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Abstract

In a class of supersymmetric flavor models predictions are based on residual symmetries of some sub-
sectors of the theory such as those of the charged leptons and neutrinos. However, the vacuum expectation
values of the so-called flavon fields generally modify the Kähler potential of the setting, thus changing the
predictions. We derive simple analytic formulae that allow us to understand the impact of these corrections
on the predictions for the masses and mixing parameters. Furthermore, we discuss the effects on the vacuum
alignment and on flavor changing neutral currents. Our results can also be applied to non-supersymmetric
flavor models.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Explanations of the observed pattern of fermion masses and mixing are often based on spon-
taneously broken flavor symmetries. In this paper, we concentrate on supersymmetric models
attempting to explain the observed flavor structure by discrete symmetries. At some (high) en-
ergy scale, the flavor symmetry, denoted by GF in what follows, is spontaneously broken by
some appropriate ‘flavon’ fields, which acquire vacuum expectation values (VEVs). Although
our analysis also applies to non-supersymmetric settings, we base our discussion on the lepton
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Fig. 1. The flavor symmetry GF gets broken to different subgroups in different sectors of the theory.

sector of supersymmetric extensions of the standard model (SM). In order to be specific, consider
a prototype superpotential of the form

Wleading = 1

Λ
(Φe)gf LgRf Hd + 1

ΛΛν

(Φν)gf LgHuL
f Hu, (1.1)

where Lg and Rf (with the flavor indices 1 � f,g � 3) denote the lepton doublets and singlets,
respectively, whereas Hu and Hd are the usual Higgs doublets of the supersymmetric standard
model. The two scales involved are the cut-off scale Λ of the theory and the see-saw scale Λν .
For the sake of definiteness, we shall take Λ to be around the unification scale, although our
results will not depend on this choice. Φe and Φν denote the flavons, which acquire VEVs that
are assumed to be somewhat below Λ such that the expansion parameters of our theory are
〈Φe〉/Λ and 〈Φν〉/Λ. Inserting the flavon VEVs leads to an effective superpotential

Weff = (Ye)gf LgRf Hd + 1

4
κgf LgHuL

f Hu. (1.2)

One is often left with a situation in which neither Φe nor Φν breaks GF completely, but respect
the residual symmetries Ge and Gν , respectively (cf. Fig. 1), while the intersection of the residual
symmetries is smaller or empty. Given that higher-order terms are either subleading or may be
completely forbidden by some appropriate symmetries such as R symmetries, these residual
symmetries allow us to make predictions.

Models that make predictions based on such residual symmetries have become rather popular
in the past (see e.g. [1,2]). One can, for example, successfully obtain the bi-maximal mixing
pattern [3,4] as well as the tri-bi-maximal (TBM) mixing pattern [5,6].

The potential problem with such predictions is that they are based on the holomorphic super-
potential only. However, there are modifications coming from the Kähler potential [7–9]. Given
the fact that for most of the proposed patterns the mixing parameters, i.e. mixing angles and
phases, run under the renormalization group (RG), and that in supersymmetric theories RG cor-
rections affect the Kähler potential only, it is clear that it will be nearly impossible to avoid such
corrections. One may, therefore, question how solid the predictions based only on the holomor-
phic sector really are. Clearly, the canonical Kähler potential does not include all terms allowed
by the flavor symmetry. Rather, if one is to derive predictions from higher-order terms in the
expansion parameters 〈Φe/ν〉/Λ, one should take into account both the superpotential and the
Kähler potential. The full Kähler potential is

K = Kcanonical + �K, (1.3)

where the canonical part is given by (only considering the leptons)

Kcanonical ⊃ (
Lf

)†
δfgL

g + (
Rf

)†
δfgR

g. (1.4)
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�K includes contractions of Lf and Rf with the flavons, such as (LΦe/ν)
†(LΦe/ν), which may

not be forbidden by any (conventional) symmetry, and it has the general form

�K = (
Lf

)†
(�KL)fgL

g + (
Rf

)†
(�KR)fgR

g. (1.5)

Here �KL and �KR are Hermitean matrices which describe the modification of the Kähler
metric after the flavons acquire their VEVs. The structure of these Hermitean matrices, therefore,
depends on the flavor group and the flavon VEVs.

After the breaking of the flavor symmetry, one needs to redefine the fields in order to return
to a canonical Kähler potential [10–12]. As we shall discuss in more detail below, in this new
basis generically none of the subsectors exhibits a residual symmetry. Among other things, this
explains why the parameters run even though their values appear to be determined by Ge and Gν ,
respectively. The crucial property of �K is that its size will, in general, be controlled by the
above expansion parameters 〈Φe〉/Λ and 〈Φν〉/Λ, i.e. the very same quantities that set the scale
of the entries of the mass and coupling matrices in the effective superpotential Weff. In addition,
�K will depend on Kähler coefficients which multiply the above contractions and are hard to
determine in an effective field theory approach.

Using methods previously used for the renormalization group equations (RGEs) in [13,14],
one can obtain an analytic understanding of the Kähler corrections [15–17]. As we pointed out
in [17], the corresponding corrections are sizable and will in general lead to a strong modification
of the predictions. In particular, they may render patterns that appeared to be ruled out, such as
the TBM one, consistent with observation – and vice versa.

The purpose of this paper is to extend our discussion of these changes by presenting a full
derivation of the analytic formulae. We start out in Section 2 by reviewing the predictions from
the superpotential of two well-known models, one of which is based on A4 [18] and the other
on T′ [19], and also compare the results to the current best fit values. In Section 3 we provide
an analytic discussion of the Kähler corrections. We then apply our analytic understanding to
the two sample models in Section 4, in which we also comment on the implications of Kähler
corrections for the VEV alignment and for flavor changing neutral currents (FCNCs). Finally,
Section 5 summarizes our results.

2. Mixing parameters from the superpotential

In this section we review by means of two simple examples how predictions based on residual
symmetries of the mass terms in the superpotential are derived.

2.1. TBM from A4

One of the simplest and most popular choices of a flavor symmetry group is A4 [6]. The
resulting mixing is characterized by the TBM mixing matrix

UTBM =

⎛⎜⎜⎝
√

2
3

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2

⎞⎟⎟⎠ , (2.1)

which leads to the mixing angles in standard parametrization (cf. Appendix A.1) shown in Ta-
ble 1. The measurement of θ13 [21–23] revealed a considerable deviation from the tri-bi-maximal
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Table 1
Tri-bi-maximal prediction for the neutrino mixing angles and best fit values from the global fit by [20].

θ12 θ13 θ23

TBM prediction: arctan (
√

0.5 ) ≈ 35.3◦ 0 45◦
Best fit values (±1σ):

(
33.6+1.1

−1.0

)◦ (
8.93+0.46

−0.48

)◦ (
38.4+1.4

−1.2

)◦
prediction and also the recent best fit values from global analyses for θ23 are in tension with
maximal mixing. Yet, the TBM pattern may still serve as a good first-order approximation of the
observed mixing angles.

As common to many flavor models, the three generations of left-handed lepton doublets are
assumed to transform as a triplet under A4, L ∼ 3. The three singlet representations of A4, 1,
1′′ and 1′, are assigned to the right-handed charged leptons eR, μR and τR, respectively, and
the Higgs fields Hu and Hd are not charged under the flavor symmetry. The mass matrices are
generated by VEVs of three flavon fields: the two A4 triplets Φν and Φe, and the pure singlet
ξ ∼ 1. At leading order in the ratio flavon VEV over the cut-off scale, the terms leading to the
Yukawa couplings and to the Weinberg neutrino operator (cf. Eq. (1.1)) read

Wν = λ1

ΛΛν

{[
(LHu) ⊗ (LHu)

]
3s

⊗ Φν

}
1 + λ2

ΛΛν

[
(LHu) ⊗ (LHu)

]
1ξ, (2.2)

We = he

Λ
(Φe ⊗ L)1HdeR + hμ

Λ
(Φe ⊗ L)1′HdμR + hτ

Λ
(Φe ⊗ L)1′′HdτR, (2.3)

where again Λ and Λν denote the cut-off and the see-saw scale, respectively.
In order to distinguish the flavon field Φν , which couples to the neutrinos, from the flavon field

Φe , which couples to the charged leptons, one introduces an additional Z4 symmetry. Under this
symmetry, Φν changes sign whereas Φe stays invariant. Furthermore, under the Z4 symmetry,
ξ → −ξ , L → iL and R → −iR.

The desired tri-bi-maximal lepton mixing is achieved when the flavons acquire VEVs in the
directions

〈Φν〉 = (v, v, v), (2.4a)

〈Φe〉 = (
v′,0,0

)
, (2.4b)

〈ξ〉 = w. (2.4c)

This choice breaks the flavor symmetry GF = A4 ×Z4 to Ge = Z3 ×Z4 and Gν = Z2 ×Z2 in the
charged lepton and neutrino sector, respectively. These residual symmetries lead to TBM. This
can be seen explicitly by computing the mass matrices after electroweak symmetry breaking.
The charged lepton mass matrix reads

me = vd diag(ye, yμ, yτ ), (2.5)

where vd is the VEV of the down-type Higgs and ye,μ,τ = he,μ,τ
v′
Λ

. Here and in the following
we work in a basis in which the charged lepton Yukawa matrix is diagonal.

On the other hand, in this basis the neutrino mass matrix is non-diagonal. Using the abbrevi-

ations a = 2λ2
v2
u

Λν

w
Λ

and d = √
2λ1

v2
u

Λν

v
Λ

, where vu is the VEV of the up-type Higgs, it can be
written as

mν =
(

a + 2d −d −d

−d 2d a − d

)
. (2.6)
−d a − d 2d
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Table 2
Flavon content of the T′ model.

φ φ′ ψ ψ ′ ζ N ξ η

T′ 3 3 2′ 2 1′′ 1′ 3 1
Z12 3 2 6 9 9 3 10 10
Z12 3 6 7 8 2 11 0 0

The lepton mixing matrix UPMNS is then the unitary transformation that diagonalizes the neutrino
mass matrix and is indeed given by the tri-bi-maximal matrix (2.1).

Even though this simple model seems to be excluded by the recent measurements, there are
still many loopholes which can make it viable. For example, there are attempts to explain the
deviations by higher-order terms in the superpotential, cf. [24] and references therein. However,
as we have shown in [17], there are also corrections due to higher-order Kähler potential terms,
which can either reconcile the model predictions with data or drive them even further away.

2.2. T ′

Another interesting example model is based on the double covering group of A4, which is
called T′. Like A4, this group contains three irreducible singlet representations and one triplet.
Additionally, the group contains three doublet representations 2, 2′ and 2′′. The specific model
[19] we discuss comes with several flavon fields, which are summarized in Table 2, and also two
additional Abelian Z12 symmetries. The flavons acquire VEVs along the directions

〈φ〉 = φ0

⎛⎝ 1
0
0

⎞⎠ ,
〈
φ′〉 = φ′

0

⎛⎝ 1
1
1

⎞⎠ , 〈ξ〉 = ξ0

⎛⎝ 1
1
1

⎞⎠ ,

〈ψ〉 = ψ0

(
1
0

)
,

〈
ψ ′〉 = ψ ′

0

(
1
1

)
, (2.7)

and the fields transforming as one-dimensional representations, ζ , N and η, assume non-trivial
values. With this choice of VEVs, the model [19] gives rise to near tri-bi-maximal lepton mixing,

θ12 ≈ 33◦, θ23 = 45◦ and θ13 ≈ 3◦. (2.8)

The deviations from the exact TBM mixing pattern are due to the corrections from the charged
lepton sector, and they are related to the Cabibbo angle through the SU(5) GUT relations. Fur-
thermore, the model also predicts a leptonic Dirac CP violating phase from the superpotential
and an absolute neutrino mass scale, e.g. m1 = 0.0156 eV for mass-squared differences given by
�m2

21 = 8.0 × 10−5( eV)2 and �m2
32 = 2.4 × 10−3( eV)2.

3. Corrections due to Kähler potential terms

Let us now look at the Kähler potential of the theory. As already mentioned, higher-order
terms will, after the flavons acquire their VEVs, lead to a non-canonical Kähler metric. Let us
spell this out in more detail, using the A4 and the T′ examples from Section 2. Here, the left-
handed lepton doublets transform as a triplet of either A4 or T′, respectively. Contractions of
these triplets with the flavons will then lead to a Kähler metric with off-diagonal terms after the
flavons acquire a VEV.
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3.1. Linear flavon corrections from left-handed leptons

We start with terms which are linear in the flavons. Focusing on the A4 symmetry only, these
linear contributions are given by

�Klinear =
∑

i∈{a,s}

(
κ

(i)
Φν

Λ
L†(L ⊗ Φν)3i

+ κ
(i)
Φe

Λ
L†(L ⊗ Φe)3i

)
+ κξ

Λ
ξL†L + h.c., (3.1)

and are suppressed by only one power of the expansion parameter 〈Φe/ν〉/Λ. The last term does
not lead to a change of the mixing parameters because it just changes the overall normalization
of the kinetic term of the lepton doublets. On the other hand, the terms containing Φν and Φe do
modify the model predictions. The contractions with a generic triplet flavon Φ are

L†(L ⊗ Φ)3s = 1√
2

[(
L

†
1

)
(2L1Φ1 − L2Φ3 − L3Φ2) + (

L
†
2

)
(2L3Φ3 − L1Φ2 − L2Φ1)

+ (
L

†
3

)
(2L2Φ2 − L1Φ3 − L3Φ1)

]
, (3.2a)

L†(L ⊗ Φ)3a = i

√
3

2

[(
L

†
1

)
(L2Φ3 − L3Φ2) + (

L
†
2

)
(L1Φ2 − L2Φ1)

+ (
L

†
3

)
(L3Φ1 − L1Φ3)

]
. (3.2b)

Plugging in the flavon VEVs leads to departures from the canonical Kähler metric,

Kfg =
(

∂2K

∂(Lf )†∂Lg

)
= δfg

Φ→〈Φ〉−−−−−→ δfg + (�K )fg. (3.3)

In what follows, we will find it convenient to decompose �K according to

(�K )fg = αPfg + h.c., (3.4)

where P encodes the matrix structure and α is a continuous parameter reflecting the size of the
Kähler correction. For the flavon VEV 〈Φ〉 = 〈Φe〉 = (v′,0,0) one obtains the Kähler correc-
tions

(�K )
(s)
Φe

= κ
(s)
Φe

v′ 1√
2
P

(s)
Φe

+ h.c., (3.5a)

(�K )
(a)
Φe

= iκ(a)
Φe

v′
√

3

2
P

(a)
Φe

+ h.c. (3.5b)

with the P matrices

P
(s)
Φe

= diag(2,−1,−1), (3.6a)

P
(a)
Φe

= diag(0,−1,1), (3.6b)

whereas for 〈Φ〉 = 〈Φν〉 = (v, v, v) one gets

(�K )
(s)
Φν

= κ
(s)
Φν

v
1√
2
P

(s)
Φν

+ h.c., (3.7a)

(�K )
(a)
Φν

= iκ(a)
Φν

v

√
3

2
P

(a)
Φν

+ h.c. (3.7b)

with
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P
(s)
Φν

=
⎛⎝ 2 −1 −1

−1 −1 2
−1 2 −1

⎞⎠ , (3.8a)

P
(a)
Φν

=
⎛⎝ 0 1 −1

1 −1 0
−1 0 1

⎞⎠ . (3.8b)

However, in the specific A4 model from Section 2.1, the terms comprising Φν are forbidden
by the additional Z4 symmetry. Therefore, we only get corrections in this case from the matrices
in Eqs. (3.6a) and (3.6b). One may introduce additional symmetries in such a way that all flavons
are charged (like in the T′ example in Section 2.2), and hence forbid linear flavon contributions
in the Kähler potential all together. Therefore, these linear corrections will not necessarily spoil
the predictivity of a given model. This is different in the case of quadratic corrections, which we
discuss next.

3.2. Second-order corrections from left-handed leptons

Unlike the linear terms, some of the quadratic corrections to the Kähler potential, which are of
the form (L ⊗ Φi)

†(L ⊗ Φj), cannot be forbidden by any (conventional) symmetry. Obviously,
terms with i �= j can again be forbidden by a symmetry, however, terms like (L ⊗ Φ)†(L ⊗ Φ)

with Φ = Φν or Φe cannot. We will comment later in Section 5 how one may control or avoid
such corrections in more complete settings. In the A4 model we get six different possible terms
for each flavon, (L ⊗ Φν)

†
R(L ⊗ Φν)R′ and (L ⊗ Φe)

†
R(L ⊗ Φe)R′ , e.g. (L ⊗ Φν)

†
3s

(L ⊗ Φν)3a
.

Using the A4 multiplication rules from Appendix A.2, the latter term can be recast as

(L ⊗ Φν)
†
3s

(L ⊗ Φν)3a

= i

√
3

2

[(
2L

†
1Φν

†
1 − L

†
2Φν

†
3 − L

†
3Φν

†
2

)
(L2Φν3 − L3Φν2)

+ (
2L

†
3Φν

†
3 − L

†
2Φν

†
1 − L

†
1Φν

†
2

)
(L1Φν2 − L2Φν1)

+ (
2L

†
2Φν

†
2 − L

†
1Φν

†
3 − L

†
3Φν

†
1

)
(L3Φν1 − L1Φν3)

]
(3.9)

and leads to the Kähler correction

�K = iκ

√
3

2
P + h.c. (3.10)

with the P matrix

P =
⎛⎜⎝ −Φν

†
2Φν2 + Φν

†
3Φν3 2Φν

†
1Φν3 + Φν

†
2Φν1 −2Φν

†
1Φν2 − Φν

†
3Φν1

−2Φν
†
2Φν3 − Φν

†
1Φν2 −Φν

†
3Φν3 + Φν

†
1Φν1 2Φν

†
2Φν1 + Φν

†
3Φν2

2Φν
†
3Φν2 + Φν

†
1Φν3 −2Φν

†
3Φν1 − Φν

†
2Φν3 Φν

†
2Φν2 − Φν

†
1Φν1

⎞⎟⎠ .

(3.11)

We then get for 〈Φν〉 = (v, v, v)

�K = i

√
3

2
κv2

⎛⎝ 0 3 −3
−3 0 3
3 −3 0

⎞⎠ + h.c. = 3

√
3

2
κv2PV + h.c. (3.12)
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If we treat all of the possible twelve terms (six for each flavon) in such a way, we get several
corrections which lead to identical P matrices. In total, we can summarize them by five different
matrices PI, . . . ,PV, where the derivation of the fifth matrix PV has just been shown above. The
first three matrices

PI = diag(1,0,0), PII = diag(0,1,0) and PIII = diag(0,0,1) (3.13a)

come from contractions of L with Φe. Since 〈Φe〉 = (v′,0,0), their contribution in the Kähler
potential is proportional to (v′)2. The other two matrices,

PIV =
(1 1 1

1 1 1
1 1 1

)
and PV =

( 0 i −i
−i 0 i
i −i 0

)
, (3.13b)

are contributions due to Φν ; therefore, their contribution is proportional to v2 since 〈Φν〉 =
(v, v, v). An important property of all these corrections is that they are controlled by the square of
our expansion parameters VEV over the fundamental scale as well as some unknown coefficient
in the Kähler potential.

3.3. Corrections from the right-handed leptons

As was already stated in the introduction one can also have corrections for the right-handed
lepton fields, depending on their representation under the flavor group. In the A4 example, the
right-handed leptons are A4 singlets, 1, 1′ and 1′′; therefore, corrections with the flavon triplets
are going to be diagonal, e.g.

K ⊃ 1

Λ2
(eRΦν)

†(eRΦν) = e
†
ReR

Φν
†Φν

Λ2
, (3.14)

which, after VEV insertion, gives 3|v|2e†
ReR/Λ2. We get similar terms for μR, τR and also for

contractions of the right-handed leptons with the flavon field Φe. The only other flavon in the
model is the A4 singlet ξ ; hence, we also have diagonal corrections proportional to |〈ξ 〉|2.

The model could also contain flavons which are in the singlet representation 1′ or 1′′, in this
case, non-diagonal corrections are possible due to terms with two different flavons. However,
these corrections, just like the linear ones, can easily be forbidden by an additional symmetry.
Therefore, we focus on corrections for the right-handed lepton fields which are diagonal, i.e.
PR = diag(α1, α2, α3) where the αi are not related and depend on the VEVs and arbitrary Kähler
coefficients. Since we are working in a basis with diagonal charged lepton Yukawa matrices, a
diagonal redefinition of the right-handed fields can only affect the mass eigenvalues but not the
mixing angles. This is also reflected by our analytical formulae.

3.4. Second-order corrections for a model based on T ′

We now extend our previous analysis to a model which is based on T′ [19], the double covering
group of A4. As stated in Section 2.2, T′, like A4, contains three irreducible one-dimensional
representations and one triplet. Beyond this, the multiplication law for the contraction of two
triplets is the same. For doublets and triplets, it is given by

2,2′,2′′ ⊗ 3 = 2 ⊕ 2′ ⊕ 2′′. (3.15)
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A complete list of tensor products can be found, for instance, in [25]. A closer look at Table 2
shows that in this model there are no linear corrections in the Kähler potential, since all flavons
are charged under one of the Z12 symmetries. Nonetheless, there are several second-order cor-
rections: looking at the VEV structure of the flavon fields in Eq. (2.7), it is obvious that we have
the same Kähler corrections as in the A4 example due to the flavons φ, φ′ and ξ . However, there
are additional terms due to the doublet fields ψ and ψ ′ through higher-order terms of the form
(L ⊗ ψ)

†
R(L ⊗ ψ)R and (L ⊗ ψ ′)†

R(L ⊗ ψ ′)R . The contributions of these terms can be deter-
mined with the multiplication law in Eq. (3.15), which shows that R can only be one of the three
doublets. Using this multiplication rule, we get, e.g., the contribution(

L ⊗ ψ ′)†
2′
(
L ⊗ ψ ′)

2′ = (√
2ψ ′

2L3 + ψ ′
1L2

)†(√2ψ ′
2L3 + ψ ′

1L2
)

+ (√
2ψ ′

1L1 − ψ ′
2L2

)†(√2ψ ′
1L1 − ψ ′

2L2
)
, (3.16)

which results in the Kähler correction

�K = κ2′2′

⎛⎝ 2(ψ ′
1)

2 −√
2(ψ ′

1)
†ψ ′

2 0
−√

2ψ ′
1(ψ

′
2)

† (ψ ′
1)

2 + (ψ ′
2)

2
√

2(ψ ′
1)

†ψ ′
2

0
√

2ψ ′
1(ψ

′
2)

† 2(ψ ′
2)

2

⎞⎠ + h.c. (3.17)

After inserting the VEV 〈ψ ′〉 = (ψ ′
0,ψ

′
0)

T , we get �K = κ2′2′(ψ ′
0/Λ)2P + h.c. with

P =
⎛⎝ 2 −√

2 0
−√

2 2
√

2
0

√
2 2

⎞⎠ . (3.18)

Summarizing, the T′ model admits the same corrections as in the A4 case, described in
Eqs (3.13a) and (3.13b), and in addition corrections proportional to the P matrices

Pi = diag(0,2,1), Pii = diag(1,0,2) and Piii = diag(2,1,0) (3.19a)

coming from contractions of L with ψ . Since 〈ψ〉 = (ψ0,0), their contribution in the Kähler
potential is proportional to (ψ0)

2. Furthermore, Kähler corrections proportional to the three ma-
trices

Piv =
( 2

√
2 −√

2√
2 2 0

−√
2 0 2

)
, Pv =

( 2 0
√

2
0 2 −√

2√
2 −√

2 2

)
and

Pvi =
( 2 −√

2 0
−√

2 2
√

2
0

√
2 2

)
, (3.19b)

are all due to contractions with ψ ′. Since 〈ψ ′〉 = (ψ ′
0,ψ

′
0), their contribution is proportional

to (ψ ′
0)

2.

3.5. General P matrices

In the general case of different flavon VEVs, or possibly a different symmetry group, one can
imagine that not all Kähler correction matrices P can be expressed as linear combinations of the
Pi in Eqs. (3.13) and (3.19). Therefore, there are in general more possible P matrices. However,
since the Kähler corrections are Hermitean, one can express a general P matrix in terms of nine
Hermitean basis matrices,
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P1 =
(1 0 0

0 0 0
0 0 0

)
, P2 =

(0 1 0
1 0 0
0 0 0

)
, P3 =

(0 0 0
0 1 0
0 0 0

)
, (3.20a)

P4 =
(0 0 1

0 0 0
1 0 0

)
, P5 =

(0 0 0
0 0 1
0 1 0

)
, P6 =

(0 0 0
0 0 0
0 0 1

)
, (3.20b)

P7 =
(0 −i 0

i 0 0
0 0 0

)
, P8 =

(0 0 −i
0 0 0
i 0 0

)
, P9 =

(0 0 0
0 0 −i
0 i 0

)
. (3.20c)

Then, e.g., the P matrices in Eqs. (3.13) of our A4 example can be expressed as

PI = P1, PII = P3, PIII = P6,

PIV =
6∑

i=1

Pi, PV =
9∑

i=7

(−1)iPi, (3.21)

respectively.

3.6. Analytic formulae for Kähler corrections

In this section, we give a detailed account of the derivation of analytical formulae for the
corrections to the mixing parameters coming from the Kähler potential, building on earlier pub-
lications [16,26].

3.6.1. The general idea
Let us start by specifying the goal of our derivation. We assume that we are given a model

that makes predictions for the leptonic mixing parameters without taking into account any terms
in the Kähler potential beside the canonical ones. That is, the superpotential alone predicts the
lepton masses, mixing angles and complex phases, and the Kähler potential has the form shown
in Eq. (1.4). We emphasize that it is irrelevant for the following computations how precisely
the prediction for the parameters of the lepton sector is achieved. In principle, we only need the
charged lepton Yukawa matrix and the Majorana neutrino mass matrix as input. Furthermore, for
computational simplicity, we assume that the model has been transformed to a basis where the
charged lepton Yukawa matrix is diagonal. Hence, a complete set of input parameters is given
by the three charged lepton masses, the three neutrino masses and the nine mixing parameters,1

which we assume to be in the standard parametrization (cf. Appendix A.1).
After having specified the input, we now consider the same model but amended with correc-

tion terms in the Kähler potential. That is, we allow for an arbitrary Kähler potential for the left-
handed lepton doublets L = (L1,L2,L3) and the right-handed lepton singlets R = (R1,R2,R3),

K ⊃ L†KLL + R†KRR, (3.22)

with the Hermitean matrices

KL/R = 1 + �KL/R. (3.23)

1 This also includes the three “unphysical” phases that are usually absorbed in the charged lepton fields. The reasons
for this will be explained in detail below.
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Because of the corrections �KL/R , L and R are not canonically normalized. Since KL/R are
Hermitean and positive, they can be rewritten as

KL/R = H
†
L/RHL/R = H 2

L/R (3.24)

with Hermitean HL/R = H
†
L/R , such that the canonically normalized fields are

L′ = HLL, (3.25a)

R′ = HRR. (3.25b)

Since we assume the Kähler corrections �KL/R to arise from terms that are suppressed with
respect to the canonical terms by powers of the flavon VEVs over the fundamental scale, we
specialize to infinitesimal �KL/R ,

�KL = −2x1PL, (3.26a)

�KR = −2x2PR. (3.26b)

Here PL and PR are Hermitean, x1 and x2 are infinitesimal, and the factors −2 turn out to be
convenient. The goal of the following discussion is to find analytic formulae for the dependence
of the mixing parameters on x1 and x2 for generic PL/R .

Before we go on with the discussion, a comment is in order. We assume that the lepton basis
is chosen such that the charged lepton Yukawa matrix is diagonal with positive real entries.
However, this does not fix the basis completely since one can still perform a phase redefinition
of the left-handed and right-handed lepton fields without changing the Yukawa matrix as long as
the phase change is the same for both sectors. This freedom is conventionally used to absorb the
three so-called unphysical phases δe, δμ and δτ of UPMNS into the fields. However, this is only
possible for a diagonal Kähler potential. In the non-diagonal case discussed here, this redefinition
also changes PL/R according to

PL/R → P̂L/R = U
†
phPL/RUph, (3.27)

where Uph = diag (eiδe , eiδμ, eiδτ ) is a diagonal matrix containing the unphysical phases. That is,
after setting the unphysical phases to zero in the mixing matrix, the transformed P̂L/R depends
on them. This shows explicitly that the changes in the mixing parameters depend on the values of
δe , δμ and δτ .2 Our results are derived for the case in which the three phases in UPMNS are zero
at x1 = x2 = 0. If this is not the case, one has to apply the resulting formulae not to the original
PL/R but to P̂L/R as defined in Eq. (3.27).

For the following discussion, it turns out to be useful to introduce for any unitary matrix U a
corresponding anti-Hermitean matrix

T := U†U ′, (3.28)

where the prime denotes the derivative with respect to x1 or x2 (it will be clear from the context
which one is meant), such that

U ′ = UT . (3.29)

2 This does not imply that these phases are physical in this case. After the Kähler potential has been diagonalized, one
can choose a field basis in which δe,μ,τ are zero.
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Hence, for the leptonic mixing matrix UPMNS, we define

TPMNS := U
†
PMNSU ′

PMNS. (3.30)

Since TPMNS is anti-Hermitean, it has nine independent real parameters

u := {ReT12,ReT13,ReT23, ImT11, ImT12, ImT13, ImT22, ImT23, ImT33}. (3.31)

On the other hand, one can use the definition of TPMNS, i.e. Eq. (3.30), in order to express its
entries in terms of the mixing parameters and their derivatives. Clearly, TPMNS is linear in the
derivatives of the mixing parameters. Therefore, there is a linear map A from the derivatives of
the mixing parameters to the elements of TPMNS, which only depends on the mixing parameters
but not on their derivatives. Defining

ξ := {
θ ′

12, θ
′
13, θ

′
23, δ

′, δ′
e, δ

′
μ, δ′

τ , ϕ
′
1, ϕ

′
2

}
, (3.32)

one can write this relation in matrix form,

Aξ = u. (3.33)

The first steps of our computation are to compute u in terms of the mixing parameters, then to
read off A from this expression and finally to invert A. This way one obtains linear differential
equations for the mixing parameters. The remaining task is to find TPMNS for arbitrary given
Kähler corrections PL/R .

One can split this task into several parts. First, one can make use of the definition of UPMNS :=
U

†
e Uν in order to split the derivative U ′

PMNS into two parts,

U ′
PMNS = (

U ′
e

)†
Uν + U†

e U ′
ν . (3.34)

Multiplying this with U
†
PMNS from the left and inserting twice an identity matrix yields

TPMNS = U
†
PMNS

(
U ′

e

)†(
UeU

†
e

)
Uν + U

†
PMNSU†

e

(
UνU

†
ν

)
U ′

ν . (3.35)

This can be further simplified by the introduction of the matrices Te = U
†
e U ′

e and Tν = U†
ν U ′

ν

and because of the anti-Hermiticity of Te one finally arrives at

TPMNS = Tν − U
†
PMNSTeUPMNS. (3.36)

In the following, we compute the different contributions to Tν and Te at x1 = x2 = 0. All quanti-
ties are from now on evaluated at this point if not indicated otherwise by displaying the arguments
(x1) or (x2) explicitly.

3.6.2. Corrections due to Uν

Let us first discuss the case of Tν . Going to canonically normalized fields by the transforma-
tion shown in Eq. (3.25) leads to the change of the neutrino mass matrix

Wν = 1

2
LT m0

νL

� 1

2

[
(1 + x1PL)L′]T m0

ν

[
(1 + x1PL)L′]

� 1
L′T m0

νL
′ + 1

x1L
′T (

P T
L m0

ν + m0
νPL

)
L′ (3.37)
2 2
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in linear order in x1. That is, the change of mν is governed by a differential equation which has
the same form as the renormalization group equation (RGE) for the neutrino mass operator (cf.
Eq. (B.5) of [13]),

d

dx1
mν(x1) = P T m0

ν + m0
νP, mν(0) = m0

ν . (3.38)

Therefore, we can repeat the steps in [13] that have led to the analytic solutions to the RGEs for
the mixing parameters.

The x1-dependent unitary diagonalization matrix Uν(x1) of the neutrino mass matrix mν(x1)

is defined by the equation,

Uν(x1)
T mν(x1)Uν(x1) = Dν(x1) = diag

(
m1(x1),m2(x1),m3(x1)

)
, (3.39)

where the mass eigenvalues mi(x1) are positive real numbers.
Taking the derivative of Eq. (3.39) with respect to x1, which is denoted by a prime in the

following, and evaluating the result at x1 = 0, we obtain

d

dx1

(
U∗

ν (x1)Dν(x1)U
†
ν (x1)

)∣∣∣∣
x1=0

= (
U ′

ν

)∗
DνU

†
ν + U∗

ν Dν

(
U ′

ν

)† + U∗
ν D′

νU
†
ν

= P T
L U∗

ν DνU
†
ν + U∗

ν DνU
†
ν PL. (3.40)

All quantities on the right-hand side are evaluated at x1 = 0. Multiplying this equation by UT
ν

from the left and by Uν from the right yields

UT
ν

(
U ′

ν

)∗
Dν + Dν

(
U ′

ν

)†
Uν + D′

ν = P̃ T
L Dν + DνP̃L (3.41)

with

P̃L = U†
ν PLUν = U

†
PMNSPLUPMNS, (3.42)

where we used the fact that Ue(0,0) = 1. With the previously defined anti-Hermitean matrix
Tν = U†

ν U ′
ν one can rewrite this equation as

D′
ν = P̃ T

L Dν + DνP̃L − T ∗
ν Dν + DνTν. (3.43)

Since the left-hand side of this equation is diagonal and real, the right-hand side has to have these
properties as well and one obtains

m′
i = 2(P̃L)iimi + (

(Tν)ii − (
T ∗

ν

)
ii

)
mi. (3.44)

The first term is real since PL (and thus P̃L) is Hermitean, whereas the second term is purely
imaginary and has to vanish,

Im(Tν)ii = 0. (3.45)

By comparing the off-diagonal terms one gets

mi(Tν)ij − (Tν)
∗
ijmj = −(

P̃ T
L

)
ij
mj − mi(P̃L)ij (3.46)

such that

Re(Tν)ij = −mj Re(P̃L)ji + mi Re(P̃L)ij

mi − mj

= −mi + mj

mi − mj

Re(P̃L)ij , (3.47a)

Im(Tν)ij = −mj Im(P̃L)ji + mi Im(P̃L)ij

mi + mj

= −mi − mj

mi + mj

Im(P̃L)ij . (3.47b)

This, together with (3.45), specifies all entries of Tν .
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3.6.3. Corrections due to Ue

We turn now to corrections coming from the charged lepton sector. The Yukawa coupling term
changes due to the redefinition of the fields as given in Eq. (3.25),

We = −RT Y 0
e L + h.c.

= −R′T (
(HR)−1)T

Y 0
e (HL)−1L′ + h.c.

� −R′T (
1 + x2(PR)T

)
Y 0

e (1 + x1PL)L′ + h.c.

� −R′T (
Y 0

e + x2(PR)T Y 0
e + x1Y

0
e PL

)
L′ + h.c. (3.48)

The Yukawa matrix can be diagonalized by a bi-unitary transformation. The matrix Ue acting on
the left-handed charged leptons is determined to first order in x1 and x2 by

U†
e (x1, x2)

[(
Y 0

e

)2 + 2x2Y
0
e (PR)T Y 0

e + x1
(
Y 0

e

)2
PL + x1PL

(
Y 0

e

)2]
Ue(x1, x2)

= D2
e (x1, x2) = diag

(
y2

1(x1, x2), y
2
2(x1, x2), y

2
3(x1, x2)

)
, (3.49)

where D2
e (x1, x2) is the diagonal matrix of the squared lepton Yukawa couplings and D2

e (0,0) =
(Y 0

e )2.
We first focus on the x1-dependence. Hence, we take the derivative of Eq. (3.49) with respect

to x1 and evaluate the resulting expression at x1 = 0, x2 = 0 (remember that Ue(0,0) = 1),

d

dx1

(
Ue(x1)D

2
e (x1)U

†
e (x1)

)∣∣∣∣
x1=0

= U ′
e

(
Y 0

e

)2 + (
Y 0

e

)2(
U ′

e

)† + (
D2

e

)′

= PL

(
Y 0

e

)2 + (
Y 0

e

)2
PL. (3.50)

Using the fact that T
x1
e = U ′

e (where the superscript x1 on T
x1
e means that it is the part of Te

which corresponds to changes of x1) is anti-Hermitean, one can rearrange this equation into(
D2

e

)′ = PL

(
Y 0

e

)2 + (
Y 0

e

)2
PL − T x1

e

(
Y 0

e

)2 + (
Y 0

e

)2
T x1

e . (3.51)

For the terms on the diagonal this reads(
y2
i

)′ = 2(PL)iiy
2
i . (3.52)

There is one important difference from the case of Uν . The diagonal terms (T
x1
e )ii cancel ex-

actly; hence, they cannot be determined from this equation. However, they only contribute to
the changes of the unphysical phases which can, after diagonalizing the Kähler potential, be
transformed away.3 Therefore, changes of these phases are of no interest to us. Contrary to the
diagonal terms, the off-diagonal terms of T

x1
e can be derived from Eq. (3.51),

(
T x1

e

)
ij

= (PL)ij
y2
i + y2

j

y2
j − y2

i

. (3.53)

This fixes the first part of T
x1
e up to the imaginary parts of the entries on the diagonal.

Moreover, there is the part of Te which comes from changes in x2, denoted by T
x2
e . Besides

the fact that the derivatives are now taken with respect to x2, the only difference compared to
Eq. (3.51) is that PL(Y 0

e )2 + (Y 0
e )2PL is replaced by 2Y 0

e (PR)T Y 0
e , i.e.

3 We have verified this analytically by keeping the diagonal entries of Te arbitrary.
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(
D2

e

)′ = 2Y 0
e (PR)T Y 0

e − T x2
e

(
Y 0

e

)2 + (
Y 0

e

)2
T x2

e . (3.54)

From this equation one can derive the change of the masses,(
y2
i

)′ = 2(PR)iiy
2
i , (3.55)

which again leaves the terms on the diagonal of T
x2
e undetermined, and the off-diagonal terms

of T
x2
e ,(

T x2
e

)
ij

= 2(PR)ji

yiyj

y2
j − y2

i

. (3.56)

This determines T
x2
e up to the entries on the diagonal.

Combining all three contributions yields

T
x1

PMNS = −U
†
PMNST x1

e UPMNS + Tν, (3.57a)

T
x2

PMNS = −U
†
PMNST x2

e UPMNS. (3.57b)

From this, one can derive the derivatives of the mixing parameters at x1 = 0, x2 = 0 from which
the change of the parameters can be computed to first order by simple multiplication with x1

and x2, respectively.

3.7. Mathematica package

The formulae that we obtained by following the procedure outlined above are made available
online as a Mathematica package. It can be found on the web-page

http://einrichtungen.ph.tum.de/T30e/codes/KaehlerCorrections/.

The package contains the full analytic formulae in such a way that all input parameters can be set
by the user. Without specifying any initial values, the formulae are very lengthy, and therefore, we
will in the following only use them after setting most of the input parameters (cf. Appendix B).

Furthermore, the package provides some functions to simplify the usage of the formulae. In
particular, the function kaehlerCorr can be used to output the Kähler corrections for a Kähler
potential of the form

K = (
Lf

)†(
δfg + xL(PL)fg

)
Lg + (

Rf
)†(

δfg + xR(PR)fg

)
Rg, (3.58)

with PL, PR fixed and given initial values for masses and mixing parameters. We emphasize
again that the formulae may only be applied in a basis where the charged lepton Yukawa matrices
are diagonal.

Some care is to be exercised for the case of a zero initial mixing angle as it occurs in tri-bi-
maximal mixing because this renders the initial value of δ undefined. One can infer its correct
value by the requirement that the change of δ is analytical in the angle that has zero initial value.
This is done automatically by the package. However, there is also the possibility to override this
behavior in case the automatic determination fails. For more information, we refer the reader to
the documentation which is part of the download.

http://einrichtungen.ph.tum.de/T30e/codes/KaehlerCorrections/
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4. Implications

After presenting the derivation of analytic formulae for corrections from the Kähler potential,
we now apply these formulae to explicit examples from the literature, focusing on the models
based on A4 [18] and on T′ [19] introduced in Section 2. We also discuss the implications of the
Kähler corrections for the VEV alignment and the threat of flavor changing neutral currents. First,
however, we present the changes induced by the Kähler corrections starting from tri-bi-maximal
and bi-maximal mixing for general P matrices from Eq. (3.20).

4.1. Tables for general P matrices

We now provide tables that summarize the Kähler corrections starting from tri-bi-maximal
mixing and bi-maximal mixing, respectively. For the charged lepton masses and the mass-
squared differences of the neutrinos, the current PDG values [27] are used and normal hierarchy
is assumed. The absolute mass scale of the neutrinos is set by m1 = 0.01 eV. The form of the
Kähler potential under consideration is

K = L†(1 + xLPL)L + R†R, (4.1)

i.e. only the left-handed sector is modified. In the tables, PL is replaced by one of the nine basis
matrices Pi , see Eq. (3.20), in each column. The value of the small parameter is xL = 0.01. The
results are summarized in Table 3 for tri-bi-maximal mixing, i.e.

θ12 = arcsin
1√
3
, θ13 = 0, θ23 = π

4
, δ = undefined,

δe = π, δμ = π, δτ = 0, ϕ1 = ϕ2 = 2π, (4.2)

where the phases are determined from Eq. (2.1), and in Table 4 for bi-maximal mixing, i.e.

θ12 = π

4
, θ13 = 0, θ23 = π

4
, δ = undefined,

δe = π, δμ = π, δτ = 0, ϕ1 = ϕ2 = 2π, (4.3)

where, for simplicity, the same phases have been chosen. In Appendix B we also present the
analytic formulae for tri-bi-maximal mixing but without setting absolute neutrino masses and
without specifying xL.

We should emphasize that the results shown in these tables depend on all the mixing parame-
ters before taking into account the Kähler corrections. That is, in particular, they also depend on
the two Majorana phases and the three unphysical phases. Furthermore, at the starting points of
tri-bi-maximal and bi-maximal mixing, the phase δ is not properly defined due to θ13 = 0. For
each Pi , it is determined from the formulae by demanding that the change of δ is analytical at
θ13 = 0.

4.2. Corrections in the A4 model

We start with a discussion of the Kähler corrections in the A4 model. As shown in Section 3.2,
there are five independent quadratic corrections which cannot be forbidden by a symmetry. The
matrix PV, for example, comes from the higher-order term (L ⊗ Φν)

†
3s

(L ⊗ Φν)3a
, as shown in

Eq. (3.11). If we plug PV into our derivation of the analytic formulae, we obtain for the change
of θ13 from its tri-bi-maximal starting value the formula [17] (cf. Appendix B)
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Table 3
Changes of the mixing angles under Kähler corrections of the form �K = xL†PiL for x = 0.01 (cf. Eq. (3.20)) starting
from tri-bi-maximal mixing.

P1 P2 P3 P4 P5 P6 P7 P8 P9

�θ12 [◦]: −0.96 −0.28 0.48 −0.28 0.96 0.48 0 0 0
�θ13 [◦]: 0 −0.12 −0.015 0.12 0 0.015 −0.073 0.073 0.012
�θ23 [◦]: 0 −0.021 −0.24 0.021 −0.29 0.24 0 0 0

Table 4
Changes of the mixing angles under Kähler corrections of the form �K = xL†PiL for x = 0.01 (cf. Eq. (3.20)) starting
from bi-maximal mixing.

P1 P2 P3 P4 P5 P6 P7 P8 P9

�θ12 [◦]: −1.0 0.20 0.51 0.20 1.0 0.51 0 0 0
�θ13 [◦]: 0 −0.12 −0.016 0.12 0 0.016 −0.076 0.076 0.012
�θ23 [◦]: 0 −0.023 −0.23 0.023 −0.29 0.23 0 0 0

Fig. 2. Change of θ13 in the A4 model due to the Kähler correction from the matrix PV, setting κVv2/Λ2 = (0.2)2. The
continuous line shows the result of Eq. (4.4), while the dashed line represents the result of a numerical computation.

�θ13 = κV · v2

Λ2
· 3

√
3 · 1√

2

(
2m1

m1 + m3
+ m2

e

m2
μ − m2

e

+ m2
e

m2
τ − m2

e

)

� κV · v2

Λ2
· 3

√
6

m1

m1 + m3
, (4.4)

assuming in the last line that the small contribution of the charged leptons can be neglected. Using
the PDG [27] values for the mass-squared differences, we can plot the change in θ13 against the
neutrino mass m1 as shown in Fig. 2, where we set the ratio of VEV to the cut-off scale to be
of the order of the Cabibbo angle, i.e. v/Λ = 0.2, and the coefficient κV = 1. Unlike θ13, which
approaches �θ13 ≈ 8.42◦ for m1 → ∞, the other angles experience only minor changes under
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the correction PV. We see that with this correction we get close to realistic values for θ13 while
the other angles stay almost the same.4

However, we also observe opposite effects, i.e. corrections that drive the predictions of the
angles away from their best fit values. For instance, the corrections due to PIV, which are in-
dependent of the neutrino masses, leave θ13 unchanged and change θ12 by +3.2◦ and θ23 by
−2.3◦, given that we set κIVv2/Λ2 = (0.2)2. We have cross-checked these analytical results by
a numerical computation.

4.3. Corrections in the T ′ model

In Section 3.4 we already described the quadratic correction terms for a T′ model. As dis-
cussed there, due to its flavon structure the model includes all of the correction terms of the
A4 model, so some of the discussion from Section 4.2 still applies. However, the considered T′
model [19] does not predict exact tri-bi-maximal mixing so we have to consider different initial
values in our analytic formulae. Moreover, a crucial assumption for the applicability of our for-
mulae is that the model is in a basis where the charged lepton Yukawa matrix is diagonal, as stated
in Section 3.6.1, which is also not the case in the considered T′ model. Therefore, we first have
to perform a basis transformation such that the charged lepton Yukawa matrix becomes diagonal.
Since this is simply a basis transformation, the mixing matrix and, hence, the mixing angles are
not affected. Nevertheless, the form of our correction matrices P changes which we demonstrate
with the help of an example. The higher-order Kähler potential term (L⊗Φν)

†
3s

(L⊗Φν)3a
, after

VEV insertion, leads to the term

�K ⊃ L†PVL + h.c. (4.5)

However, this is in a basis where the charged lepton Yukawa matrix is non-diagonal. The nec-
essary basis transformation that diagonalizes it redefines the left-handed charged leptons L by
some matrix V . This leads to a modified P matrix

L†PVL → (V L)†PVV L = L†P̃VL, (4.6)

where we defined P̃V := V †PVV .
In this basis we can now use our analytic formulae on the matrix P̃V, using the initial values for

the mixing angles predicted by the original model as shown in Eq. (2.8), θ12 ≈ 33◦, θ23 = 45◦ and
θ13 ≈ 3◦. Furthermore, we have to consider that the model also predicts absolute neutrino masses,
e.g. m1 = 0.0156 eV. Therefore, we cannot plot the change in mixing angles as a function of the
neutrino masses, but rather against the size of the small expansion parameter x = VEV2/Λ2

times a coefficient κV from the Kähler potential. For θ13 this is shown in Fig. 3.
In this plot we see that θ13 can be increased by �θ13 ≈ 3◦ for T′, raising the value of θ13 up

to about 6◦ in the assumed parameter range. We also should comment that in this model two
flavon triplets have the same VEV structure, as one can see in Table 2. According to Eq. (2.7),
both flavons φ and ξ have VEVs proportional to (1,1,1)T and, therefore, can lead to the cor-
rection PV. In the best case, both corrections would add up and boost the maximal change to
�θ13 ≈ 6◦. This would yield θ13 ≈ 9◦ as a result, which is of the order of the experimentally
measured value. However, this only applies to the very special situation in which the contribu-
tions from both flavons φ and ξ add and contributions different from PV should not spoil the

4 To be precise, the A4 model presented in Section 2 does not allow for a variation of m1 while keeping the mass-
squared differences fixed. This is, however, possible in extended models leading to tri-bi-maximal mixing, see e.g. [28].
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Fig. 3. Change of θ13 in the T′ model due to the Kähler correction from the (modified, see text) matrix PV up to
κVVEV2/Λ2 = (0.2)2. The continuous line shows the result of the analytical formulae while the dashed line represents
the result of a numerical computation.

Fig. 4. Change of θ23 in the T′ model due to the Kähler correction from the (modified, see text) matrix Pvi up to
κviVEV2/Λ2 = (0.2)2. The continuous line shows the result of the analytical formulae while the dashed line represents
the result of a numerical computation.

result. Moreover, the VEVs in the model are generally such that VEV2/Λ2 ∼ O(1/1000), in
which case the Kähler corrections become negligible.

In addition to the corrections which are also present in A4, the T′ model has, as we showed
in Section 3.4, six independent corrections due to the flavon doublets ψ and ψ ′. Let us, for
example, consider the correction due to the matrix Pvi in Eq. (3.19b), which comes from the
Kähler potential term (L⊗ψ ′)†

2′(L⊗ψ ′)2′ as can be seen in Eq. (3.16). Before we can calculate
the associated correction, we again have to perform a basis transformation which brings the
charged lepton Yukawa matrix into diagonal form, therefore, also transforming Pvi → P̃vi. Using
this matrix, the initial values from Eq. (2.8) and the computed neutrino masses, we can again plot
the changes of the mixing angles against x = VEV2/Λ2 times a coefficient κvi. As an example,
we show the result for θ23 in Fig. 4.
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We hence see that the Kähler corrections in the T′ model are less prominent than in the A4
case. Our analytical treatment as well as the Mathematica package (cf. Section 3.7) allow one
to determine the impact of these corrections in other concrete models with very little effort.

4.4. Further implications

4.4.1. VEV alignment
As is well known, the VEVs of fields tend to settle at symmetry enhanced points. However,

since, as we have discussed in detail above, the full Lagrangian of many flavor models does not
really exhibit residual symmetries, one might expect corrections also to the (holomorphic) flavon
VEVs. In particular, the Kähler corrections might play a role when discussing VEV alignment,
i.e. the question why the VEVs of the flavons take a particular form. In what follows, we make the
simplifying assumption that the flavor sector is independent of the usual ‘hidden sector’ which
is responsible for supersymmetry breakdown. Specifically, we assume that the F -term VEVs of
the flavons are negligible.

Consider a model where the supersymmetric Lagrangian can be written in the form

L = [
K

(
Ψ,Ψ † exp (−2tAVA)

)]
D

+
[

1

4
fAB(Ψ )WAWB + W (Ψ ) + h.c.

]
F

, (4.7)

where Ψ stands for all chiral superfields of the model, VA are the vector superfields containing
the gauge bosons, and WA are the corresponding field strength superfields. Then, the scalar
potential, whose minima determine the VEV structure, reads

V
(
ψ,ψ∗) =

[
∂2K

∂(Ψ f )†∂Ψ g

(
ψ,ψ∗)]−1

· ∂W ∗

∂(Ψ f )†

(
ψ∗) · ∂W

∂Ψ g
(ψ)

+ 1

2

[
Re

(
fAB(ψ)

)]−1 · Re

(
∂K

∂Ψ f

(
ψ,ψ∗) · (tAψ)f

)
· Re

(
∂K

∂Ψ g

(
ψ,ψ∗) · (tBψ)g

)
, (4.8)

where ψ and ψ∗ are the scalar components of Ψ and Ψ †, respectively. Before taking into account
the corrections to the Kähler potential, the Kähler metric is, by assumption, diagonal,

∂2K

∂(Ψ f )†∂Ψ g

(
ψ,ψ∗) = δfg, (4.9)

from which it follows that the scalar potential simplifies to

V
(
ψ,ψ∗) =

∑
f

∣∣∣∣ ∂W

∂Ψ f
(ψ)

∣∣∣∣2

+ 1

2

[
Re

(
fAB(ψ)

)]−1 · (ψ∗tAψ
) · (ψ∗tBψ

)
. (4.10)

Suppose that this scalar potential has a global supersymmetric minimum at ψ = ψ0. If ψ does
not break supersymmetry, ψ0 satisfies the F -flatness and D-flatness conditions.

Let us first discuss the F -flatness conditions. Since the Kähler metric is invertible, the condi-
tions

∂W
(ψ0) = 0, ∀f, (4.11)
∂Ψ f
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for the case of a canonical Kähler potential are equivalent to the conditions arising from Eq. (4.8),
i.e. for the case of an arbitrary Kähler potential. This implies that Kähler corrections do not
change the VEV alignment via the F -terms.

The D-flatness conditions require some more care. Let us first discuss the simplest and most
common class of models, to which also the A4 model belongs. In these models, there is only
the SM gauge symmetry, under which the flavons, however, are not charged. Hence, the flavons
do not enter the D-flatness conditions irrespective of the Kähler potential. This, together with
the invariance of the F -flatness conditions, implies that the vacuum alignment is completely
untouched by the Kähler corrections in these models.

Let us now comment on more complicated cases. If one allows for additional gauge symme-
tries such as a GUT symmetry, and also for flavons having gauge charges, one, in principle, has
to check case by case whether the VEV alignment is changed due to modified D-flatness condi-
tions. There is, however, a simple case for which one can find a general argument. Let us assume
that the additional gauge symmetry is broken by the VEVs of one or several chiral superfields
Sf which furnish irreducible representations of the gauge group, whereas all other fields, sum-
marized in Ψ in the following, are either not charged under the additional gauge symmetry or do
not obtain a VEV. If one can furthermore assume that the Kähler potential factorizes as

K
(
Ψ,Ψ †, Sf ,

(
Sf

)†) = KS

((
Sf

)†
δfgS

g
) · KΨ

(
Ψ,Ψ †), (4.12)

where both KS and KΨ should contain a constant term, the D-flatness conditions are equivalent
to the D-flatness conditions of a canonical Kähler potential. In combination with the invariance
of the F -flatness conditions this shows that the vacuum alignment stays completely unmodified
by the Kähler corrections. In particular, this is fulfilled if the gauge symmetry is only broken by
the VEV of one field, i.e. if there is only one field that is both charged under the gauge symmetry
and attains a VEV. This applies, for example, to the T′ model.

In summary, we see that in most situations Kähler corrections will not interfere with the usual
mechanisms for VEV alignment. This, in a way, justifies to assume that the flavons attain some
‘very symmetric’ VEVs, as for instance in the sample models discussed above.

4.4.2. Constraints from FCNCs
In supersymmetric model building, an important question concerns the flavor structure of the

soft supersymmetry breaking masses and the A-terms. They originate from higher-dimensional
terms in the superpotential and the Kähler potential. Specifically, they are induced by in-
teractions of the matter fields with the spurion superfield X that breaks supersymmetry, i.e.
X → θ2〈FX〉 �= 0.

The terms relevant for our discussion are [29]

W ⊃ (Ye)fgL
f RgHd − 1

Λsoft

(
YX

e

)
fg

XLf RgHd, (4.13a)

K ⊃ (
Lf

)†
(KL)fgL

g + 1

Λsoft

(
X

(
Lf

)†
(nL)fgL

g + h.c.
)

− 1

Λ2
soft

X†X
(
Lf

)†
(kL)fgL

g + L → R, (4.13b)

where Λsoft represents some messenger scale, such as the Planck scale in the case of gravity
mediation. The coupling matrices Ye, YX

e , KL/R , nL/R and kL/R are functions of the flavon
superfields and the cut-off scale Λ. All these matrices can obtain off-diagonal entries through
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non-trivial flavon contractions after the flavons acquire their VEVs. However, KL/R and kL/R

are Hermitean and we choose to work in a basis where Ye is diagonal.
The supersymmetry breaking soft masses and A-terms can be written as

Lsoft ⊃ −(
�̃f

)†(
m̃2

LL

)
fg

�̃g − (
r̃f

)†(
m̃2

RR

)
fg

r̃g − (
�̃f (ALR)fgr̃

g + h.c.
)
, (4.14)

where �̃ and r̃ denote the left- and right-handed slepton fields, respectively. The relations between
the parameters in Eqs. (4.13) and (4.14) can be obtained by replacing the spurion by its VEV and

integrating out the auxiliary fields of the matter superfields. Defining M̃2 = |〈FX〉|2
Λ2

soft
, they are given

by [29](
m̃2

LL/RR

)
fg

= M̃2[(kL/R)fg + (
n

†
L/R

)
f i

(nL/R)ig
]
, (4.15a)

(ALR)fg =
√

M̃2
[(

YX
e

)
fg

+ (nL)f i(Ye)ig + (Ye)f i(nR)ig
]
. (4.15b)

We now turn back to Eq. (4.13) and analyze the couplings. By Schur’s Lemma, the matri-
ces KL/R , nL/R and kL/R in the Kähler potential are diagonal to first order. In fact, since the
left-handed lepton doublets are contained in one irreducible representation, the corresponding
matrices are all proportional to the unit matrix. To simplify the following discussion, we will
make the assumption that the same is true for the right-handed leptons, i.e.

(KL/R)fg = δfg, (4.16a)

(nL/R)fg = κL/Rδfg, (4.16b)

(kL/R)fg = κ ′
L/Rδfg, (4.16c)

with κL/R and κ ′
L/R being order-one coefficients. The restriction to generation independent co-

efficients does not qualitatively affect the final results.
At second order, contractions of the leptons with the flavon fields are possible. When the

flavons obtain their VEVs, the effective coupling matrices read

(KL/R)fg = δfg − 2x(Pkin,L/R)fg, (4.17a)

(nL/R)fg = κL/R

[
δfg − 2x(NL/R)fg

]
, (4.17b)

(kL/R)fg = κ ′
L/R

[
δfg − 2x(Psoft,L/R)fg

]
, (4.17c)

where Pkin,L/R and Psoft,L/R are Hermitean, NL/R arbitrary complex matrices, and x is at most
of the order of flavon VEV over the cut-off scale. In fact, most often x is of the order (VEV/Λ)2

by the arguments already outlined in Section 3.1. We would like to emphasize that the matrices
Pkin,L/R , Psoft,L/R and NL/R , which come from contractions of the lepton fields with the flavons,
are a priori unrelated.

Since the Kähler metric now contains off-diagonal terms, one has to canonically normalize
the lepton fields by the transformations

Lf → L′f = [
δfg + x(Pkin,L)fg

]
Lf , (4.18a)

Rf → R′f = [
δfg + x(Pkin,R)fg

]
Rf , (4.18b)

which leads to the transformed coupling matrices(
n′

L/R

)
fg

= κL/R

[
δfg + 2x

(
(Pkin,L/R)fg − (NL/R)fg

)]
, (4.19a)(

k′ ) = κ ′ [
δfg + 2x

(
(Pkin,L/R)fg − (Psoft,L/R)fg

)]
(4.19b)
L/R fg L/R
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to first order in x. Furthermore, one has to apply unitary transformations to the leptons that re-
move the off-diagonal elements from the charged lepton Yukawa matrix, in order to be able to
compare the results to the experimental constraints. Since for x = 0, i.e. without corrections
due to the flavons, the Yukawa matrix is, by assumption, diagonal, one can write these transfor-
mations up to first order in x as UL/R = 1 + ixHL/R with HL/R being Hermitean. Hence, this
redefinition of fields does not affect nL/R and kL/R at linear order in x.

Hence, the soft masses for the sleptons in linear order in x are(
m̃2

LL/RR

)
fg

= M̃2{(κ ′
L/R + |κL/R|2)δfg

+ 2xκ ′
L/R

[
(Pkin,L/R)fg − (Psoft,L/R)fg

]
+ 2x|κL/R|2[(Pkin,L/R)fg − (NL/R)fg + h.c.

]}
. (4.20)

The crucial point is that all off-diagonal terms are suppressed compared to the diagonal terms
by one factor of x. In special cases in which there are relations between Pkin,L/R , Psoft,L/R and
NL/R , the off-diagonal terms might even vanish (almost) completely.

Before confronting this with the experimental constraints, let us first also discuss the A-terms
without dwelling on the details. Since after all basis changes the Yukawa matrix Ye is diagonal,
the off-diagonal elements of the second and third term of ALR in Eq. (4.15b) are suppressed by
one factor of x. Moreover, they are suppressed by the smallness of the lepton masses.

The coupling matrix YX
e in Eq. (4.13) can only arise from the same flavon contractions as

the Yukawa matrix Ye . Neglecting the possibility of fine-tuning, our assumption of a diagonal
Yukawa thus implies diagonal YX

e . Although the precise size of the entries of YX
e may differ

from the lepton masses, one should assume that they are of the same order of magnitude.5 Since
YX

e does not have to be proportional to Ye , the effects of the transformation (4.18) on YX
e are

not completely undone by the unitary rotation to the charged lepton mass basis. However, all
off-diagonal terms are at most of the order x and, furthermore, suppressed by the smallness of
the diagonal entries.

Let us now discuss the experimental constraints. We showed above that the Kähler corrections
induce off-diagonal terms for the soft masses and the A-terms. Therefore, FCNCs are induced, in
general by slepton, chargino, higgsino and neutralino loops. The strongest constraints are given
by the decay μ → eγ . The SUSY contribution to this process through photino and slepton loops
is given by [30]

Br(μ → eγ ) = 12πα3

G2
Fm4

SUSY

∣∣∣∣(δ12)LLM3(y) +
√

ymSUSY

mμ

(δ12)LRM1(y)

∣∣∣∣2

+ (L ↔ R), (4.21)

where M1(y) and M3(y) are loop factors depending on the mass-squared ratio between photino
and slepton, y = m2

γ̃
/m2

�̃
, where we set m

�̃
≈ mSUSY. Their precise expressions can be found

in [30]. For our purposes it is enough to state that the functions M3 and M1 are bounded by
M3(y) < 0.083 and M1(y) < 0.5. More importantly, (δ12)LL and (δ12)LR are the mass insertion
parameters, i.e. the ratio between the off-diagonal and the diagonal elements of the soft masses
or the A-terms, respectively. Through Eq. (4.20) we can estimate (δ12)LL to be of the order of x.

5 If one has a mechanism that suppresses the lepton Yukawa couplings to the desired values, this mechanism should

also suppress the entries of YX
e in the same way.
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The chirality changing mass insertion (δ12)LR is determined by the A-term, which again is pro-
portional to x. Furthermore, one might expect, as argued above, that the A-term is proportional to
a parameter of the order of the corresponding Yukawa coupling. Therefore, we can estimate the
A-term to be of the order M̃xyμ, which yields (δ12)LR � (xmμ)/mSUSY for the mass insertion
parameter in (4.21).

In the previous sections we assumed the expansion parameter x to be maximally of the order
Cabibbo angle squared, i.e. x � 0.04. Using this value in our mass insertion parameters we can
give a lower bound for the slepton mass mSUSY in order to satisfy the current experimental
limit of Br(μ → eγ )exp < 2.4 × 10−12 [27]. For a photino to slepton mass-squared ratio of
y = 5, we have mSUSY � 700 GeV, for y = 2, we get mSUSY � 1 TeV, and for y = 0.5, we
have mSUSY � 1.2 TeV. Furthermore, for mSUSY � 1.4 TeV, the experimental limits are always
satisfied, independent of the photino to slepton mass-squared ratio. This shows that constraints
from FCNCs do not rule out sizable Kähler corrections for reasonable values of the soft SUSY
breaking mass scale.

5. Conclusions

We have discussed the impact of Kähler corrections on the predictions of models with spon-
taneously broken flavor symmetries. We find that these corrections are, in general, sizable since
they are controlled by the ratio of flavon VEV over the fundamental scale, which also sets the
scale of the expansion parameter for the entries of the coupling and mass matrices. Furthermore,
it appears hard to avoid Kähler corrections because the corresponding terms cannot be forbid-
den by means of conventional symmetries. In addition, the coefficients of such terms entail new
parameters, which reduce the predictivity of the respective models. In view of these results, it
appears to be premature to ‘rule out’ certain symmetry groups by looking at the holomorphic
terms only, as has been done recently in various scans [31,32].

Let us stress at this point that the situation in non-supersymmetric settings is similar. In the
non-supersymmetric case, it is, of course, also possible to write down higher-order corrections to
the kinetic terms which are induced by the flavon VEVs. As it turns out these induce changes of
the mixing parameters identical to the supersymmetric case, therefore, extending the applicability
of our discussion to non-supersymmetric models.

In particular, we have presented a full derivation of analytic formulae which describe the
change of the mixing parameters. We have applied these formulae to two example models, one
based on the flavor symmetry GF = A4 × Z4 [18] and one based on GF = T′ × Z12 × Z12 [19].
We have demonstrated that, for the simple A4 model which predicts tri-bi-maximal mixing at the
leading order, one of the flavon VEVs induces a large θ13 value that is compatible with current
experimental limits [21–23]. On the other hand, the VEV pattern in the T′ model is such that
Kähler corrections are not too large unless the Kähler coefficients are large. This can easily be
understood with the aid of the analytic formulae derived in this paper, and can also be checked
with the associated Mathematica package.

Furthermore, we have shown that the Kähler corrections do not pose a threat to the VEV
alignment. Moreover, we have argued that they also do not induce significant flavor changing
neutral currents, i.e. for reasonably large soft masses, the size of the flavor violating terms is well
within the current experimental bounds. Hence, also the vanishing of FCNCs cannot be used to
constrain the Kähler corrections considerably.

In conclusion, we argue that, in the supersymmetric context, a theory of flavor requires
a better understanding of the Kähler potential. Such an understanding may be obtained in
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higher-dimensional settings, where effective couplings can be computed from wave-function
overlaps (cf. e.g. [33,34]), and non-Abelian discrete symmetries may be related to the geometry
of compact space (cf. e.g. [35]). In this regard, it appears also promising to derive flavor models
from string theory, where the non-Abelian discrete symmetries have a clear geometrical inter-
pretation [36–38]. In certain settings, the Kähler potentials are known to some extent [39]; some
information can be inferred from the transformation behavior of the fields under the modular
group [40,41]; however, closed expressions for higher-order terms have not yet been worked out.
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Appendix A. Conventions

A.1. Parametrization of UPMNS

The parametrization of the PMNS-matrix used in this text is shown here. First, UPMNS is
decomposed in the product of a diagonal phase matrix containing the unphysical lepton phases,
a CKM-like matrix V and a diagonal matrix containing the two Majorana phases,

UPMNS = diag
(
eiδe , eiδμ, eiδτ

) · V (θ12, θ13, θ13, δ) · diag
(
e−iφ1/2, eiφ2/2,1

)
. (A.1)

The matrix V itself is parametrized as

V =
(

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

)
. (A.2)

Here, sij denotes sin θij and cij denotes cos θij .

A.2. A4

In Section 3 we provided possible Kähler corrections for models based on the non-Abelian
flavor group A4. In this appendix, we recall the most important aspects of the A4 group, which
is the symmetry group of the regular tetrahedron. It has four inequivalent irreducible represen-
tations, including three singlets 1,1′,1′′ and one triplet 3. Throughout the literature there are
mainly two different bases that have been used for A4. In Section 3 we utilize the basis in which
the generators S and T are represented as
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S = 1

3

⎛⎝ −1 2 2
2 −1 2
2 2 −1

⎞⎠ , T =
⎛⎝ 1 0 0

0 ω2 0
0 0 ω

⎞⎠ , with ω = e
2π i
3 . (A.3)

These generators give us the multiplication rule

3 ⊗ 3 = 1 ⊕ 1′ ⊕ 1′′ ⊕ 3s ⊕ 3a, (A.4)

where 3s and 3a denote the symmetric and the antisymmetric triplet combinations, respectively.
In terms of the components of the two triplets, a and b,

(a ⊗ b)1 = a1b1 + a2b3 + a3b2, (A.5a)

(a ⊗ b)1′ = a2b2 + a1b3 + a3b1, (A.5b)

(a ⊗ b)1′′ = a3b3 + a1b2 + a2b1, (A.5c)

(a ⊗ b)3s = 1√
2

⎛⎝ 2a1b1 − a2b3 − a3b2
2a3b3 − a1b2 − a2b1
2a2b2 − a1b3 − a3b1

⎞⎠ , (A.5d)

(a ⊗ b)3a = i

√
3

2

⎛⎝ a2b3 − a3b2
a1b2 − a2b1
a3b1 − a1b3

⎞⎠ , (A.5e)

where (a ⊗ b)R indicates that a and b are contracted to the representation R. Note that there
are different conventions for normalizing the triplets 3i in the literature, and the corresponding
factors can be absorbed in the Kähler coefficients.

In another basis, A4 is generated by

S̃ =
⎛⎝ 1 0 0

0 −1 0
0 0 −1

⎞⎠ , T̃ =
⎛⎝ 0 0 1

1 0 0
0 1 0

⎞⎠ , (A.6)

which is related to our basis through the unitary transformation matrix

Uω = 1√
3

⎛⎝ 1 1 1
1 ω ω2

1 ω2 ω

⎞⎠ . (A.7)

The relation between the two bases is then given by S̃ = UωSU†
ω and T̃ = UωT U†

ω.
It is important to note that this basis transformation also relates the different flavon VEVs to

one another. This means that the VEV (v, v, v)T in one basis is equivalent to the VEV (v′,0,0)T

in the other basis, and vice versa.

Appendix B. Examples for analytic formulae

We present examples of the analytic formulae for corrections due to PL in

K = L†(1 + xLPL)L + R†R, (B.1)

where PL is replaced by one of the nine basis matrices Pi , as shown in Eq. (4.13). We take the
tri-bi-maximal mixing as initial condition for the mixing parameters, i.e.
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θ12 = arcsin
1√
3
, θ13 = 0, θ23 = π

4
, δ = undefined,

δe = π, δμ = π, δτ = 0, ϕ1 = ϕ2 = 2π. (B.2)

The CP phase δ is determined from the formulae by demanding that the change of δ is analytical
at θ13 = 0 for each of the Pi , which yields δ = 0 for i = 1, . . . ,6 and δ = −π/2 for i = 7,8,9.
The neutrino masses mi are left unspecified. The pronounced hierarchy of the charged lepton
masses, i.e. mτ � mμ � me , is used to simplify the results. In leading order in an expansion
in the small mass ratios, the charged lepton masses completely drop out from the formulae. We
obtain the following analytical expressions for the changes of the mixing angles:

• For P = P1:

�θ
(1)
12 = xL

1

3
√

2

m1 + m2

m1 − m2
, (B.3a)

�θ
(1)
13 = 0, (B.3b)

�θ
(1)
23 = 0. (B.3c)

• For P = P2:

�θ
(2)
12 = xL

1

3
√

2

2m1 − m2

m1 − m2
, (B.4a)

�θ
(2)
13 = xL

1

3
√

2

3m1m2 − 2m1m3 − m2m3

(m1 − m3)(m2 − m3)
, (B.4b)

�θ
(2)
23 = xL

1

3

m3(m1 − m2)

(m1 − m2)(m2 − m3)
. (B.4c)

• For P = P3:

�θ
(3)
12 = −xL

1

6
√

2

m1 + m2

m1 − m2
, (B.5a)

�θ
(3)
13 = xL

1

3
√

2

m3(m1 − m2)

(m1 − m3)(m2 − m3)
, (B.5b)

�θ
(3)
23 = xL

1

12

m1(3m2 + m3) − m3(m2 + 3m3)

(m1 − m3)(m2 − m3)
. (B.5c)

• For P = P4:

�θ
(4)
12 = xL

1

3
√

2

2m1 − m2

m1 − m2
, (B.6a)

�θ
(4)
13 = −xL

1

3
√

2

3m1m2 − 2m1m3 − m2m3

(m1 − m3)(m2 − m3)
, (B.6b)

�θ
(4)
23 = −xL

1

3

m3(m1 − m2)

(m1 − m3)(m2 − m3)
. (B.6c)

• For P = P5:

�θ
(5)
12 = −xL

1

3
√

2

m1 + m2

m1 − m2
, (B.7a)

�θ
(5) = 0, (B.7b)
13
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�θ
(5)
23 = −xL

1

2
. (B.7c)

• For P = P6:

�θ
(6)
12 = −xL

1

6
√

2

m1 + m2

m1 − m2
, (B.8a)

�θ
(6)
13 = −xL

1

3
√

2

m3(m1 − m2)

(m1 − m3)(m2 − m3)
, (B.8b)

�θ
(6)
23 = xL

1

12

m1(3m2 + m3) − m3(m2 + 3m3)

(m1 − m3)(m3 − m2)
. (B.8c)

• For P = P7:

�θ
(7)
12 = 0, (B.9a)

�θ
(7)
13 = −xL

1

3
√

2

3m1m2 + 2m1m3 + m2m3

(m1 + m3)(m2 + m3)
, (B.9b)

�θ
(7)
23 = 0. (B.9c)

• For P = P8:

�θ
(8)
12 = 0, (B.10a)

�θ
(8)
13 = xL

1

3
√

2

3m1m2 + 2m1m3 + m2m3

(m1 + m3)(m2 + m3)
, (B.10b)

�θ
(8)
23 = 0. (B.10c)

• For P = P9:

�θ
(9)
12 = 0, (B.11a)

�θ
(9)
13 = −xL

√
2

3

m3(m1 − m2)

(m1 + m3)(m2 + m3)
, (B.11b)

�θ
(9)
23 = 0. (B.11c)

As discussed in the main text, a general P matrix can be decomposed into the nine basis matri-
ces Pi ,

P =
9∑

i=1

x
(i)
L Pi, (B.12)

and the resulting changes for the mixing angles are then given by

�θjk =
9∑

i=1

x
(i)
L �θ

(i)
jk . (B.13)

With our Mathematica package (cf. Section 3.7) one can derive similar expressions for other
initial conditions on the mixing parameters.
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