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Abstract

Recent advances in cancer characterization have consistently revealed marked heterogeneity, 

impeding the completion of integrated molecular and clinical maps for each malignancy. Here, 

we focus on chronic lymphocytic leukemia (CLL), a B cell neoplasm with variable natural 

history which is conventionally categorized into two subtypes distinguished by extent of somatic 

mutations in the heavy chain variable region of immunoglobulin genes (IGHV). To build the 

‘CLL map,’ we integrated genomic, transcriptomic, and epigenomic data from 1148 patients. 

We identified 202 candidate genetic drivers of CLL (109 novel) and refined the characterization 

of IGHV subtypes, which revealed distinct genomic landscapes and leukemogenic trajectories. 

Discovery of new gene expression subtypes further subcategorized this neoplasm and proved to be 

independent prognostic factors. Clinical outcomes were associated with a combination of genetic, 

epigenetic, and gene expression features, further advancing our prognostic paradigm. Overall, this 

work reveals fresh insights into CLL oncogenesis and prognostication.

Previous analyses have provided only fragments of the ‘CLL map’, each focusing on 

particular patient populations or different data types1–9, but none have built a comprehensive 

atlas with sufficient power and resolution to fully characterize the whole bioclinical 

spectrum of the disease. We set out to assemble, from existing and newly generated 

data, the largest CLL dataset to date. This encompassed samples from 1095 CLL patients 

and 54 patients with monoclonal B cell lymphocytosis (MBL) from which whole-exome 

or -genome sequencing (WES/WGS) (n=1074), RNA-sequencing (RNA-seq) (n=712) and 

DNA methylation data (n=999) were analyzed (Extended Data Fig. 1a–b). Samples were 

collected during active surveillance (n=680), after treatment (n=52) or upon enrollment in 

therapeutic clinical trials1–3,10–13 (n=416; n=371 treatment-naive; n=45 relapsed/refractory) 

(Supplementary Table 1). This large dataset enabled more complete delineation of the 

biological underpinnings of CLL and its molecular subtypes.

RESULTS

Identification of novel CLL drivers

To generate a comprehensive catalogue of drivers, we first focused on the 984 CLL 

samples with WES. To ensure consistency and highest accuracy of the mutation calls, we 

reprocessed the data with an updated suite of tools, detecting somatic single nucleotide 

variants (sSNVs), short insertion/deletion mutations (indels), and copy number alterations 

(sCNAs). We also applied specialized tools for detecting recently described CLL driver 

events such as the g.3A>C mutation of the spliceosome-related small nuclear RNA U114 

(U1) and the R110 mutation in the IGLV3–21 gene15,16 (IGLV3–21R110) (Methods). Our 

prior power estimates17 suggested that with ~1000 WES samples and somatic background 

mutation rate of ~1/Mb in CLL, we should be able to discover >90% of drivers mutated 

in 2% of patients, whereas with ~500 samples the power drops to 50%. To verify these 

estimates, we performed a down-sampling analysis and confirmed that the number of drivers 

almost doubled, increasing from an average of 38.8 with 500 cases to 74.5 with ~1000 

cases, with the majority of new drivers mutated in <2% of patients (Fig. 1a, Methods). 
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Likewise, increased cohort size enabled discovery of significantly recurrent sCNAs across 

all frequencies, with the steepest increase in lower frequency drivers (<3%, Fig. 1b).

Our dataset revealed 82 putative CLL driver genes based on recurrent sSNV/indel mutations 

(q<0.1), of which 37 were not previously identified as significantly altered in CLL1,2,18–20 

(Methods, Fig. 1c, Supplementary Table 2–4). Beyond the previously known CLL drivers, 

such as SF3B1, NOTCH1, ATM, and TP53 (mutated in 17.5%, 12.3%, 11.2%, and 9.1% 

of patients, respectively), as well as mutations in IGLV3–21R110 and U1 (mutated in 9.5% 

and 3.8%, respectively), the frequencies of the remaining events form a long, gradually 

decreasing tail (59 of 82 drivers mutated in <2% of patients). Although most newly 

discovered genes were mutated at low frequency, 24.2% of patients harbored at least 

one mutation in a novel putative driver. Notably, they were also the sole sSNV/indel 

driver in 4% of patients. Six additional putative drivers were discovered through spatial 

clustering of mutations in 3-D protein structures, using CLUMPS21, including MAP2K2, 
DIS3, and DICER1 (Fig. 1d, Extended Data Fig. 1c, Supplementary Table 5). Three 

MAP2K2 mutations were localized in the kinase domain, which activates ERK signaling 

and is functionally similar to MAP2K1, a previously identified CLL driver1. DIS3 encodes 

the catalytic subunit of a critical RNA exosome complex22 and is recurrently mutated in 

multiple myeloma23. Two of four altered sites in DIS3 were in cancer hotspots (D479 and 

D48824) and located in the catalytic domain25. Beyond sSNV/indels in coding regions, 

an analysis of 177 WGS did not reveal novel noncoding CLL drivers2,14 (Methods, 

Supplementary Table 3, Supplementary Note).

In support of the newly discovered drivers, we noted that 7 (18.9%) had mutations 

clustered in functional domains (Extended Data Fig. 1d). For example, mutations were 

identified in the DNA-binding domain of INO80, which encodes the catalytic subunit 

of a chromatin remodeling complex that regulates genome stability26 and is frequently 

mutated in hepatosplenic T cell lymphoma27. Additionally, 7 (18.9%) have a role in 

other mature B cell malignancies such as the tumor suppressor gene, RFX7, implicated 

in Burkitt lymphoma28 and diffuse large B cell lymphoma29. These candidate drivers were 

also enriched in biological pathways known to contribute to CLL pathogenesis such as 

DNA damage and chromatin modification1,2,14. However, they also identified processes 

not previously highlighted by driver genes like protein synthesis and stability as well as 

regulation of cytoskeletal proteins and the extracellular matrix (Extended Data Fig. 2a–b, 

Supplementary Table 6).

A striking finding provided by our increased statistical power was the abundance of yet 

unreported focal sCNAs associated with CLL, including 5 novel gains and 30 new losses 

(of 6 and 53 total, respectively)1,2,30–32 (Fig. 1e, Supplementary Table 7). One such deletion 

in 5q32 (11.9% of samples) encompassed ARSI, TCOF1, CD74, and RPS14, which is part 

of the common deleted region in 5q- syndrome, a low-risk subtype of myelodysplastic 

syndrome (MDS)33. Two of these genes, RPS14 and TCOF1, are involved in ribosome 

function or biogenesis and have been implicated in inflammatory Toll-like receptor signaling 

in MDS models34 and in maintaining genomic integrity after DNA damage35, respectively, 

suggesting that multiple genes in this region are associated with pathways involved in 

CLL oncogenesis. Other deletions contain UCP2 and UCP3 in 11q13.4 (3.3%), which 
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encode mitochondrial uncoupling proteins that function as tumor suppressors altering redox 

homeostasis36,37 and multiple other regions that include known cancer associated genes38 

(Supplementary Table 7). We were further enabled to identify rarely reported arm level 

sCNAs including 17q gain (1.6%) and 4p loss (1.5%)1,31. Altogether, our results vastly 

expand the map of CLL drivers and reveal convergent mechanisms through which cardinal 

cellular processes are altered in this disease.

Molecular profiles of IGHV subtypes

We leveraged our increased cohort size to discover distinct candidate driver genes, sCNAs, 

and structural variants (SVs) in 512 CLLs with mutated IGHV (M-CLLs) and 459 CLLs 

with unmutated IGHV (U-CLLs), expanding previous work that identified only a limited 

number of discrete molecular characteristics associated with IGHV status1,2,39 (Methods, 

Supplementary Table 8). The IGHV subtype-specific mutation analyses increased our 

sensitivity to identify 7 additional putative drivers that were not identified in the pan-CLL 

analysis (Extended Data Fig. 1e and 3, Supplementary Table 4–5). In U-CLL, this included 

NFKB1, a regulator of NFκB signaling40, and RRM1, which encodes the catalytic subunit 

of ribonucleotide reductase that is critical for DNA replication and repair as well as the 

target of nucleoside analogs including fludarabine41.

Although M-CLL and U-CLL had similar cohort sizes and comparable mutational burdens 

in coding regions (1.14/Mb vs. 1.11/Mb medians, respectively; Wilcoxon rank-sum test 

p=0.98; though the mean number of clonal mutations genome-wide was increased in M-CLL 

- 12.6 versus 9.6, p=6×10−14), the number of significant putative drivers was much higher 

in U-CLL (54 versus 25 genes, respectively; ratio 2.16, Binomial test p=0.0015). To ensure 

that this difference was not due to prior therapy, we compared only treatment-naive samples 

within each cohort (n=375; M-CLL was downsampled), and again found more drivers in 

U-CLL (ratio 2.82, one sample t-test p=5×10−11). Most drivers were significant in either 

M-CLL (n=9) or U-CLL (n=38) while only a minority were significant in both subgroups 

(n=16, 25.4% of total) (Fig. 2a). Of these shared drivers, 10 of the 16 were twice as frequent 

in U-CLL, consistent with increased driver frequency in this subtype.

IGHV subtypes were also distinguished by sCNA profiles (70 in either M-CLL or U-CLL 

vs. 20 shared) (Fig. 2b, Extended Data Fig. 4, Supplementary Table 7). Trisomy 19 (1.8%) 

was only observed in M-CLL, consistent with previous studies42. In contrast, 8 arm level 

events including 2p gain (11.1%) and loss of 6q (5.6%) were only significant in U-CLL. The 

majority of focal events distinguishing the IGHV subtypes were novel1,2,30,31, comprising 

18 of 23 events enriched in M-CLL and 25 of 37 in U-CLL, and some provided orthogonal 

evidence for CLL driver genes discovered through mutation analysis. For example, loss 

of 1p36.11 (4.4%) contained ARID1A, a known driver gene2, and both this sCNA and 

sSNV were only significant in U-CLL. The sCNAs identified also emphasized underlying 

biology important in CLL leukemogenesis. In M-CLL, the region in 7q36.1b loss (2.5%) 

included KMT2C, a lysine-specific methyltransferase involved in epigenetic regulation43 

(Fig. 2b, Extended Data Fig. 4). A related tumor suppressor, KMT2D, is a candidate driver44 

also enriched specifically in M-CLL (Fig. 2a, Extended Data Fig. 3), demonstrating a 
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convergence of different genetic alteration mechanisms on the same biologic pathway in this 

IGHV subtype.

We further identified differences between M-CLL and U-CLL on the basis of SVs. 

From 177 WGS (88 M-CLL, 87 U-CLL and 2 non-evaluable), we discovered 681 SV 

breakpoints in 141 (79.7%) patients (average of 4.8 per patient; Methods; Supplementary 

Table 9). Approximately 46% of SVs were clonal, supporting a potential role for SVs 

in CLL initiation (Supplementary Table 9, Methods). The most recurrent SVs involving 

the immunoglobulin (Ig) loci (as identified by IgCaller45, Methods) distinguished M-CLL 

from U-CLL (Extended Data Fig. 5a–b, Supplementary Table 9). We confirmed that the 

most common Ig translocation partner in M-CLL was BCL2 (5 of 88 cases, 5.7%)2. 

Conversely, a large 37-Mb deletion in chromosome 14 was identified in U-CLL (4 of 87 

cases, 4.6%), which deletes candidate CLL drivers (DICER1, TRAF3) and directly perturbs 

ZFP36L1, a tumor suppressor gene that down-regulates NOTCH146. The rearrangement 

mechanism also differed between these events, with aberrant V(D)J recombination driving 

the BCL2 events in M-CLL and class-switch recombination (CSR) facilitating the ZFP36L1-
associated deletions in U-CLL (Methods, Extended Data Fig. 5b), consistent with CSR 

events occurring prior to germinal cell commitment47,48. These different patterns and 

underlying mechanisms were confirmed in the WES cohort where IgCaller detected 9 

additional cases with BCL2 translocations in M-CLL and only 1 in U-CLL (Supplementary 

Table 9, Extended Data Fig. 5c).

To evaluate possible differences in mechanisms of somatic mutation generation in M-CLL 

and U-CLL, we performed mutation signature analysis on 177 WGS and identified activity 

of 5 mutational processes (Extended Data Fig. 6a, Supplementary Note). In addition to 

confirming the presence of the aging, canonical activation-induced cytidine deaminase 

(c-AID) and non-canonical AID (nc-AID) related signatures in both clonal and subclonal 

mutations11, we also found evidence of signature SBS18, likely due to damage from 

reactive oxygen species, and splitting of the c-AID signatures (SBS84 and SBS85). Of 

note, clustered mutations in U-CLL were enriched in SBS84 relative to M-CLL, although 

non-significantly (Wilcoxon rank-sum test, p=0.19), whereas SBS85 was more prevalent in 

M-CLL, likely reflecting unique mutational processes arising from AID in each subtype 

(p=1.6×10−9, Extended Data Fig. 6b–c).

Further highlighting the differences between M-CLL and U-CLL, we detected distinct 

inferred timing of acquired sSNV/indels and arm level sCNAs when analyzed by 

PhylogicNDT49 (Methods, Fig. 2c). Trisomy 12 was an early event and shared drivers such 

as TP53 and NOTCH1 were intermediate in both CLL subtypes1. In contrast, acquisition of 

BRAF mutations was an early event in M-CLL but occurred late in U-CLL (q<0.1). Of those 

drivers specifically enriched per subtype, MYD88 was an early event in M-CLL whereas 

chromosome 20p loss and FUBP1 alterations may be initiating lesions in U-CLL. We 

separately assessed the temporal acquisition of sSNV/indels by analyzing their cancer cell 

fractions (CCF) (Extended Data Fig. 6d). Only 12 (12.4%) driver genes had predominantly 

clonal events with a median CCF>85%, and 6 of these 12 were novel, including MSL3 and 

USP8 identified in M-CLL and U-CLL, respectively. This panoply of genetic differences 
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underscores M-CLL and U-CLL as distinct molecular entities and support their unique 

trajectories of leukemogenesis.

Given these differences, we analyzed the clinical impact of putative genetic drivers from 

each IGHV subtype (Methods, Fig. 2d–e, Table 1, Supplementary Table 10–11). Relative to 

M-CLL, U-CLL had more genetic changes associated with either failure-free survival (FFS) 

and/or overall survival (OS) (41 in U-CLL versus 18 in M-CLL, Binomial test p=0.004; Fig. 

2d–e). Of these, 18 were novel events (5 of 18 in M-CLL and 13 of 41 in U-CLL; Fig. 

2d–e). In M-CLL, ZC3H18 mutations and losses of 5q32 and 15q25.2 were novel alterations 

associated with risk of short FFS in addition to known factors such as TP53 and IGLV3–

21R110 mutations. The prognostic impact of many of these novel putative drivers was also 

supported when the dataset was restricted to only treatment-naive, non-trial samples (n=393) 

(Table 1, Supplementary Table 10). Only two features were associated with reduced survival 

in M-CLL, which were age >60 years and gain of 8q, the chromosomal arm containing 

MYC. In U-CLL, RFX7 and NFKB1 were novel candidate drivers associated with poor FFS 

and OS, although only FFS was shorter in the treatment-naive subset (n=247, Supplementary 

Table 10). The prognostic impact of known but less frequent drivers, such as NFKBIE 
and ASXL1, was also evident in addition to verifying the known effects of more common 

features like 17p deletion. Of note, 17p deletion and TP53 mutations significantly co-occur1, 

which partially explains why only one was significant in our modeling. Further analysis of 

either alteration alone or in combination demonstrated that TP53 mutation in the absence of 

17p deletion was not associated with adverse outcomes in U-CLL (Supplementary Table 10). 

This likely reflects the use of contemporary therapies such as ibrutinib and venetoclax where 

TP53 mutation alone has not been shown to influence prognosis50,51.

In summary, aggregation of three separate genomic analyses of the entire cohort (n=984), 

M-CLL (n=512), and U-CLL (n=459) revealed a total of 97 putative CLL driver genes 

and 105 sCNAs in addition to U1 and IGLV3–21R110 mutations (Fig. 2f). Our previous 

studies demonstrated that 8.9% of patients lacked an identifiable driver1,2. In our current 

analysis, the percent of patients lacking at least one potential driver was reduced to 3.8%. 

These patients without identifiable drivers were predominantly M-CLL (Fisher’s Exact test 

p=1.04×10−7; 6.6% relative to 0.6% in U-CLL), confirming yet another distinction between 

the IGHV subtypes2.

CLL subtypes based on epigenomic and transcriptomic features

In addition to subtypes based on IGHV status, genome-wide DNA methylation studies 

previously identified three epigenetic groups (epitypes), defined based on distinct 

methylation profiles of pre- and post-germinal center experienced B cells: naive-like CLL 

(n-CLL, predominantly U-CLL), intermediate CLL (i-CLL, mix of M-CLL and U-CLL), 

and memory-like CLL (m-CLL, predominantly M-CLL)6,7. Furthermore, cell division 

results in epigenetic imprints that correlate with the proliferative history of the cell. A 

mitotic clock score called epigenetically-determined cumulative mitoses (epiCMIT) has 

further delineated prognosis within epitypes where higher epiCMIT scores corresponded 

with worse prognosis52. Epitypes and epiCMIT were defined previously7,52 using 450k 

DNA methylation arrays (n=490), but we also developed and validated new methodologies 
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to incorporate reduced representation bisulfite sequencing data (RRBS) (n=509) (Methods, 

Extended Data Fig. 7a–f, Supplementary Table 2 and 12). Evaluating the entire dataset 

(n=999), we found that the two main sources of variation in the CLL DNA methylome 

are explained by components of cellular memory: the cell of origin (epitype) and the 

proliferative history of the cell (epiCMIT) (Fig. 3a).

While the overall DNA methylome mainly reflects the cellular past of each CLL, the 

present phenotypic state can be determined by investigating transcriptomes. By applying 

Bayesian non-negative matrix factorization for unsupervised clustering of RNA-seq data 

from 603 treatment-naive CLL samples, we identified 8 robust expression clusters (ECs) 

(Fig. 3b, Extended Data Fig. 8a–d, Supplementary Table 13, Supplementary Note). The 

ECs strongly associated with IGHV mutational status and/or epitype, revealing two subtypes 

of U-CLL/n-CLL (EC-u1, EC-u2) and four subtypes of M-CLL/m-CLL (EC-m1, EC-m2, 

EC-m3, and EC-m4) (Supplementary Table 13). EC-i was best defined by the i-CLL epitype 

whereas EC-o, the smallest cluster (n=21; 3.5%), was not significantly associated with any 

previously defined CLL group. Both EC-i and EC-o displayed borderline identity of somatic 

hypermutations in IGHV with germline, close to the 98% threshold distinguishing M-CLL 

from U-CLL (Extended Data Fig. 8e).

Although most ECs associated with IGHV status and epitype, expression-based clustering 

further refined and defined subsets within these conventional distinctions. However, 8% 

of samples had discordant IGHV status and EC assignment (i.e., M-CLLs included in 

EC-u clusters or vice versa). As an example of these discordant cases, we observed that 

8 M-CLLs clustered in EC-u2, comprising 13% of this EC-u cluster. IGHV mutation 

rate for discordant cases was compared to those with concordant expression profiles, and 

while a small difference in mean percent identity in U-CLL was detected (t-test p=0.032, 

99.65% versus 99.96% means, respectively), no difference was found among M-CLL cases 

(p=0.24, 93.96% versus 93.25%) (Extended Data Fig. 8f). Although correctly classified, 

some discordant cases had borderline IGHV status (97.5–98.5% IGHV identity; n=7) 

consistent with enrichment of the i-CLL epitype (17% in discordant vs. 8.3% in concordant 

samples, Fisher’s Exact test p=0.03). Interestingly, CHD2 alterations were overrepresented 

in discordant M-CLL cases where 45% had either CHD2 mutation or loss of 15q26.1 

encompassing CHD2 (p=0.002).

We further explored whether the ECs were enriched with specific drivers. Indeed, EC-u1 

was associated with loss of 11q22.3, gain 2p, and XPO1 and U1 mutations, whereas EC-u2 

displayed enrichment of tri(12) (q<0.1) (Fig. 3b, Supplementary Table 13). EC-m2 was also 

associated with tri(12), occurring in 56%, as well as tri(19)53. SF3B1 and IGLV3–21R110 

mutations were both enriched in EC-i (53% and 77%, respectively), which is consistent 

with previous work demonstrating their association with the i-CLL epitype54. Conversely, 

EC-m1 was enriched with driverless patients (24% of M-CLLs, Fisher’s Exact test q=0.004, 

odds-ratio 4.9; considering M-CLLs only). In addition to assessing genetic alterations, we 

analyzed which ECs displayed major stereotyped immunoglobulin genes, which are found 

in 13.5% of CLL and are divided into subsets that associate with clinical outcome55. All 

EC-m clusters had a lower proportion of major stereotyped B cell receptors (BCRs, 4–6%), 

whereas there was a higher incidence in the other ECs (14–20%) (Extended Data Fig. 
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8g). EC-i was associated with CLL stereotyped subset #2 and IGLV3–21 gene expression 

consistent with IGLV3–21R110 mutations previously described in this subset54 (Extended 

Data Fig. 8h–i).

Although genetic events were associated with most ECs, they cannot fully capture these 

expression phenotypes, which reflect an ensemble of genetic, epigenetic and other biological 

effects. EC-m2 and EC-u2, for example, were strongly associated with tri(12) events, but 

these occurred in only 56% and 67% of their samples, respectively. To delineate if a 

non-genetic unifying phenotype was present, we separately compared the tri(12)-positive 

and -negative subsets of EC-m2 and EC-u2 to M-CLL or U-CLL samples in other ECs, 

respectively (Fig. 3c). EC-m2 tri(12)-positive and -negative cases shared overexpression of 

HES1, MYC and EBF1, which encodes a regulator of B-cell differentiation previously 

associated with tri(12)9, as well as downregulation of Wnt signaling genes (WNT3, 
WNT9B, and LEF1). EC-u2 cases shared downregulation of pro-apoptotic genes, TP7356 

and BIK57, and overexpression of MAPK4, which activates prosurvival pathways59. Thus, 

non-tri(12) samples ‘phenocopy’ the tri(12) samples within each of these clusters.

To further explore the biological differences among the ECs, we identified marker genes that 

were significantly upregulated or downregulated and which were respectively supported by 

increased or decreased histone 3 lysine 27 acetylation levels (H3K27ac, a mark of active 

regulatory elements) (Methods, Fig. 3b, Extended Data Fig. 8j–k, Supplementary Table 13). 

The top upregulated marker genes in EC-u1 included SEPT10 and LPL, which have been 

previously described in U-CLL and associated with poor prognosis58. Another upregulated 

EC-u1 gene, OSBPL5, was the top expression marker predicting shorter time to progression 

after treatment with fludarabine, cyclophosphamide, and rituximab59.

Differentially expressed genes in each EC reflected heterogeneity in biological pathways 

that was captured by gene set enrichment analysis (Methods, Fig. 3d, Extended Data Fig. 

9a–b, Supplementary Table 13). Although EC-o was not associated with IGHV status or 

epitype, it was defined by enrichment in oxidative phosphorylation signaling (q=4.7×10−15). 

The EC-m clusters were distinguished by either upregulated or downregulated inflammatory 

signaling or antigen expression via nonclassical HLA class I. The EC-u clusters shared gene 

expression changes reflecting impaired protein translation, but differed in TNFα signaling. 

EC-i was enriched for pathways regulating migration and the humoral immune response, 

possibly reflecting autonomous BCR signaling by IGLV3–21R110. Finally, we compared 

the epiCMIT scores of the ECs within each epitype. In EC-m clusters, EC-m3 had the 

lowest epiCMIT, consistent with a lower proliferative history and suggestive of better patient 

outcomes (Fig. 3e).

To evaluate the robustness of EC classification and its potential application for 

prognostication in new samples, we built an EC classifier based on differentially expressed 

genes, which achieved ~80% overall accuracy (Methods). Performance was particularly 

high for EC-m3 and EC-i, which had perfect positive predictive value (PPV) at ~85% 

recall (Supplementary Table 13). By computing EC-specific precision-recall (PR) curves 

(average area under the curve = 0.88), we show that restricting predictions to the higher-

confidence cases can improve performance (Supplementary Table 13, Extended Data Fig. 
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9c–f). Importantly, similar performance was achieved when training the models with only 26 

genes (Extended Data Fig. 9g). Applying the classifier to samples that were excluded from 

the initial EC discovery (n=105; 44% were post-treatment) and to an external CLL cohort 

(n=136)60 showed comparable EC distributions per sample set and similar compositions 

of IGHV subtypes per EC, supporting the generalizability of these ECs (Extended Data 

Fig. 9h–i; Methods). Finally, by analyzing longitudinally sampled CLL specimens from 

19 patients, we confirmed EC stability over years of disease in most cases (p<10−6 by 

permutation, Methods, Extended Data Fig. 9j). This provides further evidence that the ECs 

are generally a stable readout, with EC shifts potentially reflecting clonal evolution, both of 

which are useful for prognostication.

Integrative analysis predicts outcome

Multivariable analysis integrating clinical features and IGHV status confirmed independent 

prognostic impact of the ECs on FFS (n=603, p<0.001) and OS (p=0.007) (Methods, Table 

1, Supplementary Table 11 and 14). The EC-u clusters had similarly short FFS and EC-i 

displayed intermediate FFS (Fig. 4a). However, outcomes in EC-m clusters were distinct 

where EC-m1, EC-m2, and EC-m4 demonstrated shorter FFS relative to EC-m3, the cluster 

with best prognosis and lowest epiCMIT score. Differentiation of EC-m clusters was also 

evident when evaluating OS (Fig. 4b). This confirmed ECs as an independent prognostic 

factor in CLL, particularly in distinguishing between EC-m clusters.

Focusing on 47 cases for which there was discordance between their IGHV status and 

EC, we asked whether this discordance influenced outcome. FFS was shorter in discordant 

M-CLLs and longer in discordant U-CLLs relative to the concordant cases (log-rank test 

p=0.031 and p=0.0024, respectively) (Fig. 4c). For instance, median FFS of discordant M-

CLLs (i.e., M-CLLs in EC-u clusters) was 5.3 years compared to 10.7 years in concordant 

cases (M-CLLs in EC-m clusters), thus revealing added prognostic value of the ECs relative 

to traditional classification.

To systematically assess the features contributing to outcome, we integrated IGHV subtype, 

genetic alterations, epitypes, epiCMIT and ECs in a multivariable model (Fig. 4d–e, 

Supplementary Table 14). The n-CLL epitype emerged as a strong predictor of FFS and 

OS, emphasizing the known importance of cell of origin. IGHV status and epiCMIT also 

influenced OS to a greater degree than FFS. A limited set of previously identified genetic 

alterations were associated with shorter FFS (ZNF292, SF3B1, ASXL1, and 17p deletion), 

but 11 adversely affected OS including novel events such as loss of 5q32. We noted the 

absence of known alterations, such as ATM and NOTCH1, which were significant by 

univariate analysis only. This likely reflects co-occurrence with other prognostic factors, 

similar to what we observed with TP53 and 17p deletion (Supplementary Table 14). Specific 

ECs were particularly informative in the model, with EC-i associated with adverse FFS 

and EC-o, EC-m3 and EC-m4 as protective. Altogether, this integrated model reveals a 

refined prognostic paradigm where genetics, epigenetics, and gene expression classification 

all contribute to clinical outcome.
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DISCUSSION

Through integration of harmonized multiomic data, this work has expanded the molecular 

map of CLL and provided additional insights into its biological and clinical heterogeneity. 

The number of previously unrecognized putative drivers was doubled, thus achieving a 

more complete genetic basis for this cancer. These alterations highlight important cellular 

pathways not previously impacted by candidate drivers that may provide opportunities for 

development of new therapies in the future. Beyond cataloging the overall landscape, we 

delineated the distinction between its molecular subtypes by comprehensively analyzing 

the CLL genome, epigenome, and transcriptome. IGHV subtypes were enriched in unique 

genetic driver alterations leading to divergent clonal trajectories. We found a significant 

increase in genetic heterogeneity in U-CLL with more putative drivers relative to M-CLL. 

Notably, the driverless samples were almost exclusively M-CLL2, suggestive of alternative 

mechanisms of leukemogenesis in this subtype. Despite lower genetic complexity, M-CLL 

displayed increased transcriptional diversity segregating mainly into four ECs, which had 

different proliferative histories. Furthermore, the discovery of expression clusters expands 

our contemporary disease framework. While specific ECs were associated with IGHV status, 

epitypes, and genetic events, none of these previously defined groups completely captured 

the phenotypic diversity exhibited in the expression profiles. Additionally, identifying 

discordant cases with gene expression profiles inconsistent with their IGHV status was 

prognostic and CHD2 alterations may be contributing to this changed phenotype in M-CLL. 

This reveals the complex nature of CLL and provides the first version of a comprehensive 

molecular atlas of CLL that forms the basis for further exploration of unique mechanisms of 

pathogenesis.

By integrating these biological insights with patient outcomes, we highlighted the prognostic 

implications of even rare genetic events within IGHV subtypes, such as mutations in 

ZC3H18 and RFX7. Incorporating these data in a unified model revealed the importance of 

integrating multiple data layers in this disease. Critical components associated with outcome 

included the ECs, novel genetic alterations such as loss of 5q32 in addition to known factors 

including the cell of origin (IGHV status and epitype), proliferative history (epiCMIT), 17p 

deletion, and SF3B1 mutations. This refines our current disease paradigm and establishes a 

new spectrum of events contributing to leukemogenesis that may have implications beyond 

prognostication. In the future, this molecular foundation may allow for better prediction of 

response to therapy or provide the basis for rational combination of novel agents.

METHODS

Data Availability

The molecular data used in this study are publicly available and are included in the 

following patient cohorts (Table 1, Supplementary Table 1–2, Extended Data Fig. 1a): 

Dana-Farber Cancer Institute (DFCI), German CLL Study Group (GCLLSG), International 

Cancer Genome Consortium (ICGC), MD Anderson Cancer Center (MDACC), National 

Heart Lung and Blood Institute (NHLBI) and University of California San Diego (UCSD). 

Sequencing, expression, and genotyping is available at European Genome-Phenome Archive 

(EGA, http://www.ebi.ac.uk/ega/), which is hosted at the European Bioinformatics Institute 
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(EBI), under accession numbers EGAS00000000092 (ICGC cohort) and in dbGaP under 

accession numbers: phs001473.v2.p1 (MDACC, NHLBI), phs000922.v2.p1 (GCLLSG), 

phs001431.v2.p1 (DFCI, UCSD), phs001091.v1.p1 (MDACC), phs000435.v3.p1 (DFCI), 

phs002297.v2.p1 (NHLBI), phs000879.v1.p1 (DFCI) and GEO accession number 

GSE143673 (GCLLSG). 450k array data is available at EGA under accession number 

EGAD00010001975 (ICGC). Project data portal: https://cllmap.org.

Code availability

Terra methods used in the study can be found at https://app.terra.bio/#workspaces/broad-

firecloud-wupo1/CLLmap_Methods_Apr2021. Source code used in the study can be 

found at https://github.com/getzlab/CLLmap. The RFcaller pipeline is available at https://

github.com/xa-lab/RFcaller. The new epiCMIT suitable for Illumina arrays and NGS 

approaches as well as the CLL epitype classifier can be found at https://github.com/Duran-

FerrerM/CLLmap-epigenetics.

Human samples

The characteristics of the 1154 CLL/MBL samples from 1148 patients are described in 

Supplementary Table 1 and clinical characteristics of the 1009 CLL samples used in the 

clinical analysis are listed in Table 1. These included tumor and germline samples collected 

either during active surveillance (n=680), post-treatment (n=52)1–3,11, or at enrollment 

of a clinical trial prior to first cycle of therapy (n=416; treatment-naive n=371, relapsed/

refractory n=45)1,10,12,13,61. Briefly, these trials included: (i) comparison of fludarabine 

and cyclophosphamide (FC) to FC-rituximab (FCR) in previously untreated patients (CLL8 

trial, n=309)1,61; (ii) treatment-naive TP53 mutated patients within phase 2 CLL20 trial 

who all received alemtuzumab (n=31)62; (iii) ibrutinib or R-ibrutinib in relapsed/refractory 

(R/R) or untreated patients with 17p deletion, TP53 mutation, and/or 11q deletion (n=76; 

treatment-naive n=31; R/R n=45)10,12,13. Written informed consent was obtained from all 

patients. Samples were collected via protocols approved by institutional review boards or 

ethics and policy committees from the International Cancer Genome Consortium, German 

CLL Study Group, Dana-Farber Cancer Institute, the CLL Research Consortium, National 

Heart, Blood and Lung Institute, and MD Anderson Cancer Center. All clinical trials were 

conducted in accordance with the Declaration of Helsinki and International Conference on 

Harmonization Guidelines for Good Clinical Practice. If multiple samples were obtained 

from a patient, then the earliest collected sample was selected for analysis. Peripheral 

blood mononuclear cells were isolated and DNA and/or RNA were extracted and prepared 

with protocols varying between the different studies1–3,10–13,61. Briefly, either positive or 

negative immunomagnetic selection of CLL cells was performed in either all samples or 

those with low white blood cell counts, depending on the study. DNA was extracted using 

Qiagen kits (Qiagen Inc.) and RNA was obtained either using RNAeasy kit (Qiagen Inc.) or 

Trizol reagent (Invitrogen Life Technologies) per manufacturer’s instructions.

Molecular data retrieval and assembly

We retrieved previously reported sequencing data from CLL and MBL samples, 

including 984 whole-exome sequences1–3, 177 whole-genome sequences2,11, 448 RNA-

seqs2,3,10,13,63, 490 methylation 450k arrays2 and 547 reduced-representation bisulfite 
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sequencing64. Additionally, we sequenced 264 RNA-seq samples, and performed targeted 

DNA sequencing of the NOTCH1 3’ UTR for 293 samples (Supplementary Note). Single 

nucleotide polymorphism (SNP)-based fingerprinting comparisons within and between these 

sequencing data types were conducted with CrosscheckFingerprints65 for quality control to 

remove data redundancy and to verify patient-matched data, where appropriate.

Sequence data processing and analysis

All sequencing data (WES, WGS, RNA-seq, RRBS and targeted NOTCH1 sequencing) 

were processed and analyzed using methods implemented in the Broad Institute’s cloud-

based Terra platform (https://app.terra.bio). The main Terra methods are available at https://

app.terra.bio/#workspaces/broad-firecloud-wupo1/CLLmap_Methods_Apr2021 in addition 

to the detailed descriptions herein.

WES/WGS alignment and quality control

We processed all DNA sequence data through the Broad Institute’s data processing 

pipeline. For each sample, this pipeline combines data from multiple libraries and flow 

cell runs into a single BAM file. This file contains reads aligned to the human genome 

hg19 genome assembly (version b37) done by the Picard and Genome Analysis Toolkit 

(GATK)66 developed at the Broad Institute, a process that involves marking duplicate reads, 

recalibrating base qualities and realigning around indels. Reads were aligned to the hg19 

genome assembly (version b37) using BWA-MEM (version 0.7.15-r1140).

Mutation calling

Prior to variant calling, the impact of oxidative damage (oxoG) to DNA during sequencing 

was quantified using DeToxoG67. The cross-sample contamination was measured with 

ContEst based on the allele fraction of homozygous SNPs68, and this measurement 

was used in the downstream mutation calling pipeline. From the aligned BAM files, 

somatic alterations were identified using a set of tools developed at the Broad Institute 

(www.broadinstitute.org/cancer/cga). The details of our sequencing data processing have 

been described elsewhere23,69. Briefly, for sSNVs/indel detection, high-confidence somatic 

mutation calls were made by applying MuTect70, MuTect271 and Strelka272 to WES/WGS 

sequencing data. Given that normal blood samples might also contain CLL cells, we used 

DeTiN73 to estimate tumor in normal (TiN) contamination in order to recover falsely 

rejected sSNVs/indels. Next, we applied four types of filters: (i) a realignment-based filter, 

which removes variants that can be attributed entirely to ambiguously mapped reads; (ii) an 

orientation bias filter, which removes possible oxoG and FFPE artifacts67; (iii) a ContEst 

filter, which removes variants that might come from other samples due to contamination; 

and (iv) an allele fraction specific panel-of-normals filter, which compares the detected 

variants to a large panel of normal exomes or genomes and removes variants that were 

observed in the two panel-of-normals (PoNs): one consists of 8,334 normal samples in 

TCGA while the other consists of 481 CLL-matched normal samples with TiN estimates of 

0. All four filters together contributed to the exclusion of potential false-positive events (e.g., 

commonly occurring germline variants or sequencing artifacts), which ultimately yielded the 

final list of mutations. All filtered events in candidate CLL driver genes were also manually 

reviewed using the Integrated Genomics Viewer (IGV)74.
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In order to increase the sensitivity and precision of mutation calls in candidate driver genes, 

an additional variant calling step was performed for the candidate driver gene loci using 

RFcaller (https://github.com/xa-lab/RFcaller), a pipeline that uses read-level features and 

extra trees/random forest algorithms for the detection of somatic mutations. This pipeline 

was run with default parameters for WES or WGS data, as well as for RNA-seq data for 

NOTCH1, which has low coverage in hotspot regions in some samples due to high GC 

content. All candidate mutations that passed filters and were detected by both pipelines were 

considered positives. Mutations detected by only one of the callers were visually inspected 

by a set of at least four expert curators, considering the following exclusion criteria: (i) 

low evidence due to limited number of reads supporting the mutation in the tumor sample 

or excessive mutant reads in the normal sample; (ii) low depth of coverage to rule out 

germline variant; (iii) low base quality region; (iv) low mapping quality region leading to 

multi-mapped reads; (v) calls supported by reads with a strong strand bias.

Identification of significantly mutated genes

To identify candidate cancer genes using our mutation calls from WES, we first used 

SignatureAnalyzer75 to identify mutational processes and potential artifact signatures. We 

discovered a signature likely due to the bleedthrough sequencing artifact and then filtered 

mutations with greater than 95% chance attributed to that bleedthrough signature. Next, 

we ran MutSig2CV76 to identify driver genes from the filtered WES Mutation Annotation 

Format (MAF) file. A stringent manual review was conducted using the IGV74 to review 

the mutations in the driver genes and further exclude low evidence calls. Then we 

reran MutSig2CV on the filtered set of mutation calls from WES to identify the final 

candidate driver genes. In addition, we also used CLUMPS21 (https://github.com/getzlab/

getzlab-CLUMPS2) to identify driver genes based on clustering of mutations in the 3D 

structure of the protein product (see Supplementary Table 5). For CLUMPS, we applied two 

FDR corrections: one for all candidates and a second restricted hypothesis testing focused 

on genes in the COSMIC Cancer Gene Census38. Finally, for further stringency and to 

exclude candidates irrelevant to CLL biology, we discarded candidate genes that were not 

expressed in RNA-seq of 603 treatment-naive CLL samples, using a one-sided t-test testing 

for difference from 0 in TPM space. This discarded 15 candidate genes (Supplementary 

Table 4).

Copy number analysis

For detecting somatic copy number alterations (sCNAs) we used the GATK4 

CNV pipeline (http://github.com/gatk-workflows/gatk4-somatic-cnvs), which involves the 

CalculateTargetCoverage, NormalizeSomaticReadCounts, and Circular Binary Segmentation 

(CBS) algorithms77 for genome segmentation. In order to identify candidate sCNA drivers 

(genomic regions that are significantly amplified or deleted), we then apply GISTIC 

2.078. To exclude potential germline CNAs, we first ran GISTIC 2.0 on the matched 

normal samples and then concatenated the recurrent CNAs this outputted (q < 0.1) to 

the blacklisted regions. Then we ran GISTIC 2.0 on the tumor samples to produce a 

list of candidate sCNA driver regions. A force-calling process was applied to identify 

the presence/absence of each sCNA driver event across tumor samples (https://github.com/

getzlab/GISTIC2_postprocessing). To further filter the potential false positive drivers, we 
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only accepted sCNA drivers with population frequency greater than 1%. Finally, all filtered 

sCNA drivers were manually reviewed using IGV74 to exclude drivers that are based on 

sCNA events with low supporting evidence or that were localized close to centromeres. 

sCNA drivers were annotated by intersection with our list of CLL mutation driver genes and 

with genes in the COSMIC Cancer Gene Census38 (v90; Supplementary Table 7).

Structural variants calling

For structural variation (SV) detection, our pipeline (the Broad Institute’s Cancer Genome 

Analysis (CGA) SV pipeline)79 integrates evidence from three structural variation detection 

algorithms (Manta80, SvABA81 and dRanger23,69,82) to generate a list of structural variation 

events with high confidence. We followed the three SV detection tools with BreakPointer83 

to pinpoint the exact breakpoint at base-level resolution. SVs calls were filtered if called by 

less than 2 tools or if they were identified in a panel of normal samples79. Next, breakpoint 

information was aggregated per sample to identify: (i) balanced translocations, which 

were defined as those with breakpoints on reverse strands within 1-kb of each other; (ii) 

inversions supported on both ends; (iii) complex events, based on the number of clustered 

events within 50-kb of each other (Supplementary Table 9). Breakpoints were annotated by 

intersection with our lists of CLL driver genes and significant sCNA regions, as well as with 

genes in the COSMIC Cancer Gene Census (v90)38 (Supplementary Table 9). These SV 

calls were compared to SVs called in Puente et al2, from which an additional 90 SVs were 

added after manual review. Clonal events were defined as those with cancer cell fraction 

(CCF) ≥ 0.75 and identified using the CGA SV pipeline algorithm (https://github.com/

getzlab/REBC_tools;v1.1.3 )79. This method could be applied to the 569 SVs detected by 

the CGA SV pipeline, which provides the required information for CCF calculation, out 

of which we could successfully estimate CCF for 558 (98%)79. IgCaller45 (v1.1) was used 

to identify additional structural variants involving immunoglobulin genes (Supplementary 

Note).

Immunoglobulin (IG) gene characterization

The IG heavy (IGH) and light (IGL) chain gene rearrangements and mutational status were 

obtained from WGS/WES and RNA-seq using IgCaller (v1.1)45 and MiXCR (v.3.0.10)84, 

respectively. The rearrangements obtained were visually inspected in IGV74. The obtained 

sequences were used as input in IMGT/V-QUEST (v3.5.18; release 202018–4)85 to confirm 

gene annotations and mutational status. IGH gene rearrangements were complemented 

with Sanger sequencing available for 1076 cases. IGH and IGL characterization from the 

different sources were integrated and compared and used to infer IGLV3–21 R110 mutation 

status. See Supplementary Note and Supplementary Table 8.

RNA-seq analysis

RNA-seq data was processed in Terra using the GTEx V7 pipeline (https://

github.com/broadinstitute/gtex-pipeline). Briefly, reads were aligned with STAR 

(v2.6.1d)86 to hg19 (b37) using the GENCODE v19 annotation, and quality 

control metrics and gene expression were computed with RNA-SeQC v2.3.6 (https://

github.com/getzlab/rnaseqc)87. A collapsed version of the GENCODE annotation was 

used to quantify gene-level expression (available from gs://gtex-resources/GENCODE/
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gencode.v19.genes.v7.collapsed_only.patched_contigs.gtf). TPMs were used for sample 

clustering, while gene counts were used for differential gene expression, as required. See 

Supplementary Table 2 for sequencing and quality metrics.

RNA expression cluster detection

Gene-level TPMs were estimated with RNA-SeQC (v2.3.6) for RNA-seq from 603 

treatment-naive CLL (https://github.com/getzlab/rnaseqc)87. Genes expressed at less than 

0.1 TPM in 10% of samples were discarded, retaining 11,119 genes, which were batch 

corrected (as described below), followed by selection of the top 2,500 most varying genes. 

The clustering methodology combines consensus hierarchical clustering and Bayesian 

non-negative matrix factorization, as previously described88. Further details about the 

methodology and machine learning classifier are provided in Supplementary Note.

DNA methylation data processing

We analyzed DNA methylome data for a total of 1,037 samples, including 490 

samples profiled with Illumina 450k array previously analyzed52 (EGA accession 

EGAD00010001975), and 547 samples profiled using reduced representation bisulfite 

sequencing (RRBS, with either single-end (SE), or paired-end (PE) approaches; 

Supplementary Table 2)64. We developed a pipeline in Terra to obtain the CpG methylation 

estimates from RRBS data (Supplementary Note). The epitype classifier and the epiCMIT 

mitotic clock were previously developed for Illumina 450K and EPIC array data52 and we 

therefore adapted the methods for the RRBS data (Supplementary Note).

Statistical Methods

Unless otherwise stated, two-sided t-test was used for mean comparison and multiple 

testing was corrected to compute false discovery rate (FDR, q) by the Benjamini-Hochberg 

procedure89. Categorical enrichments were computed using a two-sided Fisher’s Exact test 

unless otherwise stated.

Clinical outcome modeling

Failure-free survival (FFS) was calculated for treatment-naïve patients as the time from 

the date of the sequenced sample to the date of first treatment (“natural progression”), 

progression (if the patient was sampled at the time of enrollment on a clinical trial) or 

death, and censored at the last known event-free date. In the genetics-focused analysis 

(Supplementary Table 10), the first event was defined as time to next treatment in patients 

who received therapy within 30 days. Subset analysis included patients who were treatment-

naïve at the time of the sequenced sample and not enrolled on a therapeutic clinical trial; 

in this analysis, time between sample and date of first treatment was used. Overall survival 

(OS) was calculated as the time from the date of the sequenced sample to the date of death 

and censored at the date last known alive. Patient characteristics and number included in 

each clinical outcome analysis are defined in Table 1. Univariate and multivariable Cox 

regression models were constructed for each subset of data. Final models were selected 

using the glmnet function for regularized Cox regression using an elastic net penalty 

within the Coxnet package in R. Ten-fold cross-validation using the cv.glmnet function 
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with a partial-likelihood deviance metric to minimize λ was performed and the minimum 

CV-error model was used. The alpha was set to 1 corresponding to a Lasso penalty. The 

maximum iterations (maxit) parameter was set to 1000. Features identified as having non-

zero coefficient values using elastic net and selected in the final model were then included 

in a Cox regression model to obtain the hazard ratios. These hazard ratios estimate the 

magnitude of effect but p-values and confidence intervals are not readily interpretable in the 

elastic net model and are therefore not reported. For the integrated analysis of all available 

datatypes (Supplementary Table 14), variables including expression cluster and epitype 

categories were dummy coded. Prognostic significance of expression cluster and IGHV 

status were also considered using a chi-squared test with the difference in −2log likelihood 

(−2logL) between models including sSNVs and sCNAs. The Breslow approximation was 

used for handling ties in survival time.
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Extended Data

ED Fig 1. Dataset description and representative driver gene maps
a. Full dataset (n=1148), with contributions by cohort and data type delineated (see 

Supplementary Table 1). b. Numbers of samples with genomic, epigenomic, and 

transcriptomic data. c. 3D protein structures of representative genes identified by CLUMPS 

in pan-CLL analysis (n=984, see Supplementary Table 5). Mutated residues - red labels. 

A peptide from RAF1 (designated at bottom-center, in complex with 14–3-3 zeta) shows 
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clustered mutations around S259, whose phosphorylation regulates RAF1 activity and is 

a cancer mutational hotspot90 that, when mutated, perturbs the interaction with the 14–

3-3 zeta and upregulates RAF1 kinase activity91,92. In DICER1, mutations occur in the 

RNase III domain (purple), including the cancer hotspot residue E181321,24. This region is 

critical for Mg2+ binding and is required for ribonuclease activity to process microRNAs 

and mediate post-transcriptional gene regulation93. RPS23 mutations are clustered in a 

conserved loop of the ribosomal decoding center, surrounding P62, whose post-translational 

hydroxylation affects translation termination accuracy94. These RPS23 mutations have 

a median CCF >80% (Extended Data Fig. 6d; Supplementary Table 3). d. Individual 

mutations maps of selected novel, putative driver genes. Mutation subtype and position 

are shown. e. Selected genes identified by CLUMPS in IGHV subtypes; mutated residues - 

red. Although BRAF was not identified as a potential M-CLL driver via MutSig2CV (see 

Extended Data Fig. 3, Methods), CLUMPS revealed three mutated sites clustered in the 

kinase domain (purple) that are cancer hotspots24, thus confirming BRAF as a shared driver 

(left). Mutated residues in BRAF in U-CLL (bottom) are shown for comparison, revealing a 

greater number of clustered mutations relative to M-CLL. In U-CLL, novel mutations were 

found in RRM1 (right). Somatic alterations were clustered in the N-terminal ATP-binding 

site (purple) and therefore have potential to impact enzymatic activity95.
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ED Fig 2. CLL biological pathways affected by candidate driver genes
a. Schema of CLL pathways containing previously identified (black) and novel (magenta) 

putative driver genes (see Supplementary Table 6). Novel drivers cluster in central processes 

driving CLL (e.g., DNA damage, chromatin modification, RNA processing)1,2, but also 

highlight new pathways not previously implicated by driver genes (e.g., cytoskeleton and 

extracellular matrix, proteostasis, metabolism). Asterisks - mutated genes discovered by 

CLUMPs. b. Stacked barplot ranked by the number of candidate driver genes per CLL 

pathway. Magenta bars show the number of newly identified drivers in each pathway.
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ED Fig 3. Candidate driver alterations discovered in IGHV subtypes
a-b. Landscape of putative driver genes and sCNAs in M-CLL (a, n=512) and U-CLL (b, 

n=459) with associated frequencies (rows, barplots). Header tracks annotate cohort, IGHV 

status (purple, M-CLL; orange, U-CLL), disease type (blue, CLL; yellow, MBL), epitype 

(blue, n-CLL; yellow, i-CLL; red, m-CLL), datatype (white, WES; yellow, WGS; blue, 

both); prior treatment, U1 and IGLV3–21R110 mutations are annotated in black; magenta 

label - novel alterations; asterisks - discovery by CLUMPS.
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ED Fig 4. Chromosomal gains and losses identified in IGHV subtypes
a-b. Recurrent copy number gains (left) and losses (right) by GISTIC analysis showing 

arm level (left per plot) and focal events (right per plot) in M-CLL (a, n=512) and U-CLL 

(b, n=459). Chromosomes are labeled along the vertical axis; dashed line - significance at 

q=0.1. Blacklisted regions are colored gray. All arm level events are labeled with cytoband 

arm and frequency in cohort. Focal events are annotated by cytoband, frequency, number 

of genes encompassed in peak (bracketed), and genes of interest. Red/blue font: novel focal 
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events with frequency >2%. Black font: previously identified events (see Supplementary 

Table 7).

ED Fig 5. Landscape of driver alterations and chromosomal aberrations in IGHV subtypes
a. The genomic landscape of CLL IGHV subtypes. Driver genes, U1 and IGLV3–21R110 

mutations are labeled according to their genomic location (outside ring, numbered by 

chromosome). The tracks show the frequency and locations of driver genes in M-CLL 

(purple) vs. U-CLL (orange) (track 1; outermost), focal sCNAs (track 2; gains, red; losses, 
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blue), and density of SV breakpoints of deletions (track 3) and translocations (track 4) (M-

CLL n=88; U-CLL n=87; WGS, windows of 1-Mb). Innermost plot highlights translocations 

in which either one or both breakpoints are recurrent in at least 3 cases (windows of 

1-Mb considered to define recurrence) in M-CLL (purple) and U-CLL (orange). Deletions, 

inversions, and tandem duplications where both breakpoints were found in at least 2 cases 

and did not overlap with a driver sCNA are shown (Note: only focal deletion in SP140 
in two U-CLL cases met this criterion. b. Schema of recurrent IG-BCL2 translocation and 

IGH-ZFP36L1 deletion in the WGS cohort. All 5 BCL2 translocations were in M-CLL with 

immunoglobulin (IG) breakpoints in J or D genes, suggesting mediation by aberrant V(D)J 

recombination. In contrast, 4 U-CLL cases carried IGH-ZFP36L1 truncating deletions, 

which were all clonal (CCF=1). Breakpoints in IGH class-switch regions suggested 

mediation by aberrant class-switch recombination (CSR). c. Immunoglobulin (IG) SVs in 

177 WGS and 984 WES. In WES, 9 of 10 BCL2 translocations were in M-CLL and 

mediated by aberrant V(D)J recombination in IGH (n=7) or IGK (n=2). The sole BCL2 
translocation in U-CLL was due to aberrant CSR. One CSR-mediated IGH-ZFP36L1 
deletion was observed in a case with unclassified IGHV status due to presence of two 

populations (one M-CLL, one U-CLL; the latter was more prevalent). Of note, in WES, 

U-CLLs carry a higher number of non-recurrent IG events than M-CLL.
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ED Fig 6. Mutational mechanisms and cancer cell fractions of candidate drivers
Eight mutational signatures were identified in 177 WGS, but 3 signatures corresponded 

to known artifacts and were therefore excluded (see Supplementary Note 2). Boxplots 

demonstrating mutation contribution for each of the 5 signatures are labeled with single-

base substitution (SBS) number and identity (per COSMIC v3.1). b. Comparison of the 

normalized signature intensity of the mutational signatures in U-CLL (orange, n=87) vs. 

M-CLL (purple, n=88). The nc-AID and c-AID 1 signatures were enriched in M-CLL, 

whereas the aging signature was more prevalent in U-CLL. Although not significant, there 
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was a trend of increased mutations due to the c-AID 2 signature in U-CLL. All p-values 

were calculated with Wilcoxon rank-sum test, two-sided. Boxplots: center line, median; 

box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. c. 
Proportions of clustered mutations contributed by the two c-AID related signatures (SBS84, 

c-AID 1 vs. SBS85, c-AID 2) for each IGHV subtype (M-CLL, purple; U-CLL, orange) 

d. Mean cancer cell fraction (CCF) for each non-silent mutation across all candidate driver 

genes identified in WES samples (n=984). Color of dots depicts the IGHV subtype (M-CLL, 

purple; U-CLL, orange). The horizontal red line is the threshold for clonality (CCF>85%). 

Magenta labels - newly identified putative driver genes. The number of non-silent mutations 

per driver gene is shown at the bottom. Boxplots: center line, median; box limits, upper and 

lower quartiles; whiskers, 1.5x interquartile range.
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ED Fig 7. Development and validation of epitype assignment and epiCMIT in RRBS data
a. Consensus clustering matrices for K=3 groups for paired-end (n=136; 153 CpGs 

in consensus matrix) and single-end (n=388; 32 CpGs) RRBS data. (d). b. Empirical 

cumulative distribution functions (CDFs) for consensus matrices with K=2 to K=7. c. 
Relative change under the CDF for K=2 to K=7. d. Heatmaps of the CpGs used for 

consensus clustering in (a). Each sample (columns) is annotated by tracks: epitype max 

probability, IGHV status (M-CLL, purple; U-CLL, orange), IGHV percent identity, and 

presence of IGLV3–21R110 mutation (black). e. The development of the new epiCMIT 
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methodology for RRBS data. The genome was segmented into Chromatin Hidden 

Markov Model (CHMM)96 states using ChIP-seq data to get repressed chromatin regions, 

where differential DNA methylation analyses was performed in high coverage whole-

genome bisulfite sequencing (WGBS) data between the cells with the lowest and highest 

accumulated cell divisions in the B-cell lineage, namely the hematopoietic precursor cells 

(HPC) and bone-marrow plasma cells (bmPC). Only CPGs showing extensive differences 

were retained and constituted the epiCMIT-hyper CpGs or epiCMIT-hypo CpGs depending 

whether they gain or lose DNA methylation from 0.9 to ≤0.5 from HPC to bmPC, 

respectively. EpiCMIT-hyper and epiCMIT-hypo scores were calculated according to the 

available epiCMIT-CpGs per sample, and the higher score in each sample was then selected. 

f. epiCMIT values on the same samples profiled twice with different platforms. Approach 

1 - profiled with Illumina-450k (green); approach 2 - profiled with RRBS-PE (violet). In 

samples profiled with Illumina 450k, the original epiCMIT-CpGs were used52. In samples 

profiled with RRBS, epiCMIT was calculated with all available epiCMIT-CpGs for the new 

catalog (e, Methods). P-value by Pearson correlation test, two-sided; Error band - 95% 

confidence intervals of the Pearson correlation coefficient.
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ED Fig 8. Identification of expression clusters with associated biologic features
a. Cohort representation in each expression cluster. b. Consensus matrix for RNA expression 

profiles of 603 treatment-naive CLLs by repeated hierarchical clustering with 80% 

resampling and varying cutoffs for number of clusters, which is inputted to the BayesNMF 

procedure (Methods). c. Uniform manifold approximation and projection (UMAP) showing 

clustering of ECs (n=603; EC-u clusters (top), EC-m and EC-o (middle), EC-i (bottom)). 

Analysis was performed using the marker genes identified by BayesNMF. d. UMAP of 

H3K27ac profiles (n=104)8 denoting EC designation where available (colored points, n=73) 
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and IGHV status. e. Comparison of the percent IGHV identity among ECs. Dotted line: 

98% threshold defining M-CLL and U-CLL. P-values by two-sided t-tests. Boxplots: center 

line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. f. 
Comparison of the percent IGHV identity between those samples with concordant IGHV 

status and ECs (e.g., M-CLLs in EC-m clusters) versus the discordant samples (e.g., M-

CLLs in EC-u clusters). IGHV mutated cases - left; IGHV unmutated samples - right. 

P-values by two-sided t-tests. Boxplots: center line, median; box limits, upper and lower 

quartiles; whiskers, 1.5x interquartile range. g. Percentage of cases carrying stereotyped 

immunoglobulin genes within each EC. Red horizontal line: percentage of stereotyped cases 

in the whole cohort. h. Fraction of cases classified in each CLL stereotype subset according 

to their EC. i. Percentage of IGHV (left) and IG(K/L)V (right) gene usage within each EC. 

IGKV genes from proximal and distal clusters were merged for simplification. All p-values 

were calculated using Chi-squared tests corrected by the Benjamini-Hochberg procedure 

(q-values, q). q < 0.1; *, q < 0.05; **, q < 0.001; ***, q < 0.0001. j-k. Heatmaps showing 

upregulated (j) and downregulated (k) H3K27ac levels of EC marker genes and 2,000 bp 

upstream to capture regulatory regions (Methods).
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ED Fig 9. EC differential gene expression, pathway activity, and classifier
Differentially expressed genes per EC (red) using discovery set (n=603); EC marker 

genes by BayesNMF (blue). Significant up- or down-regulation of H3K27ac levels are 

directionally marked with triangles (ChIP-seq available for n=73; n=1 for EC-o and EC-i, 

thus unevaluable). b. EC gene set enrichment analysis (GSEA). Diamond denotes the EC 

compared to all others (circles). c. Confusion matrix for the EC classifier on the test set 

(“Dominance” defined in Methods). d. Confidence in correctly classified samples (n=95) is 

greater than for incorrectly classified samples (n=25; two-sided t-test). “Prediction margin” 
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defined in Methods. Boxplots: center line, median; box limits, upper and lower quartiles; 

whiskers, 1.5x interquartile range. e. Receiver-operator curve (ROC) showing the tradeoff 

between sensitivity and specificity for the range of cutoffs that can be applied based on 

the “prediction margin”, where samples under the cutoff are excluded from performance 

evaluation. AUC, area under curve. f. Precision-recall (PR) curves for EC classification 

performance on the test set (n=120), using the selected model (see Methods). The weighted 

average of AUC is 0.88. g. Performance metrics for models trained with differing amounts 

of input genes, demonstrating accuracy even with smaller gene sets. Metrics: Accuracy, 

overall; Average, weighted average across ECs (Methods). Nc, Ntot - number of genes 

(see Methods). h. EC distributions by BayesNMF compared to classifier predictions on 

the discovery cohort (n=603), an extension cohort not included discovery (n=105), and an 

external CLL cohort (n=136)60. i. IGHV status distributions per EC in discovery (n=603) 

and external (n=136) cohorts. The difference in IGHV-mutated samples per EC is 2–10% 

(p>0.05, Fisher’s Exact, Methods). j. Stability of the ECs over time in longitudinally 

sampled CLL samples3. Sample timepoints (x-axis); years between first and last sample 

(above curve).
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Figure 1: Increased power enables CLL driver gene detection.
a-b. By down-sampling analysis, driver gene (a) and sCNA (b) discovery increases with 

additional samples. Points represent a random subset of samples with smoothed fit line; 

analysis separated by frequency.

c. Landscape of genetic alterations in CLL with frequency of alterations (right, n=1063 

patients). Header tracks - annotation of cohort, IGHV status, CLL or MBL sample, 

epigenetic subtype (epitype: naive-like, n-CLL; intermediate, i-CLL; memory-like, m-CLL), 

sequencing data type; prior treatment, U1 and IGLV3–21R110 mutations - black; magenta 
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label - novel alterations. Asterisks - discovery by CLUMPS. Bottom tracks - Lower 

frequency sSNV/indels and sCNAs, designated as novel (magenta), known events (blue) 

or both (black). Bottom boxed inset - candidate driver genes, frequency <1%.

d. Representative genes identified by CLUMPS (see Supplementary Table 5). 3D protein 

structure of MAP2K2 and DIS3. Mutated residues (red labels) cluster in functional regions 

(purple).

e. Recurrent copy number gains (top) and losses (bottom) by GISTIC analysis showing 

arm level (left) and focal events (right). Chromosome number - vertical axis; dashed 

line - significance, q=0.1. Blacklisted regions - gray. Arm level events are labeled with 

cytoband and frequency (n=984). Focal events denote cytoband, frequency, number of genes 

encompassed in peak (bracketed), and genes of interest. Red/blue font: novel focal events 

with frequency >2%. Black font: previously known events (see Supplementary Table 7).
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Figure 2: M-CLL and U-CLL have unique genomic landscapes.
a-b. Comparison of candidate driver genes (a) or copy number gains/losses (up/down 

triangle, respectively, b) in U-CLL (y-axis, WES, n=459) vs. M-CLL (x-axis, WES, n=512) 

plotted by −log10(q-value). Significance - dashed line. Representative candidate drivers are 

annotated. Frequency in entire cohort (n=984) - size of circle (a) or triangle (b). Orange - 

drivers predominantly in U-CLL; purple - predominantly in M-CLL.

c. League model timing diagrams comparing acquisition of somatic mutation and arm level 

sCNAs in M-CLL (top, n=251) and U-CLL (bottom, n=354). Higher timing score (x-axis) 

denotes later event; median scores - yellow marks (95% confidence interval, gray). Purple - 

events significant in M-CLL; orange - events significant in U-CLL; black - events shared by 

M-CLL and U-CLL. Asterisks - significant difference in timing (q<0.1).

d-e. Somatic alterations associated with failure free survival (FFS) and overall survival 

(OS) in M-CLL (d, WES/WGS, n=518 and U-CLL (e, WES/WGS, n=476). Events ranked 

by elastic net (ENET) coefficients, which identifies variables to be included in the model, 
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shrinking coefficients to 0 when excluded. Heatmap denotes hazard ratios (HR) for ENET 

and univariate Cox regressions. Events included by ENET model (concentric circle) or 

significant in univariate analysis only (closed circle) in treatment-naive, non-trial patients 

(M-CLL, n=393; U-CLL, n=247) annotated on right. Magenta label - novel alterations (see 

Supplementary Table 11).

f. Number of candidate drivers in three genomic driver detection analyses: entire cohort (All, 

n=984), M-CLL (n=512) and U-CLL (n=459). For each analysis set, sSNV/indel represents 

candidate driver genes from MutSig2CV and CLUMPS, while sCNA represents recurrent 

events from GISTIC. Union - total putative drivers identified in any of the three analysis 

sets.
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Figure 3: CLL subtypes based on epigenetic and transcriptomic features
a. Main sources of variability in the DNA methylome are epitype and epiCMIT as 

determined by unsupervised principal component analysis in samples analyzed by 450k 

methylation array (top, n=490) or single-end reduced representation bisulfite sequencing 

(RRBS-SE, bottom, n=388).

b. Eight gene expression clusters (ECs, columns) were identified by Bayesian non-

negative matrix factorization (BNMF) method in 603 treatment-naive samples. Heatmap 

demonstrates associated upregulated (red) and downregulated (blue) marker genes for each 

cluster (rows) with select genes (right, see Supplementary Table 13). Right vertical panel 

demonstrates upregulated (red) or downregulated (blue) histone 3 lysine 27 acetylation 

Knisbacher et al. Page 42

Nat Genet. Author manuscript; available in PMC 2023 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(H3K27ac) in regulatory regions for each marker gene; EC-o and EC-i H3K27ac was not 

assessed due to low sample size (NA, gray). Header - number of samples in ECs; association 

with IGHV subtype (M-CLL, purple; U-CLL, orange); epitype (n-CLL, blue; i-CLL, yellow; 

m-CLL, red). Frequency of common CLL alterations is shown for each EC. Significant 

associations - asterisks (q<0.1, curveball algorithm, Methods).

c. Differential gene expression of tri(12)-positive and -negative cases in EC-m2 (top) and 

EC-u2 (bottom) compared to all other M-CLL or U-CLLs, respectively (EC marker genes 

shown in blue).

d. Dendrogram of ECs with associated upregulated and downregulated biologic pathways 

determined by gene set enrichment analysis (see Extended Data Fig. 9b).

e. Cellular proliferative history, represented by epiCMIT, varied in ECs enriched with 

m-CLL epitype. EC-m3 had significantly lower epiCMIT relative to EC-m1, EC-m2, and 

EC-m4 (p-values by two-sided t-test; unadjusted). The dashed red line marks the mean 

epiCMIT in all m-CLLs (n=404). Boxplots: center line, median; box limits, upper and lower 

quartiles; whiskers, 1.5x interquartile range.
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Figure 4: Expression clusters and integrated analysis predicts clinical outcome
a-b. Kaplan Meier analysis of the impact of expression clusters on (a) failure free survival 

(FFS) and (b) overall survival (OS) probabilities in 603 treatment-naive samples (log-rank 

test).

c. Kaplan Meier analysis assessing the difference in FFS probability between samples with 

concordant IGHV status and ECs (e.g., M-CLLs in EC-m clusters) versus those that are 

discordant (e.g., M-CLLs in EC-u clusters). M-CLLs - left; U-CLLs - right. Log-rank test 

(two-sided; unadjusted p-values).
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d-e. Genetic, epigenetic, and transcriptomic features associated with (d) FFS and (e) OS 

in treatment-naive samples (n=506). Events ranked by elastic net (ENET) coefficients, 

which identifies variables to be included in the model, shrinking coefficients to 0 when 

excluded. Heatmap denotes hazard ratios (HR) for ENET and univariate Cox regressions 

(see Supplementary Table 14). Continuous variable - Φ (epiCMIT).
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Table 1:

Patient characteristics in clinical analyses

Overall* 
N (%)

IGHV 
mutated 
N (%)

IGHV 
unmutated 

N (%)

Treatment 
Naïveǂ N 

(%)

Treatment 
Naïveǂ 
IGHV 

mutated N 
(%)

Treatment 
Naïveǂ 
IGHV 

unmutated 
N (%)

Expression 
Cluster 

Cohort N 
(%)

Integrated 
Analysis N 

(%)

N, Patients 1009 518 476 640 393 247 603 506

Site

 UCSD 21 (2) 8 (2) 13 (3) 21 (3) 8 (2) 13 (5) 20 (3) 17 (3)

 DFCI 172 (17) 103 (20) 69 (15) 138 (22) 96 (24) 42 (17) 105 (17) 64 (13)

 GCLLSG 278 (28) 107 (21) 160 (34) 0 (0) 0 (0) 0 (0) 206 (34) 172 (34)

 MDACC 22 (2) 0 (0) 21 (4) 2 (<1) 0 (0) 2 (1) 0 (0) 0 (0)

 NHLBI 68 (7) 23 (4) 45 (9) 46 (7) 19 (5) 27 (11) 11 (2) 10 (2)

 ICGC 448 (44) 277 (53) 168 (35) 433 (68) 270 (69) 163 (66) 261 (43) 243 (48)

Treatment 
Naïve 920 (91) 500 (97) 407 (86) 640 (100) 393 (100) 247 (100) 603 (100) 0 (0)

Age at time of 
Sample yrs, 
median (range)

63 (19, 
94)

65 (32, 
90) 61 (19, 94) 65 (19, 94) 66 (32, 90) 62 (19, 94) 63 (32, 91) 63 (34, 91)

 <60 yrs. 375 (37) 163 (31) 208 (44) 227 (35) 118 (30) 109 (44) 226 (37) 189 (37)

 ≥60 yrs. 634 (63) 355 (69) 268 (56) 413 (65) 275 (70) 138 (56) 377 (63) 317 (63)

Sex

 Male 655 (65) 308 (59) 336 (71) 384 (60) 218 (55) 166 (67) 405 (67) 342 (68)

 Female 354 (35) 210 (41) 140 (29) 256 (40) 175 (45) 81 (33) 198 (33) 164 (32)

Rai Stage at Dx

 0 368 (36) 250 (48) 115 (24) 347 (54) 241 (61) 106 (43) 222 (37) 185 (37)

 1 192 (19) 74 (14) 113 (24) 105 (16) 53 (13) 52 (21) 122 (20) 101 (20)

 2 114 (11) 47 (9) 65 (14) 30 (5) 13 (3) 17 (7) 67 (11) 56 (11)

 3 15 (1) 4 (1) 11 (2) 7 (1) 1 (<1) 6 (2) 9 (1) 7 (1)

 4 31 (3) 12 (2) 19 (4) 8 (1) 4 (1) 4 (2) 18 (3) 16 (3)

 Unknown 290 (29) 132 (25) 153 (32) 143 (22) 81 (21) 62 (25) 165 (27) 141 (28)

IGHV

 mutated 518 (51) 518 (0) 0 (0) 394 (61) 393 (100) 0 (0) 319 (53) 272 (54)

 unmutated 476 (47) 0 (0) 476 (0) 247 (39) 0 (0) 247 (100) 272 (45) 234 (46)

 unknown 15 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 12 (2) 0 (0)

Expression 
Cluster

 EC-m1 --- --- --- --- --- --- 53 (9) 47 (9)

 EC-u1 --- --- --- --- --- --- 188 (31) 152 (30)

 EC-m2 --- --- --- --- --- --- 48 (8) 43 (9)

 EC-o --- --- --- --- --- --- 21 (3) 19 (4)

 EC-u2 --- --- --- --- --- --- 64 (11) 53 (10)
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Overall* 
N (%)

IGHV 
mutated 
N (%)

IGHV 
unmutated 

N (%)

Treatment 
Naïveǂ N 

(%)

Treatment 
Naïveǂ 
IGHV 

mutated N 
(%)

Treatment 
Naïveǂ 
IGHV 

unmutated 
N (%)

Expression 
Cluster 

Cohort N 
(%)

Integrated 
Analysis N 

(%)

 EC-m3 --- --- --- --- --- --- 54 (9) 47 (9)

 EC-m4 --- --- --- --- --- --- 113 (19) 92 (18)

 EC-i --- --- --- --- --- --- 62 (10) 53 (10)

Epitype 

(n=874)**

 memory 342 (39) --- --- --- --- --- --- 216 (43)

 intermediate 141 (16) --- --- --- --- --- --- 79 (16)

 naïve 391 (45) --- --- --- --- --- --- 211 (42)

Copy number 

alterations***

 tri(12) 149 (15) 52 (10) 94 (20) 90 (14) 34 (9) 56 (23) --- 68 (13)

 del(13q14.3) 488 (48) 293 (56) 188 (40) 306 (48) 219 (56) 87 (35) --- 255 (50)

 del(11q) 169 (17) 24 (5) 163 (34) 83 (21) 11 (3) 72 (30) --- 87 (17)

 del(17p) 89 (9) 13 (3) 56 (12) 30 (5) 9 (2) 21 (9) --- 31 (7)

ǂ
excluding patients sampled because they had enrolled on a treatment trial

Abbreviations: UCSD, University of California San Diego. DFCI, Dana-Farber Cancer Institute. GCLLSG, German CLL Study Group. MDACC, 
MD Anderson Cancer Center. NHLBI, National Heart Lung and Blood Institute. ICGC, International Cancer Genome Consortium.

*
with OS and sequencing data.

**
Epitype was not included in the genetics analyses, but it is included for descriptive purposes.

***
All copy number alterations were defined by GISTIC (Methods). del(17p) and del(11q) includes arm and focal events encompassing TP53 

[del(17p) + del(17p13.1)] and ATM [del(11q) + del(11q22.3)].

--- Not analyzed in the cohort.
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