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19.1 Introduction

An exciton is a particle-like neutral excitation of solids and molecules com-
posed of one electron and one hole bound together by the mutual electrical
attraction [1–5]. Its creation through internal charge separation is most fre-
quently caused by the absorption of light and its demise is occasioned by
electron–hole recombination, mostly with emission of light and less frequently
non-radiatively. The many-electron ground state of the system, being an insu-
lator, is immune to excitation until the excitation energy reaches a threshold
G known as the energy gap. When external influences such as the electromag-
netic field and lattice vibrations are ignored, the exciton may be viewed as a
robust state of an excited electron plus the hole which has been left behind
in the valence electron states [6]. The hole acquires its positive charge from
the loss of an electronic charge from the ground state whose total charge is
neutralized by that of the ions in the molecule or solid.
The photon–exciton interaction is responsible for the optical excitation

(though not necessarily in the visible frequency range) of the exciton and for
its spontaneous recombination emitting a photon (a quantum unit of light). The
dipole matrix element responsible for the transition between the energy states
is strong when the electron and hole wave functions overlap in space or match
in wavevector. From Planck’s law, the frequency of the emitting light EX/h is
proportional to the energy loss EX in returning the exciton state back to the
ground state, with h being Planck’s constant.
If the constituent electron and hole of the exciton are mostly localized at

an ion, the exciton is localized, but with some probability to hop from site to
site. Such a Frenkel exciton is common in molecules and molecular solids.
At the other extreme, if the electron and hole wave functions are widespread
as extended orbitals in a molecule or Bloch waves in a crystal, their bound
state as the exciton can have their center of mass moving through the system
with ease. Such Wannier (or Wannier–Mott) excitons are most common in
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broad-band and small-gap semiconductors (a semiconductor is distinguished
from an insulator qualitatively by a smaller energy gap, with the frequency
of the emitting light from the exciton spanning the range from visible light
to very far infrared). Wannier excitons resemble the hydrogen atom or, more
closely, the positronium system composed of an electron and a positron.
Because of the dielectric screening of the electrical force in small-gap
materials and sometimes the small effective mass of the electron, the Wannier
exciton radius is 10 to 100 times larger than the positronium radius, which is
approximately 0.1 nm.
Excitons, being made of two fermions, behave as bosons on the scale larger

than the exciton radius and therefore may macroscopically occupy a single
quantum state [7–13]. If the exciton lifetime is long enough to allow for
reaching quasi-equilibrium, the dilute and cold gas of optically generated ex-
citons may undergo Bose–Einstein condensation (BEC) [14–16]. The critical
temperature for exciton BEC, of the order of 1 K for typical densities in
semiconductors, is basically the temperature at which the thermal de Broglie
wavelength becomes comparable to the average inter-exciton separation. The
possibility of achieving BEC of excitons by shining light on solids has been
thoroughly investigated in the last fifty years (see the reviews [15, 17–27]).
Semiconductors are particularly appealing for this goal as they may provide
excitons with a lifetime (hundreds of ns in bilayer structures [23]) longer than
the time required for cooling.
In an indirect-gap semiconductor such as silicon, where the momentum of

the exciton does not match that of the photon, the excitons are generally formed
after relaxation of optical excitations with initial energy much higher than
the gap. The indirect exciton has a long lifetime because its recombination
with the emission of a photon requires the conservation of momentum to be
satisfied by the assistance of a lattice vibration or trapping by a defect. Conse-
quently, the excitons have time to form a large pool known as an electron–hole
drop (see the reviews [28, 29]). Alternatively, the delay in optical recombi-
nation may be due to the symmetry of the crystal, as in the direct-gap oxide
Cu2O which has conduction and valence bands of like parity hence the opti-
cal dipolar transition is forbidden [30]. The chapter by Kuwata–Gonokami in
Volume 1 focuses on the aspects of BEC of optically generated excitons in
semiconductors.
In a direct-gap material, the spatial separation of the electron and hole can be

enforced by housing them in two layers sufficiently close to maintain their elec-
tric attraction [31–33]. The recombination of such indirect excitons may then
be controlled by changing the electron and hole wave function overlap with an
electric field [34, 35]. An interesting phenomenon is the laser spot excitation
of these indirect excitons, leading to the formation of two concentric luminous
circles centered at the laser spot plus other localized bright spots randomly
placed between the circles. Whereas the formation of the inner ring [36] is due
to the migration of indirect excitons away from the laser spot as optically inac-
tive excitons, the localized bright spots [36] as well as the outer ring [36–39]
form on the boundaries between electron-rich and hole-rich regions. At low
temperature the outer ring is a necklace of evenly spaced bright spots, whose
origin is not fully understood [40]. This system of excitons in a double quantum
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well is considered a good candidate for condensation. These experiments and
related work in double quantum wells are reviewed in [22–26, 41].
Another possible—and elusive—mechanism of condensation of excitons as

bosons is that excitons form spontaneously at thermodynamic equilibrium even
in the absence of an optical excitation. Such process signals the transition to a
permanent phase known as excitonic insulator (EI) [1, 42–45], which is origi-
nated by the instability of the normal ground state of either a semiconductor or
a semimetal against the spontaneous formation of bound electron–hole pairs.
The wave function of the strongly correlated EI ground state is formally sim-
ilar to that proposed by Bardeen, Cooper, and Schrieffer for superconductors
[46]. As a matter of fact, both excitons and Cooper pairs are absent except
as fluctuations in the normal high-temperature phase and form only in the
ordered, low-temperature phase—respectively the EI and the superconductor.
Besides, both condensation of excitons and that of Cooper pairs are best de-
scribed in the reciprocal space of the crystal solid. The EI phase is reviewed in
[14, 15, 17, 19, 20, 22, 26, 27, 47–50].
It is intriguing to observe that condensation of other types of bosons

composed of two fermions leads to spectacular manifestations of quantum me-
chanical coherence, such as the superfluidity ensuing from the pairing of 3He
atoms [51], Fermi alkali atoms confined in optical traps [52, 53], nucleons in
neutron stars [54, 55], the superconductivity induced by Cooper pairs in met-
als [56], and the non-classical momenta of inertia in nuclei [57, 58]. The above
phenomena may regarded as distinct realizations of superfluidity, associated
to the coherent, dissipationless flow of charge and/or mass. However, excitons
are neutral and stay dark unless recombine radiatively, as shown in Table 19.1,
which compares the distinct features of the condensates made of composite
bosons. The signature of the macroscopic order of the exciton condensate is, at
present, controversial for the superfluid transport but its other manifestations
will be discussed next.
The aim of this chapter is to illustrate some recent theoretical proposals con-

cerning the detection of coherent exciton flow [59–61]. The reader may refer
to the literature reviewed in Section 19.2 for a discussion of the conceptual
and experimental difficulties inherent in the realization of exciton conden-
sates. Here we set aside such difficulties and adopt in a pedagogical way the
simplest mean-field description of the condensate, on which we lay our the-
oretical development in order to detect the transport properties of the exciton
condensate.
In particular, we focus on the exciton analogues of two phenomena, i.e.,

Andreev reflection and Josephson effect, which are hallmarks of superconduct-
ing behavior, and stress the crucial differences between excitons and Cooper
pairs. Our first main conclusion is that the excitonic insulator is the perfect
insulator in terms of both charge and heat transport, with an unusually high re-
sistance at the interface with a semimetal—the normal phase of the condensed
state. Such behavior, which should be contrasted with the high electrical con-
ductance of the junction between superconductor and normal metal, may be
explained in terms of the coherence induced into the semimetal by the prox-
imity of the exciton condensate. Then we show that the exciton superflow
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Table 19.1 Excitonic insulator (EI) versus superconductor à la Bardeen–Cooper–Schrieffer
(BCS). The interface referred to in the table is the junction between normal and condensed phase.
For a general discussion of the condensates made of composite bosons see [62]. For specific EI
features see [45] (Meissner effect), [63] (superconductivity), [64] (superthermal conductivity),
[59, 60] (Andreev reflection), and [61] (Josephson oscillations).

Physical property Excitonic insulator BCS-like superconductor

Nature of the composite boson Exciton Cooper pair
Boson charge Neutral 2e
Boson momentum Crystal momentum Crystal momentum

(commonly ignored in the free
electron gas approximation)

Boson mass Effective mass Effective mass of the electron
quasiparticle in the Fermi level
region (of thickness provided by
phonon Debye frequency)

Type of long-range order Diagonal Off-diagonal
Superfluidity ? Superconductivity
Meissner effect No Yes
Superthermal conductivity No No
Nature of the quasiparticle Electron (hole) Bogoliubon
Andreev reflection Yes Yes
Interface electric conductance Decreased Increased
Interface thermal conductance Decreased Decreased
Proximity effect Yes Yes
Josephson oscillations Yes Yes

may be directly probed in the case that excitons are optically pumped in a
double-layer semiconductor heterostructure: we propose a correlated photon
counting experiment for coupled electrostatic exciton traps which is a variation
of Young’s double-slit experiment.
We last mention that, due to the interaction between electrons and light, not

only can an exciton decay irreversibly into a photon or vice versa, but it can also
exchange roles with the photon in a quantum-mechanically coherent fashion.
Thus, the exciton may exist in the solid in the superposition state of an exciton
and a photon, known as polariton. Whereas the photon energy varies linearly
with its momentum at the speed of light in the vacuum, the exciton energy
depends on the square of its center-of-mass momentum. For small momenta,
the exciton and the photon can approximately match both their momentum
and energy values, the coupling mixing the two states into two superpositions
of photon and exciton with an energy splitting. Thus, the massless photon is
slowed down by the massive exciton by virtue of the quantum-mechanical
superposition. The chapter by Yamamoto in Volume 1 deals with aspects of
polariton condensation.
The structure of this Chapter is the following: After a review of previous

work (Section 19.2), in Section 19.3 we illustrate the mean-field theory of the
EI emphasizing its relation with the BCS theory of superconductors. We then
introduce the phenomenon of Andreev reflection in Section 19.4 and analyze
its observable consequences in Section 19.5. Section 19.6 on the Josephson
effect ends the chapter.
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19.2 Physical systems

This section briefly reviews recent theoretical and experimental works on exci-
ton condensation, focusing on diverse physical systems. Without attempting an
exhaustive review, we refer the reader to more comprehensive essays whenever
available.

19.2.1 Bose–Einstein condensation of optically
generated excitons

The pursuit of Bose–Einstein condensation of optically generated excitons in
semiconductors, which dates back to the sixties, presently focuses on both clas-
sic systems such as Cu2O and novel low dimensional structures (for reviews see
[15, 17–27, 41, 50, 65–67]). A very active field concerns “indirect” excitons.
Such excitons are made of spatially separated electrons and holes, hosted in
two quantum wells that are sufficiently close to maintain electrical attraction
between the carriers of opposite charge. This setup has several advantages: (i)
The overlap of electron and hole wave functions is controlled by applying an
electric field along the growth direction of the bilayer heterostructure, thus in-
creasing the exciton recombination time by orders of magnitude with respect
to the single-well value [34, 35]. (ii) The confinement effect along the growth
direction increases the exciton–phonon scattering rate, improving exciton ther-
malization [68]. (iii) The dipolar repulsion among indirect excitons disfavors
the formation of biexcitons and electron–hole droplets [50, 69–75] as well as
effectively screens the in-plane disorder potential [76–81]. (iv) As the elec-
tric field parallel to the growth direction may be laterally varied using suitably
located electrodes, one may tailor the in-plane effective potentials for exci-
tons, thus realizing artificially controlled traps [78, 79, 81–89], ramps [90, 91],
lattices [80, 92–94], “exciton circuits” [95–97], and “exciton conveyers” [98].
Exciton traps may also be created by means of the uncontrolled in-plane dis-

order of the double quantum well [36, 78, 79, 99, 100], the strain experienced
by the heterostructure [101–106], the laser-induced confinement [107, 108],
the magnetic field [109]. The realization and control of exciton traps is a key
capability to reach exciton BEC: as the long range order in two dimensions is
smeared by quantum fluctuations, a weaker requirement for the macroscopic
occupation of the lowest exciton level is that the exciton coherence length
exceeds the trap size [24].
The present evidence of exciton BEC is based on distinct features of the

emitted light (photoluminescence, PL) that appear at low temperature: (i) The
PL dynamics exhibits bosonic stimulation of the scattering of hot optically
dark excitons into optically active low-energy states [110]. (ii) The PL signal
becomes noisy in a broad range of frequencies, as it occurs in the presence of
coherence [69, 111, 112]. (iii) The degree of polarization of the emitted light
increases with decreasing temperature [40, 113, 114], consistently with gauge
symmetry breaking. (iv) The exciton mobility is enhanced, which may be at-
tributed to superfluid behavior [115]. (v) The radiative decay rate increases,
which may be explained in terms of “superradiance” of a macroscopic dipole
[115] or collective behavior at the onset of condensation [113, 114]. (vi) The
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PL lineshape narrows and departs from the Maxwell–Boltzmann distribution
[111, 113, 114, 116], as it may be expected for the macroscopic population of
a single exciton state.
However, some of the signatures [30, 117–119] listed above, taken sepa-

rately, may have different explanations than exciton condensation [120–122]
(for a discussion see [24]). The most compelling evidence of BEC is prob-
ably the direct measure of coherence through interferometric techniques
[40, 41, 88, 123–126], which accesses the macroscopic exciton wave func-
tion in real space. On the theory side, the light emitted by excitons just after
the onset of condensation is predicted to be coherent [127–129], with a sharply
focused peak of radiation in the direction normal to the quantum-well plane
[130, 131]. Besides, the instability leading to the external ring of evenly placed
bright spots discussed in the introduction [36, 38] is possibly linked to exciton
quantum degeneracy [132].
An intriguing issue is the role played by spin [133] in exciton condensation.

In bilayers, the exciton spin is the component Jz of the angular momentum
along the direction perpendicular to the planes, discriminating between op-
tically active (Jz = ±h̄) and inactive states (Jz = ±2h̄). The most urgent
questions concern the multicomponent nature of the condensate [134, 135],
the possibility of dark-exciton condensation [136, 137], the role of spin-orbit
coupling [138–141]. This research is fueled by the recent experimental evi-
dence that the spin-relaxation time of indirect exciton is long and consequently
exciton spin transport is long-ranged [142, 143], as well as that spin tex-
tures and polarization vortices appear together with the onset of long-range
coherence [40].

19.2.2 Excitonic insulator in mixed-valence
semiconductors

In principle, any intrinsic semiconductor that may be turned into a semimetal,
either by applying stress or by suitable alloying, may undergo a transition
to the permanent EI phase. Favorable conditions are the presence of an in-
direct gap, which weakens the detrimental effect of dielectric screening on the
exciton binding, as well as the nesting of electron and hole Fermi surfaces,
which maximizes electron–hole pairing. Nevertheless, early experiments fo-
cusing on simple materials, such as divalent fcc metals (Ca, Sr, Yb) and group
V semimetals (As, Sb, Bi) were unable to confirm the existence of the EI.
References [14, 15, 17, 19, 20, 26, 47–50] review the work on the EI.
Recently, a few experiments have pointed to the realization of the EI phase

in mixed-valent semiconductors. The first class of candidate materials consists
in rare-earth chalcogenides, such as TmSexTe1–x [144, 145], Sm1–xLaxS [145,
146], Sm1–xTmxS, YbO, and YbS [146]. These compounds all crystallize in the
NaCl structure and undergo a semiconductor–semimetal transition as the band
gap G is changed from positive to negative values by applying high hydrostatic
pressure to the sample.
When the direct gap of TmSe0.45Te0.55, formed between the localized 4f 13

levels and the 5d conduction-band states, is closing with external pressure, an
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indirect band gap develops between the highest valence Tm 4f 13 level �15 at the
� point and the minimum of the �2′ conduction band 5d states at the X point
of the Brillouin zone. As the otherwise localized 4f band is broadened and
shows a maximum at � due to p(Se,Te)–f (Tm) covalent hybridization [147],
it is tempting to use a simple two-band model for interpretation, similar to the
one illustrated in Section 19.3. On the basis of low-temperature resistivity and
Hall mobility measurements, the authors of [144] attribute the resistivity in-
crease with the vanishing gap to a condensation of free carriers into excitons,
placing the EI phase between semimetal and semiconductor, close to G ≈ 0.
Later, the same group has reported a linear increase of thermal conductivity and
diffusivity with decreasing temperature and attributed it to exciton superfluid-
ity [148]. Fehske and coworkers [149–151] have suggested theoretically that
the EI phase in the pressure-temperature phase diagram is narrower that the
experimental claim, being surrounded by a “halo” regions made of preformed
excitons coexisting with the normal semiconductor phase. The presence of this
halo, precursor of the EI, explains the experimental findings and rules out the
idea of a heat supercurrent, which conflicts with the general argument [45, 64]
that a flowing condensate carries no entropy and thus no heat.
Other candidate systems for the EI phase are the transition metal chalco-

genides TiSe2 [152–166], Ta2NiSe5 [167], TaSe2 [168], and the possibly
ferromagnetic EI GdI2 [169, 170] (see [171] for a review). The main evidence
relies on the hole quasiparticle band structure, as extracted from angular-
resolved photoemission [154–162, 165, 167]. The much studied TiSe2, at
a critical temperature of around 200 K, develops a charge density wave
[152] which does not fit the standard model based on Fermi surface nesting
[171, 172] but it is consistent with the presence of an EI (see Section 19.3).
In fact, the spanning wavevector of the charge density wave is the dis-
tance in reciprocal space between Ti 3d-electrons and Se 4p-holes, which are
bound by Coulomb attraction. Therefore, the excitonic instability drives the
charge density wave and may possibly couple with a periodic lattice distortion
[156, 158, 160, 162, 164–166], though alternate scenarios [159, 163, 171] have
been suggested. Recent time-resolved photoemission data link the artificially
induced collapse of the charge-ordered TiSe2 state to screening due to transient
generation of free charge carriers, supporting the excitonic origin of the phase
transition [173, 174].
A third class of candidate systems consists in Kondo insulators [175]

and heavy-fermion materials [176], which are mixed-valence semiconductors
characterized by a flat f -type valence band plus a dispersive—say d-type—
conduction band, typically exhibiting strongly correlated behavior. Such sys-
tems (e.g., SmB6) are often modeled by the Falicov–Kimball hamiltonian,
which takes into account the strong inter-band Coulomb interaction [177–
180]. Sham and coworkers have shown [178, 181] that the exciton condensate
made of f holes and d electrons may spontaneously break the lattice inver-
sion symmetry and lead to a ferroelectric phase transition of electronic origin,
whereas conventional ferroelectricity is associated to lattice distortion [182].
The predicted experimental signatures, supported by some evidence [183, 184],
include the divergence of the static dielectric constant, a ferroelectric resonance
in the microwave absorption spectrum, and a non-vanishing susceptibility for
second-harmonic generation.
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If intraband hybridization dominates over Coulomb interaction, then the
exciton condensate wave function acquires a different type of symmetry—
p-wave—which excludes the ferroelectric scenario but allows the coupling
with the lattice [185]. In this latter case the excitonic instability manifests it-
self as a spontaneous lattice deformation which may explain some of the phase
transitions known as ferroelastic [186].

19.2.3 Permanent exciton condensation in bilayers

In order to investigate permanent exciton condensation in semiconductor bi-
layers, one strategy is to host electrons in the first layer and holes in the second
layer [31, 32]. This task is nowadays accomplished by means of suitable elec-
tric gates which allow to separately contact the layers [187–192]. The spacer
between the two quantum wells suppresses the inter-layer tunneling which
induces exciton recombination, but it is sufficiently thin to provide strong inter-
layer Coulomb interaction (see [193] for a recent review). This setup allows
for measuring the Coulomb drag resistance, which is the inverse ratio of the
electric current measured in one layer to the open-circuit voltage developed
in the other layer in turn. Such drag resistance is predicted to diverge in the
presence of exciton condensation, as the exciton binding correlates the mo-
tion of carriers in the two layers [194–196]. Recent measurements [197–199]
point to low-temperature anomalies in the Coulomb drag which may origi-
nate from an excitonic instability, though other strongly correlated phases are
possible [193].
An alternate strategy is to place electrons in both layers in the presence of

the magnetic field (see [200–202] for reviews). The field bends classical elec-
tron trajectories into circular cyclotron orbits. As such orbits may be placed all
across the plane, overall their quantized energies consist in highly degenerate
“Landau levels”. Since the level degeneracy is the number of quanta of mag-
netic flux that cross the plane, for sufficiently high fields and identical layers
the lowest Landau level in each layer will be half filled by electrons (single
layer filling factor ν = 1/2, total filling factor νT = 1). Note that in this quan-
tum Hall effect regime, routinely detected through the quantization of the Hall
resistance, Landau levels may be considered either half filled or half empty.
Therefore, one may switch to the excitonic parlance [203, 204], regarding one
layer as filled by electrons and the other one by holes. In this picture the exci-
ton “vacuum” has the lowest Landau level totally filled in one layer (ν = 1) and
empty in the other layer (ν = 0), thus excitons are created by moving electrons
from one layer, which leaves a hole behind, to the other one [205].
There is significant evidence, based on low-temperature transport exper-

iments, that the bilayer ground state is a condensate of excitons. The first
hint is a huge enhancement of inter-layer tunneling solely due to many-body
effects, clearly pointing to strong inter-layer coherence [206]. The most com-
pelling observations are based on counterflow measurements [31, 32, 207],
where the electric currents of opposite sign and like magnitude that flow in
the two layers provide zero total electric current and a net exciton flow. For
filling factors other than νT=1 the Hall voltages separately measured in the
two layers are equal and opposite in sign, whereas for νT=1 they both drop
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to zero, consistently with the flow of an uncharged object such an exciton
[208–210]. To prevent edge states—always present at the boundary of quantum
Hall systems and unrelated to excitons—from playing a role in transport, the
Coulomb drag has been recently measured in the “Corbino” annular geometry,
confirming the excitonic nature of transport [211–214], whereas the superfluid
character of the exciton flow is unclear. The above scenario is supported by the
measurement of quasiparticle and collective excitations by means of tunneling
[215, 216] and inelastic light scattering [217, 218] spectroscopies.
Interesting theoretical predictions concern the response of the bilayer ex-

citon condensate to external electromagnetic fields [196, 219–221] and im-
purities [222], as well as the transport properties of hybrid circuits including
exciton condensates and superconductors [223–225]. For weak inter-layer in-
teraction or filling factors other than νT = 1, bilayers are predicted to undergo
phase transitions to other strongly correlated phases, such as paired two-
dimensional Laughlin liquids and Wigner solids [204], or peculiar excitonic
charge density waves [226].

19.2.4 Graphene-based systems

Graphene—a recently discovered allotrope of sp2 bonded carbon—is a one-
atom thick two-dimensional honeycomb lattice [227–230]. Its peculiar electri-
cal and mechanical properties—chemical stability, high mobility, easiness of
making electric contacts—have stimulated observations by means of different
electron spectroscopies and scanning probes. Intensive investigations have un-
covered new physics (e.g., Klein tunneling, anomalous types of quantum Hall
effect), rooted in the unusual character of quasiparticle excitations, that, in the
neighborhood of the Fermi energy, are massless chiral Dirac fermions. In fact,
conduction and valence bands form specular cones whose apexes touch in the
two inequivalent points K and K′, located at the corners of the hexagonal two-
dimensional Brillouin zone. These two points, which map into each other by
a rotation of 2π/6 [231], are the Fermi surface of the undoped system, hence
graphene is a zero-overlap semimetal.
In principle, graphene is a good candidate system for EI, since: (i) the den-

sity of states vanishes at the charge neutrality point, hence the long-range
Coulomb interaction is unscreened (ii) the perfect electron–hole symmetry
of Dirac cones favors the nesting of electron and hole isoenergetic surfaces.
Khveshchenko [232] was the first to suggest that graphene hides a latent ex-
citonic insulator instability. The EI phase is a charge density wave alternating
between the two inequivalent triangular sublattices, its spamming wavevector
connecting K and K′ in reciprocal space. A stack of graphite layers in a stag-
gered (ABAB . . .) configuration, with the atoms located in the centers and
corners of the hexagons in two adjacent layers, respectively, could stabilize the
EI by enforcing interlayer Coulomb interaction.
After this seminal prediction, many theoretical works have tried to esti-

mate the size of the EI transport gap as well as the stability of the EI phase
(see, for example, [233–237] and references therein as well as the reviews
[230, 238, 239]). The absence of consensus is not surprising, as the many-body
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problem in graphene is presently an open issue [230, 240]. Experiments
show that electrons in graphene allegedly behave as non-interacting particles
[227–229], except for small effects related to velocity renormalization [241],
coupling with phonons [227–229] / plasmons [242] (here we are not concerned
with the fractional quantum Hall effect [243, 244], induced by the magnetic
field). Therefore, if the EI energy gap ever exists, it must be smaller than the
present spectroscopic resolution.
A related theoretical proposal concerns permanent exciton condensation in

double-layer graphene [245, 246]. The idea is to separately contact the two
layers, which are spaced by a dielectric medium, in order to induce the same
quantity of charge with opposite sign in the two layers. With respect to the
double-layer made of usual semiconductors mentioned in Section 19.2.3, here
the advantage is the smaller value of the transverse electric field required to
polarize the bilayer, due to the zero energy gap of graphene. The estimate of the
Kosterlitz–Thouless temperature required to undergo the EI phase is debated
theoretically [247–257]; recent Coulomb drag measurements [258, 259] point
to the importance of inter-layer interactions.
In the absence of a dielectric spacer, undoped bilayer graphene is

predicted—among other proposals—to undergo an excitonic ferroelectric
phase that spontaneously breaks which-layer symmetry and polarizes the lay-
ers in charge [260–262]. The excitonic instability, which opens an energy gap,
appears to sensitively depend on the interaction range [263]: in the case of
finite range, the expected electronic phase is nematic and gapless [264, 265]
(see reviews [266, 267]). The experimental observation of a transport gap at
the charge neutrality point is controversial [268–271].
Other interesting graphene-based systems are carbon nanotubes, which may

be thought of as wrapped sheets of graphene [272]. Since nanotube electronic
states are built from those of graphene after imposing suitable boundary condi-
tions,they exhibit perfect electron-hole symmetry [273] and hence provide the
optimal nesting of energy bands to achieve permanent exciton condensation.
Besides, Coulomb interactions are especially strong due to the reduced dimen-
sionality of the system. Solving the effective-mass Bethe–Salpeter equation
for spinless excitons, Ando [274] (and later Hartmann and coworkers [275])
found that electron–hole Coulomb attraction is below the critical threshold for
the transition to the excitonic insulator. Later, Rontani [276] suggested that
inter-valley exchange interaction affecting triplet excitons may lead to an ex-
citonic instability. This instability does not depend on the size of the energy
gap, which is modulated by the axial magnetic field, as a consequence of the
relativistic nature of Dirac fermions. Moreover, the excitonic ground state in-
creases the quasiparticle magnetization, which could shed some light on recent
experiments in ultraclean devices [277].

19.3 Two-band versus BCS model

In this section we contrast the mean-field theory of the EI to the BCS theory
of superconductors. We compare the equations of two model junctions, (i) one
between EI and semimetal (SM–EI), (ii) the other one between superconductor
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and normal metal (N–S). In both cases the phase boundary is due to the var-
iation of the order parameter that changes along the direction perpendicular
to the interface, tending respectively to zero in the bulk normal phase and to
a constant value inside the condensed phase. The quasiparticle amplitudes for
both SM–EI and N–S junctions are formally identical and are used in Section
19.4 to compute the flow of charge and heat through the junction.

19.3.1 The SM–EI junction

We start studying the junction between semimetal (SM) and EI on the basis of
a spinless two-band model. The SM has overlapping isotropic conduction and
valence bands (b and a, respectively) of opposite curvature and one electron per
unit cell, hence the Fermi surface is a sphere in momentum space, located at the
nesting of the two bands; since there areN electrons and 2N states available, the
nesting occurs at zero energy in Fig. 19.1. One may turn the SM into an EI by
either changing the SM stoichiometric composition through suitable alloying
or applying stress, which opens a gap of size 2� in the bulk EI in virtue of
the strong inter-band Coulomb interaction [cf. right panel of Fig. 19.1(a)]. The
variation of the EI order parameter �(r) (defined below) along the coordinate
z normal to the interface determines the effective interface potential, as shown
in Fig. 19.2(a).
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Fig. 19.1 Junction between semimetal (SM,
left) and excitonic insulator (EI, right). (a)
Quasiparticle energy ω vs wavevector kz. The
labels mark the allowed elastic scattering
channels for an incoming electron (labeled I)
with kz = q+. In particular, A is the interband
(Andreev) reflection, B the intraband reflec-
tion, C the intraband transmission, and D the
interband transmission. The size of the EI gap
is 2�. (b) Isoenergetic contour lines in the
(kx, kz) space for the energy ω shown in panel
a. The arrows point to the group velocities of
electrons in the different scattering channels.
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Fig. 19.2 Andreev reflection. (a) SM–EI
junction. An incoming b-band electron is
backscattered into the a band. The thicker
(thinner) curves are the renormalized (bare)
bands at different values of the z coordinate,
with �(z) being the corresponding order pa-
rameter. Only the relevant low-energy portion
of the spectrum is shown here, with numbers
from 1 to 6 pointing to the time sequence of
the reflection process (the arrows represent
group velocities). The inset illustrates that the
reflection process may alternatively be seen
as a coherent flow of excitons from the SM
into the EI. (b) N–S junction. In contrast to
panel (a) an electron is backscattered as a
hole, hence the whole process may be thought
of as the dissipationless flow of Cooper pairs
through the interface.

The hamiltonian of the SM–EI junction is

HSM–EI = H0 +H1 +H2. (19.1)

Here H1 is the kinetic term which embodies the effect of the ideal and frozen
crystal lattice on electrons with the envelope function in the effective mass
approximation [278]:

H1 =
∑
i=a,b

∫
d rψ†

i (r) εi(r)ψi(r) . (19.2)

The field operator ψa(r) [ψb(r)] annihilates an electron in the valence (conduc-
tion) energy band at the position r in space. The real-space band operators εi(r)
appearing in Eq. (19.2) take the form:

εa(r) = G/2 + (2m)–1∇2; (19.3a)

εb(r) = – G/2 – (2m)–1∇2. (19.3b)

Here m is the (positive) effective mass, G is the (positive) band overlap, and
the energies are measured from the Fermi surface [45]. Throughout this work
we put h̄ = 1 and assume that the system has unit volume. The valence- and
conduction-band energy levels of the non-interacting bulk crystal, eigenvalues
of H1, are
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εa(ka) = G/2 – (2m)–1k2a, (19.4a)

εb(kb) = – G/2 + (2m)–1k2b, (19.4b)

where ka and kb refer to the respective band extrema. We assume the valence-
band has a single maximum at k = 0 whereas the conduction-band a single
minimum at k = w, and ignore complications due to the presence of equivalent
extrema. The Fermi wavevector is given by k2F = mG. The two-body term H2

consists of the inter-band Coulomb interaction,

H2 =
∫

d r d r′ ψ†
a (r)ψ

†
b

(
r′
)
V2

(
r – r′

)
ψb

(
r′
)
ψa(r) , (19.5)

with V2(r) being the dielectrically screened Coulomb potential [43]. Renor-
malization effects due to intra-band Coulomb interaction and temperature
dependence are taken into account into the energy band structure (19.4). The
one-body termH0 is the sum of two parts,

H0 = V + Vhyb. (19.6)

V is the intra-band term,

V =
∑
i=a,b

∫
d rψ†

i (r)V(r)ψi(r) , (19.7)

which includes the effects of the band offset as well as those of possible im-
purities and defects at the interface, such as a thin insulating layer, via the
single-particle potential V(r). The potential V(r) can also include the effect of
a voltage bias applied to the junction in a steady-state regime. The inter-band
term,

Vhyb =
∫

d rψ†
b (r)Vhyb(r)ψa(r) + H.c., (19.8)

hybridizes b and a bands by means of the potential Vhyb(r). This term may
be originated e.g., by the change of an element in the SM compound. The
influence of the potential Vhyb(r) on exciton condensation, which depends on
the symmetry of the bands involved, is discussed in [178, 181, 185].
Both the hybridization potential and the EI order parameter contribute ad-

ditively to the small band gap formed between the two overlapping bands
[cf. right panel in Fig. 19.1(a)] hence their separate contributions cannot be
distinguished by spectroscopy, as it was early recognized [45, 62, 279]. How-
ever, in this chapter we show that the transport properties across the SM–EI
junction are distinctive features of the EI. The key point is in the length scale
of the variation of the effective interface potential which reflects or transmits
the electron. A component of the effective potential is the position dependent
order parameter �(r), which decreases from the bulk value in the EI region to
zero in the SM region [see Fig. 19.2(a)]. The length scale of the change is the
coherence length in the EI, much longer than the lattice constant. Since this
scenario is most likely if the lattices of the two components are as similar as
possible, we classify as homogeneous the junction with �(r) being the only
contribution to the interface potential.
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On the other hand, the one-electron interface potential Vhyb(r) due to the
change in hybridization has an abrupt variation on a length scale of the order
of a few atomic layers, thus considered in our context as a heterogeneous junc-
tion (this includes the case of a Schottky barrier). We have studied the common
physical features of the heterogeneous junction, including the abrupt band edge
discontinuity, the short-ranged interface potential, and the impurities at the
interface. Whereas the charge carriers in the heterogeneous junction experi-
ence uninteresting intraband reflection, electrons in the homogeneous junction
change valley when backscattered as a feature of the EI band mixing. In the
rest of the chapter we focus on the homogeneous junction and refer the reader
elsewhere [59] for the study of the heterogeneous junction (corresponding to
the case Vhyb(r) �= 0).
Following Sham and Rice [6], we introduce the electron quasiparticle

amplitudes,

f (r, t) = 〈	0|ψ̃b(r, t)|	e
k〉, (19.9a)

g(r, t) = 〈	0|ψ̃a(r, t)|	e
k〉. (19.9b)

Here |	0〉 and |	e
k〉 are the exact interacting ground states with N and N + 1

electrons, respectively; the quantum index k labeling the electron quasiparticle
means the crystal momentum only in the bulk phase as the overall translational
symmetry is destroyed by the presence of the junction. States and operators are
written in the Heisenberg representation [280] (flagged by the tilde symbol on
operators):

ψ̃i(r, t) = exp(i [H – μN ] t)ψi(r) exp(–i [H – μN ] t), (19.10)

where μ is the chemical potential (here μ = 0 due to electron–hole symmetry)
and the number operator N is defined by

N =
∑
i=a,b

∫
d rψ†

i (r)ψi(r). (19.11)

Writing down the Heisenberg equations of motion for the operators ψ̃i(r, t),
exploiting the mean-field approximation to express them in a closed form, and
neglecting unessential intra-band Hartree terms, we derive a set of two coupled
integro-differential equations for the amplitudes f (r, t) and g(r, t):

i
∂f (r, t)
∂t

=

[
–
∇2

2m
–
k2F
2m

+ V(r)
]
f (r, t) +

∫
dr′�

(
r, r′

)
g
(
r′, t

)
,

(19.12a)

i
∂g(r, t)
∂t

=

[∇2

2m
+
k2F
2m

+ V(r)
]
g(r, t) +

∫
dr′�∗(r′, r) f (r′, t).

(19.12b)

The built-in coherence of the exciton condensate, �
(
r, r′

)
, appearing in

Eqs. (19.12) for k > kF is defined as

�
(
r, r′

)
= V2

(
r – r′

) 〈	0|ψ̃b(r) ψ̃†
a

(
r′
)
|	0〉. (19.13)



OUP-SECOND UNCORRECTED PROOF, October 11, 2014

19.3 Two-band versus BCS model 437

Except for the factor V2
(
r – r′

)
, �

(
r, r′

)
is the exciton macroscopic wave func-

tion. In fact, 〈	0|ψ̃b(r) ψ̃†
a

(
r′
)
|	0〉 is the average on the many-electron ground

state of the operator destroying an electron–hole pair, i.e., one b-band electron
at r and one a-band hole at r′ [the electron creation operator ψ̃†

a

(
r′
)
may be

regarded as a hole destruction operator]. Such average is zero in the SM phase,
since for k > kF b-band levels are empty and a-band levels filled, but it acquires
a finite value in the EI phase. Besides, the finiteness of �

(
r, r′

)
reflects the

new periodicity in real space of the EI phase, as the electron density shows an
additional charge-density-wave-like order characterized by the wavevector w
displacing the extrema of a and b bands [48]. For k < kF the roles of electrons
and holes are exchanged hence the definition (19.13) of �

(
r, r′

)
is modified

accordingly.
The built-in coherence �

(
r, r′

)
generically depends on both center-of-mass

and relative-motion coordinates, but inside the EI bulk the center-of-mass part
of the condensate wave function is a plane wave with zero momentum, hence�
depends only on the relative coordinate r – r′. We expect�(r – r′) to smoothly
vanish when

∣∣r – r′∣∣ becomes larger than the characteristic length, the exciton
radius. This allows us to easily find the bulk solution of the system of Eqs.
(19.12) [V(r) = 0] in terms of the two-component plane wave(

fk(r, t)
gk(r, t)

)
=

(
uk
vk

)
ei(k·r–ωt), (19.14)

with energy

ω(k) =
√
ξ 2k + |�k|2, (19.15)

where ξk =
(
k2 – k2F

)
/(2m) and �k is the Fourier component of �(r). The

amplitudes are normalized as

|uk|2 = 1

2

(
1 +

ξk

Ek

)
, |uk|2 + |vk|2 = 1, (19.16)

and the relative phase between uk and vk is given by

uk
vk

=
�k

ω(k) – ξk
. (19.17)

When �k = 0, the amplitude (19.14) is the trivial solution with uk = 1 and
vk = 0, i.e., a conduction-band plane wave. When excitons form a condensate,
solution (19.14) is admissible only if the self-consistency condition derived by
the definition of �(r) is satisfied. This condition, which can be easily obtained
from Eq. (19.13), is formally analogous to the BCS gap equation:

�k =
∑
p

V2, k–p�p

2ω(p)
, (19.18)

with V2, k being the Fourier component of V2(r).
In general, the amplitudes f (r, t) and g(r, t) are the position space represen-

tation of the stationary electron-like elementary excitation across the whole
junction. Taken together, they signify the wave function of the quasiparticle:
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f (g) is the probability amplitude for an electron of belonging to the conduction
(valence) band. They satisfy the normalization condition∫

d r
[| f (r, t)|2 + |g(r, t)|2] = 1, (19.19)

and have always positive excitation energy ω due to the definitions (19.9–
19.10). The probability current density J(r, t) can be found starting from the
definition of the probability density ρ(r, t) for finding either a conduction- or
a valence-band electron at a particular time and place, ρ(r, t) = | f |2 + |g|2.
After some manipulation of the equations of motion (19.12), one derives the
continuity equation

∂ρ

∂t
+ ∇ · J = 0, (19.20)

where

J = Im

{
f ∗

∇
m
f – g∗ ∇

m
g

}
. (19.21)

Note that the two terms appearing in the rhs of Eq. (19.21), referring respec-
tively to conduction and valence band electrons, have opposite sign since the
curvature of the two bands is opposite. One can verify that the semiclassical
group velocity of the quasiparticle, vg = ∇k ω, coincides with the velocity v
given by the full quantum mechanical expression (19.21), with J = ρ v.

19.3.2 The N–S junction

In this section we highlight the suggestive parallelism between the formalism
introduced in Section 19.3.1 and the treatment of quasiparticle excitations in
conventional superconductors, as modeled by the BCS theory.
The Hamiltonian of the N–S junction is

HN–S = H′
0 +H′

1 +H′
2. (19.22)

Electrons in the metal experience the crystal lattice potential through H′
1,

H′
1 = –

1

2m

∑
σ=↑,↓

∫
d rψ†

σ (r)∇2ψσ (r) . (19.23)

The space-dependent field operator ψσ (r) annihilates an electron with spin σ
in the twofold degenerate conduction energy band, whose energy dispersion is
taken to be parabolic for simplicity,

ε(k) = k2/(2m), (19.24)

ε(k) being the eigenvalue of H′
1. With respect to the SM, the role of a and b

bands is replaced by the two spin flavors ↑ and ↓. The Fermi wavevector kF is
fixed by the condition that there are N electrons in the system, with μ = k2F/2m.

The relevant two-body interaction H′
2 is attractive and short-ranged,

H′
2 = –g

∫
d rψ†

↑(r)ψ
†
↓(r)ψ↓(r)ψ↑(r) , (19.25)
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with g being a positive constant parametrizing the combined effect of Cou-
lomb and electron–phonon interaction in the vicinity of the Fermi surface [56].
The short-range interaction (19.25) does not affect electrons with parallel spin
as a consequence of Pauli exclusion principle. The effective potential (19.25)
results from the competition between Coulomb repulsion and the screening ef-
fect of the positive ions in the lattice. Close to the resonance frequency of the
ion motion, the ions give a very large response to the perturbation induced by
an electron charge. The resulting cloud of the moving electron plus the po-
larized ions has a net positive charge, then inducing a weak electron-electron
attraction, whose characteristic energy is a tiny fraction of the Fermi energy.
As in the case of the SM–EI junction, the boundary between N and S phases
is determined by the variation along z of the pair potential associated to H′

2,
defined below [see Fig. 19.2(b)]. A residual effect of Coulomb interaction is to
shift the energy levels, that are already renormalized in the dispersion relation
(19.24). The one-body term

H′
0 =

∑
σ=↑,↓

∫
d rψ†

σ (r)V
′(r)ψσ (r), (19.26)

arises from the possible impurities and defects at the interface, as well as the
applied bias voltage.
In order to find out the quasiparticles of the N–S junction, we follow the

same approach as for the SM–EI junction, with one important difference [281]
that derives from the following definition of the amplitudes:

f ′(r, t) = 〈	 ′
0|ψ̃↑(r, t)|	b

k 〉, (19.27a)

g′(r, t) = 〈	 ′
0|ψ̃

†
↓(r, t)|	

b
k 〉. (19.27b)

Here |	b
k 〉 is the state with one quasiparticle added to the many-electron ground

state |	 ′
0〉. According to Eqs. (19.27), the number of particles is not a con-

stant of motion, as we add both an electron [Eq. (19.27a)] and a hole [Eq.
(19.27b)] to |	 ′

0〉. This is allowed within the grand canonical framework, where
the chemical potential μ is the independent thermodynamic variable instead
of N.

The resulting ‘Bogoliubov–de Gennes’ equations of motion are:

i
∂f ′(r, t)
∂t

=

[
–
∇2

2m
–
k2F
2m

+ V ′(r)
]
f ′(r, t) +�′(r) g′(r, t), (19.28a)

i
∂g′(r, t)
∂t

=

[∇2

2m
+
k2F
2m

– V ′(r)
]
g′(r, t) +�′∗(r) f ′(r, t), (19.28b)

with the local pair potential �′(r) being defined as

�′(r) = –g〈	 ′
0|ψ̃↓(r) ψ̃↑(r) |	 ′

0〉. (19.29)

The space-dependent parameter �′(r) may be regarded as the center-of-mass
wave function of the condensate made of Cooper pairs. The latter are bound
pairs of two electrons with opposite spins, as it is evident from the definition
(19.29). The product of the two operators that destroys a Cooper pair, appear-
ing in the so-called anomalous average (19.29), does not commute with the
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number operator N as it breaks the U(1) gauge symmetry of total hamiltonian
HN–S. Nevertheless, since the number of electrons is macroscopic, the number
fluctuations, of order

√
N, are small and may be neglected with respect to the

average value of N. Moreover, since a value of one or two is still small with re-
spect to

√
N, the ground states with either N or N–2 electrons must be regarded

as identical, so the anomalous character (i.e., breaking the gauge symmetry of
HN–S) of the definitions (19.29) and (19.27) is physically irrelevant.
It is remarkable to observe that the systems of equations, (19.12) and

(19.28), respectively, describing the SM–EI and the N–S junctions, are for-
mally identical in the homogeneous case. This corresponds to put respectively
V(r) = 0 in Eqs. (19.12) and V ′(r) = 0 in Eqs. (19.28), as well as to take
the built-in exciton coherence in Eq. (19.12) as a local operator, �

(
r, r′

)
=

δ
(
r – r′

)
�(r) (then �k does not depend on k). However, the quasiparticle

amplitudes for the two model junctions signify profoundly different types of
single-particle excitations.
In the EI, to obtain a free electron in the b-band—for k > kF—one has to

break an exciton among those forming the condensate, that is a bound pair of
a b-band electron and a-band hole. The way to do this is to either create an
electron in the b band, whose amplitude component is f , or destroy a hole in
the a band, whose amplitude component is g.
In the S, to obtain an unbounded single particle with spin ↑, one has to

break a Cooper pair in the condensate. This is accomplished by means of either
creating an electron with spin ↑ or destroying an electron with spin ↓. The
latter option is equivalent to creating a hole with spin ↑, as a consequence of
time-reversal symmetry. The components f ′ and g′ are the amplitudes for the
propagation of the electron and the hole, respectively. Table 19.1 compares the
key features of the EI with those of the S, with regard to both the ground state
and the quasiparticle excitations.
In the following we are interested in comparing the SM–EI and N–S sys-

tems. In order to stress their formal analogy, hereafter we drop the prime
symbol to label quantities referring to the N–S junction (as f , g,�, etc.) and use
the same notation in both cases. With this convention, formulae (19.14–19.21)
obtained for the SM–EI junction hold for the N–S junction, too.

19.4 Andreev reflection at the interface between
excitonic insulator and semimetal

In this section we introduce the phenomenon of Andreev reflection at the N–S
boundary as a paradigm to discuss the transport through the SM–EI junction.
There are three qualitatively important results that are common to both sys-
tems: (i) all three Cartesian components of the velocity change sign when the
quasiparticle is reflected (Section 19.4.1) (ii) the ratio of incident quasiparticles
C(ω) which are transmitted through the interface depends on the coherence
factors of the condensate, being strongly suppressed close to the gap (Sec-
tion 19.4.2) (iii) the condensate induces pairing on the normal side of the
junction (proximity effect, Section 19.4.3).
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19.4.1 Velocity inversion at the interface

The electrical transport across the N–S junction exhibits high conductance be-
havior at vanishing applied voltage bias. This evidence seems to contradict the
fact that quasiparticle excitations are gapped in the S (see Fig. 19.3): quasi-
particles in the bulk N approaching the junction with energy smaller than the
gap, 0 < ω < �, cannot penetrate into the bulk S. This paradox is solved by
Andreev reflection, which is illustrated below.
Consider �(z) to be a smooth complex increasing function of z, tending re-

spectively to the asymptotic values zero when z → –∞, inside the bulk N, and
�0 when z → +∞, inside the bulk S [Fig. 19.2(b)]. Following Andreev [281],
we note that the medium under consideration is completely homogeneous with
an accuracy 2m |�0| /k2F—a very small quantity in typical superconductors.
Therefore, we seek a solution of Eqs. (19.28) in the form

f (r) = eikFn·rη(r) , g(r) = eikFn·rχ (r), (19.30)

where n is some unit vector and η(r) and χ (r) are functions that vary slowly
compared to eikFn·r. Substituting Eq. (19.30) in Eq. (19.28) and neglecting
higher derivatives of η and χ , we obtain

(ivFn · ∇ + ω) η(r) –�(z)χ (r) = 0, (19.31a)

(ivFn · ∇ – ω)χ (r) +�∗(z) η(r) = 0, (19.31b)

where vF = kF/m. It is easy to find for z → ±∞ the asymptotic form of the
solutions of Eqs. (19.31) describing the reflection of the quasiparticle falling
on the junction. When z → –∞ we put �(z) = 0. Then(

η

χ

)
= C1

(
1

0

)
eik1·r + C2

(
0

1

)
eik2·r, (19.32)

where n · k1 = ω/vF, n · k2 = –ω/vF; C1 and C2 are arbitrary constants. The
first term on the rhs of Eq. (19.32) corresponds to an electron whose velocity
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Fig. 19.3 Junction between normal metal (N,
left) and superconductor (S, right). The plot
shows the quasiparticle energy ω vs wavevec-
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filled with electrons (showed as a dashed
curve) with respect to the Fermi surface.
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v (or J) lies along n, and the second term to a hole whose velocity lies in the
opposite direction to n (in fact ω/vF � kF since 2m |�0| /k2F � 1). If nz > 0,
then the wave function (19.32) describes an electron incident on the boundary
and reflected as a hole on the N side; if nz < 0, it describes an incident hole
reflected as an electron. When z → +∞ we put �(z) = �0 in Eq. (19.31). The
solution describing the transmitted wave (Jz > 0) has for ω > |�0| the form(

η

χ

)
=
C3√
2

(√
1 + vFn · k3/ω eiϕ/2√
1 – vFn · k3/ω e–iϕ/2

)
eik3·r, (19.33)

where C3 is a constant, ϕ is the phase of �0,

n · k3 = v–1F
√
ω2 – |�0|2 for nz > 0, (19.34a)

n · k3 = –v–1F

√
ω2 – |�0|2 for nz < 0. (19.34b)

As expected, for ω < |�0| the functions η and χ decay exponentially as z →
+∞, hence the quasiparticle is prevented from entering the bulk S. However,
all three Cartesian components of the velocity of the reflected particle change
sign [see Fig. 19.4(b)]. This remarkable behavior, which is not due to interface
roughness since we take the interface to be completely flat, is the key to explain
the electric transport through the N–S junction. An electron with velocity v is
Andreev-reflected into a hole with velocity –v which carries exactly the same
current as the incident electron. In fact, in virtue of time-reversal invariance,
the hole moving with velocity –v may be regarded as an electron moving with
velocity v [Fig. 19.4(b)]. Therefore, we may understand the process of Andreev
reflection as an electron above the Fermi surface forming a Cooper pair with
another electron below the Fermi surface on the N side: such pair moves to the
S side merging into the condensate, whereas the second electron leaves a hole
behind in the N Fermi sea [282].
The results obtained in this section hold also for the SM–EI junction,

provided one links η and χ components to the probability amplitudes of
an electron of being in either b or a band, respectively, as illustrated in
Fig. 19.4(a). Apparently, the reflection process at the SM–EI junction seems
the usual reflection of an electron from the gap barrier. However, the complete
reversal of the velocity vector suggests that the reflected electron may be re-
garded as an incoming hole with the same velocity as the incoming electron.
The idea is that the overall reflection process may be thought of as the flow of
electron–hole pairs—excitons—from the SM to the EI side, where they merge
into the exciton condensate. Below we substantiate this alternate interpretation.
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Fig. 19.4 Sketch of Andreev reflection for
quasiparticles approaching the junction from
the normal-phase side. (a) SM–EI junction.
The reflected left-going electron is equiva-
lent to a right-going hole. (b) N–S junction.
The reflected left-going hole is equivalent to
a right-going electron.
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19.4.2 Coherence factors in the transmission coefficients

To proceed we specify the functional form of the interface potential, assum-
ing that the excitonic coherence is a step function at the SM–EI interface,
�(r) = �θ (z), with � > 0. Moreover, we introduce a simple-minded model
for the effect of disorder at the origin (e.g., an insulating layer) through the
δ-potential V(r) = H δ(z). In the following we abandon the slowly varying am-
plitude approximation and look for solutions of the full Eqs. (19.28), requiring
a larger number of scattering channels than those used in Section 19.4.1.
Carriers coming from the bulk SM with energies slightly outside the EI

gap have, say for the incident electron at I, two reflection channels, A and
B, and two transmission channels at C and D (see Fig. 19.1). If the energy
lies within the gap, only the two reflection channels are possible. Whereas
the interface—by breaking the lattice translational symmetry—can in principle
connect different parts of the Brillouin zone [283], here the relevant regions of
the wavevector space are the two valleys near the gaps in the bulk EI for those
states with the same component of the wavevector parallel to the interface.
We consider the elastic scattering at equilibrium, matching wave functions

of the incident (I), transmitted (C and D), and reflected (A and B) states at the
boundary, following the approach of [284]. In the bulk EI, there are a pair of
magnitudes of k associated with ω, namely

k± =
√
2m

√
k2F/2m± (

ω2 –�2
)1/2

. (19.35)

The total degeneracy of relevant states for each ω is fourfold: ±k±. The two
states ±k+ have a dominant conduction-band character, whereas the two states
±k– are mainly valence-band states. Using the notation

	(z) =

(
f (z)

g(z)

)
(19.36)

the wave functions degenerate in ω are

	±k+ =
(
u0
v0

)
e±ik+z, 	±k– =

(
v0
u0

)
e±ik–z, (19.37)

with the amplitudes u0, v0 defined as

u0 =

√
1

2

[
1 +

(ω2 –�2)1/2

ω

]
, v0 =

√
1

2

[
1 –

(ω2 –�2)1/2

ω

]
, (19.38)

possibly extended in the complex manifold. With regard to the SM bulk,
� = 0 and the two possible magnitudes of the momentum q reduce to
q± = [2m(k2F/2m± ω)]1/2, with wave functions

	±q+ =
(
1

0

)
e±iq+z, 	±q– =

(
0

1

)
e±iq–z, (19.39)

for conduction and valence bands, respectively. The appropriate boundary con-
ditions are: (i) Continuity of 	 at z = 0, so 	EI(0) = 	SM(0) ≡ 	(0).
(ii)

[
f ′EI(0) – f ′SM(0)

]
/(2m) = Hf (0) and

[
g′
EI(0) – g

′
SM(0)

]
/(2m) = –Hg(0),

the derivative boundary conditions appropriate for δ-functions. (iii) Incoming
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(incident), reflected and transmitted wave directions are defined by their group
velocities, i.e., an electron incident from the left is transmitted with v > 0 and
reflected with v < 0.

If an electron incident on the interface from the SM with energy ω > �

has wavevector q+, the four outgoing channels, with probabilities A, B, C, D,
have respectively wavevectors q–, –q+, k+, –k–, as shown in Fig. 19.1. C is the
probability of transmission through the interface with a wavevector on the same
(i.e., forward) side of the Fermi surface as q+ (i.e., q+ → k+, not – k–), whereas
D gives the probability of transmission on the back side of the Fermi surface
(i.e., q+ → –k–). B is the probability of intra-branch reflection, whereas A is
the probability of Andreev (cross-branch) reflection. The steady state solution
of system (19.12) is

	SM(z) = 	inc(z) +	refl(z), 	EI(z) = 	trans(z),

where

	inc(z) =

(
1

0

)
eiq

+z, 	refl(z) = a

(
0

1

)
eiq

–z + b

(
1

0

)
e–iq

+z,

	trans(z) = c

(
u0
v0

)
eik

+z + d

(
v0
u0

)
e–ik

–z. (19.40)

Applying the boundary conditions, we obtain a system of four linear equa-
tions in the four unknowns a, b, c, and d, which we solve at a fixed value for
ω. We introduce the dimensionless barrier strength Z = H/vF, and approxi-
mate k+ = k– = q+ = q– ≈ kF, on the basis that the ratio 2m�/k2F is small.
The quantities A, B, C, D, are the ratios of the probability current densities
of the specific transmission or reflection channels to the current of the inci-
dent particle, e.g., A = |JA/Jinc|, and so on. The conservation of probability
requires that

A + B + C + D = 1. (19.41)

This result is useful in simplifying expressions for energies below the gap,
ω < �, where there can be no transmitted electrons, so that C = D = 0. Then,
Eq. (19.41) reduces simply to A = 1 – B.

We find

a =
u0v0
γ

,

b =

(
u20 – v

2
0

)
Z2 – iZ

γ
,

c =
u0 (1 + iZ)

γ
,

d = –
iv0Z

γ
, (19.42)

γ = Z2
(
v20 – u

2
0

)
+ (iZ + 1/2) 2u20.

The probability coefficients are actually the currents, measured in units of vF.
For example, A = |JA| /vF = |a|2, and D = |d|2 / ∣∣v20 – u20∣∣. The expression



OUP-SECOND UNCORRECTED PROOF, October 11, 2014

19.4 Andreev reflection at the interface between excitonic insulator and semimetal 445

Table 19.2 Transmission and reflection coefficients for the SM–EI junction. A gives the proba-
bility of Andreev reflection (cross-branch), B of ordinary reflection, C of transmission without
branch crossing, and D of cross-branch transmission. Here θ = ω2 + 4Z2ω2 + (1 + 4Z4)(�2 –ω2) –

8Z3ω
(
�2 – ω2

)1/2
, γ = Z2

(
v20 – u

2
0

)
+ (iZ + 1/2) 2u20, and u

2
0 = 1 – v20 = 1/2 [1 + (ω2 –�2)1/2/ω].

A B C D

No condensate 0 Z2

1+Z2
1

1+Z2
0

General form

ω < � �2

θ
1 – A 0 0

ω > �
u20v

2
0

|γ |2

(
u20–v

2
0

)2
Z4+Z2

|γ |2
u20

(
u20–v

2
0

)(
1+Z2

)
|γ |2

v20

(
u20–v

2
0

)
Z2

|γ |2
No barrier
ω < � 1 0 0 0

ω > �
v20
u20

0
u20–v

2
0

u20
0

Strong barrier

ω < � �2

4Z4(�2–ω2)
1 – A 0 0

ω > �
u20v

2
0

Z4(u20–v
2
0)
2 1 – 1

Z2(u20–v
2
0)

u20
Z2(u20–v

2
0)

v20
Z2(u20–v

2
0)

for the energy dependences of A, B, C, and D can be conveniently written in
terms of the so-called coherence factors u0 and v0. The results are given in
Table 19.2. For convenience, in addition to the general results we also list the
limiting forms of the results for zero barrier (Z = 0) and for a strong barrier
[Z2(u20 – v

2
0) � 1], as well as for � = 0 (the semimetal case).

In the absence of disorder (Z = 0), the dependence of the transmission
coefficient C(ω) on energies close to the gap is

C(ω) = 2
√
2 (ω –�) /� ω ≈ �, (19.43)

whereas below the gap the electron is totally Andreev-reflected and the trans-
mission is zero. The ordinary reflection channel is completely suppressed
(B = 0) as well as cross-branch transmission (D = 0). The situation is depicted
in Fig. 19.5(a). Even above the gap, ω > �, there is a high probability for An-
dreev reflection, which strongly depends on ω. For energies close to the gap,
ω ≈ �, Andreev reflection is almost certain, A ≈ 1. This is the cause for the
low value of interface conductance. The effect is washed out by the opacity of
the interface: as |Z| increases [Z = –1 in Fig. 19.5(b)], the total reflection prob-
ability A + B loses its dependence on ω, and the dominant reflection channel
changes from the Andreev one (A) into the ordinary one (B).

The interface opacity Z is the handle to tune the effect of excitonic coher-
ence on transport, as discussed in the next sections. Remarkably, the overall
set of results of Table 19.2 is formally identical to the analogous quantities
obtained for the N–S junction (e.g., compare with Table II of [284]), the only
slight difference being the behavior for Z �= 0. In fact, due to the different
boundary conditions, the coefficients of the N–S junction are even functions
of Z, whereas those of Table 19.2 do not have a definite parity with respect to
the sign of Z for ω < � (there is a mistake in the entry corresponding to the
sub-gap strong-barrier case appearing in Table II of Ref. [284]). Nevertheless,
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Fig. 19.5 Transmission and reflection coeffi-
cients at the SM–EI boundary vs. quasiparti-
cle energy ω. (a) Z = 0. (b) Z = –1. A gives
the probability of Andreev reflection, B gives
the probability of ordinary reflection, C gives
the transmission probability without branch
crossing, and D gives the probability of trans-
mission with branch crossing. The parameter
Z measures the interface transparency.

the expressions for coefficients in the strong-barrier case are the same for the
SM–EI and the N–S junction.
The appearance of coherence factors u and v in the coefficients of the SM–

EI junction demonstrates that the electron–hole condensate strongly affects
the transport and in general the wave function of carriers, by means of both
inducing coherence on the SM side and altering transmission features.

19.4.3 Proximity effect

From the results of the previous two subsections it follows that the condensate
on the right hand side of the junction induces pairing correlations in the normal
phase on the left hand side, even if there the order parameter � is zero as
interactions are switched off. In the N–S junction the pairing induced by the
proximity effect correlates electrons with opposite spins, whereas in the SM–EI
junction it correlates electron–hole pairs.
To show that the exciton condensate induces exciton order on the SM side it

is sufficient to compute the built-in coherence 〈	0|ψ̃b(r) ψ̃†
a (r)|	0〉. This would

be zero in an isolated SM but by the proximity with the condensate acquires
the value

〈	0|ψ̃b(r) ψ̃†
a (r)|	0〉 =

∑
k

fk(r) g∗
k(r)

≈ 2
∫
dωN(ω) cos

[
arctan

(
�

ω

)
+ 2

ω

vF
z

]
, (19.44)

with N(ω) being the density of states in the SM. Inside the gap
(ω ≈ 0) each quasiparticle contributes to the sum (19.44) with a term ∼
exp

[
i arctan (�/ω) + 2iωz/vF

]
. The only coordinate dependence enters this

expression via the phase factor, 2ωz/vF, which represents the relative phase
shift of conduction- and valence-band components of the wave function. If
ω = 0, then these components keep constant relative phase arctan (�/ω) all the
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way to z = –∞, where no pairing interactions exist. Therefore, the reflected
electron—equivalent to an incoming hole—has exactly the same velocity as
the incident particle, and will thus retrace exactly the same path all the way
to z = –∞. At finite energy, the z dependent oscillations provide destructive
interference on the pair coherence. Hence, the paths of incident and reflected
electrons part ways away from the interface. Analogous considerations apply to
the incident electron and to the Andreev-reflected hole in a sub-gap scattering
event at the N–S interface [282].

19.5 A perfect insulator

From the results for transmission and reflection probabilities obtained in Sec-
tion 19.4.2, we derive in the linear response regime the values of the electrical
and thermal conductances of the SM–EI junction, G and GT , respectively. The
derivation is standard and it proceeds along the lines explained for example
in [180, 284, 285]. The Seebeck coefficient is zero due to the symmetry of
the model [180, 286]. Then, except for an additive phonon contribution to the
thermal conductance, the interface thermoelectric properties are completely
determined by G and GT .
Both G and GT have an activation threshold at low temperature, T , propor-

tional to the gap �, as shown in Fig. 19.6 (cf. the curves for the transparent
barrier with Z = 0). At first sight, the transport properties of the SM–EI
junction seem dramatically different from those of the N–S junction, as the
latter may sustain an electric supercurrent at vanishing bias voltage whereas
the former exhibits insulating behavior. However, a closer examination shows
that the two junctions share essential features.
In fact, the functional dependence of GT on T and� is the same for both the

SM–EI and N–S junctions. Remarkably, the time rate of entropy production, Ṡ,
is the same very low value in both cases, pointing to the disipationless character
of the flow of charge and heat. This is seen by the relation between Ṡ and the
transport coefficients [286],

0 0.5 1 1.5 2

T (∆/KB units)

0 0.5 1 1.5 2

T (∆/KB units)

0

0.2

0.4

0.6

0.8

1

G
(Z

2
+

1
) 

[e
2
A

 N
(ε

F
) 

v F
/4

 u
n
it
s
] 

G
T
(Z

2
+

1
) 

[∆
2
 N

(ε
F
) 

v F
/4

 u
n
it
s
] 

0

1

2

3

4

5

6

Z = 0

Z = 9

Z = 0

Z = 7

(a) (b)

Fig. 19.6 (a) Electrical conductanceG of the
SM–EI junction vs temperature T . The curves
correspond to different values of the dimen-
sionless barrier opacity, Z = 0, 1, 3, 5, 7, 9.
For each value of Z, G is divided by the
corresponding transmission coefficient when
� = 0, i.e., C�=0 = (Z2 + 1)–1. KB is the
Boltzmann constant, A is the interface cross-
sectional area, N(εF) is the density of states
evaluated at the Fermi energy εF. (b) Thermal
conductance GT of the SM–EI junction vs. T .
The curves correspond to Z = 0, 1, 3, 5, 7.
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Ṡ = G(δV)2/T +AGT (δT)
2/T2, (19.45)

with δT and δV being respectively the temperature and voltage drops at the
interface and A being the cross-sectional area. In the N–S junction the super-
fluid component does not carry any entropy. Therefore, the terms proportional
to G and GT only include the contribution of quasiparticles which, when they
cross the N–S interface, experience the same electric and thermal resistance as
electrons do across the SM–EI boundary.
To shed light on the dissipationless motion of electrons in the linear transport

regime, we vary the opacity of the SM–EI junction. The coherence between the
two sides of the interface is diminished as the dimensionless barrier strength
Z increases from zero (clean junction) to finite values (tunneling regime).
Figure 19.6 displays G and GT for increasing values of Z. Since the transmis-
sion coefficient C(ω) decreases uniformly in the absence of any electron–hole
pairing (cf. Table 19.2), C�=0 = (Z2 + 1)–1, we rescale conductances dividing
them by C�=0. Naively, we would expect that the insertion of an insulating
layer would reduce the conductances. On the contrary, the effect is just the
opposite: as Z increases, G/C�=0 and GT/C�=0 increase, eventually reaching
saturation in the tunneling regime. This shows that the exciton order induced
in the SM side by EI makes the junction less conductive for charge and heat
transport. The plot of the differential conductance (dI/dV)/C�=0 vs the bias
voltage V at low T (Fig. 19.7) allows clear monitoring of the transition from
the transparent to the opaque limit, where transport is recovered. The effect
is maximum for eV ≈ � and as T → 0, when the differential conductance
becomes proportional to C(eV) + D(eV).

19.5.1 Charge versus exciton current

As anticipated at the end of Section 19.4.1, the transport features discussed
above which distinguish the excitonic insulator from the normal insulating
state may be explained by two alternate physical pictures. The conventional



OUP-SECOND UNCORRECTED PROOF, October 11, 2014

19.5 A perfect insulator 449

view is that electrons below the energy gap cannot contribute to transport as
they are backscattered by the gap barrier, �, formed by the proximity effect
of the EI. The less conventional view is to make use of the analogy with the
N–S junction. Instead of counting the electrons in the valence band as neg-
atively charged carriers of the current, we may start with the state with the
valence band filled to the top as carrying zero current even under an electri-
cal or thermal current and regard each unoccupied state in the valence band as
a positively charged carrier—a hole—moving in the direction opposite to the
electron. Then the reflected electrons are replaced by incoming holes toward
the barrier. Therefore, the incident conduction electron and the valence hole
may be viewed as a correlated pair moving toward the interface [Fig. 19.4(a)].
The novelty is that a constant electron–hole current moves from the SM to the
EI below the gap, where electric transport is blocked. As the electron–hole pair
approaches the interface from the SM side, the exciton current is converted into
the condensate supercurrent: the global effect is that in the steady state an ex-
citon current exists flowing constantly and reversibly all the way from the SM
to the EI without any form of dissipation.
The above scenario follows from the continuity equation for the electron–

hole current. The probability density ρe-h(r, t) for finding either a conduction-
band electron or a valence-band hole at a particular time and place is ρe-h(r, t) =
| f |2 + 1 – |g|2. Thus, the associated continuity equation is

∂ρe-h

∂t
+ ∇ · Je-h = 0, Je-h = Jpair + Jcond. (19.46)

One component of the electron–hole current,

Jpair =
1

m
Im

{
f ∗∇f + g∗∇g}, (19.47)

is the density current of the electron–hole pair, similar to the standard particle
carrier J = m–1Im{f ∗∇f – g∗∇g} with an important difference in sign. The
other component,

∇ · Jcond = –4 Im
{
f ∗g�

}
, (19.48)

depends explicitly on the built-in coherence of the electron–hole condensate
�, and may be described as the exciton supercurrent of the EI state.
Let us go back to our picture of �(z) smoothly varying in space (Fig. 19.2),

with the junction being divided into small neighborhoods at position r and each
being a homogeneous system. If ω < |�0|, each electron wave function, so-
lution of Eq. (19.28), carries zero total electric current eJ, which is the sum
of the equal and opposite incident and reflected fluxes, and finite and constant
electron–hole current Je-h = 2vFn, with n a unit vector. When z → –∞, far
from the interface on the SM side, the supercurrent contribution Jcond is zero.
As z increases and �(z) gradually rises, both J and Je-h conserve their con-
stant value, independent of z, since quasiparticle states are stationary. However,
their analysis in terms of incident and reflected quasiparticles is qualitatively
different.
From the electron point of view, we see in Fig. 19.2(a) that the incoming

conduction-band particle approaching the EI boundary sees its group velocity
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progressively reduced (from time step 1 to time step 3), up to the classi-
cal turning point (time step 4) where it changes direction and branch of the
spectrum: there is no net electric current.
From the exciton point of view, as the contribution to the electron–hole cur-

rent Jpair vanishes approaching the boundary, since the group velocity goes to
zero at the classical turning point where the wave function becomes evanescent,
Jpair is converted into the supercurrent Jcond. Excitons therefore can flow into
the EI side without any resistance, and the sum Je-h of the two contributions,
Jpair and Jcond, is constant through all the space [Fig. 19.4(a)].
As ω exceeds |�0|, J acquires a finite value and Je-h monotonously de-

creases. However, close to the gap, electron transmission to the EI side is still
inhibited [cf. Eq. (19.43)] by the pairing between electrons and holes of the
condensate: an electron can stand alone and carry current only after its parent
exciton has been “ionized” by injecting—say— a conduction-band electron or
by filling a valence-band hole in the EI. The ionization costs an amount of
energy of the order of the binding energy of the exciton, |�0|. Therefore, as
long as ω ≈ |�0|, the competition between exciton and electron flow favors
Andreev reflection, which is the source of both electric and thermal resistances.
In equilibrium, there is no net charge or heat flow, since quasi-particles with

v and –v compensate each other. However, if a heat current flows, the net drift
velocity of electrons and holes locally “drags” the exciton supercurrent, which
otherwise would be pinned by various scattering sources [279].

19.5.2 A concrete example

As a concrete example of the aforementioned conversion of free-exciton cur-
rent into condensate supercurrent, consider the quasiparticle steady state of
Eq. (19.40). For ω < �, k+ and k– in the EI (z > 0) have small imaginary parts
which lead to an exponential decay on a length scale λ, where

λ =
vF
2�

(
1 –

ω2

�2

)–1/2

. (19.49)

The quasiparticles penetrate a depth λ before the electron–hole current Jpair
is converted to a supercurrent Jcond carried by the condensate; right at the
gap edge the length diverges. For clarity, we define C and D here as the
transmission probabilities at z � λ, while for ω > � plane-wave currents
are spatially uniform and we need not specify the position at which they are
evaluated.
When the interface is transparent, Z = 0, the steady state (19.40) is specified

by b = d = 0, a = v0/u0, and c = 1/u0. Below the gap coherence factors u0
and v0 are complex and equal in modulus. For ω < �, |a|2 = 1, which means
the incident conduction-band electron is totally reflected into the SM valence
band. Thus, the electron–hole current Jpair carried in the semimetal equals 2vF,
but Jpair of the excitonic insulator is exponentially small for z � 0. Explicitly,

Jpair =
|c|2
m

(|u0|2 + |v0|2) Im
[
(eik

+z)∗
∂

∂z
(eik

+z)

]
.
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Letting k+ ≈ kF + i/(2λ), we have

Jpair = 2vFe
–z/λ. (19.50)

The “disappearing” electron–hole current reappears as exciton current carried
by the condensate. Recalling the definition of Jcond,

∂Jcond/∂z = – 4 Im
{
f ∗g�

}
,

by integration we obtain

Jcond = – 4� |c|2
∫ z

0
d z′e–z

′/λ Im
[
u∗
0v0

]
= 2vF

(
1 – e–z/λ

)
. (19.51)

This is the desired result, explicitly showing the supercurrent Jcond increasing
to an asymptotic value as z → ∞, at the same rate as the free electron–hole
current Jpair dies away.

19.6 Josephson oscillations between exciton
condensates in electrostatic traps

The Josephson effect is a macroscopic coherent phenomenon which has been
observed in systems as diverse as superconductors [287], superfluid helium
[288–290], and Bose–Einstein condensates of trapped ultra-cold atomic gases
[291–294]. Since Josephson oscillations appear naturally when two spatially
separated macroscopic wave functions are weakly coupled, they have been pre-
dicted for bosonic excitations in solids as well, like polaritons [295, 296] and
excitons optically pumped in suitable semiconductor heterostructures [297].
However, unlike the polaritons, which have a photonic component allowing
for easy detection, excitons stay dark unless they recombine radiatively. So
far, it is unclear how the exciton Josephson effect could be observed. One pro-
posal relied on the observation of quasiparticle excitations from the spectral
properties of the emitted light [296]. A drawback of this idea is that spectral
properties are not unambiguously linked to the condensed phase. In this section
we propose the interference of emitted photons as a direct probe of the exciton
Josephson effect.
Condensed excitons are predicted to act as coherent light sources [127–129]

(see discussion below). If Josephson oscillations occur between two exciton
traps, in principle they can be probed by measuring the interference of the
beams separately emitted from the traps. However, in the time interval before
recombination and contrary to the polariton case, there are too few photons
emitted for an adequate signal to noise ratio, so one has to average the sig-
nal over many replicas of the same experiment [40]. Here we show that such
ensemble averaging blurs the signature of the Josephson effect except in the
relevant case of exciton “plasma” oscillations [16]. For the latter the dipole
energy difference between the traps modulates the visibility α of interference
fringes, providing a means for detection.
The subsections below are organized as follows: we first introduce the

double quantum well system illustrating a feasible scheme to manipulate
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electrically the exciton phase (Section 19.6.1); we then set the theoretical
framework (Section 19.6.2), and we eventually propose a correlated photon
counting experiment (Section 19.6.3).

19.6.1 Electrical control of the exciton phase

Consider a double quantum well where electrons and holes are separately con-
fined in the two layers. In experiments aiming at Bose–Einstein condensation
of excitons, electron–hole pairs are optically generated at energies higher than
the band gap, left to thermalize, form excitons, and, at sufficiently low tem-
perature and high density, condense before radiative decay [26, 40]. Let z be
the growth axis of the two wells separated by distance d. The electrons in the
conduction band and holes in the valence band move in the planes z = d, 0,
respectively (Fig. 19.8). In the experiments [24, 25], an electric field Fz is ap-
plied along z to suppress inter-layer tunneling, thereby quenching the exciton
recombination.
Fabrications [83, 84, 96] of electrostatic traps with suitably located elec-

trodes to provide lateral confinement for the excitons have been implemented.
The double quantum well is sandwiched between two spacer layers, pro-
viding insulation from planar electrodes lithographed on both sides of the
coupled structure. Each electrode controls a tunable gate voltage, Vg(x, y, z),
which localizes in a region of the xy plane the field component along z,
Fz(x, y, z) = –∂Vg(x, y, z)/∂z, while Fx and Fy are small and can be neglected
as well as the dependence of Fz on z. The vertical field Fz(x, y) makes the elec-
trostatic potential energy of the exciton dipole depend on the lateral position,
UX(x, y) = –edFz(x, y) (e < 0) [cf. Fig. 19.8(b)]. In this way, potential traps for
excitons are designed with great flexibility, with in situ control of the height,
width, and shape of the potential barriers [83, 88].
First, we focus on the quasi-equilibrium situation before radiative recombi-

nation, where excitons condense in two coupled electrostatic traps, both within
the condensate coherence length. Figure 19.8(b) depicts the exciton potential
profile UX(x, y = 0) along the x axis, with a link between two identical traps.
The potential barrier allows tunneling between the condensates in the two traps,
whose macroscopic wave functions are �1(x, y, t) and �2(x, y, t), respectively.
The optical coherence in a single trap is of the form

Fz

d z

E
n
e
rg

y

μ

x

∆U

V0

UX(x)

(a) (b)

Fig. 19.8 (a) Double quantum well energy profile along the growth direction z. Electrons and hole move freely in the xy planes at z = d and z = 0,
respectively. Fz is the component of the electric field parallel to the exciton electric dipole. (b) Effective exciton potential profile vs. x for the
double-trap setup.
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�(x, y, t) =
〈
	†
a (x, y, 0, t)	b(x, y, d, t)

〉
, (19.52)

where 〈. . .〉 denotes quantum and thermal average in the grand canonical
formalism. In Eq. (19.52) 	†

a (x, y, 0, t) and 	b(x, y, d, t) are respectively the
hole and electron destruction operators, with the vacuum being the semi-
conductor ground state with no excitons. With respect to definition (19.13),
here by putting (x, y) = (x′, y′) we ignore the internal structure of the exci-
ton relative-motion wave function. The reason is that we focus on the ideal
BEC limit of dilute weakly interacting excitons, n a2B � 1, with aB being the
two-dimensional effective Bohr radius and n the exciton density. Therefore,
�(x, y, t) is the macroscopic wave function for the center-of-mass motion of
excitons, which may be written in the form

�(x, y, t) =
√
ns e

iϕ , (19.53)

with ns being the density of the exciton condensate and ϕ the phase. We recall
that only the relative phase between the two condensates has measurable effects
[298, 299].
For a gauge transformation of the gate potential Vg → Vg – c–1∂χ (t)/∂t, which
leaves the field Fz unaltered, the field operators 	 gain a phase,

	a → 	a exp

[
ie

h̄c
χ (x, y, 0, t)

]
,

	b → 	b exp

[
ie

h̄c
χ (x, y, d, t)

]
. (19.54)

Throughout this section we indicate explicitly the reduced Planck’s constant h̄.
The macroscopic wave function, by Eq. (19.52), also gains a phase,

ϕ → ϕ +
e

h̄c
[χ (z = d, t) – χ (z = 0, t)] . (19.55)

Hence, the frequency of time oscillation of the condensate is given by the
electrostatic energy of the exciton dipole in the external field [219],U = –edFz:

ϕ = ϕ(0) +
1

h̄
edFzt, (19.56)

with ϕ(0) being the time-independent zero-field value. In the absence of the
bilayer separation of the electrons and the holes, their gauge phases gained
in the electric field would cancel each other resulting in no time depend-
ence driven by U. Equation (19.56) shows that the experimentally controllable
dipole energy difference between the two traps depicted in Fig. 19.8(b),
�U = – ed(Fz1 – Fz2), drives the relative phase between the two conden-
sates, thereby creating Josephson oscillations as a means for measuring the
Josephson tunnel between the traps.

19.6.2 Exciton Josephson oscillations

We next introduce the usual two-mode description of inter-trap dynamics based
on the Gross–Pitaevskii (GP) equation [16, 295–297, 300–302]. Exciton–
exciton correlation [303] beyond the GP mean field may be neglected due to
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the repulsive character of the dipolar interaction between excitons in coupled
quantum wells. The condensate total wave function solution is

�(x, y, t) = �1(x, y,N1) e
iϕ1 +�2(x, y,N2) e

iϕ2 , (19.57)

where both the trap population Ni(t) and the condensate phase ϕi(t) possess
the entire time dependence for the ith trap (i = 1, 2), and �i(x, y,Ni) is a real
quantity, with ∫

dx
∫
dy �2

i (x, y,Ni) = Ni(t). (19.58)

The dynamics of the GP macroscopic wave function �(x, y, t) depends entirely
on the temporal evolution of two variables, the population imbalance k(t) =
(N1 – N2)/2 and the relative phase φ(t) = ϕ1 – ϕ2 of the two condensates. Here
we consider a time interval much shorter than the exciton lifetime (10—100 ns)
and ignore the spin structure. Therefore, the total population is approximately
constant, N1(t) + N2(t) = N.
The equations of motion for the canonically conjugated variables h̄k and φ

are derived from the effective hamiltonian

HJ = Ec
k2

2
+�Uk –

δJ

2

√
N2 – 4k2 cosφ, (19.59)

under the condition k � N ([16]). Ec = 2dμ1/dN1 is the exciton “charging”
energy of one trap, where μ1 is the chemical potential of trap 1, whereas δJ is
the Bardeen single-particle tunneling energy,

δJ =
h̄2

m

∫
dy

[
ξ1

(
∂ξ2

∂x

)
– ξ2

(
∂ξ1

∂x

)]
x=0

, (19.60)

where m is the exciton mass. The single-particle orbital ξi(x, y) is defined
through �i(x, y) =

√
Ni ξi(x, y).

The various dynamical regimes associated to certain initial conditions
(k(0),φ(0)), including π oscillations and macroscopic quantum self-trapping,
are exhaustively discussed in [300, 301]. Two cases are specially relevant:

19.6.2.1 AC Josephson effect

Under the conditions �U � NEc/2, �U � δJ , one easily obtains

φ(t) = –
�U

h̄
t + φ(0), k̇ =

δJN

2h̄
sinφ. (19.61)

Equation (19.61) shows that, analogous to the case of two superconductors
separated by a thin barrier, if the phase difference φ between the condensates
is not a multiple of π , an exciton supercurrent 2k̇ flows across the barrier.
Remarkably, in the presence of an electric field gradient along z, an exciton
flux oscillates back and forth between the two traps, with frequency �U/h̄.
As an exciton goes through the barrier, it exchanges with the field the dipole
energy acquired or lost in the tunneling process. The analogy with the AC
Josephson effect for superconductors is clear: in that case a bias voltage V is
applied across the junction, and the energy 2eV is exchanged between field
and Cooper pairs, as the latter experience a potential difference of V when
penetrating the potential barrier.
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19.6.2.2 Plasma oscillations

This case concerns small oscillations around the equilibrium position (k,φ)eq =
(0, 0). The hamiltonian (19.59) may then be linearized into the form

HJ =
k2

2

(
2
δJ

N
+ Ec

)
+
1

4
δJNφ

2 +�Uk –
δJN

2
. (19.62)

It follows that both k and φ oscillate in time with plasma frequency

ωJ =
1

h̄

√
δJ(NEc/2 + δJ). (19.63)

Note that �U displaces the equilibrium position from (k,φ)eq = (0, 0) to

(k,φ)eq = (–�UNδJ/2(h̄ωJ)
2, 0). (19.64)

19.6.3 Correlated photon counting experiment

detector

τ
optical delay

trap 2trap 1

1, φ1 2, φ2

Fig. 19.9 Proposed experimental setup to
measure the time correlation of the photons
emitted from the two traps. The delay time τ
of one optical path is externally controlled.

Figure 19.9 illustrates the correlated photon counting setup which we propose
to probe Josephson oscillations. The detector measures the intensity I(τ ) of
the sum of the two beams separately emitted from the traps. A delay time τ is
induced in one of the two beams, as in [123]. The fields are simply proportional
to the order parameters �i of the traps. In fact, �(x, y, t) is associated with a
macroscopic electric dipole moment,

P(t) = x̂Px(t) ± iŷPy(t), (19.65)

which couples to photons:

Px(t) =
∫
dx dy x�(x, y, t), (19.66)

and similarly for Py. The built-in dipole 〈P(t)〉 �= 0 oscillates with frequency
(μ + EX)/h̄, where EX is the optical gap minus the exciton binding energy,
and μ accounts for exciton–exciton interaction [127–129]. This macroscopic
oscillating dipole is equivalent to a noiseless current, which radiates a coherent
field [304].
Therefore, the measured intensity I(τ ) is

I(τ ) = 2I0 [1 + 〈cosφ(τ )〉] , (19.67)

assuming that the fields emitted from the two traps have the same magni-
tude (and intensity I0) but different relative phase φ, which is evaluated at the
delayed time τ . I(τ ) may be written as

I(τ ) = 2I0 [1 + α cosφ0(τ )] , (19.68)

where φ0(τ ) is the phase averaged over many measurements, defined by the
condition

〈sin [φ(τ ) – φ0(τ )]〉 = 0, (19.69)

and

α = 〈cos [φ(τ ) – φ0(τ )]〉 (19.70)
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is the fringe visibility, i.e., the normalized peak-to-valley ratio of fringes,

α =
Imax – Imin

Imax + Imin
, (19.71)

with Imax (Imin) being the maximum (minimum) value of I(τ ), and 0 ≤ α ≤ 1.
Equation (19.68) has a few important caveats. Since I(τ ) is an average,

the temporal inhomogeneous effect will blur the interference fringes, i.e.,
α < 1. Other dephasing mechanisms include exciton recombination and ine-
lastic exciton–phonon scattering [123], as well as inelastic [123] and elastic
exciton–exciton scattering, which in first instance may all be neglected for
short τ , low T , and n a2B � 1, respectively.
The most immediate caveat is that the exciton condensates in decoupled

traps must acquire a relative phase if initially they condense separately without
a definite phase relation. This scenario is analogous to the case of interference
between independent laser sources first discussed by Glauber [304] and later
studied experimentally for matter waves [305]. Even though a one-shot meas-
urement with sufficient resolution would display fringes, the relative phase
φ0(τ ) is also subject to intrinsic dephasing effects by quantum fluctuations
[304]. The latter are significant noise sources which affect α, when φ and k
are quantized into canonically conjugated quantum variables whereas in the
GP theory used so far they were classical variables whose fluctuations where
neglected.
In the following, we quantize hamiltonian (19.59) in order to properly eval-

uate α = 〈cos [φ(τ ) – φ0(τ )]〉 as a quantum statistical average in finite traps.
Therefore, we follow [306] and introduce the commutator[

φ̂, k̂
]
= i. (19.72)

The operator k̂ now appearing in the quantized version of hamiltonian (19.59)
takes the form –i∂/∂φ, whereas the ground-state wave function is defined in the
space of periodical functions of φ with period 2π . If condensate oscillations are
mainly coherent, the variance of φ is small and the visibility is approximated
by α = 1 – 1

2

〈
(�φ)2

〉
.

The most interesting case concerns plasma oscillations. For �U = 0, the
ground state of the quantized version of the harmonic oscillator hamilto-
nian (19.62) is a Gaussian, with φ0 = 0, independent from τ , and minimal
spreading

〈
�φ2

〉 ≈ (Ec/2δJN)1/2. Therefore, the interferometer output is
time-independent, I = 2I0(1 + α), showing constructive interference, I >
2I0, with

α = 1 –

√
Ec

8δJN
. (19.73)

Not surprisingly, the visibility is controlled by the ratio Ec/δJN, reaching the
maximum α = 1 as Ec/δJN → 0. In fact, α is given by the balance between the
competing effects of tunneling (∝ δJN), which enforces a well-defined inter-
trap phase, and inverse compressibility (∝ Ec), which favors the formation of
separate number states in the two traps, thus separating the two macroscopic
wave functions.
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Fig. 19.10 Beam intensity I(τ )/I0 vs. delay
time τ , for �U/h̄ωJ = 0.2, 0.5 (dashed and
solid lines, respectively). (a) T = 0 and α = 1,
0.8 (black and light gray lines, respectively).
(b) α(T = 0) = 0.94 and kBT/h̄ωJ = 0,
1, 2 (black, light gray, and dark gray lines,
respectively).

A small finite value of �U in Eq. (19.62) displaces the equilibrium position
of the harmonic oscillator. Noticeably, the ground state is a coherent state with
harmonic evolution of the average phase in time,

φ0(τ ) = –
�U

h̄ωJ
sin (ωJ τ ), (19.74)

whereas α is unchanged. The Gaussian probability density characteristic of the
ground state for�U = 0 now is simply carried back and forth in φ space in the
same motion as the expectation value φ0(τ ).
This key feature allows for directly monitoring τ -dependent plasma os-

cillations of frequency ωJ through the photon correlation measurement
(cf. Fig. 19.10). We evaluate the effect of thermal fluctuations on α via the
formula

α(T) =

∑
n αn exp [–βEn]∑
n exp [–βEn]

, (19.75)

where β = 1/kBT and 2(αn–1) =
〈
(�φ)2

〉
n is the variance of φ in the nth excited

state whose energy is En. At low T , the excited states may be approximated as
those of the harmonic oscillator, giving

α(T) = 1 –

√
Ec

2δJN

(
1

2
+

1

eβh̄ωJ – 1

)
. (19.76)

The above results are summarized by the formula

I(τ ) = 2I0

[
1 + α(T) cos

(
�U

h̄ωJ
sinωJ τ

)]
, (19.77)

which is valid for Ec/δJN � 1.
For small dipole energy variations, �U/h̄ωJ � 1, the oscillating part

within the square brackets of Eq. (19.77) may be written as
–α(T)/2(�U/h̄ωJ)2 sin

2 ωJ τ . This shows that the visibility α(T) of fringes,
which oscillate like sin2 ωJ τ , is modulated by the experimentally tunable
factor (�U/h̄ωJ)2/2. The dependence of I(τ ) on�U is illustrated in Fig. 19.10
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for two values of�U/h̄ωJ . As�U/h̄ωJ is increased [from 0.2 (dashed lines) to
0.5 (solid lines)], the amplitude of oscillations of I(τ ) shows a strong nonlinear
enhancement, providing a clear signature of Josephson oscillations. The
oscillation amplitudes are larger for higher values of α [cf. Fig. 19.10(a)], and
fairly robust against thermal smearing [cf. Fig. 19.10(b)]. In fact, Fig. 19.10(b)
shows that the oscillation of I(τ ) is still clearly resolved for temperatures as
high as T ≈ h̄ωJ/kB. At even higher temperatures α(T) displays anharmonic
effects [306], with α(T) → 0 as T → ∞.

The a.c. Josephson effect cannot be observed within our scheme. In fact,
for large values of �U, the term proportional to cosφ appearing in the ham-
iltonian (19.59) may be neglected in first approximation, and the ground-state
wave function is a plane wave, (2π )–1/2 exp [in̄φ], where n̄ is the integer clos-
est to –�U/Ec. Since the probability density, (2π )–1, is constant, the phase
is distributed randomly and the visibility is zero. Therefore, the correction to
α coming from the inclusion in the calculation of the term neglected in Eq.
(19.59) will be small and fragile against fluctuations.

19.7 Conclusions

The venerated topic of exciton Bose–Einstein condensation is facing a rebirth
as its investigation is fueled by advances in novel materials and technologies,
as for double-layer semiconductors and graphene. Indeed, growing evidence
shows that the concept of exciton condensation is a paradigm of many-body
behavior. The observation of the coherence properties of the condensate, in-
cluding superfluidity, is an important long-term goal of this field. In this
chapter we have explained how the exciton analogs of Andreev reflection and
Josephson oscillations may be linked to measurable quantities. We hope that
these ideas may stimulate further experiments along this path.
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