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Abstract
Host genetics has recently been shown to be a driver of plant microbiome composition. However, identifying the underlying
genetic loci controlling microbial selection remains challenging. Genome-wide association studies (GWAS) represent a
potentially powerful, unbiased method to identify microbes sensitive to the host genotype and to connect them with the
genetic loci that influence their colonization. Here, we conducted a population-level microbiome analysis of the rhizospheres
of 200 sorghum genotypes. Using 16S rRNA amplicon sequencing, we identify rhizosphere-associated bacteria exhibiting
heritable associations with plant genotype, and identify significant overlap between these lineages and heritable taxa recently
identified in maize. Furthermore, we demonstrate that GWAS can identify host loci that correlate with the abundance of
specific subsets of the rhizosphere microbiome. Finally, we demonstrate that these results can be used to predict rhizosphere
microbiome structure for an independent panel of sorghum genotypes based solely on knowledge of host genotypic
information.

Introduction

Recent work has shown that root-associated microbial
communities are in part shaped by host genetics [1–4]. A
study comparing the root microbiomes of a broad range of
cereal crops has demonstrated a strong correlation between
host genetic differences and microbiome composition [4],
suggesting that a subset of the plant microbiome may be

influenced by host genotype across a range of plant hosts. In
maize, these genotype-sensitive, or “heritable”, microbes
are phylogenetically clustered within specific taxonomic
groups [5]; however, it is unclear whether the increased
genotypic sensitivity in these lineages is unique to the maize
microbiome or is common to other plant hosts as well.

Despite consistent evidence of the interaction between
host genetics and plant microbiome composition, identify-
ing specific genetic elements driving host-genotype depen-
dent microbiome acquisition and assembly in plants remains
a challenge. Recent efforts guided by a priori hypotheses of
gene involvement have begun to dissect the impact of
individual genes on microbiome composition [6, 7]. How-
ever, these studies are limited to a small fraction of plant
genes predicted to function in microbiome-related pro-
cesses. In addition, many plant traits expected to impact
microbiome composition and activity, such as root exuda-
tion [8] and root system architecture [9], are inherently
complex and potentially governed by a very large number
of genes. For these reasons, there is a need for alternative
large-scale and unbiased methods for identifying the genes
that regulate the host-mediated selection of the microbiome.

Genome-wide association studies (GWAS) represent a
powerful approach to map loci that are associated with
complex traits in a genetically diverse population. Though
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pioneered for use in human genetics, to date the majority of
GWAS have been conducted in plants [10], and it has
become an increasingly popular tool for studying the
genetic basis of natural variation and traits of agricultural
importance. When inbred lines are available, GWAS can be
particularly useful; once genotyped, these lines can be
phenotyped multiple times, making it possible to study
many different traits in many different environments [11].
While GWAS is typically used in the context of a single
quantitative phenotypic trait, analyses of multivariate
molecular traits, such as transcriptomic or metabolomic
data, have also been conducted [12, 13]. More recently,
several attempts have been made to use host-associated
microbiome census data as an input to GWAS, which in
theory will allow for the identification of host genetic loci
controlling microbiome composition [14, 15].

In plants, a recent study in Arabidopsis thaliana used
phyllosphere microbial community data as the phenotypic
trait in a GWAS to demonstrate that plant loci responsible
for defense and cell wall integrity affect microbial com-
munity variation [16]. Several other recent phyllosphere
studies performed GWAS to identify genetic factors con-
trolling microbiome associations with mixed degrees of
success [16–18]. Compared to studies of the phyllosphere,
GWAS on Arabidopsis root microbes identified host SNPs
associated within and surrounding genes with characterized
roles in immunity, cell-wall integrity, and development
[19]. Previous work comparing the root microbiomes of
diverse cereal crops has offered conflicting evidence as to
whether host genotypic distance correlates most strongly
with microbial community distance within root endospheres
or rhizospheres [3, 4]. These data suggest that the sample
type exhibiting the strongest correlation between genotype
and microbiome composition may differ for each host and
that an initial evaluation of the degree of correlation
between genotype and microbiome phenotype across sam-
ple types may be informative. However, to our knowledge,
the use of GWAS in conjunction with the rhizosphere
microbiome has yet to be explored.

In the context of the root and rhizosphere, we propose
Sorghum bicolor (L.) as an ideal plant system for GWAS-
based dissection of host-genetic control of microbiome
composition. Sorghum is a heavy producer of root exudates
[20], and the sorghum microbiome has been shown to house
an unusually large number of host-specific microbes [4]. In
addition, there is a wide range of natural adaptation in tra-
ditional sorghum varieties from across Africa and Asia, and
a collection of breeding lines generated from U.S. sorghum
breeding programs, both of which provide a rich source of
phenotypic and genotypic variation [21]. Several genome
sequences of sorghum varieties have been completed, and
variation in nucleotide diversity, linkage disequilibrium

(LD), and recombination rates across the genome has been
quantified [22], providing an understanding of the genomic
patterns of diversification in sorghum. Finally, sorghum is
an important cereal crop grown throughout the world as a
food, feedstock, and biofuel, enabling direct integration of
resulting discoveries into an agriculturally relevant system.

In this study, we dissect the host-genetic control of
bacterial microbiome composition in the sorghum rhizo-
sphere. Using 16S rRNA sequencing, we profiled the
microbiome of a panel of 200 diverse genotypes of field-
grown sorghum. We test the hypothesis that a subset of the
sorghum microbiome responds to the host genotype and
demonstrate that this subset shares considerable overlap
with lineages shown to be susceptible to host genetic con-
trol in another plant host. In addition, we tested whether
GWAS can be used to identify specific genetic loci within
the host genome that are correlated with the abundance of
specific heritable lineages and whether differences in
microbiome composition can be predicted solely from
genotypic information. Collectively, this work demonstrates
the utility of GWAS for analyzing host-mediated control of
rhizosphere microbiome phenotypes.

Methods

Germplasm selection

In order to ensure that microbiome profiling was performed
on a representative subset of the broad genetic diversity
present in the 378 members sorghum association panel
(SAP) [21, 22], subsets of 200 genotypes were randomly
sampled from the SAP 10,000 times and an aggregate
nucleotide diversity score was calculated for each using the
R package “PopGenome” [23]. From these data, the subset
of 200 lines with the maximum diversity value was selected
(Fig. 1a, Supplemental Fig. 1, Supplemental Table 1). For
the pilot experiment that was used to determine the appro-
priate sample type for GWAS, a subset of 24 lines was
selected that included genotypes from a wide range of
phylogenetic distances (Fig. 1a, Supplemental Table 1). The
phylogenetic tree of sorghum accessions was generated by
the neighbor-joining method using an identity by state (IBS)
distance matrix calculated in TASSEL 5.0 [24] and visua-
lized using the online tool: interactive tree of life (iTOL) v5
(ref. [25]).

Field experimental design and root microbiome
sample collection

The experimental field used in this study is an agricultural field
site located in Albany, California (37.8864 °N, 122.2982 °W),
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characterized by a silty loam soil with pH 5.2 [4]. Germplasm
for the US SAP panel used in this study [21] was obtained
from GRIN (www.ars-grin.gov). To ensure a uniform starting
soil microbiome for all sorghum seedlings and to control their
planting density, seeds were first sown into a thoroughly
homogenized field soil mix in a growth chamber with con-
trolled environmental factors (25 °C, 16 h photoperiods) fol-
lowed by transplantation to the field site. To prepare the soil
for seed germination, 0.54 cubic meters of soil was collected at
a depth of 0–20 cm from the field site subsequently used for
planting, and homogenized by separately mixing four equally
sized batches with irrigation water in a sterilized cement mixer
followed by manual homogenization on a sterilized tarp sur-
face. The soil was then transferred to sterilized 72-cell plant
trays. To prepare seeds for planting, seeds were surface-
sterilized through soaking 10min in 10% bleach +0.1%
Tween-20, followed by four washes in sterile water. Following
planting, sorghum seedlings were watered with ~5ml of water
using a mist nozzle every 24 h for the first 3 days, and bottom
watered every three days until the 12th day, then transplanted
to the field.

The field consisted of three replicate blocks, with each
block containing 200 plots for each of 200 selected geno-
types. Six healthy sorghum seedlings of each genotype were
transplanted to their respective plots, separated by 15.2 cm,
and thinning to three seedlings per plot was performed at
two weeks post transplanting. Plots were organized in an
alternating pattern with respect to the irrigation line to
maximize the distance between each plant (Supplemental
Fig. 2). Plants were watered for 1 h, three times per week,
using drip irrigation with 1.89 L/h rate flow emitters.
Manual weeding was performed three times per week
throughout the growing season. To ensure that the geno-
types were at a similar stage of development and that the
host-associated microbiome had sufficient time to develop,
collection of plant-associated samples was performed nine
weeks post-germination. Only the middle plant within each
plot was harvested to help mitigate potential confounding
plant-plant interaction effects resulting from contact with
roots from neighboring plants of other genotypes. Rhizo-
sphere, leaf, and root samples were collected as described in
detail previously [26].

Fig. 1 Sample type and population selection. A Phylogenetic tree
representing the 378 member sorghum association panel (SAP, inner
ring), the subset of 200 lines selected for GWAS (second ring from the
center, in blue), the 24 lines used for sample type selection (Pilot, third
ring from the center, in yellow), and the 18 genotypes used for GWAS
validation containing either the Chromosome 4 minor allele (red) or
major allele (brown) identified by GWAS (outer ring). B Shannon’s
entropy values from 16S rRNA amplicon datasets for the leaf (green),

root (yellow), and rhizosphere (red) sample types across all 24 geno-
types used in the pilot experiment. C Principal coordinate analysis
generated using Bray–Curtis distance for the 24 genotypes across leaf
(green), root (yellow), and rhizosphere (red). D Mantel’s R statistic
plotted for each sample type across all 24 genotypes indicating the
degree of correlation between host genotypic distance and microbiome
distance.
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DNA extraction, PCR amplification, and Illumina
sequencing

DNA extractions, PCR amplification of the V3–V4 region
of the 16S rRNA gene, and amplicon pooling were per-
formed as described in detail previously [26]. In brief, DNA
extractions for all samples were performed using extraction
kits (MoBio PowerSoil DNA Isolation Kit, MoBio Inc.,
Carlsbad, CA) following the manufacturer’s protocol.
Amplification of the V3–V4 region of the 16S rRNA gene
was performed using dual-indexed 16s rRNA Illumina
iTags primers 341F (5′–CCTACGGGNBGCASCAG–3′)
and 785R (5′–GACTACNVGGGTATCTAATCC–3′). An
aliquot of the pooled amplicons was diluted to 10 nM in
30 μL total volume before submitting to the QB3 Vincent J.
Coates Genomics Sequencing Laboratory facility at the
University of California, Berkeley for sequencing using
Illumina Miseq 300 bp pair-end with v3 chemistry.
Sequences were returned demultiplexed, with adaptors
removed.

Amplicon sequence processing, OTU classification,
and taxonomic assignment

Sequencing data were analyzed using the iTagger pipeline
to obtain OTUs [27]. In brief, after filtering 81,416,218 16S
rRNA raw reads for known contaminants (Illumina adapter
sequence and PhiX), primer sequences were trimmed from
the 5′ ends of both forward and reverse reads. Low-quality
bases were trimmed from the 3′ ends prior to assembly of
forward and reverse reads with FLASH [28]. The remaining
66,524,451 high-quality merged reads were clustered with
simultaneous chimera removal using UPARSE [29]. After
clustering, 37,867,921 read counts mapped to operational
taxonomic units (OTUs) at 97% identity (Supplemental
Table 2). Taxonomies were assigned to each OTU using the
RDP Naïve Bayesian Classifier with custom reference
databases [30]. For the 16S rRNA V3–V4 data, this data-
base was compiled from the May 2013 version of the
GreenGenes 16S database v13, trimmed to the V3–V4
region. After taxonomies were assigned to each OTU,
OTUs were discarded if they were not assigned a Kingdom
level RDP classification score of at least 0.5, or if they were
not assigned to Kingdom Bacteria, which yielded 10,006
OTUs. In the downstream analyses, we removed low
abundance OTUs (<3 reads in at least 20% of the samples)
because in many cases they are artifacts generated through
the sequencing process [31]. Samples with low read counts
were also removed. To adjust for differences in sequencing
depth and fit a normal distribution, samples for heritability
and GWAS analyses were normalized by cumulative sum
scaling [32]. For all other analyses, samples were rarefied to
an even read depth of 18,000 reads per sample.

Estimates of broad-sense heritability of OTU
abundance in rhizosphere

To calculate the broad-sense heritability (H2) for individual
OTU abundances, we fit the following linear mixed model
to OTU abundances of each individual OTU (n= 1189)
following a cumulative sum scaling [32] normalization
procedure that adjusted for differences in sequencing depth
and fit a normal distribution:

Y ijk ¼ uþ Giþ Bjkþ e

In this model for a given OTU, Yijk denotes the OTU
abundance of the ith genotype evaluated in the kth block of
the jth replicate; u denotes the overall mean; Gi is the
random effect of the ith genotype; Bjk is the random effect
of the jth replicate nested within the kth block; e denotes the
residual error. With such a model, we divided the envir-
onmental variance by the number of replicates according to
[33]. In order to model the spatial trends in the field, we
used the 2-dimensional splines approach that was proposed
to accommodate the field’s spatial effects by [34, 35]. This
approach was implemented in the R package “sommer” [36]
that we used for the model fitting. The variance explained
by the spatial effects was excluded from the environmental
variance for heritability calculation. To get the null dis-
tribution of H2, OTU abundances were randomly shuffled
1000 times and then fitted to the same model as described
above. Permutation p-value was calculated as the prob-
ability the permuted H2 values were bigger than the
observed H2 value.

Comparative analysis of heritable taxa between
sorghum and maize datasets

To identify the degree to which highly heritable taxa were
shared between maize and sorghum, we compared the top
100 most heritable OTUs reported from both maize datasets
(referred to as NAM 2010 and NAM 2015) and the sor-
ghum dataset generated in this study. This cutoff, which
resulted in a more stringent cutoff than H2 > 0.15, was used
for this meta-analysis because H2 varied widely between
NAM 2010 and NAM 2015, and a single absolute H2 cutoff
would otherwise bias the number of reported highly heri-
table OTUs between studies. For this analysis, the reported
OTUs were aggregated at the order level, resulting in a
combined dataset of 300 OTUs spanning 65 bacterial
orders. The order level was selected for the following rea-
sons. First, primer differences between studies (V4 in maize
compared with V3–V4 in this study), will impact both
phylogenetic assignment and resolution at lower taxonomic
ranks [37]. Second, taxonomic classification below order
was not available for all OTUs. For example, only 14/300
OTUs (4.7%) were not classified beyond phylum or class,
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while an additional 92 out of the remaining 286 OTUs
(32.2%) were not classified below order (Supplemental
Table 3). Lastly, when orders were separated into lower
classifications, lineage membership sizes were insufficient
for downstream statistical analyses.

A subset of the orders (n= 18) containing highly heri-
table OTUs in the maize dataset was not detected in either
the high or lowly heritable fractions of the sorghum dataset
and was excluded from subsequent comparative analyses.
Of the remaining bacterial orders represented by these
highly heritable OTUs, we determined the number (n= 26)
that contained highly heritable OTUs in at least two of the
datasets, and the number (n= 15) that contained highly
heritable OTUs in all three datasets. To understand the
taxonomic diversity contained within these 65 orders, the
family and genus classification of the 300 heritable OTUs
are provided in Supplemental Table 3. To evaluate whether
the degree of overlap in highly heritable lineages is greater
than what would be expected by chance, we performed a
permutation test (n= 10,000) in which we resampled 100
random OTUs from the 1189 total sorghum OTUs and
recomputed intersections with the two maize datasets. These
resamplings were not based on OTU abundance; as such, it
would be equally likely to draw an abundant or rare OTU,
which avoids the possible confounding issue of heritability
being correlated with abundance. P-values are reported as
the number of instances that these permutations returned a
greater degree of overlap in these permutations divided by
the total number of permutations.

GWAS

A genome-wide SNP map of sorghum SAP accessions used
in this study was obtained from the community resource
generated previously by genotyping-by-sequencing and
included characterization at 265,487 SNPs [22]. GWAS
was performed using SNPs with a minor allele frequency
(MAF) ≥ 0.01 following [38]. For each OTU, GWAS was
conducted separately using the best linear unbiased pre-
dictors (BLUPs) obtained from the linear mixed model.
Population structure was accounted for using statistical
methods that allow us to detect both population structure
(Q) and relative kinship (K) to control spurious association.
The Q model (y= Sα+Qν+ e), the K model (y= Sα+ Zu
+ e), and the Q+ K model (y= Xβ+ Sα+Qν+ Zu+ e)
described previously [39], were used in our study. In the
model equations, y is a vector of phenotypic observation; α
is a vector of allelic effects; e is a vector of residual effects;
ν is a vector of population effects; β is a vector of fixed
effects other than allelic or population group effects; u is a
vector of polygenic background effects; Q is the matrix
relating y to ν; and X, S, and Z are incidence matrices of 1 s
and 0 s relating y to β, α, and u, respectively. To account for

the population structure and genetic relatedness, the first
three principal components (PCs) and kinship matrix were
calculated using the SNPs obtained from [22] and fitted into
the MLM-based GWAS pipeline for each OTU using
GEMMA [40].

GWAS validation experiment

For the GWAS validation experiment, the 378 genotypes of
the SAP were the first subset into lines containing the major
(n= 343) and minor (n= 14) allele for the two haplotypes
found at the peak on chromosome 4 described in the text.
Including the 178 genotypes not selected for the GWAS, a
total of nine sorghum genotypes belonging to the minor
allele were selected, with an effort to include genotypes
spanning the phylogenetic tree. For each of these nine
minor allele lines, another genotype containing the major
allele with close overall genetic relatedness was selected,
resulting in nine major and nine minor allele-containing
lines. Two replicates of each line were grown in growth
chambers (33 °C/28 °C, 16 h light/8 h dark, 60% humidity)
in a 10% vermiculite/90% calcined clay mixture rinsed with
a soil wash prepared from a 2:1 ratio of field soil to water
from the field site used in the GWAS. Plants were watered
daily with approximately 5 ml of autoclaved Milli-Q water
using a spray bottle for the first 3 days, followed by top
watering with 15 ml of water every three days. An addi-
tional misting was performed to the soil surface every 24 h
to prevent drying. Following two weeks of growth, plants
were harvested and rhizosphere microbiomes extracted as
described for the field experiment.

Microbiome statistical analyses

All statistical analyses of the amplicon datasets were per-
formed in R using the normalized reduced dataset unless
stated otherwise. For alpha-diversity measurement, Shan-
non’s Diversity was calculated with the diversity function in
the R package vegan [41]. Principal coordinate analyses
were performed with the function pcoa in the R package ape
[42], using the Bray–Curtis distance obtained from the
function vegdist in the R package vegan [41]. Mantel’s tests
were used to determine the correlation between host phy-
logenetic distances and microbiome distances using the
mantel function in the R package vegan [41] with 9999
permutations, and using Spearman’s correlations to reduce
the effect of outliers. Indicator species analyses were per-
formed using the function indval in the R package labdsv
[43], with p-values based on permutation tests run with
10,000 permutations. Multiple testing corrections were
performed with an FDR of 0.05 using the p.adjust function
in the base R package stats. Canonical analysis of principal
coordinates (CAP) was performed using the capscale
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function in the R package vegan [41]; an ANOVA like
permutation test using the sum of all constrained eigenva-
lues was performed to determine the percent variance
explained by each factor using the function anova.cca in the
R package vegan [41].

Analysis of sorghum RNA-seq datasets

Publicly available sorghum RNA-Seq data for 27 annotated
genes in the 1.15Mb interval of chromosome 4 (Sobic.
004G153000–Sobic.004G155900), were downloaded from
phytozome v12.1 (ref. [44]). Expression datasets were
broadly grouped based on the tissue type from which they
were derived (root, leaf, or reproductive). To aid in the
visualization of tissue-specific expression of genes exhi-
biting large differences in absolute levels of gene expres-
sion, we normalized the fragments per kilobase of transcript
per million mapped reads (FPKM) values for each gene in
each tissue type by dividing by the average value of gene
expression for that gene across all tissue types. We defined
root-specific expression as genes that had a normalized
FPKM less than 1 in no more than two root datasets, and a
normalized FPKM greater than 1 in no more than two
datasets of other tissue types.

Results

Diverse sorghum germplasm show rhizosphere is
ideal for microbiome-based GWAS

In this study, the relationship between host genotype and
microbiome composition was explored through a field
experiment involving 200 genotypes selected from the SAP
germplasm collection [21, 22] (Supplemental Table 1).
While a recent study in Arabidopsis successfully performed
GWAS using the root microbiome (endosphere) [19], it did
not evaluate microbes that are closely associated with the
exterior of the root (rhizosphere). We first sought to deter-
mine whether leaf, root endosphere, or rhizosphere samples
were most suitable for downstream GWAS in sorghum.
Using a subset of 24 genotypes from our collection of 200
(Fig. 1a, Supplemental Table 1), the microbiome compo-
sition of leaf, root, and rhizosphere sample types were
analyzed using paired-end sequencing of the V3–V4 region
of the ribosomal 16S rRNA. The resulting dataset demon-
strated comparatively high levels of microbial diversity
within both root and rhizosphere samples (Fig. 1b) and
strong clustering of above and below ground sample types
(Fig. 1c). Three independent Mantel’s tests (9999 permu-
tations) were used to evaluate the degree of correlation
between host genotypic distance and microbiome compo-
sition for leaf, root, and rhizosphere sample types (Fig. 1d);

of the three compartments, the only rhizosphere exhibited a
significant Mantel’s correlation (R2= 0.13, Df= 1, p=
0.02). Based on these results, subsequent investigation of
the microbiomes of the full panel of 200 lines, including
heritability and GWAS analyses, was performed using rhi-
zosphere samples.

To investigate host genotype-dependent variation in the
sorghum rhizosphere microbiome, the rhizospheres of 600
field-grown plants (three replicates of each of the 200
genotypes) were profiled using V3–V4 16S rRNA amplicon
sequencing. The resulting data set included 1189 OTUs
representing 29 bacterial phyla. Compositional analysis of
the microbiome dataset exhibited profiles consistent with
recent microbiome studies involving the sorghum rhizo-
sphere [4, 45, 46] from a variety of field sites, with pro-
teobacteria, actinobacteria, and acidobacteria comprising
the top three dominant phyla (Supplemental Fig. 3).

Sorghum and maize rhizospheres exhibit strong
overlap in heritable taxa

A recent study of two separate maize microbiome datasets
suggests that specific bacterial lineages are more sensitive to
the effect of host genotypes than others [5]. To determine if
a bacterial lineage’s responsiveness to host genetics is a trait
conserved across different plant hosts, the broad-sense
heritability (H2) of individual OTUs in our sorghum dataset
was evaluated; H2 quantifies the proportion of variance that
is explained by genetic rather than environmental effects.
More generally, this approach treats bacterial abundance as
a continuously varying phenotype, similar to plant height,
biomass, and yield [47]. In our study, H2 ranged from 0 to
66% for individual OTUs (Supplemental Table 4). By
comparison, H2 for individual OTUs in the first of two
experiments across 27 maize inbred lines had a maximum
of 23% (performed in 2010), while the second exhibited a
maximum of 54% (performed in 2015) [5]. Further, we used
the sorghum diversity panel kinship matrix to calculate the
SNP-based narrow-sense heritability (h2). Consistent with
our expectation, the h2 was lower than the H2 estimated
from the phenotypic data, likely due to overcorrection of the
spatial components in the spline analysis. Nevertheless, h2

was significantly (R= 0.34, p= 2.2e−16) correlated with
previous phenotype-based estimates (Supplemental Fig. 4a),
especially for the top 100 heritable OTUs (R= 0.5, p=
1e−7, Supplemental Fig. 4b).

To explore whether microbes with high heritability in the
sorghum dataset are phylogenetically clustered, we parti-
tioned the 1189 OTUs into highly heritable (n= 347) and
lowly heritable fractions (n= 842) using an H2 cutoff score
of 0.15 (Fig. 2a, Supplemental Table 5). Several bacterial
orders, including verrucomicrobiales, flavobacteriales,
and planctomycetales, were observed to have significantly
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greater numbers of OTUs that are highly heritable, as
compared to the lowly heritable OTU fraction (Fisher’s
exact test, q < 0.05, Fig. 2a, Supplemental Table 5). Nota-
bly, all 6 Flavobacteriales OTUs were only present in the
highly heritable fraction (Fig. 2b); by contrast, 40 other
bacterial orders were only observed within the lowly heri-
table fraction. Having established that some bacterial
lineages had a higher proportion of OTUs that were highly
heritable, we aimed to determine what fraction of the total
read count abundance these heritable OTUs represented. In
general, we observed that read count abundance per taxa
correlated with heritability, with some exceptions (Fig. 2b).
For example, Bacillalles, contained a smaller number of
OTUs in the highly heritable than a lowly heritable fraction,
but the percentage of reading counts attributable to its
highly heritable OTUs was approximately eight-fold greater
than those in the lowly heritable fraction, suggesting that its
highly heritable members are abundant organisms within
the rhizosphere (Fig. 2b). Collectively, these data imply that
a specific subset of bacterial lineages is enriched for
members susceptible to host genotypic selection.

Next, we hypothesized that despite the considerable
evolutionary distance between maize and sorghum (two
members of the grass family Poaceae that diverged more
than 11 million years ago [48]), the bacterial lineages
containing OTUs most responsive to host genotypic effects
in maize would likely also contain OTUs exhibiting such
susceptibility within sorghum. To test this, we compared the

top 100 most heritable OTUs from both maize datasets
(referred to as NAM 2010 and NAM 2015) and the sor-
ghum dataset described above, resulting in a combined
dataset of 300 OTUs spanning 65 bacterial orders. After
removing bacterial orders not observed in the sorghum
dataset (n= 18), we noted that more than half were
observed in at least two of the datasets, and approximately
one-third (n= 15) contained highly heritable OTUs in all
three datasets (Fig. 3a). To determine if this overlap was
significantly greater than is expected by chance, we per-
formed permutational resampling of 10,000 sets of ran-
domly chosen sorghum OTUs for comparison. Notably, we
found that the overlap between the highly heritable sorghum
fraction with both the individual maize heritable fractions
and the combined heritable maize OTUs to be significant,
compared with the resampled sorghum OTUs (NAM 2010
n= 17, p= 0.0099, NAM 2015 n= 19, p= 0.0016, com-
bined n= 15, p= 0.0344) (Fig. 3a). Collectively, these
results imply that there is conservation between the bacterial
orders most sensitive to genotype across both maize and
sorghum.

In an effort to identify the bacterial lineages with the
greatest propensity for high heritability, we calculated the
number of highly heritable OTUs in each of the shared
highly heritable bacterial orders identified above. We noted
that among bacterial orders containing the greatest number
of highly heritable OTUs across all three datasets were
several that represent large lineages frequently observed

Fig. 2 Heritable bacteria are abundant members of the sorghum
rhizosphere. A The relative percentage of total OTUs belonging to
each of the top 17 bacterial orders for all OTUs (left bar), lowly
heritable OTUs (middle bar), or highly heritable OTUs (right bar).
Orders with significantly different numbers of OTUs in the highly
heritable (H2 > 0.15) as compared to the lowly heritable fraction (H2 <
0.15), as determined by Fisher’s exact test (q < 0.05), are indicated
with asterisks. B Order-level scatterplot of the log2 ratio between

highly and lowly heritable OTU counts (x-axis) and read count
abundance (y-axis). Circle sizes represent the total read count abun-
dance of each bacterial order. Bacterial taxa that were present only in
the highly heritable (upper right, Flavobacteriales and 5 “other”
merged orders) or lowly heritable (lower left, 40 “other” merged
orders) fractions of the dataset are presented within the dashed lines, as
their Log2 heritability ratios are undefined numbers.
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within the root microbiome; (e.g., actinomycetales)
(Fig. 3b). We hypothesized that this result is likely driven in
part by the overall frequency of these lineages within the
rhizosphere microbiome, with more common lineages
resulting in a greater fraction of highly heritable microbes
due to their ubiquity. To help account for this, we nor-
malized the frequency of highly heritable sorghum OTUs
(n= 100) by total sorghum OTU counts (n= 1189)
belonging to each order (Fig. 3c, Supplemental Table 6).
These results demonstrate that while the prevalence of
actinomycetales and myxococcales among highly heritable
microbes is consistent with their general prevalence in the
overall dataset, Burkholderiales and two other lineages,
including the verrucomicrobia and planctomycetes, exhib-
ited a significant enrichment (Fisher’s exact test, q < 0.05) in
the highly heritable fraction not expected to be influenced
by abundance alone.

Genome-wide association reveals genetic loci
correlated with rhizosphere microbial abundance

Recent work in the leaf microbiome has demonstrated the
potential utility of GWAS for uncovering host loci corre-
lated with microbiome composition [18]. Here, we sought
to use GWAS with rhizosphere microbiome datasets using
both global properties of the OTU dataset and the abun-
dances of individual OTUs. For overall community com-
position, a subset of PCs was selected from an analysis of

the abundance patterns of the 1189 OTUs. To prioritize
individual PCs for inclusion in our GWAS analysis, we
determined the heritability scores of each of the top ten PCs,
which explained 75% of the total variance in our dataset
(Supplemental Fig. 5a). PCs with H2 equal to or greater than
0.25 (PC1, PC3, PC5, PC9, and PC10, Supplemental
Fig. 5a) were subjected to GWAS (Supplemental Fig. 5b).
We initially applied a strict Bonferroni-based threshold
(adjusted p-value < 0.05/21,236) to our GWAS. However,
no significant SNPs were identified using this method,
suggesting this threshold was too stringent and masking
potential true positive associations, due to a combination of
small sample size (n= 200) and relatively low heritability
(H2= 0.35 for PC1) in our data. Despite the common use of
applying multiple testing corrections, including Bonferroni
corrections, to GWAS to define significance cutoffs, it is
understood that these cutoffs are overly conservative due to
the assumption that every genetic variant tested is inde-
pendent of the rest [49, 50]. To discover potential true
associations that were missed by Bonferroni correction, we
applied an anti-conservative false discovery rate cutoff of
–log10 (p= 10–4) (Benjamini–Hochberg, q < 0.22) to gen-
erate a list of top candidate SNPs. The GWAS analysis
performed for PC1, which explained 21% of the total var-
iance and had the second-highest heritability (H2= 0.35),
revealed a correlation between community composition and
a locus on chromosome 4 that was among these top can-
didates (n= 6) (Fig. 4a, Supplemental Fig. 6a).

Fig. 3 Heritability of rhizosphere microbes is conserved across
maize and sorghum. A Proportional Venn diagram of bacterial orders
containing highly heritable OTUs identified in this study (Sorghum
SAP), compared with the heritable orders reported in a large-scale field
study of maize nested association mapping (NAM) parental lines
grown over two separate years, published in Walters et al. [5]. The top
100 heritable OTUs (based on H2) from each dataset were classified at
the taxonomic rank of order to generate the Venn diagram. NAM
highly heritable orders only present in the SAP lowly heritable fraction
are represented by the blue sections. Superscript letters indicate the

frequency that a random subsampling of 100 sorghum OTUs from the
total 1189 sorghum OTUs (10,000 permutations) produced greater
order-level overlap with maize OTUs from either single year (a/b) or
both (c). B Stacked barplot displaying cumulative counts (y-axis) of
OTUs identified as highly heritable in any of the three datasets for all
bacterial orders (x-axis) which have a total of at least three highly
heritable OTUs in an order. C The fraction of highly heritable sorghum
OTUs relative to all sorghum OTUs within each order is displayed as a
heatmap. Asterisks indicate orders enriched in highly heritable OTUs
(Fisher’s exact test, q < 0.05).
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The MAF of candidate SNPs at the chromosome 4 locus
ranged from 0.021 to 0.036. We carried out LD analysis
between the most significant SNP (leading SNP) and the
SNPs around the region. Results revealed that SNPs exhi-
biting high LD with the leading SNP were physically close
(<1.6 Mb) and showed relatively high association signals
(Supplemental Fig. 6b). As SNP imputation leverages local
LD information, a cluster of SNPs in LD may be caused by
SNP imputation. However, SNP imputation tends to be poor
for minor alleles because less data is available to impute
compared with common alleles [51]. Therefore, the pre-
sence of multiple GWAS signals exhibiting different allele
frequencies at the chromosome 4 locus suggests the leading
SNP was less likely to be a statistical artifact. Using the
chromosome 4 locus SNP data, we separated sorghum
genotypes into two allele groups, the major allele containing
343 sorghum genotypes and the minor allele containing 14
genotypes, with six minor allele-containing lines present in
our 200 line GWAS subset. Using these six minor allele-
containing genotypes and a closely related major allele
genotype for each minor allele genotype, we performed a
CAP ordination of the rhizosphere microbiome, constrained
by allele group. This separated the rhizospheres of geno-
types belonging to major and minor allele groups into dis-
tinct clusters (Supplemental Fig. 6c).

Subsequent GWAS analyses were performed using the
other heritable PCs, PC3, PC5, PC9, and PC10, as inputs
(Supplemental Fig. 7). We did not observe any SNPs below
the q < 0.22 threshold for these PCs. This low signal is likely
in part because the microbiome community has a relatively
low heritability, the traits are highly polygenic, and the
genome scans involve a large number of statistical tests.
However, there was an identifiable peak on chromosome 6
of PC5 (p-value<7 × 10–4) and PC10 (p-value<1 × 10–4)
(Supplemental Fig. 5b). As PCs are derived from linear
combinations of the abundance of individual OTUs within
the dataset, it is unclear whether the correlations observed on
chromosomes 4 and 6 are driven by one common or two
different sets of microbial lineages. To address this, we
performed separate GWAS analyses using the abundances of
each single OTU in our dataset as input (Fig. 4b, Supple-
mental Fig. 5c). From these analyses, we identified two
distinct sets of 39 and 10 OTUs with significant correlations
with the loci on chromosomes 4 and 6, respectively, and
only a single OTU belonging to the order Burkholderiales
that was shared between the two loci (Supplemental Fig. 5c).
This implies that different sorghum loci are associated with
the abundance patterns of different groups of microbes.

To understand the relationship between the identified
peak on chromosome 4 (Fig. 4a) and the bacterial taxa with

Fig. 4 A sorghum genetic locus is correlated with rhizosphere
microbial abundance. A Manhattan plot of PC1 community analysis
GWAS. Top candidate SNPs above a threshold of –log10 (p= 10–4)
are circled. B Individual OTU GWAS of all OTUs with at least 5 SNPs
above a threshold of –log10 (p= 10–2.5) in the 1.15Mb window
identified on the same chromosome 4 locus identified by PC1 GWAS
(lower heatmap). For each OTU, the log2 fold change in abundance
between the sorghum major (red) or minor (blue) allele groups within

this locus was determined (upper heat map). OTUs were grouped
based on the predicted presence of one or two membranes (monoderm
or diderm) within each bacterial order and colored as in Fig. 2. C
Tissue-specific gene expression data for sorghum genes within the
chromosome 4 locus. Darker blue indicates higher expression (nor-
malized FPKM). Asterisks indicate genes whose expression is pre-
dicted to be root-specific.
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similar GWAS correlations at this locus (Fig. 4b), we first
sought to understand how relative abundance for these 40
OTUs varied across the sorghum panel. We observed that
the majority of OTUs that were more prevalent in sorghum
genotypes containing the major allele belonged to mono-
derm lineages, while the majority of OTUs more prevalent
in the minor allele group belonged to diderm lineages
(Fig. 4b), suggesting that host genetic mechanisms at this
locus are interacting with basal bacterial traits.

To explore which host genetic mechanisms might be
driving the correlations observed on Chromosome 4, we
examined tissue-specific expression patterns from publicly
available RNA-Seq datasets obtained from phytozome
v12.1 (ref. [44]) for all 27 genes in the 1.15Mb interval
(Fig. 4c, Supplemental Table 7). Of these candidates, we
observed compartment-specific expression patterns,
including several annotated candidates exhibiting strong
root-specific activity: gamma carbonic anhydrase-like 2, a
putative beta-1,4 endoxylanase, and disease resistance
protein RGA2 (Fig. 4c).

Sorghum genotypic data can predict microbiome
composition

To validate that allelic variation at the candidate locus
on chromosome 4 contributes to differences in rhizosphere

composition, we conducted a follow-up growth chamber
experiment with eighteen additional sorghum lines,
including genotypes not present in the original study. To
help disentangle phylogenetic-relatedness from locus-
specific effects, we selected sorghum genotypes that span-
ned the diversity panel; additionally, for each minor allele
genotype (n= 9), we included a phylogenetically related
major allele line (n= 9) (Fig. 1a). Following two weeks of
growth in a mixture of calcined clay and field soil in the
growth chamber, we collected the rhizosphere microbiomes
of each genotype and the microbiome composition was
analyzed using 16S rRNA amplicon sequencing as in the
main study. We conducted a regional association analysis
using a mixed linear model that included a kinship matrix as
the random effect. Using a stringent Bonferroni method, we
detected several signals above the threshold that was in high
LD with the original GWAS signal (Supplemental Fig. 8).
A CAP ordination constrained on genotypic group sepa-
rated the rhizospheres of genotypes belonging to major and
minor allele groups into distinct clusters (Fig. 5a, PER-
MAnova F= 2.66, Df= 1, p= 0.0061), with genotype
explaining approximately 7.5% (CAP1) of variance in the
dataset.

To identify which taxa drive the clustering observed in
our CAP analysis, and to compare this to taxa responsive to
the chromosome 4 allele group in our main experiment, we

Fig. 5 Sorghum genetic
information can be used to
predict rhizosphere
microbiome composition
under different growth
conditions. A Canonical
analysis of principal coordinates
of the rhizosphere microbiome
for nine major allele genotypes
(red) and nine minor allele
genotypes (blue) grown in a
growth chamber for 2 weeks.
Two replicates per genotype
were used and are connected by
lines. B For each indicator OTU,
the log2 fold change in
abundance between the sorghum
major (red) or minor (blue) allele
groups was determined. OTUs
were grouped based on the
predicted presence of one or two
membranes (monoderm or
diderm), within each bacterial
order, and colored as in Figs. 2
and 4.
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performed an indicator species analysis on the validation
dataset. A comparison of the significant indicator OTUs
(q < 0.05) from each allele group in the validation dataset
(n= 65) demonstrated similar trends in abundance of indi-
cator OTUs as observed in the main experiment (Fig. 4b),
with OTUs belonging to monoderm and diderm lineages
enriched in the major and minor allele-containing lines,
respectively. Interestingly, while most diderm lineages were
more prevalent in the minor allele-containing lines, several
diderm lineages including gemmatimonadales, acid-
obacteriales, and sphingobacteriales contained OTUs that
were more abundant within major allele lines. Notably, this
pattern was observed in the rhizospheres of 9-week old
field-grown sorghum during the main experiment (Fig. 4b)
and was also observed in 2 weeks growth chamber sorghum
in the validation experiment (Fig. 5b). Collectively, this
experiment supports the findings of our main experiment, in
which allelic variation at a locus located on chromosome 4
was shown to correlate with the abundance of specific
bacterial lineages.

Discussion

Host selection of plant rhizosphere microbiomes

Previous GWAS of plant-associated microbiome traits have
often been conducted with leaf samples [16–18], and a
recent GWAS was applied to root endophytes [19]. How-
ever, to our knowledge GWAS of the rhizosphere has not
been attempted. In this study, we compared the overall
correlation between host genotype and bacterial micro-
biome distances across leaf, root, and rhizosphere of Sor-
ghum bicolor, and demonstrate that of the three, the
rhizosphere represents the most promising compartment for
conducting experiments to untangle the heritability of the
sorghum microbiome. Notably, the degree of correlation
between sorghum phylogenetic distance and microbiome
distance was highest in the rhizosphere and lowest in the
leaves. This greater correlation observed in the root and
rhizosphere could be in part due to the phyllosphere’s
relative compositional simplicity. Even Arabidopsis rosette
leaves, which are in close proximity to the soil, harbor a
distinct and relatively simple bacterial community com-
pared to the root [19].

By contrast, the rhizosphere represents a highly diverse
and populated subset of the soil microbiome and potentially
offers a greater pool of microbes upon which the host may
exert influence [52]. Alternatively, the rhizosphere’s
greater correlation with microbiome composition could be
caused by the plant’s relatively weaker ability to select
epiphytes in its aboveground microbiome; while the arrival

of phyllosphere colonists is largely thought to be driven by
wind and rainfall dispersal [53], root exudation is known to
control chemotaxis and other colonization activities of
select members of the surrounding soil environment. This
provides an additional mechanism for host selection of its
microbial inhabitants prior to direct interaction with the
plant surface [8, 54, 55]. Once in the root, microbes are
subjected to additional selective pressures, including
evading host immune systems [19, 56], that would deter-
mine if they persist as endophytes. While we observed the
highest correlation sorghum phylogenetic distance and
microbiome distance occurred in the rhizosphere, it is
possible that other plant hosts may demonstrate the greatest
selective influence within tissues other than the rhizo-
sphere. Future efforts to investigate host control of the
microbiome through GWAS or related techniques would
benefit from a careful selection of sample types following
pilot studies designed to explore heritability across differ-
ent host tissues.

Heritable rhizosphere microbes are phylogenetically
clustered and similar across hosts

Within the rhizosphere, we demonstrate that microbiome
constituents vary in H2, and highly heritable taxa show
strong overlap with highly heritable lineages identified in
maize, spanning fifteen different bacterial orders [5]. In
particular, three of these orders, verrucomicrobiales, bur-
kholderiales, and planctomycetales were significantly enri-
ched in the highly heritable fraction of our dataset. As
members of burkholderiales can form symbioses with both
plant and animal hosts [57, 58], and some colonize specific
members of a host genus or species [59], it is feasible that
such strong relationships necessitated additional genetic
discrimination between hosts. Within Burkholderia spp.,
this could be facilitated by their relatively large pan-gen-
ome, with diversity driven by large multi-replicon genomes
and abundant genomic islands [60].

These observations suggest that evaluating bacterial
heritability may identify new lineages for which close or
symbiotic but previously undetected associations with plant
hosts exist. For example, we observed several lineages with
high heritability that are common in soil, yet prior evidence
of plant-microbe interactions in the literature is lacking,
including verrucomicrobiales and planctomycetales. Inter-
estingly, high heritability in these lineages might be facili-
tated by the presence of a recently discovered shared
bacterial microcompartment gene cluster present in both
Planctomycetes and Verrucomicrobia, which confers the
ability to degrade certain plant polysaccharides [61].
Indeed, microbiome composition is known to be driven in
part by variations in polysaccharide-containing sources
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including plant cell wall components and root exudates
[62]. Additional experimentation with bacterial mutants
lacking this genetic cluster could be useful for revealing its
role in shaping plant microbe interactions. Finally, we note
that these results were generated in part through compar-
isons of datasets generated from two independent studies
with different experimental designs and analysis pipelines;
we anticipate that future experiments using a common
garden approach could improve upon our efforts here to
identify common heritable taxa across plant host lineages.

Sorghum loci are responsible for controlling the
rhizobiome

Our GWAS correlated host genetic loci and the abundance
of specific bacteria within the host microbiome, as well as
overall rhizosphere community structure. Our study builds
upon previous research that applied GWAS to the Arabi-
dopsis root microbiome [19], demonstrating that the use of
this technique can be further expanded to the rhizosphere of
a cereal crop plant. Using this method, we identified a locus
on chromosome 4 that was correlated with specific bacterial
lineages. Notably, we detected a similar association in a
cross-validation experiment, which included both indepen-
dent genotypes and different environmental conditions,
providing strong support that this locus was a true positive,
despite the modest statistical stringency applied to GWAS in
this study. We observed several annotated candidate genes
within the chromosome 4 locus exhibiting strong root-
specific activity including gamma carbonic anhydrase-like 2,
a putative beta-1,4 endoxylanase, and disease resistance
protein RGA2. However, inferences of causal genes based
on gene expression patterns come with significant limita-
tions, as there is no requirement that a gene controlling this
association would solely be expressed in roots. For example,
architectural or hormonal changes in the plant phyllosphere
could drive feed-forward effects on root exudate composi-
tions [6, 9]. While our cross-validation experiment focused
on a single locus on chromosome 4, plants are capable of
influencing their microbiomes using a multitude of strate-
gies, and many of these traits are predicted to be complex
(i.e., controlled by multiple or many genes) [63]. As such, it
is notable that we detected five additional candidate loci in
the PC1 GWAS alone. In addition, a candidate locus on
chromosome 6 was identified in both PC5 and PC10 com-
munity analysis GWAS. Strikingly, this locus was asso-
ciated with a distinct set of microbes from the chromosome 4
locus identified by PC1 GWAS, suggesting that sorghum
plants are able to use distinct mechanisms to modulate dif-
ferent groups of microbes. Future validation experiments
using genetic mutants within these and other candidate
genes can be used to help elucidate the underlying genetic

element(s) responsible for the modulation of the rhizosphere
microbiome.

Conclusion

Although the underlying host genetic causes of shifts in the
microbiome are not well understood, candidate-driven
approaches have implicated disease resistance [6, 7],
nutrient status [7, 64, 65], sugar signaling [66], and plant
age [67, 68] as major factors. Non-candidate approaches to
link host genetics and microbiome composition, such as
GWAS, have the potential to discover novel mechanisms
that can be added to this list. Here we show that GWAS can
predict rhizosphere microbiome structure based on host
genetic information, building on previous studies that have
observed inter- and intra-species variation in microbiomes
[1, 4, 5, 16, 19, 62, 69–71]. Collectively, our study adds to a
growing list of evidence that genetic variation within plant
host genomes modulates their associated microbiome. We
anticipate that GWAS of plant microbiome association will
promote a comprehensive understanding of the host mole-
cular mechanisms underlying the assembly of microbiomes
and facilitate breeding efforts to promote beneficial micro-
biomes and improve plant yield.

Data availability

All datasets and scripts for analysis are available through
github (https://github.com/colemanderr-lab/Deng-2020) and
all short-read data has been submitted to the NCBI and can
be accessed through BioProject PRJNA612320.
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