-

action matrix Jij is sparse, with the mean number of neighbors of a given spin

fixed to an arbitrary constant z (here we choose z = 6). The nonzero elements

of Jij are drawn from a Gaussian distribution with zero mean and unit variance.

The second part of Eq. (3.12) is then satisfied by letting the probability of an

interaction between spins i and j fall off with distance like r−2σ. That is, the

interactions are distributed according to

P (Jij) =
(
1− pij

)
δ
(
Jij
)

+ pij
1√
2π
e−J

2
ij/2, (3.14)

where pij ∝ r−2σ
ij .

To sample from this distribution we use the following algorithm. Choose a site

i at random from a uniform distribution. Then choose a site j with probability

p̃ij = A/r2σ
ij , where A is determined by normalization. If there is not already a

bond between i and j, take Jij from a Gaussian distribution with zero mean and
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unit variance.1 Repeat until Nz/2 bonds have been generated in total, at which

point the number of neighbors of a given spin has a Poisson distribution with

mean z.

The transition temperature for the diluted model with σ = 0 was shown by

Viana and Bray (1985) to be given by the solution of

1√
2π

∫ ∞

−∞
dx e−x

2/2 tanh2

(
x

Tc

)
=

1

z
. (3.15)

For our chosen value z = 6, we find

Tc(z = 6) ≈ 2.0564 (diluted). (3.16)

3.3 Method

We perform Monte Carlo simulations of the models described in Section 3.2. To

speed up equilibration, we use the parallel-tempering Monte Carlo method de-

scribed in Section 2.5.

To ensure that measurements are performed in equilibrium we use the equi-

libration test for Gaussian spin glasses described in Section 2.4.1. That is, we

successively double the number of Monte Carlo sweeps, each time averaging over

the last half of the sweeps, until (at least) the last three data points for ∆(Ũ , q̃l)

are consistent with zero. The total number of sweeps used in this check is shown

as Nequil in Tables 3.1 and 3.2. We perform the equilibration test only for the

largest sizes (which account for most of the overall simulation time) and use the

same value of Nequil for the smaller sizes.

We then do measurement runs where, after an initial Nequil sweeps to ensure

the system has reached equilibrium, we do an additional 10 to 20 times as many

1 Note that if p̃ij � 1, then pij in Eq. (3.14) is given by pij = zp̃ij . Otherwise there will be
corrections due to the rejection of bonds when there is already a bond between i and j.
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σ L Nsamp Nequil Nmeas Tmin Tmax NT

0 64 16000 1000 10000 0.5 1.65 47
0 128 16000 1000 10000 0.5 1.6 45
0 256 16000 1000 10000 0.5 1.6 45
0 512 16000 1000 10000 0.75 1.55 33
0 1024 8000 1000 10000 0.75 1.5 31
0 2048 4000 1000 10000 0.75 1.5 31
0 4096 4000 2000 10000 0.85 1.525 28
0.25 64 16000 1000 10000 0.5 1.65 47
0.25 128 16000 1000 10000 0.5 1.6 45
0.25 256 16000 1000 10000 0.5 1.6 45
0.25 512 8000 1000 10000 0.5 1.525 42
0.25 1024 8000 1000 10000 0.75 1.5 31
0.25 2048 4000 1000 10000 0.75 1.5 31
0.25 4096 4000 2000 10000 0.85 1.525 28

Table 3.1: Simulation parameters for the undiluted models. Nsamp is the number
of samples; Nequil and Nmeas are the numbers of sweeps used for the equilibration
and measurement phases respectively. We simulate NT logarithmically-spaced
temperatures between Tmin and Tmax.

sweeps during which measurements are performed. The detailed parameters of the

simulations are given in Tables 3.1 and 3.2. To avoid bias in measurements with

distinct thermal averages, e.g. Eq. (3.19), each thermal average is evaluated on a

separate replica of the system with the same realization of the random couplings.

Since the quantities of interest have no more than two distinct thermal averages,

we simulate two copies of the system at each temperature.

We consider moments of the spin glass order parameter,

q =
1

L

∑

i

S
(1)
i S

(2)
i , (3.17)

where “(1)” and “(2)” refer to independent replicas of the system with the same

realization of the random couplings. Of particular interest are the spin-glass

susceptibility

χSG = L
〈
q2
〉

(3.18)
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σ L Nsamp Nequil Nmeas Tmin Tmax NT

0 256 8000 400 8000 1.85 2.5 27
0 512 8000 800 16000 1.85 2.5 27
0 1024 8000 2000 40000 1.85 2.5 27
0 2048 4000 2000 40000 1.85 2.5 27
0 4096 4000 2000 40000 1.9 2.5 25
0 8192 2000 4000 80000 1.9 2.5 25
0 16384 2000 4000 80000 2 2.5 14
0.25 256 8000 800 16000 1.85 2.5 27
0.25 512 8000 800 16000 1.85 2.5 27
0.25 1024 8000 1200 24000 1.85 2.5 27
0.25 2048 4000 2000 40000 1.85 2.5 27
0.25 4096 4000 2000 40000 1.9 2.5 25
0.25 8192 2000 4000 80000 1.9 2.5 25
0.25 16384 2000 4000 80000 2 2.5 14
0.375 256 32000 1200 24000 1.863 4 24
0.375 512 32000 1200 24000 1.863 4 26
0.375 1024 16000 1200 24000 1.913 4 24
0.375 2048 15998 2000 40000 1.95 4 24
0.375 4096 8000 4000 80000 1.962 4 28
0.375 8192 7999 4000 80000 1.975 4 34
0.375 16384 4000 4000 80000 2 2.51 18

Table 3.2: Simulation parameters for the diluted models.

and the Binder ratio,

g =
1

2

(
3−

〈
q4
〉

〈q2〉2

)
, (3.19)

where 〈· · ·〉 indicates a thermal average and an average over the disorder.

Because the Binder ratio is dimensionless, its finite-size scaling behavior is

simple (see Section 2.6). The models considered here are all in the mean-field

regime, in which the scaling relation takes the form

g ∼ g̃
[
L1/3 (T − Tc)

]
(3.20)

(where ∼ indicates asymptotic equivalence for large L). Although the spin-glass

susceptibility is not dimensionless, its scaling form is also known exactly in the
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mean-field regime,2

χSG ∼ L1/3χ̃
[
L1/3 (T − Tc)

]
. (3.21)

Thus, at least asymptotically for large L, the Binder ratio g and scaled suscep-

tibility χSG/L
1/3 are independent of L at T = Tc. We can exploit this to estimate

Tc from the intersections of the data for different sizes when plotted against T .

However, we will find that the data for different pairs of sizes do not intersect

at a common temperature (see, for example, Fig. 3.3), but rather that data for

each pair (L1, L2) intersect at a size-dependent temperature T ∗(L1, L2). This is

because the corrections to the asymptotic scaling relations become significant for

the range of sizes we are able to simulate.

According to standard finite-size scaling the spin-glass susceptibility scales

near the critical point as

χSG(t, L) = La
[
f(Lbt) + L−ωg(Lyt) + · · ·

]
+ c0 + c1t+ · · · , (3.22)

(Privman and M. E. Fisher 1983), where t = T − Tc, a = 2 − η (= 2σ − 1 here),

and b = 1/ν. The L−ω term is the leading singular correction to scaling and c0 is

the leading analytic correction to scaling.

In the mean-field regime, σ < σu = 2/3, the exponents a and b are independent

of σ and take their values at σu for all 1/2 < σ < σu.
3 Although the L2σ−1 term is

therefore replaced as the largest term by an L1/3 term, we expect the former not

to disappear but instead become a correction to scaling. Therefore, for σ < σu we

2For a discussion of how standard finite-size scaling is modified in the mean-field regime,
see, for example, (Binder, Nauenberg, et al. 1985; Luijten, Binder, and H. W. Blöte 1999; Jones
and A. P. Young 2005; Brézin 1982; Brézin and Zinn-Justin 1985)

3This is explained by the presence of a “dangerous irrelevant variable,” see Binder, Nauen-
berg, et al. (1985), Luijten, Binder, and H. W. Blöte (1999), and Jones and A. P. Young (2005)
and also the discussion in Section 6.1.
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replace Eq. (3.22) with

χSG(t, L) = L1/3
[
f(L1/3t) + L−ωg(L1/3t) + · · ·

]
(3.23)

+ d0L
2σ−1h(L1/3t) + c0 + c1t+ · · · . (3.24)

The correction exponent ω can be obtained in the mean-field regime from the

work of Kotliar, Anderson, and Stein (1983) and is given by ω = 2 − 3σ. Thus,

in the nonextensive regime σ < 1/2, the dominant correction to scaling is the

constant c0. Including the dominant correction, Eq. (3.21) becomes

χSG ∼ L1/3χ̃
[
L1/3 (T − Tc)

]
+ c0. (3.25)

Data for χSG/L
1/3 for a pair of sizes (L, 2L) will intersect at a temperature

T ∗(L, 2L) where

χ̃
[
L1/3(T ∗ − Tc)

]
+ c0/L

1/3 = χ̃
[
(2L)1/3(T ∗ − Tc)

]
+ c0/(2L)1/3. (3.26)

Expanding χ̃ to first order and solving for T ∗, we obtain the correction to the

intersection temperatures corresponding to the dominant correction to scaling,

T ∗(L, 2L) = Tc + A/L2/3 + · · · , (3.27)

where A is a constant. We expect the corresponding result for the Binder ratio g

to have the same form. In the following analysis we will fit Eq. (3.27) to the data

to estimate the bulk transition temperature Tc.

3.4 Results

We first present our results for the undiluted model. Data for the Binder ratio and

the scaled spin glass susceptibility are shown for σ = 0 (SK model) and σ = 0.25
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Figure 3.3: Data for the Binder ratio for the undiluted model. The exact value
of the transition temperature for the SK model, Tc = 1, is marked with a vertical
line.
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Figure 3.4: Data for the scaled spin-glass susceptibility for the undiluted model.
The exact value of the transition temperature for the SK model, Tc = 1, is marked
with a vertical line.
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in Figs. 3.3 and 3.4. Note the large corrections to scaling for the Binder ratio and

the relatively small corrections for the scaled susceptibility.

Figure 3.5 shows the intersection temperatures for the undiluted models, de-

termined by first fitting a cubic spline to the data and finding the intersections

of the splines. The error bars were estimated using the bootstrap resampling

method (discussed in Section 2.7.2). We then fit Eq. (3.27) to the intersection

temperatures to estimate Tc. For both values of σ we obtain a value consistent

with Tc = 1 (with very small errors), the exact value for the SK model. The

quality of the fit, as quantified by the goodness of fit parameter Q (Press 2007),

is satisfactory except for the Binder ratio data for the SK model. We do not have

a good explanation of this, except perhaps that multiple corrections to scaling

are significant for the range of sizes studied. In any case we note that the result

Tc = 1 for the SK model is rigorously correct. The result that Tc = 1 also for the

model with σ = 0.25, at the midpoint of the nonextensive region, provides strong

evidence for the claim of Mori (2011) that all models in the nonextensive region

are identical to the SK model.

The corresponding results for the diluted models with σ = 0 and 0.25 are

shown in Figs. 3.6 to 3.8. For the diluted model we also performed simulations

with σ = 0.375 and show the resulting intersection temperatures in Fig. 3.9.

For σ = 0, the Viana-Bray (VB) model, the transition temperature is given by

Eq. (3.15), which, for z = 6 taken here, gives the result in Eq. (3.16). Here again

we see that the corrections to scaling are larger for the Binder ratio than for the

scaled spin glass susceptibility. Fitting Eq. (3.27), we find a predicted value of Tc

consistent with the exact value for the VB model for all values of σ.
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Figure 3.5: Results for the intersection temperatures for the undiluted model.
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Figure 3.6: Data for the Binder ratio for the diluted model. The Viana-Bray
model transition temperature Tc ≈ 2.056, obtained from Eq. (3.15), is marked
with a vertical line.
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Figure 3.7: Data for the scaled spin-glass susceptibility for the diluted model. The
Viana-Bray model transition temperature Tc ≈ 2.056, obtained from Eq. (3.15),
is marked with a vertical line.
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3.5 Conclusions

We have performed Monte Carlo simulations to investigate the transition tem-

peratures of one-dimensional Ising spin glasses, both undiluted and diluted, for

several values of σ in the nonextensive regime 0 ≤ σ < 1/2. For the undiluted

model we studied two values of σ, σ = 0 and σ = 0.25. For σ = 0.25, which lies

in the middle of the nonextensive region, we find that the transition temperature

agrees to high precision with the exact solution of the SK model. As a check,

we also simulated the σ = 0 case, obtaining results consistent with the exact SK

model result, though there seem to be multiple corrections to FSS for some of the

data.

For the diluted model we studied three values of σ: σ = 0, which corresponds

to the Viana-Bray model; σ = 0.25, which lies in the middle of the nonextensive

region, and σ = 0.375. In all cases we found the transition temperature to be

consistent with the exact solution of the Viana-Bray model; all results were within

∼ 1.5 standard deviations.
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To conclude, our results provide confirmation of the proposal (Mori 2011) that

the behavior of (undiluted) spin glasses everywhere in the nonextensive regime is

identical to that of the SK model. We have also proposed and provided evidence

that an analogous result applies to diluted spin glass models.
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Chapter 4

Statistics of the overlap

distribution

4.1 Introduction

Despite much debate, there is still no consensus on the nature of the spin-glass

phase. According to the “replica symmetry breaking” (RSB) picture of Parisi dis-

cussed in Section 1.3.3, there are many “pure states,” a nontrivial order parameter

distribution, and a line of transitions in a magnetic field, the de Almeida-Thouless

(AT) line. In contrast, according to the droplet theory, there is only a single

symmetry-related pair of pure states in zero field (one state in a nonzero field),

and thus the order parameter distribution is trivial in the thermodynamic limit

and there is no AT line. The nature of the spin glass phase has been investigated

in a series of papers by Newman and Stein (see, for example, Stein and C. M.

Newman (2013) and references therein), and recently by Read (2014). Marinari,

Parisi, Ricci-Tersenghi, et al. (2000) discuss the RSB point of view.

The sample-averaged order parameter distribution, defined in Eqs. (4.6) and (4.7)
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below, is predicted to be nonzero in the vicinity of q = 0 as the size of the system

N ≡ Ld tends to infinity, according to the RSB picture (Parisi 1983), whereas it is

expected to vanish as L−θ in the droplet picture, where θ is a positive “stiffness”

exponent (D. S. Fisher and Huse 1986). Results from simulations1 seem close to

the predictions of RSB, but it has been argued (Moore, Bokil, and Drossel 1998;

Middleton 2013) that the sizes which can be simulated are too small to see the

asymptotic behavior.

Consequently, there has recently been interest2 in studying other quantities

related to P (q) but where more attention is paid to the overlap distribution of

individual samples, PJ (q), rather than just the sample average. Accurately deter-

mining PJ (q) for each sample is more demanding numerically than just computing

the average, but computer power has advanced to the point where this is now fea-

sible.

Here we will study in detail these new quantities for a range of models. In

addition to the short-range Edwards-Anderson (EA) spin-glass models in three

and four space dimensions, and the infinite-range Sherrington-Kirkpatrick (SK)

model, we also study diluted long-range (LR) Ising spin-glass models in one space

dimension, described in detail in Section 3.1. The LR models are are useful here

because it is important to study models in the mean-field regime (d ≥ 6), or

equivalently σ < 2/3, but it is difficult to simulate and carry out a finite-size

scaling (FSS) analysis of the results for short-range models in high dimensions

because the number of spins grows so quickly with L that only a few sizes can be

considered. The LR models do not have this difficulty, so we use them to probe

the mean-field regime. Finally, verifying the consistency of our results for the SR

1Marinari, Parisi, Ricci-Tersenghi, et al. (2000), Reger, Bhatt, and A. P. Young (1990),
Katzgraber, Palassini, and A. P. Young (2001), and Katzgraber and A. P. Young (2003)

2Middleton (2013), Yucesoy, Katzgraber, and Machta (2012), and Monthus and Garel (2013)
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and LR models gives us additional confidence in our numerical results.

4.2 Models

We study several classes of Ising spin-glass models. These are one-dimensional

long-range (LR) models, three- and four-dimensional short-range (EA) models,

and the infinite-range (SK) model. In all cases the Hamiltonian can be written in

the form

H = −
∑

i,j

JijSiSj, (4.1)

where the Si ∈ {1, 2, . . . , N} represent Ising spins that take values ±1, and the Jij

are independent, quenched random variables. The summation is defined over all

pairs of interacting spins. All of the models studied here have finite-temperature

spin-glass transitions. The models differ according to which spins interact and the

strength of the couplings.

4.2.1 Edwards-Anderson models on hypercubic lattices

The three- and four-dimensional EA models that we study are defined on (hyper-

)cubic lattices with periodic boundary conditions. The nearest-neighbor interac-

tions are taken from a Gaussian distribution with zero mean and unit variance,

[
Jij
]

av
= 0,

[
J2
ij

]
av

= 1, (4.2)

where [. . . ]av indicates a quenched average over the couplings. From numerical

studies it is known that the transition temperatures are Tc = 0.951(9) for d = 3

(Katzgraber, Körner, and A. P. Young 2006) and Tc = 1.80(1) for d = 4 (Parisi,

Ricci-Tersenghi, and Ruiz-Lorenzo 1996).
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4.2.2 Sherrington-Kirkpatrick model

In the SK model each spin interacts with every other spin. The couplings are

taken from a Gaussian distribution with zero mean and variance which is inversely

proportional to the size of the system,

[
Jij
]

av
= 0,

[
J2
ij

]
av

= 1/N. (4.3)

The latter condition is necessary to ensure that there is a well-defined thermo-

dynamic limit, as discussed in Section 3.1. The transition temperature for this

model is Tc = 1 (Sherrington and Kirkpatrick 1975).

4.2.3 One-dimensional diluted long-range model

For the LR models the distribution of the interactions satisfies

[
Jij
]

av
= 0,

[
J2
ij

]
av
∝ R−2σ

ij , (4.4)

where σ is a parameter controlling the range of interactions, and Rij is the chord

distance between sites i and j when the spins are arranged on a ring, see Fig. 3.2

and Eq. (3.13). The diluted model corresponds to a choice of the distribution

P (Jij) which satisfies Eq. (4.4) while allowing for efficient computer simulation,

namely

P (Jij) = (1− pij)δ(Jij) + pij
1√
2π
e−J

2
ij/2, (4.5)

where pij ∝ R−2σ
ij at large distance. The constant of proportionality is determined

by fixing the mean number of neighbors of each spin, zb. In this work we take

zb = 6. The motivation for choosing this distribution and the algorithm used to

sample from it are discussed in Section 3.2.

We consider three values of the range parameter: σ = 0.6, which is in the

mean-field regime (Larson et al. 2010), σ = 0.784, which represents, at least ap-
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proximately, a short-range system in four dimensions,3 and σ = 0.896, which

approximately represents a three-dimensional system.4 The values of Tc are ap-

proximately equal to 1.35 and 0.795 for σ = 0.784 and 0.896, respectively (Larson

et al. 2013). For σ = 0.6 we find Tc ≈ 1.953.

4.3 Methods

We have carried out parallel-tempering (replica-exchange) Monte Carlo simula-

tions of the models described in Section 4.2. In parallel tempering, NT replicas of

the system with the same couplings are each simulated at a different temperature

in the range between Tmin and Tmax. In addition to standard Metropolis sweeps

at each temperature, there are parallel tempering moves that allow replicas to be

exchanged between neighboring temperatures. Parallel tempering moves permit

replicas to diffuse from low temperatures, where equilibration is very slow, to high

temperatures, where it is easy, and back again. The result is greatly accelerated

equilibration relative to an algorithm that only performs Metropolis sweeps. See

Section 2.5 for more on the theory and implementation the parallel tempering

algorithm.

The simulation parameters are given in Tables 4.1 to 4.4. A single “sweep”

consists of a Metropolis sweep at each temperature, followed by parallel tem-

pering moves between each pair of neighboring temperatures. The parameter b

determines the number of sweeps: 2b for equilibration followed by 2b for data col-

lection. The parameter Nsa is the number of disorder samples simulated. For each

model we have chosen the lowest temperature to be less than or equal to 0.4Tc,

3 Larson et al. (2010), Alvarez Baños, Fernandez, et al. (2012), Katzgraber and Hartmann
(2009), and Larson et al. (2013)

4See Footnote 3.
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σ N b Tmin Tmax NT Nsa

0.6 64 24 0.82 3 50 4992
0.6 128 24 0.82 3 50 4800
0.6 256 24 0.82 3 50 4800
0.6 512 24 0.82 3 50 4684
0.6 1024 25 0.82 3 50 4800
0.784 64 24 0.55 2 50 4377
0.784 128 24 0.55 2 50 5060
0.784 256 24 0.55 2 50 5470
0.784 512 24 0.55 2 50 5207
0.784 1024 25 0.55 2 50 5988
0.896 64 24 0.31 1.2 50 2600
0.896 128 24 0.31 1.2 50 4468
0.896 256 24 0.31 1.2 50 4749
0.896 512 24 0.31 1.2 50 4749
0.896 1024 25 0.31 1.1788 25 4749

Table 4.1: Simulation parameters for the 1D LR models. For each value of σ and
size N , Nsa samples were equilibrated for 2b sweeps and then measured for an
additional 2b sweeps, using replica-exchange Monte Carlo with NT temperatures
between Tmin and Tmax.

N L b Tmin Tmax NT Nsa

64 4 18 0.2 2 16 4891
216 6 24 0.2 2 16 4961
512 8 27 0.2 2 16 5130

1000 10 27 0.2 2 16 5027
1728 12 25 0.42 1.8 26 3257

Table 4.2: Simulation parameters for the 3D EA spin glass. The parameters are
defined as in Table 4.1 except for the linear size L, where N = L3.

the approximate temperature for which we report most of our results.

To test our simulations for equilibration, we use the method discussed in Sec-

tion 2.4.2. That is, we plot Eq. (2.31) as a function of the number of sweeps and

infer the time to reach equilibrium from when ∆(t) is consistent with zero for a

sufficient number of points, see the discussion below. Note that for the SK model,
(
TMF
c

)2
= T 2

c = 1, while for the remaining models
(
TMF
c

)2
= z, where z is the
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N L b Tmin Tmax NT Nsa

256 4 23 0.72 2.38 52 3252
625 5 23 0.9101 2.38 42 4086

1296 6 23 0.72 2.38 52 3282
2401 7 23 0.9101 2.38 42 4274
4096 8 23 0.72 2.38 52 3074
6561 9 24 0.72 2.38 52 3010

Table 4.3: Simulation parameters for the 4D EA spin glass. The parameters are
defined as in Table 4.1 except for the linear size L, where N = L4.

N b Tmin Tmax NT Nsa

64 22 0.2 1.5 48 5068
128 22 0.2 1.5 48 5302
256 22 0.2 1.5 48 5085
512 18 0.2 1.5 48 4989

1024 18 0.2 1.5 48 3054
2048 16 0.4231 1.5 34 3020

Table 4.4: Simulation parameters for the SK spin glass. The parameters are
defined as in Table 4.1.

(average) number of neighbors of each site. Thus z = 2d for the EA models and

z = zb = 6 for the LR models.

While the method of Section 2.4.2 is a useful criterion for the equilibration of

sample-averaged quantities, we must be especially careful when studying quan-

tities that may be sensitive to the equilibration of individual samples, such as

those considered in Section 4.4. To ensure the equilibration of individual samples,

i.e. not just sample averages, we run our simulations for many times the number

of sweeps needed to satisfy Eq. (2.31); at minimum we require that at least 3

consecutive, logarithmically-spaced times agree within error bars.

Figure 4.1 shows example equilibration tests for (a) the 1D LR model with

σ = 0.896 for the largest size at the lowest temperature, and (b) the 3D EA model

with L = 8, again at the lowest temperature. In both cases the data plateau at
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Figure 4.1: Plots of the quantity ∆(t), defined in Eq. (2.31), for (b) the 3D EA
model and (a) the 1D LR model. The results shown are for the lowest temperatures
studied and intermediate sizes. Note that at large times ∆ → 0, indicating the
equilibration of sample averages, but the simulations continue well beyond this
point to ensure that individual samples are equilibrated. Error bars are smaller
than the symbols.

zero (within the error bars) at around 105 sweeps, but the simulations continue

for much longer than this to ensure that individual samples are equilibrated.

As an additional check of equilibration for the 1D LR models, Fig. 4.2 shows

several quantities of interest, defined in Section 4.4, as a function of the number

of sweeps on a log scale, for the lowest temperature studied and for each value of

σ. The data appear to have saturated. The 3D EA data have also been tested for

equilibration using the integrated autocorrelation time, as discussed in Yucesoy,

Machta, and Katzgraber (2013).

4.4 Measured quantities

For a single sample J ≡
{
Jij
}

, the spin overlap distribution is given by
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Figure 4.2: Plots of several observables obtained from the overlap distribution,
defined in Section 4.4, versus the number of Monte Carlo sweeps for the largest size
studied, N = 1024, for the long-range model at the lowest temperature simulated
for each value of σ. (See Table 4.1.) The data appear to have reached a steady
state.

PJ (q) =

〈
δ


q − 1

N

N∑

i=1

S
(1)
i S

(2)
i



〉
, (4.6)

where “(1)” and “(2)” refer to two independent copies of the system with the same

interactions, and 〈· · ·〉 denotes a thermal (i.e. Monte Carlo) average for a single

sample. In most previous work, PJ (q) is simply averaged over disorder samples

to obtain P (q) defined by

P (q) =
[
PJ (q)

]
av

(4.7)

In order to gain additional information that might distinguish the RSB and

droplet pictures, several investigators have recently introduced other observables

related to the statistics of PJ (q). Yucesoy, Katzgraber, and Machta (2012) pro-

posed a measure that is sensitive to peaks in the overlap distributions of individual

samples, PJ (q). A sample is counted as “peaked” if PJ (q) exceeds a threshold

value κ in the domain |q| < q0. The quantity ∆(q0, κ) is then defined as the
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fraction of peaked samples. More precisely, for each sample let

∆J (q0, κ) =





1 if PJ (q) > κ for some q where |q| < q0,

0 otherwise.

(4.8)

We then define ∆(q0, κ) to be the sample average,

∆(q0, κ) =
[
∆J (q0, κ)

]
av
. (4.9)

Note that ∆(q0, κ) is a nondecreasing function of q0 and a nonincreasing function

of κ. A more important property of ∆(q0, κ) is that its behavior for N → ∞

distinguishes between the RSB and droplet pictures as follows. All of the scenarios

for the low-temperature behavior of spin-glass models predict that PJ (q) is a

superposition of δ functions as N → ∞. The difference between scenarios lies in

the number and positions of these δ functions, see Fig. 1.4. According to the RSB

picture, there is a countable infinity of δ functions that densely fill the line between

−qEA and +qEA. Thus, for any q0 and any κ, ∆(q0, κ) → 1 for models described

by RSB. On the other hand, for models described by the droplet scenario or other

scenarios with only a single pair of pure states for N →∞, ∆(q0, κ)→ 0 for any

q0 < qEA and any κ. Thus, the quantity ∆(q0, κ) will sharply distinguish the RSB

and droplet scenarios if one can study large enough sizes. We will study the size

dependence of ∆ numerically for all of our models in Section 4.5.1.

As mentioned above, most previous work evaluated the average probability

distribution P (q), but recently Middleton (2013) and Monthus and Garel (2013)

have proposed measures yielding a typical value of the sample distribution PJ (q)

with the hope that these measures would provide a clearer differentiation between

the RSB and droplet pictures than the average P (q).

Middleton (2013) studied Imed(q), the median of the cumulative overlap dis-
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Figure 4.3: Plots of the overlap distribution PJ (q) for individual disorder samples.
Panel (a) shows the overlap distribution obtained for three different samples for
the 1D LR model with σ = 0.784 at the lowest temperature simulated, T = 0.55.
According to Eq. (4.8) with parameters q0 = 0.2, κ = 1 (indicated by vertical
lines and a horizontal line respectively), two of the three samples contribute to
∆(q0, κ). Panel (b) shows the overlap distribution P (q) versus temperature for
a single disorder sample for the same model, showing the emergence of multiple
pairs of peaks below the transition temperature Tc ≈ 1.35.

tribution of a single sample IJ (q), where IJ (q) is defined by

IJ (q) =

∫ q

−q
dq′PJ (q′). (4.10)

We also denote by Iav(q) the sample-averaged cumulative distribution, which is

given by

Iav(q) =

∫ q

−q
dq′P (q′). (4.11)

Compared to the average, the median is insensitive to the effect of samples with

unusually large values of IJ (q).

For the SK model P (q) tends to a constant as q → 0, and so Iav(q) ∝ q for

small q. We can obtain a rough idea of how Imed(q) varies with q for small q in

the SK model from the results of Mézard et al. (1984). First of all, to obtain a

notation which is more compact and is extensively used in other work, we write

x(q) ≡ Iav(q). Mézard et al. (1984) argue that, at small q where x(q) is also small,
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the probability of a certain integrated value IJ is given by

p(IJ ) ∝ xIx−1
J . (4.12)

From Eq. (4.12) we estimate the median in terms of the average as

Imed(q) ∝ e− ln 2/x(q) = e− ln 2/[2qP (0)] (4.13)

for q → 0, where we used that P (0) is nonzero so x(q) ≡ Iav(q) ' 2P (0)q in this

limit [see Eq. (4.11)]. Therefore the median tends to zero exponentially fast as

q → 0, whereas the average only goes to zero linearly.

In the droplet picture, P (0) is expected to vanish with L as L−θ, so Iav(q) ∝

L−θq for small q. The median value Imed(q) will presumably also vanish for small

q as L → ∞, but we are not aware of any precise predictions for this. We will

study the median cumulative distribution numerically in Section 4.5.2.

Another measure related to the overlap distribution of individual samples has

been proposed by Monthus and Garel (2013). They suggest calculating a “typical”

overlap distribution defined by the exponential of the average of the log, i.e.

P typ(q) = exp
[
lnPJ (q)

]
av
. (4.14)

We will study this quantity numerically in Section 4.5.3.

4.5 Results

4.5.1 Fraction of peaked samples, ∆(q0, κ)

Plots of ∆(q0, κ) for the 1D LR models for various values of q0 and κ are given in

Fig. 4.4; corresponding plots for the 3D and 4D EA models are shown in Fig. 4.5.

A comparison with the SK model is made in both cases. The error bars for all

88



0

0.02

0.04

0.06

0.08
q0 = 0.1
κ = 2

∆

q0 = 0.2 q0 = 0.4

0

0.1

0.2

0.3 κ = 1

∆

26 28 210
0

0.2

0.4
κ = 0.5

N

∆

26 28 210

N

26 28 210

N

SK σ = 0.6 σ = 0.784 σ = 0.896

Figure 4.4: ∆(q0, κ) as a function of system size N for the 1D LR models and
the SK model for all available values of σ and various values of the window q0

and threshold κ. In all cases the temperature is 0.4Tc. All panels have the same
horizontal scale, and all panels in a row have the same vertical scale.

plots in this section are one standard deviation statistical errors due to the finite

number of samples. There are also errors in the data for each sample due to the

finite length of the data collection. For the EA and SK models, we estimated these

errors by measuring ∆+(q0, κ) and ∆−(q0, κ), defined as in Eqs. (4.8) and (4.9), but

from the q > 0 and q < 0 components of PJ (q), respectively. These are expected

to be reasonably independent and their differences provide an estimate of the error

due to finite run lengths. For all sizes, the average absolute difference between

these quantities,
[∣∣∆+(q0, κ)−∆(q0, κ)

∣∣+
∣∣∆−(q0, κ)−∆(q0, κ)

∣∣
]
/2, is less than

the statistical error.

One can draw several qualitative conclusions from these plots. It is apparent
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that ∆(q0, κ) is an increasing function of N for small N . As the system size

increases, we expect ∆(q0, κ) to increase because all the features of PJ (q) sharpen.

For the SK model, which is described by the RSB picture, the number of features

and their height should both increase and ∆(q0, κ) should be a strongly increasing

function of N . Indeed, this behavior is seen except for κ = 0.5, which is a

sufficiently small value that ∆(q0, κ) is effectively measuring whether or not there

is a feature in the relevant range, and this quantity increases relatively slowly for

the SK model.

However, as σ increases for the 1D LR models, the curves become increasingly

flat and the difference between σ = 0.896 and the SK model is striking; the former

is nearly flat while the latter increases sharply (see Fig. 4.4). The same qualitative

distinction holds between the 3D EA model and the SK model (see Fig. 4.5). The

similarity between the behavior of the 1D model for σ = 0.896 and the 3D EA

model is expected since the two models are believed to have the same qualitative

behavior. The distinction between the SK model and the 1D LR model with

σ = 0.784 and the 4D EA model is less striking but qualitatively similar.

It is interesting to compare the results for the SK model with the 1D LR model

with σ = 0.6, which is in the mean-field regime. For κ = 0.5 the results for the

two models are very similar and do not increase much with N , indicating that

κ = 0.5 is too small to give useful information for this range of sizes, as discussed

above. For κ = 1, the SK data increase most rapidly with N , and the σ = 0.6 data

increase less quickly, but still faster than the other values of σ. For κ = 2, the SK

data increase quickly, while for the value of σ furthest from the SK limit, 0.896,

the data are moderately large but roughly size-independent over the range of sizes

studied. Curiously, for intermediate values of σ (0.6 and 0.784) the data are very

small but show an increase for the larger sizes. This increase is particularly sharp
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for σ = 0.6. It seems that there is an initial value of ∆ for small N and a growth

as N increases. We do not have a good understanding of the initial value, e.g.,

why it is so small for κ = 2 and σ = 0.6, 0.784. The more important aspect of the

data is the increase observed, at least for most parameter values, at large sizes.

Given the rapid increase in the data for σ = 0.6, κ = 2 for the largest size, we

anticipate that for still larger sizes, its value for ∆ for κ = 2 would be closer to

that of the SK model than that of the intermediate σ values.

There are two possible interpretations of the trends discussed above. If one

believes that the RSB picture holds for all of the models studied here, then one

can point to the fact that all of the ∆ curves are nondecreasing and assert that

they will all approach unity as N → ∞, just extremely slowly for the 3D EA

model and the 1D LR model with σ = 0.896. Billoire, Fernandez, et al. (2013)

argue that this is the case, and are rebutted by Yucesoy, Katzgraber, and Machta

(2013). If, on the other hand, one believes that the droplet scenario or chaotic pairs

scenario holds for finite-dimensional spin glasses, then the flattening of the curves

for these models is a prelude to an eventual decrease to zero. Unfortunately, the

sizes currently accessible to Monte Carlo simulation do not permit one to sharply

distinguish between these competing hypotheses. Using an exact algorithm for the

two-dimensional (2D) Ising spin glass with bimodal disorder, Middleton (2013)

shows that the crossover to decreasing behavior for ∆(q0, κ) in 2D does occur at

large length scales. He also shows, within a simplified droplet model, that the large

length scales are needed to see the predictions of the droplet scenario manifest in

the 3D EA model. Overall, we see that we need larger sizes to unambiguously

determine from ∆(q0, κ) whether the droplet of RSB picture applies to 3D-like

models.
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Figure 4.6: Mean and median over samples of the cumulative distribution IJ (q)
for the 1D LR models and the SK model. In all cases the temperature is close
to 0.4Tc. For both the SK and the 1D models, the median shows a relatively
strong size dependence compared with the mean, this difference being the least
pronounced for σ = 0.896. The “theory” curve for the SK data [Eq. (4.13)] is
expected to be valid for small q only. The theory expression can be multiplied
by an (unknown) constant which has been set to unity. All panels have the same
horizontal and vertical scales. Only a representative set of points is shown but
the curves go through all the points.

4.5.2 Median Imed(q) and mean Iav(q) cumulative overlap

distribution

In this section, we compare the mean Iav(q) and the median Imed(q) of the cumu-

lative overlap distribution. Figure 4.6 shows the results for these two quantities

for the SK model and several 1D LR models for a temperature close to 0.4Tc.

Figure 4.7 shows the same quantities for the 3D and 4D EA models.

As noted in earlier work, the results for the average show very little size de-
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Figure 4.7: Log-linear plot of Imed(q) and Iav(q) versus q for (a) the 3D EA model
at T ' 0.42 and (b) the 4D EA model at T ' 0.90.

pendence for all models. This is a prediction of the RSB picture which certainly

applies to the SK model. By contrast, in the droplet picture Iav(q) is predicted to

vanish as L−θ (D. S. Fisher and Huse 1986). The observed independence of Iav(q)

with respect to L is one of the strongest arguments in favor of the RSB picture

for finite-dimensional Ising spin-glass models. However, it has been argued, e.g.

by Moore, Bokil, and Drossel (1998) and Middleton (2013), that there are strong

finite-size corrections and that the asymptotic behavior predicted by the droplet

model for Iav(q) would only be seen for sizes larger than those accessible in sim-

ulations. For this reason Middleton (2013) proposes the median as an alternative

to the mean.

The data for the median of the SK model in Fig. 4.6 show a rapid decrease at

small q, which is very strongly size-dependent. As discussed in Section 4.4 above,

the rapid decrease is expected in the RSB picture since it predicts that Imed(q) is

exponentially small in 1/q [see Eq. (4.13)]. The theoretical result is shown as a

solid line in the SK panel. It is plausible that the data will approach the theory

in the large N limit, but there are strong finite-size effects at small q for sizes that
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can be simulated, so the data for the largest sizes are still far from the theoretical

prediction. This already indicates that the median is not a very useful measure

to distinguish the RSB picture from the droplet picture.

The median data for the 1D LR model with σ = 0.6, which is in the mean-field

regime, shows similar trends to that for the SK model. On the other hand, for

the long-range model furthest from mean-field theory, σ = 0.896, the data also

decrease rapidly at small q but are less dependent on size. The data for the 3D

and 4D EA models in Fig. 4.7 also show a rapid decrease at small q which is quite

strongly size-dependent.

We have seen that even for the SK model it would be very difficult to extrap-

olate the numerical data to an infinite system size. For the 1D LR models, the

most likely candidate for droplet theory behavior, according to which the median

(such as the average) vanishes in the thermodynamic limit, is σ = 0.896. How-

ever, for this model, the data are not zero for small q and there is rather little size

dependence, implying that, if the droplet picture does hold, it will only be seen

for much larger sizes than can be simulated. This is the same situation as for the

mean (if the droplet picture is correct). Consequently, it does not seem to us that

the median of the cumulative order parameter distribution is a particularly useful

quantity to distinguish the droplet and RSB pictures.

4.5.3 Typical overlap distribution, P typ(q)

Estimating P typ(q), defined in Eq. (4.14) as the exponential of the average of

the logarithm from Monte Carlo simulations is problematic because the finite

number of observations implies that the result can be precisely zero if the average

is comparable to or smaller then ε, the inverse of the number of measurements.

Such results make the typical value undefined according to Eq. (4.14). One can
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Figure 4.8: Log-linear plot of P typ(q) for the SK model with N = 2048, showing
the strong dependence on the zero-replacement value ε/k.

regularize this problem by replacing zero values of PJ (q) with the small value

ε/k for a reasonable range of k, with the hope that the result would not be too

sensitive to the choice of k. Unfortunately, there is a strong dependence on k,

as seen in Fig. 4.8, where P typ(q) is plotted for several values of k a=for the SK

model for N = 2048. The dependence on k indicates that P typ(q) cannot be

reliably measured in Monte Carlo simulations with feasible run lengths.

4.6 Summary and conclusions

We have studied the overlap distribution for several Ising spin-glass models us-

ing recently-proposed observables. We consider 1D long-range models, 3D and

4D short-range (Edwards-Anderson) models, and the infinite-range (Sherrington-

Kirkpatrick) model. The three observables are all obtained from the single-sample

overlap distribution PJ (q). They are the fraction of peaked samples ∆(q0, κ), the

median of the cumulative distribution Imed(q), and the typical value of the dis-

tribution P typ(q). These observables were proposed to help distinguish between

the replica symmetry breaking picture and two-state pictures such as the droplet

96



model. While none of these unambiguously differentiates between these competing

pictures, it appears that ∆ does the best job. In particular, there is a qualitative

distinction between the behavior for the 3D EA model and the long-range 1D

model with σ = 0.896 that is expected to mimic it, on the one hand, and the

mean-field SK model and the 1D model with σ = 0.6 that is expected to be in

the mean-field regime, on the other hand. For a reasonable range of q0 and κ,

the two 3D-like models do not show an increase in ∆ for the largest sizes while

the mean-field models are sharply increasing for the largest sizes. The increase

in ∆ for the mean-field model is exactly what we expect from the RSB picture.

The results for the 3D-like models are ambiguous because eventually ∆ must go

either to zero or one. It is possible that for much larger sizes ∆ will begin to

increase, indicating RSB behavior, but simulating such large systems at very low

temperatures is infeasible at present.

The other proposed measures do not appear to be useful in numerical simu-

lations for distinguishing scenarios. The typical value of the overlap distribution,

P typ(q) cannot be measured in feasible Monte Carlo simulations, while the median

value of the cumulative overlap Imed(q) is very small at small q even for the SK

model and has a very strong size dependence. For the droplet model Imed(q) is

presumably zero at small q for N → ∞. However, the strong size dependence

of the results in this region of small q makes it impossible to tell numerically if

the data are going to zero or just to a very small value, even for the SK model.

Curiously, there is less size dependence for the 3D model and the equivalent 1D

LR model with σ = 0.896 than for the SK model.

In contrast to the findings of Billoire, Maiorano, et al. (2014) that the data

for Imed(q) for the SK model “converge nicely to some limiting curve when N

increases” and that “trading the average for the median does make the analysis
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more clear-cut,” we find a strong size-dependence for Imed(q) for te SK model in the

important small-q region (clearly visible in a logarithmic scale) and largely because

of this we do not find that the median is particularly helpful in distinguishing

between the droplet and RSB pictures.
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Chapter 5

Connection between dynamics

and statics in spin glasses

5.1 Introduction

Theoretical calculations in statistical physics often involve equilibrium averages

over a thermodynamic ensemble, for example the canonical ensemble, where it

is assumed that the system is in equilibrium with a heat bath at fixed tempera-

ture. In contrast, experiments and simulations usually measure steady-state time

averages. While such static and dynamic averages are usually equivalent, this

equivalence can break down.

One case where this may occur is in the ordered phase of a system that exhibits

a phase transition with spontaneous symmetry breaking. For example, consider

an Ising ferromagnet in zero field. As the system is cooled below the transition

temperature, the symmetry of the paramagnetic phase is broken and subsequent

observation will find the system in one of two ordered states, “up” or “down,”
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corresponding to the sign of the net magnetization.1 These “up” and “down”

states have the property that spatial correlations of fluctuations vanish at long

distances, i.e.

lim
rij→∞

(〈
SiSj

〉
− 〈Si〉

〈
Sj
〉)

= 0. (5.1)

Equation (5.1) is called a “clustering property” and states that satisfy it are

called “pure” states (C. M. Newman and Stein 2003). The set of pure states is

“complete” in the sense that any thermodynamic state can be expressed as a linear

combination of pure states. More precisely, correlation functions evaluated in an

arbitrary thermodynamic state ρ may be decomposed as a convex combination2

of correlation functions, each evaluated in a pure state ρα,

〈Si1 . . . Sin〉ρ =
∑

α

Wα 〈Si1 . . . Sin〉ρα , (5.2)

where we say that Wα is the “weight” of ρα in ρ. If a state ρ does not satisfy

Eq. (5.1), more than one of the Wα will be nonzero and we say that ρ is a “mixed”

state.

Returning now to the ferromagnet, in an experiment we will find either the

“up” or “down” state. However, the Boltzmann distribution does not exhibit the

broken symmetry of the ordered phase and includes equal contributions of both

states, giving a net magnetization of zero. Thus Eq. (5.1) is not satisfied and the

canonical ensemble corresponds to a mixed state.

However, in spin glasses, which have disorder and “frustration,” the situation

is more complicated. Below the spin glass transition temperature Tc, a macro-

scopic spin glass is not in thermal equilibrium because relaxation times are far

1Here, by “state” we mean a thermodynamic state, corresponding to a probability distribu-
tion over the microscopic configurations.

2That is, a linear combination where all coefficients are nonnegative and the sum of the
coefficients is one.
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longer than any experimental time scale. Rather, in a typical experiment the sys-

tem is “quenched” from a high temperature to a temperature below Tc and the

subsequent dynamical evolution of the system is observed. The state (or states)

of thermal equilibrium are very complicated and are not related to any symmetry.

As for the ferromagnet we would like to find a static calculation which will predict

the experimental behavior, at least to some extent. Below we show quantitatively

that the theoretical construct called the “metastate” (C. M. Newman and Stein

1997; Aizenman and Wehr 1990), combined with the technique of “replica sym-

metry breaking” (RSB, see Section 1.3.3), provides such a description for spin

glasses, at least in dimensions above the upper critical dimension du, where the

critical behavior is described by mean-field theory.

Pure states, those states that satisfy Eq. (5.1), are convenient objects of study

for several reasons. As in the case of the ferromagnet with its “up” and “down”

states, finding the pure states of the ordered phase of a system provides insight

into the nature of the broken symmetry. Furthermore, pure states are observed

in experiment, while mixed states (for example, the canonical ensemble for the

ferromagnet, which has zero magnetization even below Tc) are not. For these

reasons we would like to also describe spin glasses in terms of pure states. This

can be done (in principle) by taking a very large system, applying boundary

conditions on it, and studying the correlations in a relatively small window of

size W (with W � L) far from the boundary (C. M. Newman and Stein 2003;

Read 2014). The assumption is that the correlations within the window will be

described by a single pure state; in a many-states picture, different states may be

observed by varying boundary conditions at the (distant) boundary.

The question of whether there are many pure states or just one (a time-reversed
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pair in the absence of a magnetic field) in spin glasses has been very controversial.3

If there are many, one needs to do some sort of statistical average over them, which

is called a “metastate,” for which different but equivalent formulations have been

given by C. M. Newman and Stein (1997) and by Aizenman and Wehr (1990). The

former (NS) metastate corresponds to the distribution of states generated in a

small window W distant from the boundary by varying the boundary conditions,

as described above. In the latter (AW) metastate, one considers the scale M ,

intermediate between the window size W and the system size L. The metastate-

averaged state (MAS) is obtained by computing correlation functions in a window

in which an average is performed not only over the spins but also over the bonds

in the “exterior” region between M and L. The setup is sketched in Fig. 5.1.4

Parisi’s exact solution of the infinite-range Sherrington-Kirkpatrick (SK) model

using RSB predicts many pure states (see Section 1.3.3) in a sense that was later

clarified by C. M. Newman and Stein (1997).

The critical behavior of a realistic spin glass is expected to be the same as that

of the SK model in dimension d greater than the upper critical dimension, du = 6.

However, this does not necessarily mean that the RSB description of the spin glass

phase below Tc also applies for d > 6.5 Nonetheless, Read (2014) has computed the

spatial fluctuations in a finite-dimensional model below Tc, assuming mean-field

(Gaussian) fluctuations, and the metastate description from Parisi’s RSB solution

of the SK model. Spin correlations are found to fall off with a power of distance,

due to averaging over many pure states (which are unrelated by symmetry) in the

3See, for example, Parisi (1980b), Parisi (1983), D. S. Fisher and Huse (1987), D. S. Fisher
and Huse (1988), and Moore and Bray (2011)

4For more details see Aizenman and Wehr (1990), Read (2014), and Manssen and Hartmann
(2015).

5See C. M. Newman and Stein (1997), D. S. Fisher and Huse (1987), D. S. Fisher and Huse
(1988), and Moore and Bray (2011).
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Figure 5.1: Sketch of the setups for two different (but presumably equivalent)
formulations of the metastate given by (a) C. M. Newman and Stein (1997) and
by (b) Aizenman and Wehr (1990).

metastate, i.e.
〈
SiSj

〉2

MAS
∝ r−αsij αs = d− 4, (5.3)

where “s” stands for “static,” “MAS” stands for metastate-averaged state, and

sites i and j are in the window far from the boundary. For a detailed discussion

of how to do the metastate average see Read (2014).

We emphasize that the calculation leading to Eq. (5.3) is a static one. Is

it possible to relate Eq. (5.3) to experiments (or numerical simulations), which

concern (non-equilibrium) dynamics? Many simulations6 have been carried out in

which a spin glass is quenched to below Tc and the resulting dynamics analyzed.

It is found that fluctuations can equilibrate (or at least reach a steady state) on

length scales smaller than a dynamical correlation length ξ(t) which is found,

empirically, to grow with a power of t like

ξ(t) ∝ t1/z(T ), (5.4)

6e.g. Manssen and Hartmann (2015), Rieger (1993), and Marinari, Parisi, Ruiz-Lorenzo,
et al. (1996)
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where the non-equilibrium dynamical exponent z(T ) varies, roughly, like 1/T and

becomes close to the critical dynamical exponent zc for T = Tc, i.e.

1/z(T ) ' (T/Tc)zc. (5.5)

At distances less than ξ(t) correlations are observed to fall off with a power of

distance, leading to the following scaling hypothesis,

C4(rij, t) ≡
[〈
Si(t)Sj(t)

〉2
]

av
= r−αdij f

(
r

ξ(t)

)
, (5.6)

where “d” stands for “dynamic.” Here the square of the thermal average, 〈· · ·〉2,

is performed by simulation two copies of the system with the same interactions,

initialized with different random spin configurations. Use of two copies provides

an unbiased estimate of this thermal average. The second average, [· · · ]av, is over

the bonds. We will also average over all pairs of sites a given distance r apart.

For rij � ξ(t), f(x) approaches a constant as x→ 0, so

C4(rij, t) ∝ r−αdij (rij � ξ(t)). (5.7)

In the opposite limit, rij � ξ(t), i.e. large x, f(x) decreases exponentially for

short-range systems.

Clearly, the nonequilibrium dynamics is generating a sampling the pure states.

To our knowledge, White and D. S. Fisher (2006) were the first to point out the

similarity of this sampling to the metastate average for statics. They use the term

“maturation metastate” to describe the ensemble of states generated dynamically

on scales less than ξ(t) following a quench, and “equilibrium metastate” for the

static metastate discussed earlier. Here we will use the terms “dynamic” and

“static” to describe these two metastates. Subsequently Manssen, Hartmann,

and A. P. Young (2015) emphasized the similarity between the two metastates and
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suggested that they might actually be equivalent, in which case αs in Eq. (5.3)

would equal αd in Eq. (5.7).

The rationale behind this hypothesis is that thermal fluctuations of the spins

outside the window at a distance ξ(t) and greater, which are not equilibrated with

respect to spins in the window, effectively generate a random noise to the spins

in the window which is similar to the random perturbation coming from changing

the bonds in the outer region according to the AW metastate.

For the three-dimensional spin glass, Alvarez Baños et al. (2010a) and Alvarez

Baños et al. (2010b) have shown that a static calculation in the zero spin overlap

sector gives a power-law decay for the spin correlations, as in Eq. (5.3), with a

value of αs consistent with that obtained from dynamcs following a quench by

Belletti et al. (2009). These are both numerical results. Here we consider the

mean-field regime, d > 6, because there is an exact analytic result in RSB theory,

αs = d− 4, with which we can compare our numerical results.

5.2 Model

Unfortunately, it is difficult to carry out Monte Carlo simulations of spin glasses

in in six dimensions (see the discussion in Section 3.1). Instead, we study the

diluted one-dimensional models with long-range interactions described in Sec-

tion 3.2, which we briefly review here. The one-dimensional diluted model is

described by the Hamiltonian

H = −
∑

i,j

JijSiSj, (5.8)

where the sites i ∈ {1, 2, . . . , N} lie on a one-dimensional ring with periodic bound-

ary conditions, as shown in Fig. 3.2. The variables Si = ±1 are Ising spins, and the
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interactions Jij are independent random variables with a distribution satisfying

[
Jij
]

av
= 0,

[
J2
ij

]
av
∝ R−2σ

ij , (5.9)

where Rij is taken to be the chord distance between sites i and j, see Fig. 3.2.

We vary the parameter σ to control the range of the interactions.

The diluted model corresponds to a particular choice of the distribution P (Jij)

that satisfies Eq. (5.9) while allowing for efficient simulation, namely

P (Jij) =
(
1− pij

)
δ
(
Jij
)

+ pij
1√
2π
e−J

2
ij/2, (5.10)

where pij ∝ R−σij at large distance and the constant of proportionality is chosen

to fix the mean number of neighbors zb (= 6 in this work). See Section 3.2

for a detailed discussion of the diluted model and an algorithm to sample from

Eq. (5.10).

As discussed in Section 3.1, varying the parameter σ is argued to be analogous

to changing the dimension d of a short-range model. In the mean-field regime,

d > du = 6 for the short-range model, a precise connection can be given between

σ and an equivalent d, namely

d =
2

2σ − 1
(5.11)

(see Section 3.1), and thus, for the long-range model, the mean-field regime is

1/2 < σ < 2/3.

The connection between critical exponents of the short-range and correspond-

ing long-range models has been discussed systematically by Alvarez Baños, Fer-

nandez, et al. (2012), who note that an exponent of the short-range model in d di-

mensions is d times the corresponding exponent of the equivalent one-dimensional

long-range model. Thus, to get the exponent αs = d − 4 in the static metastate
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for the long-range model we divide by d and, since we will work in the mean-field

regime, use Eq. (5.11) to relate d to σ. This gives

αs = 3− 4σ (long-range model). (5.12)

In this work we focus on a single value of σ in the mean-field regime, σ = 5/8,

which corresponds to d = 8 according to Eq. (5.11). Using standard finite-size

scaling analysis (see Section 2.6) we find that Tc = 1.85(2) for this model with

zb = 6. Here we need to work well below Tc so that our data is characteristic

of the ordered phase and does not also incorporate critical fluctuations. Thus we

take T = 0.4Tc = 0.74 for the simulations.

5.3 Method

We quench the system from infinite temperature to T = 0.74 at time t = 0 and

follow the evolution of the system using Monte Carlo simulation with only local

(e.g. not replica exchange) updates. We measure spin correlations, averaging

them for times between 2k−1 and 2k, for integer k up to the maximum value. For

the largest sizes this was k = 14. We find that finite-size effects are very large

and we need to study enormously large sizes. We therefore take a range of sizes

which also increases geometrically, N = 2` up to ` = 26. We also average over

about 1000 samples (the precise number depending on size).

5.4 Results

Figure 5.2 shows our data for the correlation function C4(r, t), defined in Eq. (5.6),

as a function of r ≡|i− j| at t = 214 for different sizes. Despite the strong finite-
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Figure 5.2: Data for the correlation function C4(r, t), defined in Eq. (5.6), as a
function of r for the range of sizes studied. The data is averaged between t = 213

and 214.

size effects, the data seems to have saturated for the largest sizes, at least for the

range of distance presented.

Having established that the largest size, N = 226, is large enough to eliminate

finite-size effects for the range of r and t considered, we now discuss the data

for this size in detail. Figure 5.3 shows data for C4(r, t) at different times as a

function of r. It is expected to have the scaling form shown in Eq. (5.6). For

short-range models, the scaling function f(x) decays exponentially at large x

because the correlation function falls off very rapidly once r is greater than the

dynamical correlation length. However, in the present model we have interactions

of arbitrarily long range which give a “direct” contribution to the correlation

function at large distances. Since C4(r, t) involves the square of the spin-spin

correlation function, and is averaged over the interactions, the direct contribution

should be proportional to
[
J2
ij

]
av

, which, according to Eq. (5.9), is proportional

to r−2σ (= r−5/4 for σ = 5/8). The data in Fig. 5.3 follow this behavior for short

times and large distances, see the dotted line.
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By contrast, at small r and large t, where r � ξ(t), the data for different

times collapse and are consistent with a decay proportional to r−(3−4σ) (= r−1/2

for σ = 5/8), see the dashed line in Fig. 5.3. To better estimate the slope at

large t and small r we plot in the inset to Fig. 5.4 the “effective” exponent αeff ,

the slope of the data in Fig. 5.3, as a function of r for different times. The

curves are quadratic fits for intermediate r (7 ≤ r ≤ 255). The intercepts of the

fits approach −1/2 for r → 0 at large t. Thus, according to Eq. (5.7), we have

αd = 3 − 4σ (or at least very close to it). However, this is precisely equal to αs,

the corresponding exponent from the static metastate according to RSB theory

as shown in Eq. (5.12). Thus we see that, in the mean-field regime, the static and

dynamic metastates appear to agree and the description appears to be that of

RSB. The latter is in agreement with several other studies (Moore and Bray 2011;

Katzgraber and A. P. Young 2005) and is of course also implied by those, such as

Alvarez Baños et al. (2010a) and Alvarez Baños et al. (2010b), which argue that

RSB holds even below six dimensions.

The main part of Fig. 5.4 shows a scaling plot of our data for the largest size

according to Eqs. (5.4) and (5.6). The data scale well with z(T ) = 1.4 and, includ-

ing estimated error bars, we have the result z(0.4Tc) = 1.4(2) for the dynamical

exponent describing the growth of nonequilibrium correlations following a quench.

For short-range models it is found empirically7 that 1/z(T ) ∝ T . If we assume

the same here then z(Tc) = 0.56(8). Furthermore, still for short-range models it is

also found that z(Tc), obtained from nonequilibrium data, is equal to (or at least

close to) the equilibrium dynamical exponent zc. We therefore take zc = 0.56(8)

for our long-range model. To translate this into the exponent for the equivalent

short-range model, we multiply by d (= 8), as discussed above, so our estimate for

7See Manssen and Hartmann (2015), Rieger (1993), Marinari, Parisi, Ruiz-Lorenzo, et al.
(1996), and Yoshino, Hukushima, and Takayama (2002).
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Figure 5.3: Data for the correlation function for the largest size N = 226 as a
function of r for different times. A gradual crossover can be seen between two
power laws. At long times and short distances C4(r, t) ∝ 1/rαd with αd = 3− 4σ
(dashed line); at short times and long distances C4(r, t) ∝ 1/r−2σ (dotted line)
which is just the average of the square of the interactions Jij.

the critical dynamical exponent of the d = 8 short-range spin glass is zc = 4.5(6)

(d = 8). This model is in the mean-field regime (d > 6) for which the dynamical

exponent is found to be zc = 4 (Zippelius 1984). Our result is consistent with

this.

5.5 Conclusion

We have shown quantitatively that the nonequilibrium dynamics following a quench

of a model which is a proxy for a short-range spin glass in dimension d > 6 is given,

in the steady-state regime where the distance is less than the nonequilibrium cor-

relation length, by the analytic result for the static metastate calculated according

to RSB theory. This suggest that (i) RSB theory applies to spin glasses above the

upper critical dimension, du = 6, and (ii) the dynamic and static metastates are
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Figure 5.4: Scaling plot of the data for the largest size N = 226 at T = 0.74
according to Eq. (5.6). The inset shows the effective exponent αeff , the slope of
the curves in Fig. 5.3, as a function of r. The curves in the inset are quadratic fits
to the data for intermediate r, 7 ≤ r ≤ 255. The intercepts of the fits approach
−0.5 at long times.

equivalent (at least in this region).
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Chapter 6

Finite-size scaling above the

upper critical dimension

6.1 Introduction

The theory of finite-size scaling (FSS) bridges the gap between the critical be-

havior of finite systems and that of infinite (or effectively infinite) systems which

are commonly studied in analytical theory and experiment. As such, FSS is ubiq-

uitous in the literature of computational physics, where it is used extensively to

extrapolate bulk (i.e. L →∞) behavior, which can be compared with analytical

or experimental results, from the results of numerical simulation of finite systems

(Binder and Luijten 2001).

As discussed in Section 2.6, the central assumption of standard FSS is that

finite-size corrections only involve the ratio of the system size L to the bulk (i.e.

infinite system size) correlation length ξ. While this assumption turns out to be

correct in dimensions d less than the upper critical dimension du, the situation is

more complicated above the upper critical dimension, d > du. This is a bit surpris-
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ing since for d > du the critical exponents are independent of d and are predicted

exactly by mean-field theory. Thus, we might naively expect from Eq. (2.38) that,

for d > du, the susceptibility scales with L like

χ(L, T ) ∼ L2χ̃
[
L2 (T − Tc)

]
, (6.1)

where χ̃ is a scaling function and we have inserted the mean-field exponents γ = 1

and ν = 1/2. Unfortunately, it is not that simple, and instead it turns out that

the basic assumption of FSS, that L dependence enters only through the ratio

L/ξ, is invalid for d > du. The trouble is related to the observation that, for

d > du, “hyperscaling” relations such as dν = γ − 2β are necessarily violated,

since the critical exponents “stick” at their mean-field values for all values of

d > du. It turns out that a “dangerous irrelevant variable” is responsible for both

effects. To understand this we need a more sophisticated approach based on the

renormalization group (RG).

According to renormalization-group derivations of FSS (Privman and M. E.

Fisher 1983), the singular part of the free energy fL and the correlation length ξL

have the form

fL = L−df̃ (tLyt , hLyh , uLyu) , (6.2)

ξL = Lξ̃ (tLyt , hLyh , uLyu) , (6.3)

where t ≡ (T − Tc)/Tc is the reduced temperature, h is the magnetic field, and u

is the quartic coupling of the Landau theory; yt, yh, and yu are the corresponding

renormalization-group exponents. For d < du, u is a relevant variable (yu > 0, see

Section 1.2.2) and for h = 0 we obtain the scaling forms

χ(L, t) = Lγytχ̃ (tLyt) (6.4a)

g(L, t) = χ̃ (tLyt) , (6.4b)
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where yt = 1/ν, for the susceptibility and Binder ratio [defined in Eq. (6.21)]

respectively.

For d > du, u is irrelevant (yu < 0), but the corresponding derivation is

complicated by the fact that the scaling function f̃(x, y, z) is singular in the limit

z → 0, i.e., u is a dangerous irrelevant variable. Therefore we can’t simply

substitute z = 0 in the scaling function, and must instead evaluate the limit

z → 0, assuming a particular form of the singularity.

6.1.1 Periodic boundary conditions

For k = 0 fluctuations1 in systems with periodic boundary conditions, Binder,

Nauenberg, et al. (1985) show that, for d > du, the thermal exponent yt is replaced

by y∗t ,

χ(L, t) = Ly
∗
t χ̃
(
Ly
∗
t t
)
, (6.5a)

g(L, t) = χ̃
(
Ly
∗
t t
)
, (6.5b)

where

y∗t = d/2. (6.6)

This is a surprising result because it predicts that finite-size corrections appear

not when ξ ∼ L, as is assumed in standard FSS, but rather only when ξ ∼ Ld/4,

a length scale larger than the size of the system.2 Consequently, the finite-size

transition is “rounded out” over a temperature range which scales like L−d/2,

smaller than L−2 predicted by standard FSS.

1i.e., fluctuations in the k = 0 mode of the order parameter, for example in the (uniform)
magnetization,

∑
i Si.

2 To see this, note that for d > du, t ∼ ξ−1/ν = ξ−2, so the argument of the scaling function
Ly

∗
t t = Ld/2ξ−2 is of order unity when ξ ∼ Ld/4.
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An extensive set of works3 have shown the validity of Eq. (6.5), though it

required large system sizes, good statistics, and appreciation that corrections to

FSS are large and slowly decaying for the range of sizes that can feasibly be

simulated.

6.1.2 Free boundary conditions

As stated above, Eq. (6.5) makes the rather surprising prediction that, for d > du

and periodic boundary conditions, finite-size effects set in not when ξ ∼ L, but

even closer to criticality, when ξ ∼ Ld/4. It is therefore interesting to ask what

is the corresponding behavior for free boundary conditions, where we expect that

something must happen when the correlation length ξ ∼ L (Jones and A. P. Young

2005). In fact, Rudnick, Gaspari, and Privman (1985) have argued analytically

that a temperature shift of order L−2 has to be included with free boundary

conditions, in addition to the rounding of order L−d/2.

To explain this, note that the exponents yt in Eq. (6.4) and y∗t in Eq. (6.5)

are “rounding” exponents since they control the temperature range over which a

singularity is rounded out. To define the “shift” exponent, we first define, for each

size L, a “finite-size pseudocritical temperature” TL by, for example, the location

of the peak in some susceptibility, or the temperature at which the Binder ratio

[defined in Eq. (6.21)] has a particular value. The difference Tc − TL goes to zero

for L→∞ like

Tc − TL =
A

Lλ
, (6.7)

defining the shift exponent λ. The precise value of TL depends on which criterion

is used to define it, but the exponent λ is expected to be independent of the

3For example, Luijten and H. W. J. Blöte (1996), Parisi and Ruiz-Lorenzo (1996), H. W. J.
Blöte and Luijten (1997), Luijten, Binder, and H. W. Blöte (1999), and Binder and Luijten
(2001)
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definition. Whether or not the amplitude A depends on the quantity used to

define the shift will be discussed in Section 6.5.

If λ is less than the rounding exponent, which will turn out to be the case for

free boundary conditions, then the shift is larger than the rounding, so we need

to modify Eq. (6.5) to

χ(L, t) = Ly
∗
t χ̃
[
Ly
∗
t (T − TL)

]
, (6.8a)

g(L, t) = χ̃
[
Ly
∗
t (T − TL)

]
, (6.8b)

in which the argument of the scaling function involves the difference between T

and the pseudocritical temperature TL. We verify Eq. (6.8) in Figs. 6.7 to 6.9

and 6.11 below.

The criterion that the shift is given by the (standard FSS) condition ξ ∼ L

yields λ = 2, as proposed by Rudnick, Gaspari, and Privman (1985) and confirmed

in simulations by Berche, Kenna, and Walter (2012) and Kenna and Berche (2013).

As with Eq. (6.4a) we must have χ̃(x) ∝ x−1 for x → ∞ in order to recover the

correct bulk behavior above Tc. Setting T = Tc, we have

χ(L, Tc) = Ld/2χ̃(ALd/2−2), (6.9)

and therefore, asymptotically for large L,

χ(L, Tc) ∝ L2 (free, k = 0), (6.10)

a result that has been shown rigorously. Hence, in contrast to Berche, Kenna,

and Walter (2012), we propose that the region at the bulk Tc is part of the scaling

function. Similarly, for the Binder ratio, g̃(x) ∝ x−2 for x→∞, which gives

g(L, Tc) ∝
1

Ld−4
(free, k = 0). (6.11)
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With periodic boundary conditions, the intersection of the data for g for different

sizes provides a convenient estimate of Tc, but, as Eq. (6.11) shows, this method

cannot be used for free boundary conditions because g vanishes at Tc for L→∞.

In fact, we will see from the data in Section 6.5 that there are no intersections at

all. However, we will not be able to verify the precise form in Eq. (6.11) because

the values of g at Tc are very small, below the noise threshold of our simulations.

So far we have discussed only k = 0 fluctuations. However, it is also necessary

to discuss fluctuations at k 6= 0, since we need these to determine the spatial

decay of the correlation functions. Of particular importance is the decay of the

correlations at Tc, which fall off with distance like 1/rd−2+η, where the mean-

field value of the η exponent is zero. In the mean-field regime (d > du), the

fluctuations of the k = 0 modes are Gaussian, so the Binder ratio is always zero.

For the wavevector-dependent susceptibility, we will argue that standard FSS,

Eq. (6.4a), holds for both boundary conditions (BCs), i.e.

χ(k, L, T ) = L2χ̃
[
L2 (T − Tc) , kL

]
(both BCs, k 6= 0), (6.12)

where we have put the explicit k dependence in a natural way as a second argument

of the scaling function. We note that Eq. (6.12) holds for the spherical model4

with periodic boundary conditions.5 For free boundary conditions, the Fourier

modes are not plane waves (see Section 6.2), and, by k 6= 0, we really mean

modes that are orthogonal to the uniform (k = 0) magnetization and thus do not

develop a nonzero expectation value below Tc.

4Eq. (22) of Shapiro and Rudnick (1986) and Eq. (37) of Brézin (1982) correspond to

Eq. (6.12) with χ̃(x, y) =
(
x2 + y2

)−1
, at least above Tc.

5The spherical model, in which the length constraint S2
i = 1 on each spin is replaced by a

single global average constraint, is equivalent to an n-component vector model in the limit of
n → ∞ for the case of periodic boundary conditions. For free boundary conditions, however,
the correspondence does not hold. In that case, due to a lack of translational invariance, one
would need a different average constraint on each spin to reproduce the results of the vector
model with an infinite number of components.
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If we fix T = Tc in Eq. (6.12) and consider kL� 1, then the size dependence

must drop out, so χ̃(0, y) ∝ y−2 and therefore

χ(k, L, Tc) ∝
1

k2
(kL� 1). (6.13)

How, then, do correlations fall off in real space at criticality? To fully under-

stand this, we have to consider separately the contribution from the k = 0 mode,

as in Bose-Einstein condensation. If C(r) is the spin-spin correlation function

at displacement r and C̃(k) is the Fourier transform (FT), then, as shown in

Eq. (6.12),

C̃(k) ∝ 1

k2
(6.14)

for k → 0. However, for k = 0 we note that C̃(k = 0) = χ(L, T )/Ld, see Eq. (6.20)

below, and from Eq. (6.5a) this gives

C̃(k = 0) ∝ 1

Ld/2
. (6.15)

The real-space correlation function at distance L/2 is then given by the FT

C(ẑL/2) =

(
L

2π

)d ∫

k 6=0

ddk C̃(k) exp
(
ik · Lẑ/2

)
+ C̃(k = 0). (6.16)

Using Eq. (6.14), which correctly gives the FT at large r, the first term in

Eq. (6.16) is proportional, on dimensional grounds, to 1/Ld−2. This is smaller

than the second term, which is proportional to 1/Ld/2. Thus, C(ẑL/2) ∝ 1/Ld/2,

in agreement with Fig. 1 of Kenna and Berche (2014). Nonetheless, correlations

fall off with distance like 1/rd−2. The resolution of this apparent discrepancy is

that the k = 0 mode has to be treated separately and gives the dominant con-

tribution to C(ẑL/2). We therefore do not see the need for the second η-like

exponent proposed by Kenna and Berche (2014).

While Eq. (6.12) does not seem to have been stated in the literature before,

to our knowledge, it is actually quite natural. The dangerous irrelevant variable,
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which is the quartic coupling in the Ginzburg-Landau-Wilson effective Hamilto-

nian, is needed to control the expectation value of the (k = 0) order parameter,

which leads to nonstandard FSS for k = 0 fluctuations. However k 6= 0 fluctua-

tions (more precisely, fluctuations that do not acquire a nonzero expectation value)

are not directly affected by the dangerous irrelevant variable, and consequently

they have standard FSS.

6.2 Model

We consider an Ising model in d = 5 dimensions in zero field, described by the

Hamiltonian

H = −1

2

∑

ij

JijSiSj, (6.17)

where the Jij = 1 if i and j are nearest neighbors and zero otherwise, and the

spins Si take values ±1. Previous simulations have determined the transition

temperature very precisely, finding

Tc = 8.77846(3) (6.18)

(Luijten, Binder, and H. W. Blöte 1999). We simulate the model efficiently using

the Wolff cluster algorithm described in Section 2.3.2, with which we can study

sizes up to L = 64 (which has about a billion spins).

We calculate various moments of the uniform magnetization per spin,

m =
1

Ld

N∑

i=1

Si, (6.19)

including the uniform susceptibility6

χ = Ld
〈
m2
〉

(6.20)
6This expression differs from the standard expression for the susceptibility χ =

βLd
(〈
m2
〉
− 〈m〉2

)
in two ways. The first is that we omit the factor of β, which is conventional
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and the Binder ratio

g =
1

2

(
3−

〈
m4
〉

〈m2〉2

)
. (6.21)

In addition, we compute the wavevector-dependent susceptibilities

χ(k) = Ld
〈∣∣m(k)

∣∣2
〉
, (6.22)

in which the wavevector-dependent magnetization, m(k), is defined differently for

periodic and free boundary conditions as follows.

For periodic boundary conditions, the Fourier modes are plane waves, so we

have

m(k) =
1

N

∑

i

eik·rSi (periodic), (6.23)

where

kα = 2πnα/L (periodic), (6.24)

where nα ∈ {0, 1, . . . , L− 1} and α denotes a Cartesian coordinate.

For free boundary conditions, the Fourier modes are sine waves,

m(k) =
1

N

∑

i




d∏

α=1

sin
(
kα, ri,α

)

Si (free), (6.25)

where

kα = πnα/(L+ 1) (free), (6.26)

where nα ∈ {1, 2, . . . , L} and the components of the lattice position ri,α also take

values between 1 and L. There is zero contribution to the sum in Eq. (6.25) if we

set ri,α = 0 or L+1, so Eqs. (6.25) and (6.26) correctly incorporate free boundary

conditions.

in studies of critical phenomena. Secondly, and less trivially, we ignore the subtracted term,
which is hard to compute reliably in Monte Carlo simulations since one would have to apply a
field h (to break the symmetry) and take the limit h → 0 after the limit L → ∞. Thus the
quantity we call χ is really only the susceptibility for T > Tc. It is, nonetheless, a convenient
quantity to study, and it has the claimed scaling behavior.
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Note that k = 0 is not an allowed mode with free boundary conditions, so the

uniform magnetization in Eq. (6.19) does not correspond to a single Fourier mode

in this case. Note also that modes with all nα odd have a projection onto the

uniform magnetization and so will acquire a nonzero expectation value below Tc in

the thermodynamic limit. Such modes will therefore be subject to the nonstandard

FSS in Eq. (6.5). However, if any of the nα are even, there is no projection onto

the uniform magnetization, so they will not acquire an expectation value below

Tc and will therefore be subject to the standard FSS in Eq. (6.12).

6.3 Quotient method

The discussion in Section 6.1 assumed that the sizes are sufficiently large and T

sufficiently close to Tc that corrections to FSS are negligible. For free boundary

conditions, however, a substantial fraction of the spins lie on the surface, so cor-

rections to FSS are quite large and need to be included in the analysis. In this

section, we describe the method we used to include the leading corrections to FSS.

A convenient way to extract the leading scaling behavior from the data, in

the presence of corrections, is the quotient method (Ballesteros, Fernandez, et

al. 1996), based on the phenomenological scaling of Nightingale (1976). As an

example, consider the deviation of the pseudocritical temperature TL from Tc for

which the FSS form is given in Eq. (6.7). Including the leading correction to

scaling, which involves a universal exponent ω, we have

∆T (L) ≡ Tc − TL =
A

Lλ

(
1 +

B

Lω

)
. (6.27)

We determine the quotient Q [∆T ] by taking the logarithm of the ratio of the
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result for sizes L and sL, where s is a simple rational fraction such as 2 or 3/2,

Qs,L [∆T ] =
1

log s
log

(
∆T (sL)

∆T (L)

)
. (6.28)

According to Eq. (6.27) we have, for large L,

Qs,L [∆T ] = −λ+
Cs
Lω

(6.29)

where

Cs =
s−ω − 1

log s
B. (6.30)

If the data are of sufficient quality, we can fit all of the unknown parameters. In

Eq. (6.29), these are the exponents λ, ω, and the amplitude Cs. In most cases,

however, we will need to assume the predicted value for the correction exponent

ω (see below) to obtain an unambiguous fit for the remaining parameters.

According to the renormalization group, for d > du = 4, the leading irrelevant

variable has scaling dimension

ω = d− 4. (6.31)

However, for k = 0 fluctuations and periodic boundary conditions, it was shown

by Brézin and Zinn-Justin (1985) that there is an additional, and larger, correction

for finite-size effects with an exponent given by

ω′ =
d− 4

2
. (6.32)

An intuitive way to see this is to note that the “naive” variation of χ with L at

the critical point, χ ∝ L2 [see Eq. (6.1)], although not the dominant contribution

[which is Ld/2 as shown in Eq. (6.5a)], is nonetheless still present as a correction.

This correction is down by a factor of L2−d/2 (= L−ω
′
) relative to the dominant

term. We will therefore use ω′ rather than ω in considering corrections to scaling

for susceptibilities that scale with L to the power d/2 rather than 2.
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For some of our data, we will also need subleading corrections to FSS for which

there are several contributions. One of these is the square of the leading contri-

bution. To avoid having too many fit parameters, this is the form we will assume,

i.e., when we include subleading corrections to scaling we will do a parabolic fit

in 1/Lω (or 1/Lω
′

as the case may be).

A subtlety arises in doing fits to data for quotients, for example to determine

the parameters λ, ω, and Cs in Eq. (6.29). The reason is that the same set of

simulation data may be used to determine more than one data point in the fit.

For example, with s = 2 the data for L = 16 is used in the computation of

quotients for pairs (8, 16) and (16, 32). Furthermore, we will fit the exponents λ

and ω simultaneously to quotients for two different values of s (s = 2 and 3/2),7

so for example we also use the data for L = 16 to compute the quotient for the

pair (16, 24). This has the advantage of increasing the number of data points in

the fit by more than the number of parameters. However, in this case the data

being fitted are not statistically independent, and therefore the best estimate of the

fitting parameters should account for the correlations. (Ballesteros, Fernandez,

et al. 1996; Ballesteros, Fernández, et al. 1998; Weigel and Janke 2009). In other

words, if a data point is (xi, yi) and the fitting function is u(x), which depends on

certain fitting parameters, those parameters should be determined by minimizing

χ2 =
∑

i,j

[
yi − u(xi)

] (
Σ−1

)
ij

[
yj − u(xj)

]
, (6.33)

where

Σij =
〈
yiyj

〉
− 〈yi〉

〈
yj
〉

(6.34)

is the covariance matrix of the data. We determine the elements of the covariance

matrix by a bootstrap analysis (see Section 2.7.2). If there are substantial corre-

7This is justified since the exponents are universal. The amplitude Cs is, however, nonuni-
versal, so we include a separate amplitude for each value of s.
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lations, the covariance matrix can become singular, and where this happens we

replace Σ−1 in Eq. (6.33) with the “pseudoinverse” Σ+.8 The effective number of

independent data points is then the rank of the covariance matrix (the number of

nonzero eigenvalues).

6.4 Results: periodic boundary conditions

We perform Monte Carlo simulations of the model with periodic boundary condi-

tions for sizes L = 8, 10, 12, 16, 20, 24, 28, 32, 36.

6.4.1 k = 0 fluctuations

Here we show results for completeness, as there is no doubt that the FSS form of

Eq. (6.5) is correct for periodic boundary conditions.

Figure 6.1 shows an overview of our data for the Binder ratio g, showing

intersections at, or near, the transition temperature Tc given in Eq. (6.18). The

right-hand panel is an expanded view near Tc, where it is clear that intersections

for different sizes do not occur at exactly the same point, indicating corrections

to scaling. In fact, the data for smaller sizes intersect at a value larger than the

exact, universal value

gc =
1

2

(
3− Γ4(1

4
)

8π2

)
≈ 0.40578 (6.35)

found by Brézin and Zinn-Justin (1985). However, for larger sizes the intersections

occur at smaller values of g. Figure 6.2 shows estimates of the value of g at Tc,

plotted against L−ω
′

with the correction exponent given by ω′ = 1/2 as discussed

8This corresponds to projecting the covariance matrix onto the eigenvectors whose eigenval-
ues are not (close to) zero and inverting the resulting matrix.
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Figure 6.1: The left panel shows an overview of our results for the Binder ratio g
for periodic boundary conditions. The right panel is an expanded view near the
transition. The transition temperature Tc is marked with a horizontal line, and
the universal value of the Binder ratio at the transition temperature, gc, given by
Eq. (6.35), is marked with a vertical line.

0 0.1 0.2 0.3 0.4
0.4

0.42

0.44

0.46

0.48

L−1/2

g
(T

c
)

data
g∗ = 0.407± 0.002

Figure 6.2: Estimates of the Binder ratio g at Tc, plotted against L−ω
′

with
ω′ = 1/2, see Eq. (6.32), and a linear fit indicating an extrapolated value for
L → ∞ consistent with the exact result, gc ≈ 0.406 (marked with a horizontal
line in the figure), see Eq. (6.35). The estimates were obtained from a cubic
smoothing spline fit to data at and near Tc, and the error bars were estimated
using the bootstrap procedure. The quality of the fit is good, Q = 0.22.

in Section 6.3. The data decrease to a value consistent with Eq. (6.35) as L→∞.
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Figure 6.3: Susceptibility χ(k) for kL = (1, 0, 0, 0, 0), which we abbreviate to χ10,
for periodic boundary conditions.

6.4.2 k 6= 0 fluctuations

The data for χ(k) for kL/(2π) = (1, 0, 0, 0, 0) are shown in Fig. 6.3. Note that

the Fourier components at nonzero wave vector vanish even in the ordered state

below Tc, and so what we define as χ(k) really is the susceptibility below Tc as

well as above [unlike the k = 0 susceptibility defined in Eq. (6.20)]. Consequently

the data have a peak, whereas the uniform “susceptibility” plotted in Fig. 6.6b

(for free boundary conditions) continues to increase below Tc.

A scaling plot of the data according to standard FSS of Eq. (6.12) is shown

in Fig. 6.4a. Except for the smallest size, L = 8, near Tc the data scale very well.

Further from Tc on the low-T side, we see bigger corrections. However, this is

unsurprising since FSS is only expected to work for T close to Tc.

For larger k values we get a similar picture, albeit with bigger corrections to

scaling, as shown in Fig. 6.4b for kL/(2π) = (1, 1, 0, 0, 0). It is expected that

corrections to scaling become relatively bigger for larger k because the signal is

less divergent in this case, and so it is more easily affected by corrections.
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Figure 6.4: Scaling plots of the susceptibility for two nonzero wavevectors. Panel
(a) shows the scaled data of Fig. 6.3.

Figure 6.5 shows the behavior of χ(k)/L2 at Tc showing that it is a function

of the product kL as expected; see Eq. (6.12). The dashed line has slope −2

indicating that the expected k−2 behavior of Eq. (6.13) sets in even for small

values of kL.

6.5 Results: free boundary conditions

We perform Monte Carlo simulations of the model with free boundary conditions

for sizes L = 8, 10, 12, 14, 16, 18, 20, 24, 28, 32, 36, 48, and 64. The data for the

largest two sizes, L = 48 and 64, is only for k = 0.

Because corrections to scaling are larger for free boundary conditions than for

periodic boundary conditions, in this section we make extensive use of the quotient

method described in Section 6.3 to incorporate the leading corrections to scaling.

6.5.1 k = 0 fluctuations

An overview of our results for the Binder ratio is shown in Fig. 6.6a. We do not
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Figure 6.5: Values of χ(k)/L2 at Tc for periodic boundary conditions. Each
group of points has the same x coordinate (1,

√
2, or 2), but the points are

displaced slightly horizontally so that they can be distinguished. There are two
different wavevectors shown for kL/(2π) = 2, namely kL/(2π) = (2, 0, 0, 0, 0)
and (1, 1, 1, 1, 0). These two agree well except for the smaller sizes, showing that
the fluctuations are isotropic at long wavelength. The dashed line has slope −2,
indicating that the expected k−2 behavior in Eq. (6.13) sets in even for small
values of kL.
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Figure 6.6: Overview of data for (a) the Binder ratio g and (b) the susceptibility
χ, for free boundary conditions, for the different sizes studied. Note the large shift
to lower temperatures for the smaller sizes and lack of any apparent intersections
of the data for different sizes in (a).
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Figure 6.7: Quotients for ∆T (L), defined in Eq. (6.27), used to determine the
shift exponent λ for free boundary conditions. The parameter s is the ratio of
the two sizes used to compute the quotient. We fit Eq. (6.29) to the data using
as parameters λ, ω (the same for both values of s), and separate amplitudes C3/2

and C2. The quality of the fit is very good, Q = 0.96.

find any intersections, and the data are shifted considerably to lower temperatures

for smaller sizes.

To determine the shift exponent, we define the pseudocritical temperature TL

to be the temperature at which g takes the value 1/2, halfway between its limiting

values of 0 and 1. We subtract Tc, given in Eq. (6.35), and determine the resulting

quotients for ∆T (L) ≡ Tc − TL according to Eq. (6.28). We then fit Eq. (6.29) to

the quotients, as shown in Fig. 6.7. The quality of the data is very good and we

are able to fit all four parameters, λ, ω, and the two amplitudes Cs. We find the

values

λ = 2.004(4), ω = 1.00(4). (6.36)

The value for the shift exponent is in precise agreement with the value λ = 2

proposed analytically by Rudnick, Gaspari, and Privman (1985) and found nu-

merically by Berche, Kenna, and Walter (2012). There is also excellent agreement
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between our value of the correction exponent ω and the RG value of 1.

We estimate the rounding by the range in temperature δT (L) over which g

varies between 0.25 and 0.75, i.e.

δT (L) = T (g = 0.25)− T (g = 0.75). (6.37)

Computing the quotients and fitting the form

Qs,L [δT ] = −y∗t + As/L
ω, (6.38)

we find that the data are insufficient to determine the three parameters, but if we

assume the RG value for the correction exponent, ω = 1, then we get a good fit

that extrapolates to

y∗t = 2.45(1), (6.39)

see Fig. 6.8, close to the prediction d/2, see Eq. (6.6). Considering the relatively

small statistical error in this estimate, the result is not quite consistent with d/2.

However, especially in view of the further evidence for y∗t = d/2, discussed below,

we believe this discrepancy to be due to subleading corrections to scaling. We note

that the quoted error bar assumes that the data can be described by Eq. (6.39); in

other words, that subleading corrections do not affect the fitted data significantly.

Now we consider the scaling of χ in Eq. (6.8a). The data for χ are shown in

Fig. 6.6b. From this we estimate the value of χ at TL (where TL is determined,

as before, from where g takes the value 1/2) and do a quotient analysis, shown

in Fig. 6.9. The data are insufficient to determine the correction to the scaling

exponent, so we fixed it to the expected value ω′ = 1/2, see Eq. (6.32). The

amplitude of the correction term is large, but the data extrapolate to a value

2.51(1), consistent with the value of y∗t = 5/2 expected from Eq. (6.8a), and

which was found in earlier simulations by Berche, Kenna, and Walter (2012) and

Kenna and Berche (2013).
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Figure 6.8: Quotients for δT (L), defined in Eq. (6.37), used to determine the
rounding exponent y∗t for free boundary conditions. We fit Eq. (6.38) to the data
using as parameters y∗t , (the same for both values of s) and separate amplitudes.
The value of the correction exponent is fixed to ω = 1.
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Figure 6.9: Quotients for the value of χ at TL for free boundary conditions plotted
against L−ω

′
, where the correction to scaling exponent ω′ is fixed to the value 1/2.

According to Eq. (6.5a), the quotients should extrapolate to the value y∗t (= 5/2)
for L → ∞. The linear fit omits the right-hand point for each of the two data
sets. There are three fitting parameters: yt and two amplitudes for the correction,
one for each value of s. The quality of fit is good, Q = 0.21.
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Figure 6.10: Quadratic fit to the quotients for the value of χ at the bulk Tc for
free boundary conditions against 1/Lω where the correction to scaling exponent ω
is fixed to the value 1. According to Eq. (6.10), the quotients should extrapolate
to the value of yt (= 2). There are five fitting parameters: yt and the amplitudes
of the linear and quadratic corrections for each s value. The quality of fit is good,
Q = 0.23.

We also measure χ at the bulk Tc. As shown in Eq. (6.10), this is proportional

to L2, not Ld/2, and so, as discussed in Section 6.3, we expect that the correction to

scaling exponent will be ω (= 1) rather than ω′ (= 1/2). Quotients of the results

are plotted in Fig. 6.10. There are clearly subleading corrections to scaling, so

we use a quadratic fit. The result, yt = 1.97(1), is close to the expected value of

2. We note that the corrections to scaling are quite large, which is not surprising

since the values of χ at Tc are small, and thus are more influenced by corrections

to scaling than the data at TL, where χ is larger. Nonetheless, the quadratic fit

shows that, although we have not determined the exponent with which χ diverges

at Tc with great accuracy, our result is at least consistent with the value of 2

expected according to Eq. (6.10). An L2 divergence in the susceptibility has also

been found recently by Lundow and Markström (2014), who were able to study
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Figure 6.11: Scaling plot of the data for χ for free boundary conditions according
to Eq. (6.5a). Also shown are the data at Tc, which are seen to lie on the scaling
function (within some small corrections).

larger sizes than those studied here, up to L = 160.

Figure 6.11 shows a scaling plot of χ(T )/χ(TL) against Ld/2(T − TL)/TL. We

have seen in Fig. 6.9 that there are corrections to the expected Ld/2 behavior of

χ at TL for the range of sizes studied. Thus we divide χ(T ) by χ(TL) rather

than by Ld/2, which appears in Eq. (6.8a), to eliminate the corrections seen in

Fig. 6.9. According to Eq. (6.8a), the data in Fig. 6.11 should collapse. There are

some corrections to this, which is not surprising since we are probing the scaling

function over a large region, but overall the data scale fairly well. Also shown are

data at Tc, which appear at different points for different sizes because TL is, of

course, size-dependent. The larger the size, the further to the right is the data

point for Tc. This figure supports our claim that the data at Tc are included in

the scaling function in Eq. (6.8a).

We have defined the pseudocritical temperatures TL and the resulting shift

exponent λ in Eq. (6.27) by the temperature where the Binder ratio takes the
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value 1/2. Suppose we took a different criterion for TL, such as the temperature

at which the Binder ratio has some other value, or where there is a peak in some

k 6= 0 susceptibility, such as that shown in Fig. 6.3. We note that the finite-size

width varies as 1/Ld/2, so temperatures at which the Binder ratio has a value

between 0 and 1 would lie in this range, and so they would only give a subleading

contribution to the shift, the coefficient of 1/L2 remaining the same. We expect

that the same shift amplitude would be obtained no matter what quantity is used

to define the shift for the following reason. Suppose we have a shift amplitude

A and pseudocritical temperatures TL determined from where the Binder ratio is

1/2 and a different amplitude A′, and correspondingly different temperatures T ′L,

determined by some other criteria. Then the Binder ratio has a scaling form in

Eq. (6.8b), but if we try to define it in terms of the alternative shift temperatures

T ′L, we have

g(L, T ) = g̃
[
Ld/2 (T − TL)

]
(6.40)

= g̃
[
Ld/2

(
T − T ′L

)
+
(
A′ − A

)
Ld/2−2

]
. (6.41)

Thus, if different quantities have different shift amplitudes, the argument of the

scaling function would be shifted by an infinite amount (for L→∞) if we use the

shift obtained from a different quantity, a clear violation of scaling. We therefore

postulate that this does not happen and that there is a unique shift amplitude for

a given system.

Note, however, that we cannot rule out subleading corrections to the shift of

order 1/Ld/2. As a result, the value of g at TL according to Eq. (6.8b) will depend

on the precise definition of TL and therefore will not be universal, unlike the

situation with periodic boundary conditions; see Eq. (6.5b). Thus one can view

the replacement of Eq. (6.5) by Eq. (6.8) as a violoation of the standard finite-size
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scaling (Rudnick, Gaspari, and Privman 1985). However, since the behavior of χ,

for example, is described by a single function both at Tc and TL, we view Eq. (6.8)

as representing a modified FSS, distinct from standard FSS, in that it has different

shift and scaling exponents.

6.5.2 k 6= 0 fluctuations

With free boundary conditions, the Fourier modes are sine waves given by Eq. (6.26).

Modes in which all the integers nα are odd have a projection onto the uniform

magnetization (i.e. the k = 0 mode) and therefore will acquire a nonzero mag-

netization in the ordered phase. Such modes will therefore be affected by the

dangerous irrelevant variable, and so have the same scaling as fluctuations of the

uniform magnetization, given in Eq. (6.8a). We therefore take the smallest wave

vector with an even nα, namely n = (2, 1, 1, 1, 1), since this will not acquire a

nonzero magnetization, so we expect it to be governed by the FSS in Eq. (6.12),

i.e., with exponent 2 rather than d/2 which appears in Eq. (6.8a). We present the

data in Fig. 6.12.

According to Eq. (6.12), the height of the peaks in Fig. 6.12 should scale as

L2 and the width should scale as L−2. We define the width to be the difference

between the two temperatures where the susceptibility is 3/4 of the maximum.

Quotient analyses for the height and width are shown in Fig. 6.13. For the height,

the (quadratic) fit gives an extrapolated value of 2.008(10), consistent with the

expected value of yt = 2 As discussed in the caption of Fig. 6.13a, a linear fit

gave a value 1.950(2), close but slightly different from 2. However, in this case the

quality of fit Q = 0.02 was unacceptably low, which is why we went to a quadratic

fit. For the data of the width in Fig. 6.13b, the amplitudes of the corrections are

small and we find an extrapolated value of −1.97(4), consistent with the expected
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Figure 6.12: Data for χ(k) for (L + 1)k/π = (2, 1, 1, 1, 1) for free boundary con-
ditions.

value of −yt (= −2).

Thus, we have found strong evidence to suppert our claim that Eq. (6.12)

applies to free boundary conditions. Note that since this FSS form uses yt (= 2)

and the deviation of TL from Tc is proportional to 1/L2, asymptotically we can

use eigher Tc or TL in Eq. (6.12).

6.6 Conclusions

Our main conclusions have already been discussed in Section 6.1, so here we

summarize our main results:

(i) The modified FSS form with exponents d/2 rather than 2 only applies to

k = 0 fluctuations. (For free boundaries it applies to Fourier modes that have a

projection onto the uniform magnetization.) For all other wavevectors, standard

FSS with an exponent 2 applies. Consequently, the exponent η describing the

power-law decay of correlations at Tc is unambiguously η = 0. (See Figs. 6.4, 6.5
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Figure 6.13: Quotients for the height (a) and width (b) of the peak in χ(k) for
(L+ 1)k/π = (2, 1, 1, 1, 1) for free boundary conditions. According to Eq. (6.12),
the quotients of the peak height should tend to the value yt (= 2) and the quotients
for the width should tend to −yt (= −2) as L→∞. The estimates of yt obtained
by extrapolation for both fits are consistent with 2. For both fits we fix the value
of the correction exponent to ω = 1. In (a) the correction amplitude is large, but
the data are of good quality and a quadratic fit works well, Q = 0.53. A linear
fit to these data gave an extrapolated value of 1.950(2) but with a poor quality of
fit, Q = 0.02. In (b), the amplitude of the leading correction is seen to be quite
small, and we use a linear fit which works well, Q = 0.67.

and 6.13.)

(ii) For free boundary conditions and k = 0, the shift, with an exponent 2,

is larger than the rounding, which has an exponent d/2. Using T − TL, where

TL is the finite-size pseudocritical temperature, rather than T − Tc as a scaling

variable, the data have a scalng form that incorporates both the behavior at TL,

where χ ∝ Ld/2, and at the bulk Tc, where χ ∝ L2. (See Figs. 6.7 to 6.11.)
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Mézard, Marc et al. “Nature of the spin-glass phase”. In: Physical review letters
52.13 (1984), p. 1156.

Middleton, A. Alan. “Extracting thermodynamic behavior of spin glasses from
the overlap function”. In: Physical Review B 87.22 (2013), p. 220201.

142



Monthus, Cécile and Thomas Garel. “Typical versus averaged overlap distribution
in spin glasses: Evidence for droplet scaling theory”. In: Physical Review B
88.13 (2013), p. 134204.

Moore, M. A., Hemant Bokil, and Barbara Drossel. “Evidence for the droplet
picture of spin glasses”. In: Physical review letters 81.19 (1998), p. 4252.

Moore, M. A. and Allan J. Bray. “Disappearance of the de Almeida-Thouless line
in six dimensions”. In: Physical Review B 83.22 (2011), p. 224408.

Mori, Takashi. “Instability of the mean-field states and generalization of phase sep-
aration in long-range interacting systems”. In: Physical Review E 84.3 (2011),
p. 031128.

Narayan, Onuttom and A. P. Young. “Convergence of Monte Carlo simulations
to equilibrium”. In: Physical Review E 64.2 (2001), p. 021104.

Newman, Charles M. and Daniel L. Stein. “Metastate approach to thermodynamic
chaos”. In: Physical Review E 55.5 (1997), p. 5194.

— “Multiple states and thermodynamic limits in short-ranged Ising spin-glass
models”. In: Physical Review B 46.2 (1992), p. 973.

— “Non-mean-field behavior of realistic spin glasses”. In: Physical review letters
76.3 (1996), p. 515.

— “Ordering and broken symmetry in short-ranged spin glasses”. In: Journal of
Physics: Condensed Matter 15.32 (2003), R1319.

— “Simplicity of state and overlap structure in finite-volume realistic spin glasses”.
In: Physical Review E 57.2 (1998), p. 1356.

Newman, E. J. and G. T. Barkema. Monte Carlo Methods in Statistical Physics.
Clarendon Press, 1999. isbn: 9780198517979.

Nightingale, Mp P. “Scaling theory and finite systems”. In: Physica A: Statistical
Mechanics and its Applications 83.3 (1976), pp. 561–572.

Onsager, Lars. “Crystal statistics. I. A two-dimensional model with an order-
disorder transition”. In: Physical Review 65.3-4 (1944), p. 117.

Parisi, Giorgio. “Infinite number of order parameters for spin-glasses”. In: Physical
Review Letters 43.23 (1979), p. 1754.

— “Magnetic properties of spin glasses in a new mean field theory”. In: Journal
of Physics A: Mathematical and General 13.5 (1980), p. 1887.

143



Parisi, Giorgio. “Order parameter for spin-glasses”. In: Physical Review Letters
50.24 (1983), p. 1946.

— “The order parameter for spin glasses: A function on the interval 0-1”. In:
Journal of Physics A: Mathematical and General 13.3 (1980), p. 1101.

Parisi, Giorgio, Federico Ricci-Tersenghi, and Juan J. Ruiz-Lorenzo. “Equilibrium
and off-equilibrium simulations of the Gaussian spin glass”. In: Journal of
Physics A: Mathematical and General 29.24 (1996), p. 7943.

Parisi, Giorgio and Juan J. Ruiz-Lorenzo. “Scaling above the upper critical di-
mension in Ising models”. In: Physical Review B 54.6 (1996), R3698.

Peierls, Rudolph. “On Ising’s model of ferromagnetism”. In: Mathematical Pro-
ceedings of the Cambridge Philosophical Society 32 (03 Oct. 1936), pp. 477–
481. issn: 1469-8064. doi: 10.1017/S0305004100019174.

Press, William H. Numerical Recipes 3rd Edition: The Art of Scientific Computing.
Cambridge University Press, 2007.

Privman, Vladimir and Michael E. Fisher. “Finite-size effects at first-order tran-
sitions”. In: Journal of Statistical Physics 33.2 (1983), pp. 385–417.

Rathore, Nitin, Manan Chopra, and Juan J de Pablo. “Optimal allocation of
replicas in parallel tempering simulations”. In: The Journal of chemical physics
122.2 (2005), p. 024111.

Read, N. “Short-range Ising spin glasses: The metastate interpretation of replica
symmetry breaking”. In: Physical Review E 90.3 (2014), p. 032142.

Reger, J. D., R. N. Bhatt, and A. P. Young. “Monte Carlo study of the order-
parameter distribution in the four-dimensional Ising spin glass”. In: Physical
review letters 64.16 (1990), p. 1859.

Rieger, Heiko. “Nonequilibrium dynamics and aging in the three-dimensional Ising
spin-glass model”. In: Journal of Physics A: Mathematical and General 26.15
(1993), p. L615.

Rudnick, Joseph, George Gaspari, and Vladimir Privman. “Effect of boundary
conditions on the critical behavior of a fi-nite high-dimensional Ising model”.
In: Physical Review B 32.11 (1985), p. 7594.

Shapiro, Jonathan and Joseph Rudnick. “The fully finite spherical model”. In:
Journal of statistical physics 43.1-2 (1986), pp. 51–83.

Sherrington, David and Scott Kirkpatrick. “Solvable model of a spin-glass”. In:
Physical review letters 35.26 (1975), p. 1792.

144

http://dx.doi.org/10.1017/S0305004100019174


Stein, Daniel L. and Charles M. Newman. Spin Glasses and Complexity. Princeton
University Press, 2013.

Swendsen, Robert H. and Jian-Sheng Wang. “Nonuniversal critical dynamics in
Monte Carlo simulations”. In: Phys. Rev. Lett. 58 (2 Jan. 1987), pp. 86–88.
doi: 10.1103/PhysRevLett.58.86.

Talagrand, Michel. Spin glasses: a challenge for mathematicians: cavity and mean
field models. Vol. 46. Springer Science & Business Media, 2003.

Viana, L and Allan J. Bray. “Phase diagrams for dilute spin glasses”. In: Journal
of Physics C: Solid State Physics 18.15 (1985), p. 3037.

Weigel, Martin and Wolfhard Janke. “Cross correlations in scaling analyses of
phase transitions”. In: Physical review letters 102.10 (2009), p. 100601.

White, Olivia L and Daniel S. Fisher. “Scenario for spin-glass phase with infinitely
many states”. In: Physical review letters 96.13 (2006), p. 137204.

Wittmann, Matthew and A. P. Young. “Finite-size scaling above the upper critical
dimension”. In: Phys. Rev. E 90 (6 Dec. 2014), p. 062137. doi: 10.1103/
PhysRevE.90.062137.

— “Spin glasses in the nonextensive regime”. In: Phys. Rev. E 85 (4 Apr. 2012),
p. 041104. doi: 10.1103/PhysRevE.85.041104.

— “The connection between statics and dynamics of spin glasses”. Submitted.
July 9, 2015.

Wittmann, Matthew, Burcu Yucesoy, et al. “Low-temperature behavior of the
statistics of the overlap distribution in Ising spin-glass models”. In: Phys. Rev.
B 90 (13 Oct. 2014), p. 134419. doi: 10.1103/PhysRevB.90.134419.

Wolff, Ulli. “Collective Monte Carlo Updating for Spin Systems”. In: Phys. Rev.
Lett. 62 (4 Jan. 1989), pp. 361–364. doi: 10.1103/PhysRevLett.62.361.

Yoshino, Hajime, Koji Hukushima, and Hajime Takayama. “Extended droplet
theory for aging in short-range spin glasses and a numerical examination”. In:
Physical Review B 66.6 (2002), p. 064431.

Young, Peter. Everything You Wanted to Know About Data Analysis and Fitting
but Were Afraid to Ask. Springer International Publishing, 2015.

Yucesoy, Burcu, Helmut G. Katzgraber, and Jonathan Machta. “Evidence of non-
mean-field-like low-temperature behavior in the Edwards-Anderson spin-glass
model”. In: Physical review letters 109.17 (2012), p. 177204.

145

http://dx.doi.org/10.1103/PhysRevLett.58.86
http://dx.doi.org/10.1103/PhysRevE.90.062137
http://dx.doi.org/10.1103/PhysRevE.90.062137
http://dx.doi.org/10.1103/PhysRevE.85.041104
http://dx.doi.org/10.1103/PhysRevB.90.134419
http://dx.doi.org/10.1103/PhysRevLett.62.361


Yucesoy, Burcu, Helmut G. Katzgraber, and Jonathan Machta. “Yucesoy, Katz-
graber, and Machta Reply”. In: Physical review letters 110.21 (2013), p. 219702.

Yucesoy, Burcu, Jonathan Machta, and Helmut G. Katzgraber. “Correlations be-
tween the dynamics of parallel tempering and the free-energy landscape in spin
glasses”. In: Physical Review E 87.1 (2013), p. 012104.

Zippelius, Annette. “Critical dynamics of spin-glasses”. In: Physical Review B 29.5
(1984), p. 2717.

146


	Contents
	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Motivation
	Ising model of ferromagnetism
	Mean-field theory
	Landau theory

	Disorder and spin glasses
	Edwards-Anderson model
	Sherrington-Kirkpatrick mean-field model
	Replica symmetry breaking
	Theories of short-range spin glasses

	Organization of the dissertation

	Numerical methods
	Importance sampling
	Markov Chain Monte Carlo
	Constructing a Markov chain

	Algorithms for the Ising model
	Single-spin flip dynamics
	Cluster dynamics

	Convergence to equilibrium
	Estimating the relaxation time
	Equilibration test for Gaussian spin glasses

	Parallel tempering
	Finite-size scaling
	Statistical error analysis
	Manual error propagation
	Resampling methods


	Nonextensive spin glasses
	Motivation
	Long-range interactions
	Nonextensive regime
	Spin glasses with long-range interactions

	Models
	Method
	Results
	Conclusions

	Statistics of the overlap distribution
	Introduction
	Models
	Edwards-Anderson models on hypercubic lattices
	Sherrington-Kirkpatrick model
	One-dimensional diluted long-range model

	Methods
	Measured quantities
	Results
	Fraction of peaked samples, (q0,)
	Median Imed(q) and mean Iav(q) cumulative overlap distribution
	Typical overlap distribution, Ptyp(q)

	Summary and conclusions

	Connection between dynamics and statics in spin glasses
	Introduction
	Model
	Method
	Results
	Conclusion

	Finite-size scaling above the upper critical dimension
	Introduction
	Periodic boundary conditions
	Free boundary conditions

	Model
	Quotient method
	Results: periodic boundary conditions
	k=0 fluctuations
	k =0 fluctuations

	Results: free boundary conditions
	k=0 fluctuations
	k =0 fluctuations

	Conclusions

	Bibliography

