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Abstract

Failure to demonstrate efficacy and safety issues are important reasons that drugs do not

reach the market. An incomplete understanding of how drugs exert their effects hinders reg-

ulatory and pharmaceutical industry projections of a drug’s benefits and risks. Signaling

pathways mediate drug response and while many signaling molecules have been character-

ized for their contribution to disease or their role in drug side effects, our knowledge of these

pathways is incomplete. To better understand all signaling molecules involved in drug

response and the phenotype associations of these molecules, we created a novel method,

PathFX, a non-commercial entity, to identify these pathways and drug-related phenotypes.

We benchmarked PathFX by identifying drugs’ marketed disease indications and reported a

sensitivity of 41%, a 2.7-fold improvement over similar approaches. We then used PathFX

to strengthen signals for drug-adverse event pairs occurring in the FDA Adverse Event

Reporting System (FAERS) and also identified opportunities for drug repurposing for new

diseases based on interaction paths that associated a marketed drug to that disease. By dis-

covering molecular interaction pathways, PathFX improved our understanding of drug asso-

ciations to safety and efficacy phenotypes. The algorithm may provide a new means to

improve regulatory and therapeutic development decisions.

Author summary

Many drugs fail to reach the market because they are not sufficiently efficacious for their

disease indication or they cause intolerable side-effects. To understand drug efficacy and

safety, we created an algorithm, PathFX. The algorithm identified relationships between

drugs and diseases, and drugs and side-effects. We tested PathFX’s ability to identify the

disease for which the drug was developed. We applied PathFX to post-marketing reports

of drug side effects and identified drug side effects where regulatory review was ambigu-

ous. Finally, we identified novel diseases for which marketed drugs could treat. The
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method has the potential to be a tool for assessing drug safety and efficacy during develop-

ment and may have utility for regulators and industry scientists.

Introduction

The drug discovery process is long, difficult, and expensive. Only ~10% of drugs entered in

human studies make it to the market[1] because many drugs have insufficient efficacy[2] or

significant safety issues[3,4]. The lack of efficacy may be related to poor bioavailability, incom-

plete inhibition of the target, or selection of a target that is not a central driver of the disease.

Adverse events can occur through primary effects of a drug on the intended targets or respec-

tive biological pathways, or secondary effects that can occur with off-target binding [3,5]. For

these reasons, understanding a drug’s phenome–the collection of clinical characteristics that

are related to a drug target or pathway–is integral to validating and prioritizing drug targets

for development, and identifying other potential (adverse) drug effects that may occur by per-

turbing a particular biological network. However, the available tools for characterizing drug

pathways during target optimization and regulatory review catalogue varied aspects of the cel-

lular response to drug and integration across these resources is often incomplete.

Many data sources containing relevant information are available to characterize phar-

macological drug effects. However, the vast amount of information is siloed into separate

databases, creating a patchwork of information that is difficult and tedious to easily inte-

grate for regulatory review. To illustrate, in evaluating a drug that inhibits a specific

enzyme, one might look to Mendelian disease as an indicator of what clinical manifesta-

tions are related to loss of that enzyme’s function; this could inform what toxicities or ben-

efits might arise from pharmacologically interrupting the enzyme’s function (e.g., as for

the case of PCSK9). This exercise can then be repeated by evaluating the genetic epidemi-

ology of more common variations in the enzyme, and so on. Relevant resources that could

collectively inform a drug target’s phenome include Pharmacogenomics Knowledgebase

(PharmGKB)[6], genome-wide association studies (GWAS)[7], Online Mendelian Inheri-

tance in Man (OMIM)[8], disease-gene associations such as DisGeNet[9,10], and pheno-

type-gene association studies (PheWAS)[11,12]. In addition, focusing on a single gene or

protein does not always provide a complete view of the biological milieu, or full pathway

context, relevant to a drug target. Protein interaction databases, such as STRING[13,14]

and iRefWeb[15], relate drug targets to signaling intermediates to provide context for sin-

gle gene effects, though, these are not easily linked to phenotype information.

Network methods can be useful for identifying mechanistic interactions that relate drug tar-

gets to adverse reactions, and are under-utilized in understanding drug adverse effects[5]. A

network approach uncovered interaction intermediates between drug targets associated with

peripheral neuropathy[16], drug-induced rhabdomyolysis[17], drug-induced severe cutaneous

stevens-johnson syndrome[18], drug-induced lung injury[19], and drug-induced contraction-

related cardiotoxicity[20]. A further meta-analysis of networks for these toxicities discovered

protein mediators that are common among pairs of toxicities[20]; for instance, they discovered

that drugs associated with peripheral neuropathy and drugs associated with Stevens-Johnson

syndrome had nine protein targets in common. Another study merged protein-protein inter-

actions, gene-to-adverse events (AEs) associations, and knowledge of drug-protein targets to

train a random forest model that identified drugs with the greatest connectivity to AEs[21].

Their analysis showed improved prediction of AEs when combining their approach, SubNet,

with medication-wide association studies (MWAS) assessing genes associated with four AEs
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[21]. Another network based approach used a shortest-path technique for in silico predictions

for drug repurposing[22]. A network propagation technique created drug pathways and col-

lapsed these pathways into phenotype vectors, though, they did not use this paradigm to be

predictive of drug safety and efficacy[23]. These foundational studies demonstrated that inter-

action networks are a rich source of pathway information that can identify molecular mecha-

nisms for drug safety and efficacy.

Here we constructed drug pathways using protein-protein interactions, and we annotated

these pathways with the phenotypes–diseases and off-target effects–associated with the pathway

genes using a novel algorithm–PathFX. We demonstrated the utility of PathFX by creating path-

ways for marketed drugs and identified interaction paths from the drug’s target(s) to genes associ-

ated with the marketed indication of the drug. We benchmarked PathFX’s performance using a

published set of marketed drugs and quantified our ability to relate a drug to its disease indication.

We applied the algorithm to two tasks. First, we strengthened adverse event signals in the FDA

Adverse Event Reporting System (FAERS) by searching for drug pathways containing an associa-

tion to a reported adverse event. Second, we identified repurposing opportunities for marketed

drugs and tested these identifications using existing off-label drug use and clinical trial data. We

created a tool for better understanding drug safety and efficacy and PathFX may have the potential

to aid in regulatory review and therapeutic development decisions.

Results

A tissue non-specific interaction network and the PathFX formalism

Recent work in identifying a drug’s marketed disease, or indication, from protein interactions

found that this identification was maximized by considering protein interactions that are in

close proximity to a drug’s target [22,23,24]. Thus, we hypothesized that protein-protein inter-

actions that are proximal to a drug’s target(s) could provide insight into mechanisms of drug

safety and efficacy.

To create drug interaction pathways, we pulled interaction data from iRefWeb[15], Reac-

tome[25], PharmGKB[6], and a curated set of predicted drug-protein binding data (see Meth-

ods section). We merged and scored (explained in methods) these data to yield an interaction

network of 25,604 nodes and 318,644 edges. The number of interactions and interaction score

distributions are in S1 Fig.

Our algorithm, PathFX, selects a drug target’s most relevant interaction edges (local interaction

neighborhoods), merges neighborhood networks from all drug targets, and then identifies

enriched phenotypes–which could represent either safety or efficacy phenotypes–in the interac-

tion neighborhood (Fig 1, and usage summary in S4 Fig). In this context, safety phenotypes

included associations such as adverse events or side effects (e.g. “pancreatitis”, “adverse weight

gain”), and efficacy phenotypes included disease associations (e.g. “diabetes”, “major depressive

disorder”); some phenotypes (e.g. “hypertension”) could belong to both of these groups. To iden-

tify which phenotypes are associated with the drug target network, we merged data from multiple

sources: DisGeNet[9,10], Phenotype Genotype Integrator (PheGenI)[26], ClinVar [27], OMIM

[8], and PheWas [11,12]. In this process we controlled for multiple biases as follows:

1. We reduced the inclusion of high-degree, and highly-studied hub proteins (e.g. P53, or ubi-

quitin) in all networks (further explained in methods). We called this process interaction

specificity analysis.

2. As previous research suggested that disease modules with fewer than 25 genes were too

fragmented for interactome analysis[28], we removed phenotypes associated with fewer

than 25 total genes.
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Fig 1. The PathFX formalism for defining drug pathways. We first assemble interaction data (top; step 0), and then applied a depth-first algorithm to define

relevant protein interaction pathways (middle; step 1). We benchmarked these pathways using interaction specificity analysis (bottom, left; step 2). Lastly, we

performed phenotype enrichment to explore what diseases and phenotypes existed in these local neighborhoods (bottom, right; step 3). Circles indicate proteins.

Red circles are drug targets, white circles are interactome proteins, grey circles are intermediate proteins included in the drug pathway, orange triangles

represent drugs, purple circles represent gene variants (not applicable in all pathways), and green rectangles represent phenotypes.

https://doi.org/10.1371/journal.pcbi.1006614.g001
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3. We retained phenotypes in drug pathways of interest only if the phenotype’s p-value was

more significant than would be expected by chance based on the structure of our network.

PathFX uses a threshold parameter for selecting proteins included in each drug network.

We derived this threshold based on the available data and did not tune the parameter to

improve identification accuracy (explained in An optimal threshold parameter for the tissue
non-specific network in Methods).

A case study in network application: Metformin’s network is highly

associated with diabetes phenotypes and is not dependent on drug target

associations

We first applied the PathFX method to the diabetic medication, metformin. DrugBank[29]

listed five protein targets for metformin—SLC22A2, SLC22A3, PRKAB1, SLC47A1, and

SLC29A4 –for metformin that were in our interactome (note that some of these are transport

proteins that may be included because metformin inhibits them, not as a pharmacological

effect). We created a drug interaction network pathway based on all listed proteins using

PathFX. This yielded a 25-protein final neighborhood (20 proteins + 5 drug targets) signifi-

cantly associated with 18 phenotypes (Fig 2A, S1 Table). Diabetes mellitus type 2 and diabetes

mellitus type 1 are both associated with the metformin pathway via interactions with 12 genes

(Fig 2B, S1 Table). Metformin’s protein targets were not sufficient to describe the association

to diabetes mellitus type 1 and diabetes mellitus type 2 when we analyzed phenotypic associa-

tions with these targets. However, with the full 25 protein network identified by PathFX, we

recovered the association to diabetes mellitus type 1 and diabetes mellitus type 2.

A benchmarking set of approved drugs

We collected a benchmarking set of approved drugs to test our algorithm’s utility in accurately

identifying diseases that the drug is known to effectively treat. This set included marketed

drugs with approved disease indications. We first started with marketed, non-palliative drugs

analyzed in [22] to compare our performance with this seminal work. This data set included

238 drugs associated with one or more disease indications, yielding a total of 403 drug-indica-

tion pairs. We augmented this dataset by using repoDB[30] to add additional approved indica-

tions for the original drug set (we excluded data from repoDB where the trial was terminated

or ongoing); using repoDB, we added 1353 drug-indication pairs, yielding a total of 1756

drug-indication pairs for testing. The full list of drugs and approved indications are included

in S1 File and consists of a list of drugs associated with one or more disease indications. Most

drugs were approved for fewer than 10 indications, though, prednisolone and hydrocortisone

are used to treat 105 and 98 indications respectively (S1 File, Fig 3A & 3B).

The dataset included drugs used to treat 594 indications. We binned these 594 indications

into 62 clusters based on the semantic similarity of the disease indications. We used the inter-

active mmlite interface to metamap[31], a highly configurable program developed to map bio-

medical text to the UMLS Metathesaurus, to map diseases to the nearest Unified Medical

Language System (UMLS) CUI (Concept Unique Identifier) identifier. We selected the UMLS

terminology because this system had the greatest coverage of phenotypes in our dataset and

contained mappings from many popular languages (such as MedDRA). We then clustered

these diseases based on ontological, semantic similarity using the UMLS::Similarity package in

Perl[32] (cluster membership in S1 File, Fig 3C). For instance, cluster four contained two CUI

terms–C0497327, C0002395 –that mapped to 24 Alzheimer’s and dementia phenotypes (S1

PathFX provides mechanistic insights into drug efficacy and safety

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006614 December 7, 2018 5 / 27

https://doi.org/10.1371/journal.pcbi.1006614


File). Cluster five contained five CUI terms–C0042842, C0042875, C0030783, C0016412,

C0936215 –that mapped to nine diseases associated with vitamin deficiency. When testing

PathFX, we analyzed and reported whether the algorithm identified the drug’s original, un-

clustered indication, and also reported results based on the indications’ cluster to assess trends

in the types of diseases where we had better identification capacity.

PathFX identifies disease indication for marketed drugs and improves

sensitivity

We used the UMLS::Similarity tools for determining if PathFX identified phenotypes that

matched the drug’s marketed indication. In this case, we regarded a match as any phenotype

significantly associated to the network; for most drugs, PathFX identified multiple phenotypes

as statistically significantly associated to the drug’s network. For each drug, we pulled these sig-

nificant phenotypes from our PathFX analysis as above, and matched these identified pheno-

types to CUI identifiers, also using mmlite[31]. We measured semantic similarity using Lin

distance in the UMLS::Similarity package[32]. For example, the drug enoxaparin is indicated

for deep vein thrombosis and myocardial infarction; our algorithm identified that enoxaparin’s

drug pathway was significantly associated with “deep venous thrombosis” (direct match,

semantic similarity = 1.0), and other similar diseases such as “thrombosis” (semantic similar-

ity = 0.8615), “venous thromboembolism” (semantic similarity = 0.6853), and “myocardial

Fig 2. PathFX identified disease indications for Metformin. (A) PathFX identified a pharmacodynamic pathway for

Metformin. The drug (orange triangle) is connected to protein binding targets (red circles). PathFX identified

additional genes and variants (grey circles) and associated this network with phenotypes (green boxes). Edges reflect

protein-protein interactions or protein-disease associations. (B) Selected phenotypes associated with the Metformin

network highlight similarities to the drug’s marketed disease indication (all associations in S1 Table).

https://doi.org/10.1371/journal.pcbi.1006614.g002
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infarction” (semantic similarity = 0.9377) (full results in S1 File, Fig 4A). Of the 1756 drug-

indication pairs, PathFX could not create an interaction network for two pairs (tolazamide

+ diabetes type 1, and tolazamide + diabetes type 2) because this drug’s target was not mapped

to a gene symbol in our interactome. For 389 drug-indication pairs, metamap was unable to

map the marketed indication to a CUI term so we could not assess whether the PathFX

Fig 3. Characterization of the benchmarking drug set. Number of approved indications per drug (A) and top drugs by number of approved indications (B).

A tree diagram highlighting the top disease words in each of the 62 clusters showed how the diseases were grouped (C).

https://doi.org/10.1371/journal.pcbi.1006614.g003
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identified indications matched the marketed indications (cluster number 58 in Fig 4C and in

S1 File). This left 1366 pairs for further analysis.

For this analysis, PathFX found pathway information for 171 of the 403 drug-indication

pairs (42.4%) from Guney et al[22] and 558 of the 1364 (40.9%) eligible drug-disease pairs in

our expanded set of benchmarking drugs; this is our best estimate of PathFX sensitivity. At the

drug level, 141 out of 236 drugs (there were two of the original 238 drugs without sufficient

binding information in DrugBank) had at least one identified phenotype that was similar to

one of the drug’s marketed indication(s) (59.8%). Guney et al[22] reported a sensitivity of

15.4% (they matched 62 of 403 drugs-indication pairs), demonstrating improved sensitivity

from our drug-target-centric approach.

For comparison with PathFX, we analyzed the disease associations of the drug targets alone

without the local interaction information. Using only drug targets, we identified statistically

Fig 4. Characterization of PathFX performance. PathFX identified associations between enoxaparin and deep vein thrombosis and myocardial

ischemia (A). Each method identified phenotypes depending on the number of genes associated with the phenotype (Kruskal-Wallis statistic

33.6, p-value = 5.04x10-8); PathFX identifications are skewed towards phenotypes with fewer gene associations relative to identifications by

targets alone (Mann-Whitney-U statistic = 33089, p-value = 1.43x10-8) (B). PathFX identification rate per disease cluster (C). The orange line

indicates the cluster-specific sensitivity, the bars represent total drugs in each cluster, and the dashed line represents the median number of

diseases (15 diseases) in each cluster.

https://doi.org/10.1371/journal.pcbi.1006614.g004

PathFX provides mechanistic insights into drug efficacy and safety

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006614 December 7, 2018 8 / 27

https://doi.org/10.1371/journal.pcbi.1006614.g004
https://doi.org/10.1371/journal.pcbi.1006614


significant associations between 751 drug and disease pairs (54.98% sensitivity). Of these pairs,

409 were also identified using PathFX pathway information, leaving 342 drug-disease pairs

that were identified by targets alone and 147 drug-disease pairs that were only identified when

pathway information was included from PathFX (S1 File). After merging gene-to-phenotype

associations from multiple data sources, each phenotype had a set of associated genes and the

size of this gene set distinguished which diseases each method detected (Kruskal-Wallis statis-

tics = 33.6, p-value = 5.04x10-8) (Fig 4B). PathFX was biased towards selecting phenotypes

with fewer genes (median gene set size of 90 genes); targets-only analysis was biased to select-

ing phenotypes with more associated genes (median gene set size of 342.5 genes) (Mann-Whit-

ney-U statistic: 33089, p-value 1.43x10-8) (Fig 4B). The median gene set size where both

methods detected the phenotype was 257 genes.

For completeness, we calculated positive and negative predictive values (PPV, NPV) (S2

File). To calculate PPV and NPV, we made a conservative assumption that any phenotype

associated with a drug that was not a marketed disease indication was a false positive. Because

PathFX was designed to search broadly for drug-associated phenotypes, the PPV and NPV

were deflated and inflated respectively (S3 Fig).

We analyzed PathFX identifications in the context of the 62 disease clusters (Table 1, Fig

4C). For 58 of the 62 clusters, PathFX found pathway evidence supporting the drug’s marketed

indication for at least one of the drug-disease pairs assigned to that cluster (Table 1, S1 File).

For instance, the top cluster contained three CUI terms which mapped to five disease pheno-

types diseases: inappropriate adh syndrome, acromegaly somatic, hyperprolactinemia, acro-

megaly, and prolactin excess (CUI terms C0021141, C0001206, and C0020514) (Table 1).

There were five drug-indication pairs for these diseases: tolvaptan (inappropriate adh syn-

drome), octreotide (acromegaly somatic), bromocriptine (hyperprolactinemia), bromocriptine

(acromegaly somatic), and cabergoline (hyperprolactinemia). PathFX identified phenotypes

for all five drug-disease pairs. The cluster with the second highest identification rate contained

four CUI terms that mapped to seven disease terms, which are pathophysiologically distinct:

alcohol withdrawal delirium, restless legs syndrome, premenstrual dysphoric disorder, insom-

nia, nicotine dependence, late insomnia, sleeplessness. There were seven drug-indication pairs

included in this cluster: gabapentin (restless legs syndrome), ropinirole (restless legs syn-

drome), rotigotine (restless legs syndrome), diphenhydramine (late insomnia), estradiol (pre-

menstrual dysphoric disorder), nicotine (nicotine dependence), and diazepam (alcohol

withdrawal syndrome). PathFX identified the original, un-clustered phenotype for six of the

seven pairs (PathFX did not identify estradiol’s association to premenstrual dysphoric disor-

der) (Table 1).

For the remaining four clusters, PathFX did not identify the drugs’ marketed indication for

any of the drug-indication pairs assigned to these clusters (S1 File). These clusters are num-

bered 7, 13, 35, and 1. Additionally, cluster 58 contained 216 disease indications, of which 123

diseases were not mapped to a CUI term.

Strengthening adverse event signals for designated medical events from

FAERS and estimating PathFX specificity

Understanding and prioritizing drug safety signals are important regulatory concerns[33,34].

The FDA Adverse Event Reporting System (FAERS) is a repository of voluntarily submitted

case reports of adverse events that occur when a patient is on a particular medication. Multiple

confounding variables, including comorbidities, incomplete reports, and polypharmacy[35],

make it difficult to determine when a drug is causative for an AE. This makes signal detection

and triaging reports difficult. Further, when associations are not directly explained by drug

PathFX provides mechanistic insights into drug efficacy and safety
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Table 1. Example disease clusters with high cluster-sensitivity. In disease lists, ‘|’ is a delimiter to separate disease names. In drug lists, if a drug is listed multiple times,

these listings reflect that the drug is intended to treat multiple indications in the specified cluster.

Cluster

Number

Diseases CUIs Number of

Approved

Approved Drug List Number of

Drugs

Identified

Identified Drug List Cluster

Specific

Sensitivity

23 inappropriate adh syndrome|

Hyperprolactinemia, 615555

(3)| Acromegaly, somatic,

102200 (3)|

Hyperprolactinemia|

Acromegaly|Prolactin excess

C0021141,

C0001206,

C0020514

5 Tolvaptan, Octreotide,

Bromocriptine,

Bromocriptine, Cabergoline

5 Tolvaptan, Bromocriptine,

Octreotide, Bromocriptine,

Cabergoline

100.0%

29 Alcohol Withdrawal Delirium|

Restless Legs Syndrome|

Premenstrual Dysphoric

Disorder|Insomnia|Nicotine

Dependence|Late insomnia|

Sleeplessness

C0035258,

C0917801,

C0520676,

C0028043,

C0001957

7 Gabapentin, Ropinirole,

Rotigotine,

Diphenhydramine, Estradiol,

Nicotine, Diazepam

6 Gabapentin, Rotigotine,

Ropinirole,

Diphenhydramine,

Nicotine, Diazepam

85.7%

25 Transient hypothyroidism|

Goiter|Hypothyroidism,

congenital, nongoitrous, 5|

Hypothyroidism|{Autoimmune

thyroid disease, susceptibility

to, 2} (2)|{Autoimmune thyroid

disease, susceptibility to, 3},

608175 (3)|Thyroiditis|

Congenital Hypothyroidism|

Hypothyroidism, congenital,

due to thyroid dysgenesis or

hypoplasia, 218700 (3)|

Hypothyroidism, Thyroidal,

With Spiky Hair And Cleft

Palate|{Autoimmune thyroid

disease, susceptibility to, 4} (2)|

Iatrogenic hypothyroidism|

HYPOTHYROIDISM,

CONGENITAL, DUE TO

THYROID DYSGENESIS|

Congenital goiter|Endocrine

System Diseases|Autoimmune

endocrine disease|Disorder of

endocrine system|Congenital

hypothyroidism|Focal

thyroiditis| {Autoimmune

thyroid disease, susceptibility

to, 3}, 608175 (3)|

Hypothyroidism, congenital

nongoitrous, 5, 225250 (3)|

Hypothyroidism in pregnancy|

Myxedema|Other endocrine

disorders|Abnormality of the

thyroid gland|{Autoimmune

thyroid disease, susceptibility

to, 1} (2)|Goiter, multinodular

1, with or without sertoli-leydig

cell tumors|Severe

hypothyroidism|Thyroid

Diseases

C0010308,

C0014130,

C0027145,

C0040147,

C0040128,

C0020676,

C0018021

13 Liothyronine,

Hydrocortisone,

Progesterone, Liothyronine,

Triamcinolone,

Hydrocortisone, Prednisone,

Methylprednisolone,

Prednisolone,

Dexamethasone,

Liothyronine, Liothyronine,

Liothyronine

10 Liothyronine, Progesterone,

Hydrocortisone,

Liothyronine,

Dexamethasone,

Hydrocortisone,

Prednisone, Liothyronine,

Liothyronine, Liothyronine

76.9%

(Continued)
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targets, pathway models may provide additional justification for why a drug is associated with

an AE. Anticipating and identifying drug-induced AEs are critical for novel therapeutics in

development as well; and thus, further characterizing which drug targets and interacting pro-

teins may cause AEs is an important goal of this work. Designated medical events (DMEs) are

serious, significant adverse drug events of special concern to regulators. As such, DMEs,

selected based on expert medical review, were evaluated in this study.

To assess the utility of PathFX for signal detection, we extracted drug-adverse event pairs

from FAERs for 1906 drugs across 35 DMEs and ran PathFX on these 1906 drugs. Case reports

were associated with one of the 35 DMEs if the adverse event mapped to the preferred Med-

DRA DME term. Close synonyms were used for some DMEs to better capture reporting (e.g.,

“pancreatitis” was captured by “pancreatitis” and “pancreatitis acute”). PathFX identified the

adverse event phenotype for the input drugs between 0.24% - 39.57%(Table 2 and S3 File),

depending on the DME. For instance, in this noisy data set, 1045 drugs were reported as hav-

ing an adverse association with pancreatitis. PathFX identified that 282 of these drugs were

associated with pancreatitis (26.99%). Similarly, 1150 drugs were reported to have an associa-

tion with myocardial infarction and PathFX identified 391 (34.00%) of these drug-DME asso-

ciations. For eight of the DME phenotypes, we found no pathways associations to the reported

drugs (S3 File).

Table 1. (Continued)

Cluster

Number

Diseases CUIs Number of

Approved

Approved Drug List Number of

Drugs

Identified

Identified Drug List Cluster

Specific

Sensitivity

50 Pneumonia|Rhinitis,

Vasomotor|Staphylococcal

Pneumonia|Healthcare

associated pneumonia|

Mycoplasma pneumonia|

{Allergic rhinitis, susceptibility

to}, 607154 (3)|Sore Throat|

Chronic bronchitis|Rhinitis|

Pneumonia due to Gram

negative bacteria|Common

Cold|Streptococcal pneumonia|

Bronchitis, Chronic|Bacterial

pneumonia|Familial cold-

induced inflammatory

syndrome 1, 120100 (3)|

Bronchitis|Sinusitis|Rhinitis,

Allergic, Seasonal|Gangrenous

pneumonia|Pneumonia,

Bacterial|nasal scleromas|

Pharyngitis|Pneumonia due to

methicillin resistant

Staphylococcus aureus|

Chlamydial Pneumonia

C0339959,

C0155862,

C0032308,

C0032302,

C0004626,

C0035468,

C0035460,

C0031350,

C0006277,

C0008677,

C0009443,

C0032285,

C0035455,

C0037199

32 Levofloxacin, Levofloxacin,

Levofloxacin, Levofloxacin,

Ciprofloxacin, Cilastatin,

Levofloxacin, Ciprofloxacin,

Ephedrine, Chlorphenamine,

Promethazine,

Pseudoephedrine,

Diphenhydramine,

Tetracycline, Ephedrine,

Tetracycline, Aminophylline,

Theophylline, Arformoterol,

Dyphylline, Tiotropium,

Epoprostenol, Ephedrine,

Chlorphenamine,

Isoprenaline, Salicylic acid,

Pseudoephedrine,

Tetracycline,Epoprostenol,

Ephedrine, Pseudoephedrine,

Tetracycline

23 Diphenhydramine,

Pseudoephedrine,

Chlorphenamine,

Promethazine, Ephedrine,

Tetracycline, Ephedrine,

Tetracycline,

Aminophylline,

Theophylline, Dyphylline,

Tiotropium,

Pseudoephedrine,

Chlorphenamine,

Isoprenaline, Ephedrine,

Salicylic acid, Epoprostenol,

Tetracycline, Ephedrine,

Pseudoephedrine,

Epoprostenol, Tetracycline

71.9%

6 Allergic conjunctivitis papillary

conjunctivitis, giant vernal

conjunctivitides|Allergic

Conjunctivitis|Chronic allergic

conjunctivitis

C0009766,

C0009769,

C0009773

14 Ephedrine, Cromoglicic acid,

Hydrocortisone,

Chlorphenamine,

Promethazine, Nedocromil,

Cyproheptadine,

Pseudoephedrine,

Prednisolone,

Diphenhydramine,

Dexamethasone, Ketotifen,

Cromoglicic acid,

Cromoglicic acid

10 Diphenhydramine,

Pseudoephedrine,

Cyproheptadine,

Chlorphenamine,

Dexamethasone, Ketotifen,

Nedocromil,

Hydrocortisone,

Promethazine, Ephedrine

71.4%

https://doi.org/10.1371/journal.pcbi.1006614.t001
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We used this FAERS dataset to estimate a lower bound on the specificity of PathFX. Because

FAERS contains many more drug-DME associations than are real, we treated any drugs without a

reported DME association as silver-standard negatives; reasoning that if a noisy sampling of the

FAERS system contained no association between the drug and the DME, that these pairs were suf-

ficient negatives. We asked how often PathFX associated a drug with a DME when no case report

existed to calculate the specificity rate for the 35 DMEs in this analysis; the rate varied from

80.84%-99.91% (Table 2, S3 File). For instance, 1261 drugs were reported to have an association

with hypertension, leaving 645 of our original 1906 drugs without an association to hypertension.

Of these 645 silver-standard negatives, PathFX identified an association with hypertension for 112

(17.4%) of the drugs (82.64% specificity). For cardiac arrest, 1211 drugs were reported to have an

association, leaving 695 drugs without an association. Of these drugs, PathFX identified seven

drugs to have an association, estimating a specificity of 98.99% (Table 2).

PathFX identifies hypotheses for drug repurposing by identifying novel

drug-disease associations

PathFX identified multiple phenotypes for each drug even if the drug only has a single

approved indication. We sought support for the additional identified phenotypes from two

Table 2. Drug-DME identifications; PathFX specificity.

Designated Medical

Event

Number of drugs reported

with DME

Number of drugs PathFX

identified

PathFX identification

rate

Number PathFX identified with DME,

but NOT reported

Specificity

hypertension 1261 499 39.57% 112 82.64%

myocardial infarction 1150 391 34.00% 132 82.54%

hyperlipidemia 939 288 30.67% 132 86.35%

tardive dyskinesia 878 269 30.64% 87 91.54%

renal failure 1272 379 29.80% 92 85.49%

pancreatitis 1045 282 26.99% 165 80.84%

hemorrhage 1253 271 21.63% 73 88.82%

cerebral infarction 861 159 18.47% 140 86.60%

sepsis 1130 188 16.64% 112 85.57%

pulmonary edema 1084 89 8.21% 23 97.20%

seizure 1287 101 7.85% 21 96.61%

delirium 977 73 7.47% 24 97.42%

neuropathy peripheral 1036 75 7.24% 35 95.98%

insomnia 1148 53 4.62% 6 99.21%

hepatic failure 1002 35 3.49% 10 98.89%

cardiac arrest 1211 41 3.39% 7 98.99%

thrombocytopenia 1172 35 2.99% 14 98.09%

hemolytic anemia 786 20 2.54% 10 99.11%

fracture 865 21 2.43% 18 98.27%

deep vein thrombosis 882 19 2.15% 14 98.63%

rhabdomyolysis 926 10 1.08% 8 99.18%

agranulocytosis 825 8 0.97% 2 99.81%

blindness 947 9 0.95% 10 98.96%

interstitial lung disease 770 6 0.78% 3 99.74%

cellulitis 911 7 0.77% 9 99.10%

ventricular arrhythmia 601 4 0.67% 6 99.54%

respiratory depression 819 2 0.24% 1 99.91%

https://doi.org/10.1371/journal.pcbi.1006614.t002
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data sets: (1) a list of off-label drug uses extracted from the electronic medical record[36] and

(2) drugs currently in clinical trials. In the EMR data, we found support for six drugs applied

in 11 off-label indications (Table 3, listed as ‘Jung CUI’ and ‘Jung Disease’). For instance, tel-

misartan is indicated for hypertension, though PathFX and the EMR dataset supported the use

of this drug as an anti-diabetic; this conclusion is further supported in the literature[37].

PathFX identified that thiothixene would be broadly applicable to depressive disorders beyond

the indicated use for schizophrenia. PathFX also identified that etanercept, an anti-TNF-alpha

drug used in auto-immune disorders, would be applicable to colitis and this identification was

supported by the Jung dataset (Table 3). PathFX identified associations for 4 drug-indication

pairs supported by additional clinical trials (Table 4): sunitinib for viral infections[38], erloti-

nib for viral infections[38], ketoprofen for lymphoedema[39], and sirolimus for dystrophic

bullosa [40].

Given evidence that EMR and clinical trial data supported PathFX predictions, we further

scrutinized PathFX identifications to identify drug repurposing opportunities (Fig 5A); we

inferred that a non-marketed indication could be a repurposing opportunity if the interaction

path was found in the network of a drug marketed for this indication. We demonstrated an

example with leuprolide and triptorelin, both gonadotropin-releasing hormone (GnRH) ago-

nists (Fig 5B). PathFX also identified that the triptorelin pathway is enriched for associations

with endometriosis, and these interaction pathways are supported by leuprolide’s pathway.

PathFX also identified that the antispasmodic, flavoxate, could be indicated for urticaria based

on interaction paths shared with cyproheptadine and promethazine, two anti-histamines

already approved for urticaria. In total, we identified 2,043 new drug-disease associations for

215 drugs (S4 File). We ranked these predictions based on the number of diseases identified

for a drug (top 20 in Table 5, remainder in S4 File), and the number of interaction paths sup-

porting a drug-disease association (top 20 in Table 6, remainder in S4 File).

Discussion

Here we presented PathFX, a phenotypic pathways approach for characterizing drug efficacy

and safety based on molecular interactions around the drug target. The algorithm characterizes

the phenome around drug targets by integrating several data repositories relevant to regulatory

review and therapeutic discovery. We supported our hypothesis that molecular interactions

contribute to a drug’s safety and efficacy phenotypes. We successfully detected pathways that

confirmed a drug’s association with its marketed disease indication and strengthened signals

from adverse event reports in FAERS. In the analysis of marketed drugs, we benchmarked

against a published dataset and additionally expanded this dataset to reflect updated uses of

this drug set. We further discovered that PathFX identified drug phenotypes when the pheno-

type had relatively fewer genes associated in our data sources compared to analyzing pheno-

types using the drug targets alone. We tested additional PathFX predictions using clinical trial

and EMR data, and further identified novel uses for marketed drugs using networks from

PathFX.

We identified associations for some phenotypes more than others. This suggested a few

possibilities: incomplete data–gene-disease annotations, molecular interactions, or drug-pro-

tein binding–may prohibit the creation of pathways relating drug targets to disease associa-

tions; or marketed drugs may impact a clinically-relevant outcome to earn approval but may

not be supported by genetic epidemiology studies. Incomplete knowledge of all drug-binding

proteins limited our ability to construct complete drug pathways. In our database of drug-

binding proteins taken from DrugBank [29], the mean and median number of proteins bound

by a drug is 2.66 and 1.0 respectively. Indeed, more recent work estimates the mean and
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median number of proteins bound by a drug to be 329 and 38 respectively [41], suggesting

that incorporation of more drug-protein interactions could improve our network predictions.

Standardized drug-binding profiling could greatly improve the predictions from these algo-

rithms. PathFX did not identify mechanism of action for all disease clusters. It is not surprising

that PathFX did not identify bacterial infections, given that we are using a human protein-pro-

tein interactome. Cluster 13 contained brain cancer indications and suggested that the drug-

target centric approach is not sufficient for describing efficacy for these anti-brain cancer

therapies.

There are some limitations of our method: the model does not consider tissue specificity

and is biased to selecting phenotypes with fewer gene annotations. Future work will consider

incorporating tissue-specific interaction networks such as the GIANT networks [42] and con-

sider screening drugs for binding across these tissues. PathFX quantifies the overlap between

drug pathways and disease phenotypes but does not indicate directionality (helpful or harmful)

between the drug and the pathway. Using a non-directional analysis enabled a broader discov-

ery process given fewer directional molecular interaction networks. Compared to analyzing

phenotypic associations to drug targets alone, PathFX was biased to select phenotypes with

fewer genes associated and this is likely due to the statistical approach of our method: Starting

with a smaller list (e.g. just the drug targets) increases the chance of finding a statistically sig-

nificant association to phenotype for which there are many associations in the whole network.

Conversely, starting with a larger list of proteins (e.g. using proteins from PathFX networks),

Table 3. PathFX identifications supported by off-label drug use. The terms ‘Jung CUI’ and ‘Jung Disease’ are terms extracted from [36] and represent the associations

between drugs and diseases found the electronic health record.

DrugBankID Drug Name PathFX CUI PathFX Disease Semantic Sim Score Jung CUI Jung Disease

DB00966 Telmisartan C0011860 Diabetes mellitus type 2 0.90 C0011849 diabetes mellitus, non-insulin-dependent

C0011849 Diabetes Mellitus, Type 1 1.00 C0011849 diabetes mellitus, non-insulin-dependent

C0020676 Hypothyroidism 0.66 C0011849 diabetes mellitus, non-insulin-dependent

DB01043 Memantine C0242422 Parkinsonism 0.97 C0030567 parkinson disease

C0030567 Parkinson Disease 1.00 C0030567 parkinson disease

DB00502 Haloperidol C0002395 Alzheimer Disease 0.66 C0003469 anxiety disorders

C0002395 Alzheimer Disease 0.78 C0011206 delirium

C0002395 Alzheimer Disease 0.75 C0011265 dementia

C0002395 Alzheimer Disease 1.00 C0002395 alzheimer’s disease

C1269683 Major depressive disorder 0.73 C0041696 major depressive disorder

C0011581 Depressive Disorder 0.68 C0003469 anxiety disorders

C0011581 Depressive Disorder 0.71 C0002395 alzheimer’s disease

C0011581 Depressive Disorder 0.65 C0005586 bipolar disorder

C0011581 Depressive Disorder 0.85 C0041696 major depressive disorder

C0036341 Schizophrenia 0.65 C0003469 anxiety disorders

C0036341 Schizophrenia 0.68 C0002395 alzheimer’s disease

C0005586 Bipolar affective disorder 1.00 C0005586 bipolar disorder

DB00624 Testosterone C0022658 Kidney Diseases 0.75 C0019693 hiv infections

DB01623 Thiothixene C0002395 Alzheimer Disease 0.71 C0011581 depressive disorder

C1269683 Major depressive disorder 0.85 C0011581 depressive disorder

C0011581 Depressive Disorder 1.00 C0011581 depressive disorder

C0036341 Schizophrenia 0.70 C0011581 depressive disorder

C0005586 Bipolar affective disorder 0.65 C0011581 depressive disorder

C0497327 Dementia 0.74 C0011581 depressive disorder

DB00005 Etanercept C0009324 Ulcerative colitis 0.90 C0010346 crohn disease

https://doi.org/10.1371/journal.pcbi.1006614.t003
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decreases the chance of finding a statistically significant association to a phenotype with many

proteins distributed in the interactome network. PathFX identified phenotypes where there is

significant overlap with the network and where there are relatively fewer associations to the

phenotype in the entire interactome network. We estimated algorithm specificity with a silver-

standard data set of drugs not reported in FAERS. We recognize the limitation of this assump-

tion because sampling biases and drug usage affect whether or not a drug is reported in

FAERS in addition to our assumption that the drug does not cause an adverse event. However,

we lacked sufficient gold-standard, true negatives with which to estimate specificity.

Our approach is not the first network biology tool for describing drug function, though, it

does have different downstream applications. The comparator approach [22] reported lower

sensitivity than PathFX. This could reinforce the role of incomplete data in creating pathways

for marketed drugs or drug effects beyond the underlying disease pathway, as mentioned pre-

viously. Additionally, our improved performance could have resulted from the more permis-

sive approach of our algorithm. The motivating question for regulatory review was “what

biological evidence supports the validity of an observed adverse event?” in the post-market set-

ting, and “what clinical trial assessments might be needed?” for vigilant detection of safety

Table 4. PathFX identifications supported by on-going clinical trials.

Drug DB ID Repurposed Indication Repurposed

Indication CUI

Lin

Similarity

PathFX Identification PathFX

CUI

P-value

sunitinib DB01268 Infection; Viral (Virus Diseases) [Disease or

Syndrome]

C0042769 0.8392 Symptomatic human

immunodeficiency virus

infection

C0019693 6.98E-05

0.6894 Kaposi’s sarcoma C0036220 8.05E-05

0.7142 Hepatitis C C0019196 0.000127002

0.656 Hepatitis C0019159 0.000176888

0.7366 Influenza C0021400 0.000300686

0.7613 Acquired Immunodeficiency

Syndrome

C0001175 0.000350801

1 Virus Diseases C0042769 0.000359268

erlotinib DB00530 Infection; Viral (Virus Diseases) [Disease or

Syndrome]

C0042769 0.7142 Hepatitis C C0019196 6.88E-05

0.7366 Influenza C0021400 8.37E-05

0.656 Hepatitis C0019159 9.88E-05

1 Virus Diseases C0042769 0.000110089

0.8392 Symptomatic human

immunodeficiency virus

infection

C0019693 0.000112571

0.7027 Herpes Simplex Infections C0019348 0.000160023

0.7402 Acute type B viral hepatitis C0019163 0.000160607

ketoprofen DB01009 LYMPHOEDEMA (Lymphedema) [Disease

or Syndrome]

C0024236 0.7171 Non-Hodgkin lymphoma C0024305 6.93E-05

0.6666 Cutaneous T-cell lymphoma C0079773 9.90E-05

0.6642 Hodgkin Disease C0019829 0.000125777

0.6577 Granuloma C0018188 0.000128601

0.6563 Multiple Myeloma C0026764 0.00013971

0.6618 Mycosis Fungoides C0026948 0.000139898

0.7598 Lymphoproliferative disorder C0024314 0.000171154

sirolimus DB00877 Bullosa; Dystrophic Epidermolysis

(Epidermolysis Bullosa Dystrophica) [Disease

or Syndrome]

C0079294 0.7945 Pemphigus C0030807 0.000248621

0.9587 Recessive dystrophic

epidermolysis bullosa

C0079474 0.000421343

0.7925 Keloid C0022548 0.000440175

https://doi.org/10.1371/journal.pcbi.1006614.t004
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issues in the pre-market, investigational drug setting. In this paradigm, PathFX sampled dis-

ease signals around a drug target and was not constrained to find the right answer such as in

the shortest-path method in Guney et al[22]. For our regulatory context, our expansive search

was a positive design feature for understanding biological evidence supporting adverse events.

We demonstrated utility of PathFX in a pertinent regulatory context. Our analysis of

FAERS data proved useful in detecting if and how a drug could cause a particular DME. We

did not apply all available statistical filters to the FAERS data before analysis. Our intention

was to apply PathFX as a biologically-motivated tool for signal detection and to develop

Fig 5. Identifying repurposing opportunities from interaction pathways. In the schematic for repurposing

identifications, we identified common edges among drugs approved for a particular indication (blue outlines). We

infer repurposing opportunities when a drug’s network contained the same interaction edges linking the drug target to

the particular indication (A). An example using Leuprolide and Triptorelin: Leuprolide’s full network (top, left) and a

subset of edges associated with premature puberty disorders (blue outline, middle) and Triptorelin’s full network, (top,

right), and a subset of edges associated with premature puberty disorders (orange outline, middle), and prostate

cancers (blue outline, bottom, left) (B).

https://doi.org/10.1371/journal.pcbi.1006614.g005
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PathFX as a complementary approach to other statistical methods; in practice, filtering using

statistical approaches prior to PathFX application is a viable research strategy as well and using

PathFX alone is not sufficient for identifying a causative relationship between a drug and AE.

There were multiple DMEs for which we could not identify an interaction pathway. Though,

for some of these diseases, further structured expansion of acceptable terms could improve

prediction accuracy. For instance, the Ontology of Adverse Events (OAE)[43] provides a struc-

tured language for relating symptoms, findings, and measurements to disease and could be a

useful tool for expanding the capacities of PathFX. In practice, FAERS reports do not contain

research-ready disease language, and thus it is important to map and relate changes in symp-

toms to relevant diseases. For example, the DME, suicide attempt, would be difficult to identify

with our method directly, but is likely related to depression and anxiety. Structured language

relating these phenotypes would improve prediction accuracy for these phenotypes. Improved

ontology incorporation is an aspiration for the project but was beyond the scope of this work.

Our findings reflect a trend in network biology to leverage drug pathways for repurposing

approaches, though, the techniques are imperfect for describing all drugs. PathFX identified

additional diseases beyond the marketed indications. Without a data set of true negatives (e.g.

the drug was tested in condition X and did not work), it is difficult to systematically test and

reject network predictions. Instead, we leveraged molecular interaction paths relating mar-

keted drugs to their relevant disease genes and used these paths to identify possible repurpos-

ing opportunities. This prudent approach limited repurposing hypotheses to indications for

which drugs already exist. Further, literature evidence supports some of the associations such

as tetracycline and hypertension [44], but tetracycline induces an undesirable hypertension

phenotype. We discovered these associations because we do not yet have a means for discern-

ing directionality (e.g. a drug improves the phenotype, or a drug aggravates the phenotype).

Future work will address this question.

Table 5. The top 20 drugs by the number of repurposing opportunities identified by PathFX.

Drug Number of Indications

Caffeine 63

Doxepin 63

Carvedilol 59

Halothane 54

Thiothixene 53

Haloperidol 52

Vandetanib 50

Lenvatinib 41

Cabergoline 40

Vortioxetine 37

Clomipramine 34

Tolvaptan 32

Apremilast 31

Rotigotine 31

Buspirone 29

Cabozantinib 29

Prazosin 29

Sunitinib 29

Ticagrelor 28

Gliclazide 27

https://doi.org/10.1371/journal.pcbi.1006614.t005
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The PathFX paradigm may be useful for both regulatory and pharmaceutical industry

stakeholders to validate targets and enhance pharmacovigilance activities. We designed and

tested our algorithm’s utility for one regulatory task: strengthening signals from adverse

event reports in FAERS. Additionally, the drug-target-centric approach is useful for drug

targets in development and may be used as a filter for identifying potential safety concerns

and for confirming a sufficient association with disease. In contrast to therapeutic develop-

ment through high-throughput screening, PathFX epitomizes the paradigm of identifying

drug candidates based on biological rationale and supports the pathway relevance of a drug

target.

Materials and methods

Interactome assembly, and scoring

We downloaded data from iRefWeb version 13.0 human, Reactome, and PharmGKB. We

chose iRefWeb because the source contains interactions from BIND, BioGRID, CORUM,

DIP, IntAct, HPRD, MINT, MPact, MPPI, and OPHID. We extracted protein-protein interac-

tions from http://irefindex.org/wiki/index.php?title=iRefIndex, drug-variant interactions from

PharmGKB, and protein-protein interactions from Reactome. We scored iRefWeb protein-

protein interactions using the MIScore framework[45] and removed low-scoring interactions

below the median score value, 0.244, to save memory in later computations. We kept the rela-

tive weighting of each score component equal (i.e. Km = Kp = Kt = 1). The scoring framework

represents the amount of evidence supporting the interaction of two proteins: the Sm repre-

sents the method used to detect the interaction and is higher for more dedicated experimental

techniques. Sp reflects the number of publications supporting an interaction. This score

increases with the number of publication and plateaus. St reflects the interaction type. Because

Table 6. The top 20 drug-disease pairs based on the number of interaction paths associating the drug to the disease phenotype.

Drug Indication Number of Pathways Supporting

Vandetanib Renal cell carcinoma, nonpapillary 126339

Vandetanib Status epilepticus 82665

Tetracycline Hypertension 64964

Ximelagatran Arteriosclerosis 61205

Haloperidol Parkinsonism 55008

Testosterone Hyperlipidemia, combined, 1 42050

Ximelagatran Asthma 39630

Haloperidol Schizophrenia 35649

Vandetanib Schizophrenia 26187

Diphemanil Methylsulfate Hay fever 24435

Vandetanib Blast Phase 21110

XL228 Blast Phase 17619

Diphemanil Methylsulfate Bipolar affective disorder 16528

Vandetanib Crohn Disease 16084

Vandetanib Neuralgia 14431

Thiocoumarin Arthritis, Rheumatoid 14408

Prazosin Prostatic Neoplasms 14271

Tetracycline Diabetes mellitus type 2 13934

Ximelagatran Pulmonary Disease, Chronic Obstructive 13874

Haloperidol Major depressive disorder 13843

https://doi.org/10.1371/journal.pcbi.1006614.t006
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we only used ‘direct’ interactions, this score is always 1.

SMI ¼
KmSmðcvÞ þ KpSpðnÞ þ KtStðcvÞ

Km þ Kp þ Kt

We adapted the MIScore framework for PharmGKB data and used publication, and ‘clini-

cal evidence’ to score drug-variant relationships. Whenever an interaction with a variant was

added to our network, we also added an interaction edge from the variant to the gene and

scored this interaction as 0.99, the maximum possible score in the interactome. We used the

following equation where Kp = Ke = 1, Sp was the same as published in [45]. Se reflects the clini-

cal level evidence available from PharmGKB and we crafted a scoring framework similar to

[45].

SMI ¼
KpSpðnÞ þ KeSeðcvÞ

Kp þ Ke

SeðcviÞ ¼ logðbþ1Þðaþ 1Þ

a ¼
X
ðscvi x niÞ

b ¼ aþ
X

MaxðGscviÞÞ

Where scv’1A’ = 0.99, scv’1B’ = 0.86625, scv’2A’ = 0.7425, scv’2b’ = 0.61875, scv’3’ = 0.495, and

scv’4’ = 0.2475. Because interactions in PharmGKB only receive one level of clinical evidence, a

and b collapse to:

a ¼ scvi; b ¼ aþ
X

scvi

We adapted this scoring framework for Reactome pathways using the following equation:

SMI ¼
KmSmðcvÞ þ KpSpðnÞ þ KtStðcvÞ

Km þ Kp þ Kt

Sp was the kept the same as in [45]. We derived a scheme for the method component, Sm,

where scv’direct_complex’ = 1.00, scv’neighboring_reaction’ = 0.66, scv’indirect_complex’ = 0.8, scv’reaction’ =
1.0, and scv’unknown’ = 0.05.

StðcviÞ ¼ logðbþ1Þðaþ 1Þ

a ¼
X
ðscvi x niÞ

b ¼ aþ
X

MaxðGscviÞÞ

Because the two maximum scoring categories were ‘direct_complex’ and ‘reaction’, the

Max(Gscvi) term = 2.0. Because Reactome interactions did not include a method of detection

but are curated interactions, we gave these interactions a cvi = 0.8. Because they all received the

same ‘method’ score, calculating a and b yields a Sm = 0.615.

We lastly incorporated predicted drug to protein binding data based on PocketFEATURE

[46] where drug-protein pairs were scored based on the similarity between the drug’s known

targets and other protein targets from the Protein Data Bank[47] (See methods below).
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PocketFEATURE has been extensively validated on predicting drug protein interactions in

multiple applications [46,48,49]. In all cases, we estimated interaction scores based on the qual-

ity of evidence available; these edge scores were fixed before applying PathFX and we did not

alter these parameters to improve prediction accuracy.

Phenotype, disease, and variant data

We downloaded variant and phenotype association data from PheWAS[11,12], disease to gene

associations from DisGeNet[10,11], Phenotype-Genotype Integrator (PheGenI) [26], ClinVar

[27], and OMIM[8], and eQTL data from the GWAS catalogue[7]. We collapsed all phenotype

names to CUI identifiers using MetaMap lite and took the union of all data sources to create

our source of gene to phenotype annotations. This yielded a database associating 29785 genes

to 20524 phenotypes.

To look for enriched phenotypes, we used a Fisher’s exact test and Benjamini-Hochberg

multiple hypothesis correction to assess whether a disease or phenotype had more associations

to the network genes relative to the total number of associations in the interactome. We fil-

tered out disease or phenotypes associated with fewer than 25 genes. Recent work suggested

that current interactomes are insufficient for analyzing disease pathways with fewer than 25

genes[28]. More specifically, interactomes are incomplete and these missing interactions

reduce the ability to find pathways between smaller disease modules. This recent estimate dis-

covered that missing interactions disproportionally affect phenotype pathways with fewer than

25 genes and thus, we eliminated these phenotypes knowing that our interaction network was

insufficient for studying these phenotypes.

We further filtered phenotypic predictions by deriving a p-value threshold from networks

created with randomly-selected, druggable proteins. We realized that if any random set of

input drug-targeting proteins could discover a statistically-significant association to a given

phenotype, that associating a real set of drug proteins with this phenotype would reflect bias in

our data instead of a biologically-meaningful result. To assess this bias in our data, we created

100 networks using randomly selected drug targets from the intersection of all drug-targeting

proteins in DrugBank and ran PathFX using these targets as inputs (i.e. using the same statisti-

cal approaches to assess phenotypes that are significantly associated to networks created with

random inputs). Because the distribution of p-values from the 100 randomizations was not

normally distributed, we used the median value as the threshold p-value for determining if a

drug network was associated to a phenotype. The number of randomly selected input proteins

matched the number of targets of the drug of interest. PathFX retained a phenotype if the asso-

ciation is more significant than the p-value threshold for that phenotype run with the same

number of random, input protein targets.

When analyzing drug targets alone, we again used the Fisher’s exact text, the Benjamini-

Hochberg correction, and filtering relative to the expected p-value threshold.

Depth-first network search

We created a depth-first search tool which ‘walked’ away from a drug’s protein target through

the interactome and evaluated these paths using the multiplicative sum of all interaction edges

between a gene and the target. Genes with a path score above the threshold were retained in

the drug pathway. We expedited the search with “fast-tracking”. This process reflects the fact

that molecules exist in highly interconnected pathways and assumed that we could reduce the

searchable interaction spaces by looking for molecular redundancies. As the search explored

an interaction path, fast-tracking searched the remaining que of interaction paths for genes

that had already been added to the network and added these interaction paths to the network.
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Interaction edge scores were used from the scoring system above. We used specificity analysis

to determine an optimal threshold for the interactome (S2 Fig, explained below). In the case of

multiple protein targets, we created a pathway around each protein target, and merged these

neighborhoods to create the full protein network.

Interaction specificity analysis

We evaluated the interactome specificity by comparing a gene’s path score to all possible path

scores for that gene. To measure all path scores, we created pathways for all genes in the inter-

actome network, treating each molecular entity as a drug target and creating a pathway as

described above. We used these empirically-derived scores to calculate an enrichment score

for an entity in the pathway of a real drug target by subtracting the average path score to that

gene from the gene’s score in the drug pathway (Fig 1, ‘Interaction Specificity Analysis’).

An optimal threshold parameter for the tissue non-specific network

We selected an optimal threshold by evaluating gene specificity at threshold values from 0.7 to

0.9. At each of these values we created a drug pathway around the drug’s protein target(s), cal-

culated the gene specificity, and then tabulated the fraction of genes that are specific to a drug

target (i.e. have a specificity score> 0). We plot the normalized histograms of specificity values

in S2A Fig and a distribution of the proportion of specific paths at each threshold value in S2B

Fig.

PathFX code

The PathFX code is available at: https://github.com/jenwilson521/PathFX. Using the algorithm

requires minimal inputs and creates a network and several association files as depicted in S4

Fig. The user provides three inputs: 1. an analysis name. 2.the name of the drug. 3. an optional

list of proteins (if the drug-binding proteins are not in DrugBank or the user wishes to com-

plete a more specific analysis).The algorithm creates a set of output files: 1. networks for indi-

vidual target proteins and a merged interaction network combining networks from each target

proteins. These files are tab-delimited files with one interaction per line and the score for that

interaction. 2. An association table containing one significantly-associated network phenotype,

a p-value for that association, and network genes associated with that phenotype. 3. A table list-

ing the database source for individual phenotype-gene associations.

Mapping to Common Unique Identifier (CUI) terms

For all diseases, these phenotypes were mapped to CUI terms using Metamap lite[31]. This

was the same process used in assembling the phenotype dataset.

Semantic similarity and disease clustering

We downloaded the UMLS Metathesaurus, version 2017AA and used the Perl packages

UMLS::Interface[32] and UMLS::Similarity[32] to measure the lin distance between diseases

in a set. For the gold-standard drug set, we calculated a matrix of similarity values for all

approved indications and we used SciPy in Python to perform hierarchical clustering. We

identified 62 as the optimal number of clusters using the elbow method. For visualization of

the dendrogram, we counted the top five disease-associated words in each cluster. To deter-

mine how well PathFX identified a drug’s approved indication, we again used the umls-simi-

larity.pl scripts to calculate similarity between the approved indication and the PathFX

identified phenotypes.
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Positive and Negative predictive values

Because the number of true positives and true negatives varied for each drug and for each phe-

notype, we calculated the PPV and NPV separately for each drug and for each phenotype. To

calculate PPV, we assumed that false positives were any PathFX identified phenotype that was

not a marketed indication. The PPV was the ratio of correctly identified marketed indications

to the total of marketed indications and additional PathFX phenotypes. To calculate NPV, we

considered any phenotype from our dataset that was not a marketed disease indication to be a

true negative. The NPV was the ratio of these true negatives to the sum of the true negatives

and the unidentified, marketed indications. When calculating PPV for each phenotype, we

assumed that a false positive was any drug identified by PathFX to be associated to the pheno-

type but was not marketed for that phenotype. When calculating NPV for each phenotype, we

considered as true negatives any drugs not marketed for or identified by PathFX to be associ-

ated with the phenotype.

Statistical comparison of performance between PathFX and drug targets

alone

We calculated the number of genes associated with the original marketed indication for drug-

disease pairs identified by PathFX only, targets only, or identified by both methods. We first

used a Kruskal-Wallis test implemented in the Python package, SciPy, to determine that these

populations were not from the same distribution. We tested the hypothesis that the targets-

only analysis was biased towards diseases with more genes using the Mann-Whitney-U statis-

tic implemented in the Python package, SciPy.

FAERS drug-DME pair data extraction

The FDA Adverse Event Reporting System (FAERS) data was extracted using the Oracle

Health Sciences Empirica Signal software. Although, the software is not publicly available, we

used only publicly-available data at the time of analysis (2004-2017Q3). All drugs that had at

least one case reported for the 35 MedDRA Preferred Terms identified as Designated Medical

Events by review and medical experts at the FDA were included in this analysis.

Repurposing drugs for marketed indications

From the successfully matched drug-indications pairs, we created a catalogue of interaction

paths that supported the association between these drugs and their approved indications. We

searched through remaining drug pathways and asked if any associations with the drugs’ non-

marketed indications were supported by the catalogue of interaction paths. These non-mar-

keted associations became our cohort of repurposing predictions.

Predicting drug protein interactions

The Drug-binding Dataset collects 984 high-quality 3D structures (x-ray resolution higher

than 2.5 Å) that co-crystalized with FDA approved small molecule drugs (non-nutraceuticals),

representing binding environments of 284 distinct drugs [50]. The Human Off-target Dataset

comprises 2271 proteins representing a non-redundant representative set (90% percent iden-

tity) of human proteins and their close homologs that have high quality 3D structures (x-ray

resolution higher than 2.5 Å) in PDB[51]. We have applied PocketFEATURE[46] to predict

the probability of binding between the 284 drugs and the 2271 potential off-targets. Pocket-

FEATURE uses the FEATURE representation to calculate site similarities by aligning microen-

vironments between two sites. A more negative score suggests binding site similarity and thus
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a higher probability of drug binding to a site similar (off-target) to its known binding site.

Given a pair of drug and off-target, we used an average score of similarity between the binding

sites and the off-target. For each drug, we generated a profile of its binding probability to each

of the 2271 potential off-targets.

Supporting information

S1 File. Summary of PathFX associations for marketed drugs. The file contains the starting

list of drug-disease associations from marketed drugs, associations between drugs and diseases

discovered by PathFX, a clustered summary where drug-disease associations are binned based

on the semantic similarity of the diseases, a comparison to associations found from using drug

targets without network information, and a listing of disease associations discovered by

PathFX, targets-only, or both methods and the number of genes annotated to these diseases.

(XLSX)

S2 File. Positive and negative predictive value calculated by drug and by disease CUI term.

(XLSX)

S3 File. Analysis of FAERs case reports using PathFX. A summary of where PathFX associ-

ated a drug to a reported adverse event and a summary of false positives from the silver-stan-

dard set of negative cases (i.e. drugs without a reported association to an adverse event in

FAERs).

(XLSX)

S4 File. Summary of repurposing predictions. A summary of drug-disease associations

ranked by the number of pathways supporting an association and by the number of predicted

alternative indications.

(XLSX)

S1 Fig. A tissue-non-specific interactome for identifying drug pathways. The table shows

the number of interactions obtained from each database (A) and the distribution of edge

scores (B). These edge scores represent the probability of an interaction given the available evi-

dence.

(TIF)

S2 Fig. Generalized interaction specificity analysis results. We created all drug target paths

using the depth-first search at threshold values ranging from 0.7–0.9. We calculated gene spec-

ificity relative to all paths created for that gene and plot specificity values as normalized histo-

grams (A). The total number of paths and the percent enriched (scored >0) are indicated in

each figure legend. We additionally plot the fraction of specific paths against the total number

of paths (B). Shading is a linear gradient corresponding to the threshold value (0.9 = dark pur-

ple, 0.7 = light purple). A threshold of 0.77 was used for all further analyses.

(TIF)

S3 Fig. Density histograms of positive and negative predictive values for targets only analysis

(top row, gray) and PathFX analysis (bottom row, blue).

(TIF)

S4 Fig. Summarized schematic for PathFX usage. The user provides three inputs: 1. an analy-

sis name. 2. the name of the drug. 3. an optional list of proteins (if the drug-binding proteins

are not in DrugBank or the user wishes to complete a more specific analysis). The algorithm

outputs a set of output files: 1. networks for individual target proteins and a merged interaction

network combining networks from each target proteins. These files are tab-delimited files with

PathFX provides mechanistic insights into drug efficacy and safety

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006614 December 7, 2018 23 / 27

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006614.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006614.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006614.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006614.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006614.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006614.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006614.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006614.s008
https://doi.org/10.1371/journal.pcbi.1006614


one interaction per line and the score for that interaction. 2. An association table containing

one significantly-associated network phenotype, a p-value for that association. 3. A table listing

the database source for individual phenotype-gene associations.

(TIF)

S1 Table. PathFX identified phenotypes for Metformin. A list of phenotypes significantly

associated with the Metformin network.

(PDF)
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