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Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly
extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear
biasing and redshift space distortion (RSD) effects,which changewith halomass, andby thewide distribution
of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of
satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a
phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power
spectrum of galaxies in which we decompose a given galaxy sample into central and satellite galaxies and
relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary
goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just
fitting parameters. For the lowest order 2-halo termswe use the previously developedRSDmodeling of halos
in the context of distribution function and perturbation theory approach. This term needs to be multiplied by
the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo
terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost
constant, with the finite extent of the satellites inside the halo inducing a small k2R2 term over the range of
scales of interest, whereR is related to the size of the halo given by its halomass.We adopt a similar model for
FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k2 type
expansions do not work over the range of scales of interest and FoG resummation must be used instead. We
test several simple damping functions tomodel the velocity dispersion FoG effect. Applying the formalism to
mock galaxies modeled after the “CMASS” sample of the BOSS survey, we find that our predictions for the
redshift-space power spectra are accurate up to k≃ 0.4 hMpc−1 within 1% if the halo power spectrum is
measured using N-body simulations and within 3% if it is modeled using perturbation theory.

DOI: 10.1103/PhysRevD.92.103516 PACS numbers: 98.80.-k, 98.65.Dx, 98.80.Es

I. INTRODUCTION

Redshift surveys enable us to probe the three-
dimensional mass density field, while weak lensing surveys
and cosmic microwave background experiments measure
the density field projected along the observer’s line of sight.
The measured distances to galaxies are measured through
redshift and are distorted due to radial components of
peculiar velocities. These changes are known as redshift-
space distortions (RSD) [1,2] and contain additional
cosmological information. Analyzing the power spectrum

or correlation function in redshift space provides a useful
test of dark energy and general relativity, e.g., [3–7] (see,
e.g., [8,9] for the recent observational studies). However,
galaxy clustering is known to suffer from various kinds of
nonlinear effects, and we need to model them in order to
extract all possible information from redshift surveys, e.g.,
[10–18]. Nonlinearity in the power spectrum can be
modeled using perturbation theory (PT) [19] and numerical
simulations [20,21]. The nonlinearity of RSD was first
modeled for dark matter [22–30], and the formalisms have
been extended to dark matter halos [31–39]. Although
detailed studies are required to fully understand halo bias
[40–43], the theoretical models for the redshift-space power*teppei.okumura@ipmu.jp
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spectrum of halos were shown to work well up to
reasonably small scales.
However, what one observes in real observations is the

redshift-space power spectrum not of halos but of galaxies.
Although all the galaxies are considered to be formed
inside dark matter halos, modeling the galaxy power
spectrum is much more complicated than the halo spectrum
because of the large virial motions of satellite galaxies,
which is known as the Finger-of-God (FoG) effect [44].
The FoG effect is a fully nonlinear process, caused by
virialized motions of satellite galaxies inside the halos, and
depends strongly on both the mass of the host halo and
the satellite fraction [45,46]. It is not possible to model the
effect in PT schemes, but the effect can be related to the
underlying halo mass and expected satellite occupation.
Usually, PT resummed damping functions such as Gaussian
or Lorentzian have been considered [14,24,47–49] and
multiplied by the halo spectrum to model the galaxy power
spectrum in redshift space. They contain at least one free
parameter, the velocity dispersion of the halos in which
satellites are. Assuming we know the form of the damping
function, we must still consider the different halo masses
that contribute to FoG. This is usually done in the context
of the so-called halo model [50–54]. The halo model has
been adopted to the galaxy clustering in redshift space
[9,45,46,55–59]. The halo power spectrum and correlation
function were directly measured from N-body simulations
in [59,60] and [9], respectively, to fully take into account
the nonlinearities of halo clustering in the halo model.
However, for analytical approaches linear PT has been
used to describe RSD of halos, i.e., the linear Kaiser model
[1], to combine with the halo model in previous studies,
e.g., [46]. An alternative way to overcome the discrepancy
between the halo and galaxy density fields is to remove the
effect of satellite kinematics from the observed galaxy
distribution, known as halo density reconstruction [61–63].
Wewill not pursue this method here, but we note that it may
be a useful alternative to the modeling developed here.
In this paper we present a theoretical model for the

redshift-space power spectrum of galaxies using N-body
simulations and halo PT. We use PT to model RSD for
halos and add halo model inspired terms to model cluster-
ing effects that arise from satellites inside the halos.
Motivated by the concept of the halo model, we decompose
correlations of central and satellite galaxies in a galaxy
sample into terms arising from galaxies within the same
halo and those from separate halos, known as the 1-halo
and 2-halo terms, respectively. We consider a simple model
where the redshift-space density field in a 2-halo term is
described by a Kaiser term (the simplest case being the
linear Kaiser factor, 1þ fμ2=b, where μ is the cosine
of the angle between the line of sight and the wave vector
k, b is the bias parameter and f ¼ ln δ= ln a) and RSD
in a 1-halo term is described by well-known damping
functions characterized by the nonlinear velocity dispersion

parameter that depends on the host halo mass, σ2vðMÞ. We
study theoretical models of the Kaiser terms using N-body
simulations and PT.
This paper is organized as follows. In Sec. II, we describe

the decomposition of the observed density field and relate
contributions from central and satellite galaxies to 1-halo
and 2-halo terms described by a halo model. Section III
describes the N-body simulations and how we construct a
mock galaxy sample. We present measurements of real-
space and redshift-space power spectra in IV. In Sec. V, we
examine if it is possible to describe the redshift-space
power spectrum using two models: one based on N-body
simulations (VA) and another based on nonlinear PT (V B).
Our conclusions are given in Sec. VI.

II. FORMALISM OF REDSHIFT-SPACE POWER
SPECTRUM OF GALAXIES

In galaxy surveys, we observe two types of galaxies that
contribute differently to a power spectrum measurement:
central galaxies which can be considered to move together
with the host halos (but, see [58,64]) and satellite galaxies
that mainly populate the most massive halos. Modeling the
latter part is a nontrivial task, making it difficult to
theoretically predict the statistics of a galaxy sample.
Our goal here is to investigate the effects of satellite
galaxies. Note that even the definition of the central galaxy
is model dependent for two reasons. One is that it depends
on the halo finder. Some halo finders tend to merge small
halos into larger ones (e.g. friends of friends, FoF [65]),
more than others (e.g. spherical overdensity). So what is a
halo center for one halo may be a satellite for another. We
will not address this issue here, and instead we will work
with FoF halos only. The second reason is that the
assignment of the halo center is also model dependent:
the center can be assigned to the most bound particle, or to
the center of mass of all halo particles, among other
choices. We will use the latter in this paper.
One can always decompose the density field of galaxies

in redshift space δSg into contributions from central and
satellite galaxies, respectively denoted as δSc and δSs . The
superscript S means a quantity defined in redshift space,
while the superscript R will denote the corresponding
quantity in real space. We can describe the decomposition
in Fourier space as

δSgðkÞ ¼ ð1 − fsÞδScðkÞ þ fsδSs ðkÞ; ð1Þ

where fs ¼ Ns=Ng ¼ ð1 − NcÞ=Ng is the satellite fraction,
Nc and Ns are the number of central and satellite galaxies,
respectively, and Ng ¼ Nc þ Ns is the total number of
galaxies. Note that the expression in redshift space can
always be applied to the one in real space by looking at the
tangential mode, δRg ðkÞ ¼ δSgðk; μ ¼ 0Þ. The galaxy power
spectrum is then written as the summation of the spectra
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of central galaxies, satellite galaxies, and their cross-
correlation,

PS
ggðkÞ ¼ ð1 − fsÞ2PS

ccðkÞ
þ 2fsð1 − fsÞPS

csðkÞ þ f2sPS
ssðkÞ; ð2Þ

where PS
XYðkÞð2πÞ3δðk − k0Þ≡ hδSXðkÞδS�Y ðk0Þi is a power

spectrum of fields X and Y (auto spectrum if X ¼ Y
and cross spectrum if X ≠ Y). Again, the corresponding
real-space power spectrum can be obtained by PR

XYðkÞ ¼
PS
XYðk; μ ¼ 0Þ. In a halo model approach, e.g., [50–54], the

galaxy power spectrum can be decomposed into 1-halo
and 2-halo terms. The halo model, originally developed
to model the real-space power spectrum, was extended to
redshift space by [45,46,57] (see also [58]). In order to
decompose the observed power spectrum [Eq. (2)] into
contributions from 1-halo and 2-halo terms, we consider
further divisions of central and satellite galaxies in the
following subsections.

A. Decomposition of central galaxies

Satellites and centrals live inside halos of a wide range of
masses, and the corresponding bias terms, and FoG terms,
can be very different. We decompose the central galaxies
into two subsamples, those whose host halos do not and do
contain satellite galaxies, respectively labeled as cA and cB.
In this case, the cross power spectrum between central and
satellite galaxies can be written as

NcPS
csðkÞ ¼ NcAP

S
cAsðkÞ þ NcBP

S
cBsðkÞ; ð3Þ

where Nc ¼ NcA þ NcB . The sample cA consists of central
galaxies that do not have any satellite galaxies in the same
halo, so the contribution to the cross-correlation PS

cAs comes
only from a 2-halo term. On the other hand, PS

cBs contains a
1-halo contribution, so we write it as PS

cBs ¼ PS1h
cBs þ PS2h

cBs .
A similar decomposition scheme was used by [64,66].

B. Decomposition of satellite galaxies

Similarly, the satellite galaxy subsample can be decom-
posed into two subsamples. Satellite galaxies in halos with
only a single satellite are denoted as sample sA, and those
in halos with at least one other satellite are denoted as
sample sB. Then, the autocorrelation of satellites PS

ss can be
written as

N2
sPS

ssðkÞ ¼ N2
sAP

S
sAsAðkÞ þ 2NsANsBP

S
sAsBðkÞ

þ N2
sBP

S
sBsBðkÞ; ð4Þ

where Ns ¼ NsA þ NsB . Just like the case of P
S
cAs, the terms

PS
sAsA and PS

sAsB only have contributions from 2-halo terms.
PS
sBsB includes a 1-halo contribution, so we write it

as PS
sBsB ¼ PS1h

sBsB þ PS2h
sBsB .

C. Putting it all together

Combining the terms outlined in the previous sections,
the galaxy power spectrum in redshift space is

PS
ggðkÞ ¼ PS1h

gg ðkÞ þ PS2h
gg ðkÞ; ð5Þ

where the 2-halo and 1-halo terms are given by

PS2h
gg ðkÞ ¼ ð1 − fsÞ2PS

ccðkÞ þ 2fsð1 − fsÞ

×

�
NcA

Nc
PS
cAsðkÞ þ

NcB

Nc
PS2h
cBs ðkÞ

�

þ f2s

�
N2

sA

N2
s
PS
sAsAðkÞ þ

2NsANsB

N2
s

PS
sAsBðkÞ

þ N2
sB

N2
s
PS2h
sBsBðkÞ

�
; ð6Þ

PS1h
gg ðkÞ ¼ 2fsð1 − fsÞ

NcB

Nc
PS1h
cBs ðkÞ

þ f2s
N2

sB

N2
s
PS1h
sBsBðkÞ: ð7Þ

Our goal is to compare the modeling of the individual terms
to simulations. In our previous papers [35,37], we pre-
sented a theoretical modeling of the halo power spectrum in
redshift space based on N-body simulations and perturba-
tion theory, respectively. In Sec. V, we examine if this
scheme can be applied to the 2-halo terms of the galaxy
power spectrum given in Eq. (6). Since we are primarily
interested in the modeling of RSD, we also present models
where we use halo clustering from simulations.

III. N-BODY SIMULATIONS AND MOCK
GALAXY SAMPLES

As in our previous work, e.g., [35], we use a set of N-
body simulations of the ΛCDM cosmology seeded with
Gaussian initial conditions [67]. The primordial density
field is generated using the matter transfer function by
CAMB [68]. We adopt the standard ΛCDM model with
Ωm ¼ 1 −ΩΛ ¼ 0.279, Ωb ¼ 0.0462, h ¼ 0.7, ns ¼ 0.96,
σ8 ¼ 0.807 [69]. We employ 10243 particles of mass
mp ¼ 2.95 × 1011 h−1M⊙ in 12 cubic boxes of a side
1600 h−1Mpc. Dark matter halos are identified using the
friends-of-friends algorithm [65] with a linking length
equal to 0.17 times the mean particle separation. We use
all the halos with equal to or more than 20 particles, thus the
minimum halo mass is 5.9 × 1012 h−1M⊙. Because we
consider the “CMASS” galaxy sample from the baryon
oscillation spectroscopic survey (BOSS) [70,71] as a target
sample in this paper, we choose the output redshift of the
simulations as z ¼ 0.509, which will be quoted as z ¼ 0.5
in what follows for simplicity.
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To construct a mock galaxy catalog, we adopt a halo
occupation distribution (HOD) model which populates dark
matter halos with galaxies according to the halo mass, e.g.,
[54,72]. Using the best fitting HOD parameters determined
by [73] for the BOSS CMASS sample, galaxies are
assigned to the halos at z ¼ 0.5. For halos which contain
satellite galaxies, we randomly choose the same number of
dark matter particles to represent the positions and veloc-
ities of the satellites. The fraction of satellite galaxies is
determined to be fs ¼ 0.123, consistent with the HOD
modeling of [73]. This method was applied in our previous
work and good agreement with the observations has been
confirmed for the correlation function [35] and mean
pairwise infall momentum [74]. The fraction of central
galaxies that have satellites in the same halos relative to all
the central galaxies is NcB=Nc ¼ 0.104. Likewise, the
fraction of satellite galaxies that have another satellite(s)
inside the same halo relative to the total number of satellites
is NsB=Ns ¼ 0.432. Table I summarizes the properties of
the mock galaxy samples.
In order to examine the effects of satellite galaxies on our

statistics, we also analyze halo samples which have halo
bias similar to the biases of our galaxy samples. We
consider two halo subsamples used in our previous work
[35], denoted as “bin2” and “bin3,” respectively. These
halo samples have biases similar to those of the total galaxy
sample and satellite galaxy sample considered in this paper.
The properties of the halo subsamples are also shown in
Table I.

IV. NUMERICAL ANALYSIS

Following our previous work [27,35], we measure power
spectra of given samples with a standard method. We
compute the density field in real space or in redshift space
on a grid of 10243 cells using cloud-in-cell interpolation.
When measuring the density field in redshift space, the
positions of objects are distorted along the line of sight
according to their peculiar velocities before they are

assigned to the grid. We use a fast Fourier transform to
measure the Fourier modes of the density field of sample X,
δXðkÞ, and then compute the power spectrum by multi-
plying the modes of the two fields (or squaring in the case
of autocorrelation) and averaging over the modes within a
wave number bin. To show the error of the mean for
measured statistics, we divide the scatter among realiza-
tions by the square root of the number of the realizations,
1=

ffiffiffiffiffi
12

p
in our case. For the redshift-space power spectrum

we regard each direction along the three axes of simulation
boxes as the line of sight; thus, the statistics are averaged
over the three projections of all realizations for a total of 36
samples. The three measurements along different lines of
sight are, however, not fully independent. To be
conservative, we present the measured dispersion divided
by

ffiffiffiffiffi
12

p
as the error of the mean even for the redshift-space

spectra.

A. Real-space power spectra

Let us first consider the real-space galaxy clustering: the
auto power spectrum of a given sample PR

XXðkÞ and the
cross power spectrum of two different samples PR

XYðkÞ. For
the auto spectrum, we need to estimate and subtract shot
noise from the measured spectrum ~PR

XX (the tilde denotes a
quantity directly measured from simulations), which is not
a trivial task. Here, we assume a Poisson model, where the
shot noise for the measured PR

XX is expressed as a constant,

σ2n;X ¼ V=NX ¼ n̄−1X ; ð8Þ

and we have

PR
XXðkÞ ¼ ~PR

XXðkÞ − σ2n;X: ð9Þ

We show the real-space power spectra for our mock galaxy
samples in Fig. 1. The power spectrum measured for the
full galaxy sample PR

gg is shown as the black line. The full
galaxy power spectrum is decomposed into central-central

TABLE I. Properties of mock galaxy samples. NX is the number of objects in a given (sub)sample X, M̄ is the average mass of the host
halos, n̄X ¼ NX=V is the number density, and b1;X is the large-scale bias determined using PR

mXðkÞ=PR
mmðkÞ at

0.01 ≤ k ≤ 0.04 hMpc−1.

Label Galaxy/halo NX Fraction to M̄ n̄X
X types (×104) total (1012 h−1M⊙) (h3 Mpc−3) b1;X

g All galaxies 125 1 3.03 × 10−4 2.17
c Central galaxies 109 0.877 26.25 2.67 × 10−4 2.02
s Satellite galaxies 15.3 0.123 106.8 3.75 × 10−5 3.26
cA Centrals without satellite 98.0 0.786 20.32 2.39 × 10−4 1.91
cB Centrals with satellite(s) 11.4 0.091 77.50 2.77 × 10−5 2.92
sA Satellites without other satellite 8.71 0.0698 58.61 2.13 × 10−5 2.68
sB Satellites with other satellite(s) 6.63 0.0532 169.9 1.62 × 10−5 4.00
bin2 2nd halo mass bin 44.8 28.99 1.09 × 10−4 2.16
bin3 3rd halo mass bin 9.96 85.37 2.43 × 10−5 3.12
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PR
cc, central-satellite PR

cs, and satellite-satellite PR
ss correla-

tions, as given in Eq. (2). Those three contributions are
respectively shown as the red, green, and blue solid lines.
While the auto spectrum of centrals PR

cc is dominant on
large scales because of the low satellite fraction, the
contributions from PR

cs and PR
ss become larger on small

scales due to 1-halo terms.
The contributions from the cross-correlations between

satellites and centrals without (PR
cAs) and with (PR

cBs) a
satellite inside the same halo, decomposed from Pcs, are
respectively shown as the green dashed and dotted lines. As
expected, the large amplitude of PR

cs at small scales is
caused by PR

cBs, which includes a 1-halo term. Similarly, the
contributions from satellite-satellite correlations are
decomposed as the blue dashed, dotted, and dot-dashed
lines for PR

sAsA, P
R
sAsB , and PR

sBsB , respectively. Once again,
the small-scale power is dominated by PR

sBsB, due to the 1-
halo contribution.
To eliminate the 1-halo contributions in PcBs and PsBsB ,

we consider a subsample of satellites whose positions are
replaced by halo centers. In this case, the shot noise for the
cross power between the centrals that have satellites in the
same halo and the satellites is given by Σ2

cB and

PR2h
cBs ðkÞ ¼ ~PR2h

cBs ðkÞ − Σ2
cB ; ð10Þ

where ~PR2h
cBs expresses the spectrum measured from the

satellite sample whose positions are replaced by halo
centers, and

Σ2
cB ¼ V=NcB ¼ 1=n̄cB : ð11Þ

Likewise, the auto power spectrum of the satellites that
have another satellite(s) in the same halo, whose positions
are replaced by halo centers, is given by

PR2h
sBsBðkÞ ¼ ~PR2h

sBsBðkÞ − σ2n;sB − Σ2
sB ; ð12Þ

where σ2n;sB is the normal Poisson shot noise [Eq. (8)] and

Σ2
sB ¼ V

PNc
i Ns;iðNs;i − 1Þ
ðPNc

i Ns;iÞ2
; ð13Þ

where Ns;i is the number of satellites in the ith halo, and the
sum is over all halos that host more than one satellite
galaxy. In our case, Σ2

sB ¼ 4.42 × 10−5V − σ2n;sB ¼ 2.92×
10−5V ¼ 1.19 × 105 ðh−1MpcÞ3. These measurements
[Eqs. (10) and (12)] are shown as the dotted and dash-
dotted magenta lines in Fig. 1, respectively. One can see
that the small-scale power caused by the 1-halo terms is
well suppressed, and the shapes of the power spectra PR2h

cBs

and PR2h
sBsB are similar to the other 2-halo spectra.

B. Galaxy biasing

The bias for a given galaxy sample X, bXðkÞ, can be
defined as

bXðkÞ ¼
PR
mXðkÞ

PR
mmðkÞ

; ð14Þ

where PR
mm is the auto spectrum of dark matter, and PR

mX is
the cross power spectrum between the sample X and dark
matter. The bias defined using the cross power spectrum is
not affected by the shot noise. The value of the linear bias
parameter, b1;X, is determined by minimizing χ2 statistics
over the wave number range 0.01 ≤ k ≤ 0.04 hMpc−1.
The top panel of Fig. 2 shows the galaxy biasing
normalized by the linear bias, bXðkÞ=b1;X ¼ PR

mXðkÞ=
½PR

mmðkÞb1;X�. In the large-scale limit, the normalized bias
for all the samples approaches unity. The values of b1;X in
the large-scale limit are summarized in Table I. As we have
seen for halos in [35], the galaxy bias deviates from a
constant at increasingly larger scales for a more biased
sample. For a comparison, we show the results for the two
halo mass bin samples measured in [35] as ½Pmh

00 ðkÞ�1=2,
each of which has a bias value similar to the whole galaxy
sample (bin2 halos) and the satellite sample (bin3 halos).
We see that they are similar, although not identical,
possibly a consequence of having a different halo mass

100

101

102

103

 0.1  1

Real space
kP

R gg
(k

)

k [h Mpc-1]

total
c-c
c-s
s-s

cA-s
cB-s

sA-sA
sA-sB
sB-sB

cB-s (2h)
sB-sB (2h)

FIG. 1 (color online). Power spectrum of mock galaxy sample
in real space PR

ggðkÞ (black). The red, green and blue solid lines
are respectively the contributions from central-central (PR

cc),
central-satellite (PR

cs), and satellite-satellite (PR
ss) pairs to the full

galaxy power spectrum. The central-satellite correlation can be
further decomposed into the correlation between centrals that do
not have a satellite in the same halo and satellites PR

cAs (green
dashed) and that between centrals with satellite(s) and satellites
PR
cBs (green dotted). Likewise, the satellite-satellite correlation

can be decomposed into the autocorrelation of satellites that do
not have other satellites inside the same halos PR

sAsA (blue dashed),
the autocorrelation of those that have other satellites inside the
same halos PR

sBsB (blue dot-dashed), and their cross-correlations
PR
sAsB (blue dotted). The 2-halo contributions of P

R
cBs and P

R
sBsB are

shown as the magenta dotted and dot-dashed lines, respectively.
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distribution. However, some of the difference appears to be
simply an error in the overall bias due to noise in the bias
determination at low k.
We next look at the nonlinearity of the auto spectrum of a

given galaxy sample X, PR
XXðkÞ, and the cross spectrum

between samples X and Y, PR
XYðkÞ, using the bias param-

eters determined above. The bottom panel of Fig. 2 shows
the auto spectrum normalized as PR

XXðkÞ=½PR
mmðkÞb21;X� and

the cross power as PR
XYðkÞ=½PR

mmðkÞb1;Xb1;Y �, where b1;X is
again the large-scale limit of bXðkÞ determined from the
cross-power spectrum with matter PR

mX. The black solid line
is the result for the whole galaxy sample PR

gg. The red and
blue lines show the results for the auto spectra of centrals
and satellites, respectively, while the green line shows the
result for the cross spectrum between them. The shot noise
for the spectra that have 1-halo contributions is known to
deviate from unity in the large-scale limit, e.g., [75–78].
Although PR

cs also contains a 1-halo contribution (that is,
PR1h
cBs ), it is a minor effect of order ∼10% (see Sec. III), and

thus PR
cs=½PR

mmb1;cb1;s� is consistent with unity in the k → 0

limit. However, the deviation for PR
cBs from unity is more

prominent at large scales. Unlike PR
cs, one can see the clear

deviation for PR
ss because the 1-halo effect is ∼43%. The

normalized power spectra that have only 2-halo contribu-
tions are well described by constants in the k → 0 limit.
Even the results for the spectra PR

cBs and PR
sBsB , after

eliminating 1-halo contributions, become constant. These
results confirm that the normalized spectra with 2-halo
terms have the same power spectrum shape. We again see
some small differences between the halo sample corre-
sponding to the same bias as the centrals, and the centrals.
Some of this is due to an overall error in bias determination.

C. Halo satellite radius

In this subsection we examine if the effect of the halo
profile on 1-halo and 2-halo terms can be modeled by the
leading order correction which is proportional to k2R2

X
where RX is the typical radius for a given galaxy sample X
inside halos. This model will be tested with the simulation
measurements.
We can write the measured power spectra that have

both 1-halo and 2-halo contributions, ~PR
XY where XY ¼

fcBs; sBsBg, as
~PR
cBsðkÞ ¼ PR1h

cBs ðkÞ þ PR2h
cBs ðkÞ; ð15Þ

~PR
sBsBðkÞ ¼ PR1h

sBsBðkÞ þ PR2h
sBsBðkÞ þ σ2n;sB : ð16Þ

The 2-halo terms PR2h
XY are related to the measured spectra

~PR2h
XY through Eqs. (10) and (12). In the k → 0 limit, the

1-halo terms PR1h
XY are a constant and behave as white noise,

PR1h
cBs ¼ Σ2

cB and P
R1h
sBsB ¼ Σ2

sB (see, e.g., [78]). At high k, the
halo density profile damps both the 1-halo and 2-halo terms
[50,79], and we consider the leading-order k2R2 corrections
for both terms, where R is the typical halo radius. Thus, the
1-halo term deviates from a constant as

PR1h
XY ðkÞ ¼ Σ2

Yð1 − k2½R2
X þ R2

Y �Þ: ð17Þ

Note that for PcBs, RcB ≪ Rs, so we consider only Rs and
set RcB ¼ 0. Similarly, when including the leading-order
profile correction, the 2-halo terms become

PR2h
cBs ðkÞ ¼ ~PR2h

cBs ðkÞ − Σ2
cB − b1;cBb1;sPlinðkÞk2R2

s ; ð18Þ

PR2h
sBsBðkÞ ¼ ~PR2h

sBsBðkÞ − σ2n;sB − ΣsB − 2b21;sBPlinðkÞk2R2
sB :

ð19Þ

By inserting Eq. (17) into Eqs. (15) and (18) for PR
cBs and

(16) and (19) for PR
sBsB, we obtain

~PR2h
cBS − ~PR

cBs ¼ ½Σ2
cB þ b1;cBb1;sPlin�k2R2

s ; ð20Þ
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FIG. 2 (color online). (top) The cross-correlation PR
mX normal-

ized by b1;XPR
mm, where X denotes samples described in the panel

and b1;X is the linear bias determined in the large-scale limit.
(bottom) The normalized auto spectrum PR

XX=b
2
1;XP

R
mm and cross

spectrum of the samples X and Y, PR
XY=b1;Xb1;YP

R
mm. The

magenta dotted and dot-dashed lines are respectively the results
for PR

cBs and PR
sBsB where the 1-halo contributions are eliminated.
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~PR2h
sBsB − ~PR

sBsB ¼ 2½Σ2
sB þ b21;sBPlin�k2R2

sB : ð21Þ

They are the results of the model using the leading-order
k2R2 corrections.
Note that the terms inside the brackets of the right-hand

sides of Eqs. (20) and (21) are simply a halo model
expression of the measured spectra, so we can instead write

~PR2h
cBs − ~PR

cBs ¼ ~PR
cBsk

2R2
s ; ð22Þ

~PR2h
sBsB − ~PR

sBsB ¼ 2½ ~PR
sBsB − σ2n;sB �k2R2

sB : ð23Þ

In the top left panel of Fig. 3, we show the result for the
cross power spectrum between centrals that have one or
more satellites and satellites, ~PR2h

cBs − ~PR
cBs. The horizontal

solid line is the expected shot noise Σ2
cB . The blue dashed

line shows the full power spectrum, PR
cBsð¼ ~PR

cBÞ. The
bottom left panel shows the square of the halo radius, R2

s ,
for our two models described above. The green lines are
the result of Eq. (20) when the profile correction to the
2-halo term [Eq. (18)] is ignored, R2

s¼ð ~PR2h
cBs − ~PR

cBsÞ=k2Σ2
cB .

The rise of Rs at large scales is caused by the absence of the
correction. Including the 2-halo correction, presented as the
blue line, makes the lines flat. The result of the full model
[Eq. (22)] is presented as the red line. The error bars are
shown only for this result for clarity. The right panels are
the same as the left panels but for the auto power spectrum
of the satellites that have at least one other satellite in the
same halo, ~PR2h

sBsB − ~PR
sBsB . The right bottom panel of Fig. 3

shows our models for RsB. We find RsB > Rs as expected,
and also our models give nearly a constant value of RsB .
The typical satellite radius is about 0.3 Mpc=h for central-
satellite pairs,and slightly larger for satellite-satellite pairs,
as expected since the latter are in larger halos.
Our models with Rs can correct the effects of the halo

density profile, and the parameters can be tied to the typical
extent of satellites inside the halos. However, the effect on
the full galaxy sample up to k ¼ 0.5 hMpc−1 is small: the
effects are of order 3% at k ∼ 0.5 hMpc−1, for central-
satellite pairs, and of order 10% for satellite-satellite pairs,
but since the first one is downweighted by the satellite
fraction, and the second one by satellite fraction squared,
for a typical value of the satellite fraction of 10% the overall
effect is less than 1%. Thus in the following analysis we do
not include the profile correction in the modeling.

D. Redshift-space power spectra

We present next the measurements of redshift-space
power spectra, PS

XX and PS
XY , where X and Y are the given

samples, (g, c, s, and so on). As in the case of the real-space
power spectra, the effect of shot noise for the auto power
spectrum in redshift space is assumed to be Poisson, such
that PS

XXðk; μÞ ¼ ~PS
XXðk; μÞ − σ2n;X. In Fig. 4, we show the

redshift-space 2D power spectrum of the mock galaxy
sample, PS

ggðk; μÞ, for the five different μ bins as the black
solid lines. The red, blue, and green curves respectively
show the contributions of the autocorrelations of central
galaxies, satellite galaxies, and their cross-correlations to
the full spectrum. Because PSðk; μ ¼ 0Þ ¼ PRðkÞ, all the
spectra PSðk; μ ¼ 0.1Þ shown in the top left panel are very
similar to the results presented in Fig. 1. At higher μ, the
spectra PS

cs and PS
ss are strongly suppressed at small scales

because of the nonlinear velocity dispersion including the
FoG effect, which also leads to the suppression of the total
galaxy spectrum PS

gg. The decomposed cross-power spectra
between centrals and satellites, PS

cAs and P
S
cBs are presented

as the green dashed and dotted lines, respectively. The
1-halo term of PS

cBs dominates PS
cs at small scales, and one

can see that the suppression of the amplitude of PS
cs for
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FIG. 3 (color online). Top left panel: The difference between
the power spectrum of centrals (inside halos with satellites, cB)
and satellites, and the power spectrum of the same centrals with
satellites replaced by halo centers, ~PR2h

cBs − ~PR
cBs (red). The blue

dashed line shows PR
cBsð¼ ~PR

cBsÞ. The horizontal dotted line is the
expected 1-halo term at the large-scale limit, PR1h

cBs ¼ Σ2
cB . Top

right panel: Same as the top left panel but for the power spectrum
of satellites that have one or more satellite in the same halo,
~PR2h
sBsB − ~PR

sBsB . The blue dashed line shows PR
sBsB ¼ ~PR

sBsB − σ2n;sB
and the horizontal line PR1h

sBsB ¼ Σ2
sB . Bottom left panel: Typical

satellite radius R2
s as a function of k computed from Eq. (20) with

(blue) and without (green) the 2-halo correction, and from
Eq. (22) (red). For clarity error bars are shown only for the
latter result. Bottom right panel: Same as the bottom left panel but
for the auto spectrum, thus the formula is given by Eqs. (21)
and (23).
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large μ is caused by the same term. Likewise, the decom-
posed auto spectra of satellites, PsAsA , PsAsB , PsBsB , are
shown as the blue dashed, dotted and dot-dashed lines, and
PS
sBsB , which has 1-halo contributions, becomes dominant

at small scales.
As we did in previous sections for real space, the 2-halo

contributions of the two terms that also contain 1-halo
contributions, PS2h

cBs and P
S2h
sBsB , can be obtained by replacing

satellite positions by halo centers. Here, we keep the
velocity of one of the satellites in the same halo chosen
randomly. As in the case for real space [Eqs. (10) and (12)],
we have

PS2h
cBs ðk; μÞ ¼ ~PS2h

cBs ðk; μÞ − Σ2
cB ; ð24Þ

PS2h
sBsBðk; μÞ ¼ ~PS2h

sBsBðk; μÞ − σ2n;sB − Σ2
sB ; ð25Þ
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FIG. 4 (color online). 2D Power spectrum of mock galaxy sample PS
ggðk; μÞ denoted as the black points with lines and the

contributions from central and satellite galaxies to it. The width of the μ bin is 0.2 centered around the values shown in each panel. The
meaning of the color and type of each line is the same as that in Fig. 1.
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where ΣcB and ΣsB are given in Eqs. (11) and (13). They are
shown in Fig. 4 as the dotted and dot-dashed magenta lines,
respectively.
When analyzing real data, the multipole moments of the

redshift-space power spectrum are often used to reduce
the degrees of freedom, thus simplifying the analysis. The
multipoles are described using Legendre polynomials
PlðμÞ as

PS
l ðkÞ ¼ ð2lþ 1Þ

Z
1

0

PSðk; μÞPlðμÞdμ: ð26Þ

Figure 5 presents the redshift-space multipoles: from the
left, the monopole (l ¼ 0), quadrupole (l ¼ 2), and hex-
adecapole (l ¼ 4). Similar plots are shown by [59]. In the
following section we will present results for the full 2D
spectrum PSðk; μÞ rather than the multipoles in order to
more closely examine any small deviations of our theo-
retical modeling from N-body measurements.

V. MODELING THE GALAXY REDSHIFT-SPACE
POWER SPECTRUM

The galaxy power spectrum in redshift space in our
formalism is given by Eq. (5), and in this section, we
present the prediction for each term in Eqs. (6) and (7).
We consider two models for the redshift-space power
spectrum of galaxies: one based on N-body simulations
(Sec. VA) and another based on nonlinear perturbation
theory (Sec. V B).
Satellite galaxies have large, nonlinear velocities inside

their host halos which suppress the clustering amplitude
relative to linear theory at small scales, a phenomenon
known as the FoG effect [44]. In previous studies, the effect
has been modeled with a single damping factor Gðkμ; σvÞ,
with σv corresponding to the velocity dispersion of a given
system, and the redshift-space power spectrum of galaxies
modeled as PS

ggðk; μÞ ¼ G2ðkμ; σvÞPS
hhðk; μÞ, where PS

hh is
the halo power spectrum, e.g., [14,33,34,47,48].
Only the density field of satellite galaxies is affected by

the nonlinear velocity dispersion. Considering this fact,
the four power spectra that have only 2-halo contributions,
namely PS

XY where XY¼fcc;cAs;sAsA;sAsBg [see Eq. (6)],
are given by

PS
ccðk; μÞ ¼ PS

cc;hðk; μÞ ð27Þ

PS
cAsðk; μÞ ¼ Gðkμ; σv;sÞPS

cAs;h
ðk; μÞ; ð28Þ

PS
sAsAðk; μÞ ¼ G2ðkμ; σv;sAÞPS

sAsA;h
ðk; μÞ; ð29Þ

PS
sAsBðk; μÞ ¼ Gðkμ; σv;sAÞGðkμ; σv;sBÞ

× PS
sAsB;h

ðk; μÞ; ð30Þ

where PS
XX;h represents the auto power spectrum of halos in

which the galaxies X reside, and PS
XY;h the cross spectrum

of halos in which galaxies X and Y reside. Note that the
halo spectrum PS

XX;h or PS
XY;h needs to be distinguished

from PS2h
XX or PS2h

XY presented in Sec. IV D because the latter
is the 2-halo term of the galaxy power spectrum, thus it is
affected by the nonlinear velocity dispersion effect. For
the Poisson shot noise model, we have PS

XY;h ¼ ~PS
XY;h and

PS
XX;h ¼ ~PS

XX;h − σ2n;X for these four halo spectra. Under the
assumption of linear perturbation theory, the spectrum
PS
XY;h converges to the linear RSD power spectrum origi-

nally proposed by [1], PS
XY;hðk; μÞ ¼ ðb1;X þ fμ2Þðb1;Y þ

fμ2ÞPlinðkÞ, where Plin is the linear power spectrum of
underlying dark matter in real space.
The remaining two terms are the cross power spectrum

between the centrals that have satellite(s) in the same halo
and satellite galaxies, PS

cBs, and the auto spectrum of
satellites that have at least one other satellite in the same
halo, PS

sBsB . As we have seen in Sec. II, these spectra have
both 1-halo and 2-halo contributions, and the shot noise
deviates from a constant due to the scale dependence of the
1-halo terms (although we ignore this effect in the full
model because of low satellite fraction). Consequently,
modeling these spectra is not as straightforward as for those
terms that contain only 2-halo contributions.
Nevertheless, we can follow the same procedure for the

spectra that have 1-halo contributions. The cross spectrum
of the centrals that contain satellites within the same halo
and the satellites, PS

cBsð¼ ~PS
cBsÞ, can be modeled as

PS
cBsðk; μÞ ¼ Gðkμ; σv;sÞ½ ~PS

cBs;hðk; μÞ − Σ2
cB �

þGðkμ; σv;sÞΣ2
cB

¼ Gðkμ; σv;sÞ ~PS
cBs;hðk; μÞ; ð31Þ

where the shot noise term Σ2
cB is given by Eq. (11).

Likewise, the auto power spectrum of the satellites that
have another satellite(s) in the same halos, PS

sBsB , can be
described as

PS
sBsBðk; μÞ ¼ ~PS

sBsBðk; μÞ − σ2n;sB

¼ G2
2hðkμ; σv;sBÞ

× ½ ~PS
sBsB;hðk; μÞ − Σ2

sB − σ2n;sB �;
þ G2

1hðkμ; σv;sBÞΣ2
sB ; ð32Þ

where ΣsB is given by (13). G1h and G2h are the damping
factors due to the FoG effect on 1-halo and 2-halo terms,
respectively. In the general case with a wide halo mass
distribution they would be different because 1- and 2-halo
terms have different weightings as a function of the halo
mass, while for a narrow halo mass distribution we expect
the same damping factor for the two, G1h ¼ G2h ≡G. Our
goal is to divide up the correlations into individual
contributions from components that have a relatively
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narrow mass distribution (centrals with and without satel-
lites, satellites with other satellite pairs,…), and we are thus
trading the simplicity of the modeling of individual terms
with narrow halo mass distribution with the complexity of
having several terms that we need to model. Thus we have

PS
sBsBðk; μÞ ¼ G2ðkμ; σv;sBsBÞ½ ~PS

sBsB;hðk; μÞ − σ2n;sB �: ð33Þ

Equations (27)–(31) and (33) are what we will predict with
two ways in the following subsections. Note that even
though our model splits FoG effects into 1- and 2-halo
terms, we could have also modeled it simply by multiplying
FoG terms on the total power spectrum combining the two,
in analogy of halo profile effects, where Eqs. (20) and (21)
are equivalent to Eqs. (22) and (23).
Gaussian and exponential distributions are usually con-

sidered for pairwise velocity dispersion in configuration
space, which correspond to the Gaussian and Lorentzian
functions in Fourier space, respectively [47–49],

Gðkμ; σvÞ ¼
�
e−k

2μ2σ2v=2 Gaussian;

ð1þ k2μ2σ2v=2Þ−2 Lorentzian:
ð34Þ

Note that the Lorentzian function has a form modified from
the commonly used form in the literature. There is no
formal way to derive these, so we simply adopt whichever
works best. See [27] for a more generalized functional form
for the nonlinear velocity dispersion effect that approaches
the Gaussian and Lorentzian forms as the two limit cases.
Under the assumption that satellites follow the virialized
motions inside the halos, the velocity dispersion of the
satellite galaxies about the center of mass of the host halo
can be described as a function of halo mass, e.g. [54],

σ2vðMÞ ¼ σ2v;0

�
M

1013M⊙=h

�
2=3

; ð35Þ

where the normalization σv;0 depends on both the assumed
RSD model and the functional form of the damping term
[Eq. (34)]. The suppression of the power at small scales due
to the damping factor is different for different PS

XY terms
because the galaxies in each subsample reside in halos with
different mass. However, for each RSD model of the galaxy
power spectrum PS

gg, there is only one free parameter for the
velocity dispersion, σv;0. In practice of course even this
assumption is not valid to some extent: one can have a
radial profile of satellites to vary with the halo mass in a
way that does not scale with the virial radius, for example.
We will ignore these considerations.

A. Using redshift-space halo power spectra
from simulations

In this subsection, we consider the case where we have a
perfect model to describe the power spectrum of halos in

redshift space, ~PXX;h and ~PXY;h. Specifically, we use
measurements from N-body simulations for the redshift-
space power spectra of halos that have the same bias at
large scales and the same number density as the target
galaxies. In Sec. V B, we relax this assumption and use
nonlinear perturbation theory to model the halo power
spectrum itself.
Central galaxies reside in the centers of their halos and

thus, the halo spectrum PS
cc;h in Eq. (27) can be directly

measured from simulations. We compute the halo spectra in
Eqs. (28)–(30) by replacing the position of each satellite
galaxy with the center of the halo and assigning the halo
velocity to the replaced satellites. This methodology will
remove any satellite FoG effects, leaving only RSD due to
the halo velocity field.
The measurements from N-body simulations for the

ratios PS
cAs=P

S
cAs;h

, PS
sAsA=P

S
sAsA;h

, and PS
sAsB=P

S
sAsB;h

are
presented as functions of k and μ in the top panels
of Fig. 6, from the left to right, respectively. If the
models in Eqs. (28)–(30) are correct, the plotted results
should be equivalent to the damping factors Gðkμ; σv;sÞ,
Gðkμ; σv;sAÞ2, and Gðkμ; σv;sAÞGðkμ; σv;sBÞ, respectively.
For the Gaussian and Lorentzian damping models, we
adopt the value of the parameter σv;0 ¼ 270 km=s and
σv;0 ¼ 210 km=s, respectively. To compute the various

velocity dispersions, we use the fact that hM2=3
s i ¼ 2.04×

109 ðh−1M⊙Þ2=3, hM2=3
sA i ¼ 1.43 × 109 ðh−1M⊙Þ2=3, and

hM2=3
sB i ¼ 2.85 × 109 ðh−1M⊙Þ2=3, where MX is the

average mass of halos that host satellite galaxy sample
X. Thus, Eq. (35) predicts σv;s ¼ 5.67 h−1Mpc, σv;sA ¼
4.74 h−1Mpc and σv;sB ¼ 6.69 h−1Mpc for the Gaussian
model and σv;s ¼ 4.41 h−1Mpc, σv;sA ¼ 3.68 h−1 Mpc and
σv;sB ¼ 5.21 h−1 Mpc for the Lorentzian model. The
Gaussian and Lorentzian damping models using these
velocity dispersions are shown as the dashed and solid
lines in the top panels of Fig. 6.
The Gaussian model fails to explain the small scale RSD

of PS
cAs (k ∼ 0.2 hMpc−1 for μ ¼ 0.9), while the modified

Lorentzian model matches the simulation result for all the
scales probed here (k ∼ 0.4 hMpc−1). The results for PS

sAsA
and PS

sAsB are respectively shown at the middle and right
panels of the top set in Fig. 6. The Gaussian model works
relatively well for these terms, but the Lorentzian model has
a near-perfect agreement with the N-body results.
The remaining two terms we wish to model are PS

cBs and
PS
sBsB which have both 1-halo and 2-halo contributions. At

the lower set of Fig. 6, we plot PS
cBs= ~P

S
cBs;h (left) and

PS
sBsB=½ ~PS

sBsB − σ2n;sB � (right) as functions of ðk; μÞ. For PS
sBsB

term, the mass term in Eq. (35),M2=3, needs to be weighted
by the number of satellite pairs in each halo. Because the
average mass weighted by the number of the pairs is
hM2=3

sB i ¼ 3.78 × 109 ðh−1M⊙Þ2=3, the σv;0 values the same
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as those for 2-halo terms for Gaussian and Lorentzian
models, Gðkμ; σv;sBsBÞ, predict σv;sBsB ¼ 7.7 h−1Mpc and
σv;sBsB ¼ 6.0 h−1Mpc, respectively. We find that both the
Gaussian and Lorentzian models can explain the measure-
ment of PS

sBsB well. On the other hand, we adopt the value of
the parameter σv;0 ¼ 260 km=s and σv;0 ¼ 195 km=s,
respectively, for the Gaussian and Lorentzian models for
PcBs, which are smaller than those for 2-halo terms by about
7% and 4%. Since we have a wide halo mass range
particularly for the halos which host the central galaxies
with satellite(s), cB, it is not surprising that the 1-halo term
can have a slightly different value of σv;0.
We combine all the above modeling results to see how

well our model agrees with the total galaxy power spectrum
measured from simulations, PS

gg. In the top panel of Fig. 7,
the points with the error bars show the galaxy power

spectrum normalized by the linear power spectrum without
baryon acoustic oscillation (BAO) wiggles with the linear
Kaiser factor, PS

NW ¼ ð1þ fμ2=b1;gÞ2PR
NW . The dashed

lines show the combinations of our modeling results for
halo RSD from simulations [Eqs. (27)–(31), (33)–(35)]
with a single parameter for the velocity dispersion,
σv;0 ¼ 2.1 h−1Mpc. The dashed lines in the bottom panel
of Fig. 7 show PS;sim

gg =PS;model
gg − 1, where PS;sim

gg and PS;model
gg

are the measured and modeled full galaxy power spectrum,
respectively. We can see that our model is accurate with
2.5% up to k ∼ 0.4 hMpc−1. The solid lines in the top
panel of Fig. 7 is the same as the dashed lines but we adopt
σv;0 ¼ 1.95 h−1Mpc for PcBs. The points and solid lines
with the error bars present the model accuracy, and we
achieve the agreement of ∼1% at k ∼ 0.4 hMpc−1 and
∼1.5% at k ∼ 0.5 hMpc−1.
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FIG. 6 (color online). The ratio of the redshift-space power spectra for various galaxy samples to the corresponding halo spectra. The
halo spectra are computed by replacing satellite positions and velocities by those of halos. The top panels show spectra that contain only
2-halo contributions: the correlation between centrals without satellites and satellites (left), the autocorrelation of satellites that have no
other satellites in the same halo (middle), and the cross-correlation between satellites with and without other satellites in the same halo
(right). The bottom panels show the spectra which have both 1-halo and 2-halo contributions: the cross-correlation between the centrals
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in the same halo (right). The dashed and solid lines are respectively the predictions for the Gaussian and Lorentzian damping functions
due to the nonlinear velocity dispersion effect.
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B. Using redshift-space halo power spectrum from
perturbation theory

In this subsection, we present a model for the galaxy
power spectrum in redshift space where we model the halo
power spectrum using perturbation theory, rather than
measurements from N-body simulations as in Sec. VA.
The perturbation theory model used here relies on express-
ing the redshift-space halo density field in terms of
moments of the distribution function (DF), and the
approach has been developed and tested in a previous
series of papers [26–28,35,37,38]. If we consider halo
samples X and Y, with linear biases b1;X and b1;Y , the
redshift-space power spectrum in the DF model is given by

PS
XY;hðk; μÞ ¼

X∞
L¼0

X∞
L0¼0

ð−1ÞL0

L!L0!

�
ikμ
H

�
LþL0

PXY;h
LL0 ðk; μÞ;

ð36Þ

where H ¼ aH is the conformal Hubble factor, and PXY;h
LL0

is the power spectrum of moments L and L0 of the radial
halo velocity field, weighted by the halo density field.
These spectra are defined as

PXY;h
LL0 ðkÞð2πÞ3δDðk − k0Þ ¼ hTX;L

∥ ðkÞTY;L0�
∥ ðk0Þi; ð37Þ

where TX;L
∥ ðkÞ is the Fourier transform of the halo velocity

moments weighted by halo density, TX;L
∥ ðxÞ ¼ ½1þ

δXðxÞ�vL∥;X. For example, PXX;h
00 represents the halo density

auto power spectrum of sample X, whereas PXX;h
01 is the

cross-correlation of density and radial momentum for halo
sample X.
The DF approach naturally produces an expansion of

PS
XY;hðk; μÞ in even powers of μ, with a finite number of

correlators contributing at a given power of μ. For the
model presented here, we consider terms up to and
including μ4 order in the expansion of Eq. (36). The
spectra PXY;h

LL0 ðk; μÞ in Eq. (36) are defined with respect
to the halo field, and a biasing model is needed to relate
them to the correlators of the underlying dark matter
density field. We use a nonlocal and nonlinear biasing
model [41], which results in three biasing parameters per
halo sample: b1, b002 , and b012 . The spectra PXX;h

00 and PXX;h
01

have distinct values for second-order, local bias b2 (see [37]
for more details). As discussed in [37], b002 and b012 have a
roughly quadratic dependence on the linear bias b1. We fit
this dependence to simulations and treat the quadratic
biases as a function of b1 only. Thus, the linear bias
b1;X is the only free bias parameter for halo sample X. Note
that when evaluating the cross spectrum PS

XY;h for halo
samples X and Y, we evaluate the model using the geo-
metric mean of the linear biases, b1;XY ≡ ðb1;Xb1;YÞ1=2. As
shown in Fig. 2, the power spectra of halos with broad and
narrow mass distributions (denoted as “c” and bin2,
respectively) have slightly different bias but very similar
shapes, confirming that one can replace a broad mass
distribution of centrals with a narrow mass distribution.
This may not be such a good approximation for satellites,
but if the satellite fraction is low the overall effects are small
as well.
To evaluate the underlying dark matter correlators and

nonlinear biasing terms present in Eq. (36), we use Eulerian
perturbation theory, as described in detail in [37].
Perturbation theory breaks down on small scales, and in
order to increase the accuracy of the DF model, we use
results calibrated from simulations in three instances. First,
we use the Halo Zeldovich model [81] for the dark matter
correlators P00 and P01, where P01 can be related to P00

through P01 ¼ μ2dP00=dlna [28]. This model has been
shown by [81] to be accurate to 1% to k ¼ 1 hMpc−1.
Second, we use simulation measurements for the functional
forms of the cross correlation between dark matter density
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FIG. 7 (color online). Top: The total galaxy power spectrum in
redshift space normalized by the linear Kaiser no-wiggle spec-
trum in redshift space [80]. The ratio of the redshift-space power
spectra for various galaxy samples to the corresponding halo
spectra. The points with error bars are the spectrum directly
measured from simulations. The dashed lines are our model using
halo spectra from simulations with a single parameter of
σv;0 ¼ 2.1 h−1 Mpc, while the solid lines are the case when
we adopt σv;0 ¼ 1.95 h−1 Mpc for PcBs. Vertical offsets have been
added for clarity. Bottom: The ratio of the measured spectrum to
our model for the two cases of treating σv;0 described above. For
clarity error bars are added only for the μ ¼ 0.5 result of the case
when the different value of σv;0 is adopted for PcBs.
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and velocity divergence, Pδθ, and the μ4-dependence of the
dark matter momentum density autocorrelation, P11½μ4�.
Specifically, P11½μ4�=Plin and Pδθ=Plin are interpolated
from simulations as a function of f2σ28 and fσ28, respec-
tively. Finally, there are corrections to the Poisson model
for shot noise σ2n;X due to halo exclusion effects and
nonlinear clustering [37,78]. As first shown in [78], these
two corrections to the halo stochasticity must be considered
together, with exclusion leading to a suppression of power
in the low-k limit and nonlinear clustering providing an
enhancement. The deviations from Poisson stochasticity
are typically a few percent in the low-k limit and must
vanish in the high-k limit, leading to a complicated scale
dependence. In previous work, [37] modeled the halo
stochasticity (denoted as Λ in [37]) with an ad hoc fitting
formula, which worked well over the desired range of
scales. Rather than use this fitting formula, we measure the

halo stochasticity directly from simulations over a range
of redshifts and halo mass bins, and then interpolate the
results as a function of linear bias. The results interpolated
directly from simulations described here are designed to be
accurate to a maximum wave number of k ¼ 0.4 hMpc−1.
Improved theoretical modeling, independent of simulation
measurements, is actively being developed.
We can compute the redshift-space halo spectra PS

XY;h in
the four 2-halo galaxy power spectra of Eqs. (27)–(30)
using the DF approach described in this section. Note that
PS
cAs;h

and PS
sAsB;h

are cross power spectra of two halo
samples, and we model the spectra using the geometric
mean of the linear biases of the individual samples. The
ratio of the simulation measurements for these four 2-halo
galaxy spectra to the corresponding halo spectra modeled
with the DF approach in redshift space is shown in Fig. 8.
For PS

cAs, PS
sAsA , and PS

sAsB , the solid lines show the
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FIG. 8 (color online). The ratio of the 2-halo redshift-space galaxy power spectra to the corresponding halo spectra modeled with the
distribution function approach described in Sec. V B. The top left panel shows the result for the auto spectrum of centrals ðXYÞ ¼ ðccÞ.
Centrals have no velocity dispersion, so the expected damping (solid line) is simply unity. For clarity vertical offsets are added for results
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suppression factor due to the FoG effect using the
Lorentzian model. No FoG suppression is expected for
Pcc so the solid lines are simply unity. To compute the halo
spectra, the linear biases are taken from Table I, and we
vary the FoG velocity dispersions to obtain the best fit
possible. The values we obtain are σv;s ¼ 4.1 h−1Mpc,
σv;sA ¼ 3.5 h−1Mpc, and σv;sB ¼ 5 h−1Mpc. These values
are in rough agreement with those predicted using Eq. (35),
with discrepancies likely due to deficiencies in the RSD
model at high k and high μ, which are partially compen-
sated by the FoG damping.
We can also combine both 2-halo and 1-halo terms in

order to examine the accuracy of the DF model in
describing the total galaxy redshift-space power spectrum,
PS
ggðk; μÞ. Similar to Sec. VA, we use Eqs. (31) and (32) to

model PS
cBs and P

S
sBsB , and we use the DF model to describe

the halo spectra that enter into these equations. The FoG
velocity dispersions used for these terms are the same
as described previously: σv;s ¼ 4.1 h−1Mpc and σv;sB ¼
5 h−1Mpc. The same values are used for both the 1-halo
and 2-halo contributions. The amplitudes of the 1-halo

terms for PS
cBs and P

S
sBsB are treated as constant and equal to

Σ2
cB and Σ2

sB , respectively. We show the simulation mea-
surements for PS

ggðk; μÞ (points with errors) as well as the
DF model plus FoG damping prediction (solid lines) in the
top panel of Fig. 9. The power spectra in this figure have
been normalized by the linear Kaiser redshift space power
spectrum, using the no-wiggle linear power spectrum [80].
The bottom panel of Fig. 9 shows the accuracy of our DF
model compared to the measurement, PS;sim

gg =PS;model
gg − 1.

Using the DF model described here for halo spectra, we can
successfully describe the total galaxy spectrum in redshift
space to small scales, roughly k ∼ 0.4 hMpc−1 within 3%.
The modeled spectrum breaks down significantly at
k > 0.4 h−1 Mpc, because the underlying PT breaks down
at these scales and the simulation-calibrated results have
only been fit to k ≤ 0.4 h−1Mpc in order to improve the
accuracy only to this wave number.
The results shown in Fig. 9 use three free parameters,

given by the three FoG velocity dispersions σv;s, σv;sA , and
σv;sB ; all other parameters (linear biases, sample fractions,
etc.) are set to their fiducial values listed in Table I. In
comparison to the results of VA, where simulation mea-
surements are used for halo spectra, the DF model achieves
a slightly worse precision (1% vs 3% at k ∼ 0.4 hMpc−1)
and uses one additional free parameter to model the FoG
velocity dispersions.

VI. CONCLUSIONS

In this paper we have investigated the redshift-space
power spectrum of galaxies using N-body simulations and
developed a model based on perturbation theory (PT) of
dark matter halos. In previous work [37] we have estab-
lished the requirements and reach of PT models on halos,
and in this paper our focus is on effects induced by satellites
that are not at the halo centers, inducing effects that go
beyond PT halo modeling. We have argued that the
simplest approach to describe these effects is within the
context of a halo model, where the radial distribution of
satellites inside the halo induces both 2-halo and 1-halo
effects. In real space these effects add an additional small
scale clustering term, the so called 1-halo term, which
appears at low k as a white noiselike term. We have
investigated the departures of this term from the white noise
and found that they can be well approximated as a −k2R2

relative correction to the 1-halo power spectrum. The
corresponding 2-halo term effects are also very small
and scale as −k2R2PLðkÞ. Together the two effects can
be modeled as −k2R2PðkÞ correction, but are in any case
very small.
In redshift space the satellites are spread out in the radial

direction by their virial velocities inside the halos, an effect
called Fingers-of-God (FoG). These FoG effects also
induce both 1-halo and 2-halo correlations. These effects
are large and over the range of scales of interest they cannot
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FIG. 9 (color online). Top: The total redshift-space galaxy
power spectrum PS

ggðk; μÞ as measured from simulations (points
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distribution function model for the halo spectra of the various 2-
halo terms contributing to the total power. The power spectra
have been normalized by the linear Kaiser redshift space power
spectrum, using the no-wiggle linear power spectrum [80].
Vertical offsets have been added for clarity. Bottom: The ratio
of the measured spectrum to our DF model. For clarity the error
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be modeled simply by a k2σ2v correction. Instead, we
explore several FoG resummations proposed in the liter-
ature, finding that Lorentzian is a good fit over the range of
interest. To provide a more physical interpretation we
further decompose these galaxy subsamples into subsam-
ples that can be approximately described as having a
narrow halo mass distribution. The advantage of this
decomposition is that there is just a single FoG term that
is needed to describe both the 1-halo and 2-halo FoG, and
that this term is related to the typical virial velocity
corresponding to the halos of a given mass. We divide
centrals into those with and without satellite inside the same
halos, and satellites into those with and without another
satellite(s) inside the same halos. The decomposed terms of
the observed power spectrum can be uniquely related to 1-
halo and 2-halo terms in a halo model and we assign each
subsample their own FoG term. But doing this we success-
fully model the contributions up to k ∼ 0.4 hMpc−1, and
we can relate the FoG parameters to the underlying
physical properties of the halos like their halo mass.
Ultimately our goal is to model the observed galaxy

power spectrum from surveys such as BOSS [70,71]. Our
modeling contains many more parameters than the current
state-of-the art models of RSD power spectrum, which
typically combine PT halo models with a single white noise
amplitude and a single FoG term to account for satellite
effects [8]. These parameters combine all the different
terms discussed here into a single one, and as we argued

there should be several FoG terms that act differently on
different scales. As a consequence these models typically
fail for k > 0.2 hMpc−1, while our models extend the
reach up to k ∼ 0.4 hMpc−1. Moreover, our FoG param-
eters can be directly connected to the underlying halo mass
of halos in which satellites live, and thus the bias of the
same halos, and our 1-halo amplitude can be connected to
the satellite fraction, so many of the parameters we
introduced may have strong priors and do not need to be
fit from the data. There is thus hope that such improved
modeling of small scales will translate into better cosmo-
logical constraints, as argued recently for configuration
space analysis [9], and we hope to address this in the future.
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