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Abstract

Discrete Particle Simulation Techniques for the Analysis of Colliding and Flowing

Particulate Media

by

Debanjan Mukherjee

Doctor of Philosophy in Mechanical Engineering

University of California, Berkeley

Professor Tarek I. Zohdi, Chair

Flowing particulate media are ubiquitous in a wide spectrum of applications that include
transport systems, fluidized beds, manufacturing and materials processing technologies, en-
ergy conversion and propulsion technologies, sprays, jets, slurry flows, and biological flows.
The discrete nature of the media, along with their underlying coupled multi-physical interac-
tions can lead to a variety of interesting phenomena, many of which are unique to such media
- for example, turbulent diffusion and preferential concentration in particle laden flows, and
soliton like excitation patterns in a vibrated pile of granular material. This dissertation ex-
plores the utility of numerical simulations based on the discrete element method and collision
driven particle dynamics methods for analyzing flowing particulate media. Such methods are
well-suited to handle phenomena involving particulate, granular, and discontinuous materi-
als, and often provide abilities to tackle complicated physical phenomena, for which pursuing
continuum based approaches might be difficult or sometimes insufficient. A detailed discus-
sion on hierarchically representing coupled, multi-physical phenomena through simple models
for underlying physical interactions is presented. Appropriate physical models for mechanical
contact, conductive and convective heat exchange, fluid-particle interactions, adhesive and
near-field effects, and interaction with applied electromagnetic fields are presented. Algo-
rithmic details on assembling the interaction models into a large-scale simulation framework
have been elaborated with illustrations. The assembled frameworks were used to develop
a computer simulation library (named ‘Software Library for Discrete Element Simulations’
(SLIDES) for the sake of reference and continued future development efforts) and aspects of
the architecture and development of this library have also been addressed. This is an object-
oriented discrete particle simulation library developed in Fortran capable of performing fully
3D simulations of particulate systems. The utility and effectiveness of the developed simu-
lation frameworks have been demonstrated using two case studies. The first study is on the
analysis of the high velocity impact of stream of particles on a porous layer of material, which

1



is a problem of interest in the analysis of erosive wear of manufactured surface coatings. The
second case-study is based on the deposition of flowing particulate spray on a target surface,
which is a problem of interest in the analysis of particulate deposition-based manufacturing
processes. In both cases, the aspect of extracting important information on system behavior
from the collective dynamics of the particulate media has been outlined. For the first case,
this involved a characterization of material damage due to impact generated stresses, and
for the second case, this involved analysis of adhesion and deposited coating properties.
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Chapter 1

Introduction

“Nothing is built on stone; All is built on sand, but we must build as if the sand were stone”
- Jorge Luis Borges (Argentinian Poet, 1899-1986)

“To see the world in a grain of sand, and to see heaven in a wild-flower”
“Hold infinity in the palm of your hands, and eternity in an hour”

-William Blake (English poet, 1757-1827)

Evidently, the grains of sand have been a part of the creative corners of the minds of
poets for many years and in many different contexts. It doesn’t seem to be unexpected,
since upon expanding to a broader vision of the materials that surround us - sand, grains,
powders, particles - these seem to be ubiquitous in their presence. As we make a transition
from the realm of verses to our daily existence, this fact remains unchanged. In fact gran-
ular and particulate media comprise the second most widely used material after water, and
some sources place the worldwide production of grains and aggregates to an approximate
ten billion metric tonnes per annum, and estimate about 10 percent of the world’s energy
production to be utilized in processing such materials. Despite all of this, the understanding
of the physics of such materials is still being developed - and in many areas, the insights
available are incomprehensive at best. In this dissertation, we make an attempt to look
deeper into the underlying physics of such materials - and we do so from the perspective of
computer modeling and simulations. A discourse of any semblance on a category of mate-
rial so diverse in their physical interactions requires an example which is representative and
which can be explored in sufficient detail without losing focus of the brevity of the discourse.
Correspondingly, we chose the field of particulate spray based manufacturing processes to
generate representative examples to demonstrate the utility of our computational models.
It must however be noted that the objective of this dissertation is not only to discuss the
phenomena related to such material, but also to illustrate the use of computer simulations
as a tool for aiding development of understanding of these phenomena. It is, we believe, a
subtle aspect that necessitates us to present here a measured balance of theory and models,
and simulation frameworks and algorithms - without making any one of the two the primary
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Chapter 1. Introduction

focus. In order for us to present our discourse any further, some foundational details on these
two aspects is critical to set the context for the discussion. This is our aim in the subsequent
sections, so as to be able to provide the reader with an idea of what kind of materials are
being discussed, where they are found, and what kinds of models and algorithms can be used
to construct numerical probes for understanding the behavior of such materials.

1.1 Granular and flowing particulate media

We begin by exploring what the terms ‘granular media’ and ‘flowing particulate media’ refer
to. In a simplistic manner, we can use the terms as a placeholder for any material that
is composed of small particles. More precisely, Jaeger & Nagel[75] define them as ‘large
conglomerations of discrete macroscopic particles’, and many scientists discuss such media
to be an assemblage of particles dominated by pair-wise nearest neighbor interactions. The
fact that the particles are macroscopic (size> O(µm)) is central to the physical behavior of
such media - since at these length scales their energy content is not due to thermal agita-
tions characteristic of traditional Brownian motion. Therefore, the behavior of such media
is determined by the collective displacement of the particles involved with inconsequential
Brownian motion. An in-depth review of the physics of such media is beyond the scope
of this work and the interested reader is referred to the works of Duran [35] for extensive
discussions on the physics of dry granular materials, the work of Crowe et. al. [29] for dis-
persed particle-laden flows, and the extensive works by Jaeger, Nagel and collaborators (for
example, [74], [76], and [75]). The manifestations of the physical behavior of an assemblage
of such particles can be surprisingly diverse. A collection of grains can often flow like a
fluid, and also, under certain conditions, undergo plastic deformations like a solid. When
dispersed in a turbulent fluid medium, the grains show an aggregate diffusion owing to fluid
media velocity fluctuations - a behavior very similar to Brownian diffusion. A collection of
loosely flowing particles can also resemble physical behaviors of a gas. Often called granular
gases, such behavior can be found in clouds of dust in outer space.

There are also a very broad range of applications where such media find utility. Granular
and flowing particulate materials are the mainstay of a huge number of industrial manu-
facturing processes - including spray forming, chemical mechanical polishing, and additive
manufacturing applications. They are also of immense utility in agricultural and food pro-
cessing applications, and the pharmaceutical industry where large quantities of stored and
flowing grains are processed everyday. High end combustion and propulsion systems often
use sprayed particles in combustion chambers to improve efficiency. Floating pollutants and
sediments are another example of dispersed, flowing particulates in a fluid - which form an
important aspect of environmental fluid dynamics. Yet another important area of appli-
cation is that of geophysics where much of the behavior of soils, flowing sands, and even
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Figure 1.1: Categorizing granular and particulate media in terms of the inter-particle contacts
(left) and in terms of their interaction with a surrounding fluid (right)

avalanches of snow fall within the realms of this broad class of materials.

In order to understand the different regimes of applications discussed here, we consider
the very basic categorizations as presented in Figure 1.1. For the system to be collision-
ally dominated, the durations of contact of individual particles should be much lesser than
characteristic time-scales of the system. For enduring contacts, these two time-scales are
of the same order. The presence of interstitial fluids introduce additional interactions be-
tween particles, but does not cause much transport phenomena - while the case of dispersed
particle-laden flows is a wide area of research of it’s own, with much of the focus being on
resolving how the particulate and the fluid media interact with each other. It must be noted
that while this is by no means an exhaustive categorization - it serves our purpose well to
help us broadly define the regimes where we need to focus. For the most part, this work
deals with flowing particulate media which are collisionally dominated and are dispersed in a
carrier fluid medium.

1.2 Computer simulations of colliding particles

The time-honored approach of formulating continuum level global balance laws for mass, mo-
mentum and energy has been the focus of many attempts to understand media comprising
macroscopic particles. Such methods essentially homogenize the particle-level quantities over
certain chosen representative volume elements. For a detailed discussion on homogenization
based approaches for particulate media, the reader is referred to Hutter & Rajagopal[70],
Goodman & Cowin[56], and the more recent works of Kamrin[80], and Rycroft et.al.[134].
Owing to the complexity of the behavior of such materials, however, a comprehensive con-
tinuum theory is difficult to formulate, and reliable theoretical description of the behavior
over a wide range of conditions has proven to be a complicated task. Furthermore, for many
industrial applications involving particulate media, direct full-scale experimentation is very
expensive and time-consuming. With the advent of high-performance computing technolo-
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Figure 1.2: A schematic overview of discrete particle modeling applied to particulate spray coating
manufacturing processes. The schematic however is generic enough to include the various different
cases that usually need to be modeled - generation of an ensemble of particles from a source,
various particle configurations, particle-fluid interactions and interactions with control surfaces.

gies, computer simulations have found a unique place in the understanding of the behavior
of such materials - both in terms of guiding development of new theories and improving
existing theories, and in terms of supplementing experimentation efforts to reduce number
of trials and thereby reduce costs. The positions and velocities of individual particles can be
efficiently tracked and processed using such simulation tools - thereby providing substantial
information on the mechanics of the material with even reasonably modest computational
efforts. This idea is central to the development of many computer simulation techniques
based on discrete particle motions. The interested reader is referred to an excellent review
by Poschel & Schwager[122] on discrete computational techniques for granular dynamics,
and the classical work of Frenkel & Smit[52] for detailed discussion on molecular dynamics
techniques in particular.

The Discrete Element Eethod (henceforth referred to as DEM) comprises a technique
very similar to Molecular Dynamics (henceforth referred to as MD) - wherein each particle
or grain is considered to be a computational unit, and the equations of motion for each unit
are solved systematically. It differs from traditional MD in terms of its ability to deal with
collisions between particles, and rotational degrees of freedom of particles. Amongst the first
applications of such methods for particulate media was presented in Cundall & Strack[30]. It
must be noted, that the computational units (the discrete elements) could also be idealized
material elements instead of being actual particles - and henceforth, the words particle and
element will be used interchangeably. The aspect of collisions and resolving real mechanical
contacts between the particles is perhaps the most critical aspect of these techniques. This
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is because resolving collisions by searching every pair of particles in a system of N particles
scales as O(N2) - making it extremely time-consuming and thereby requiring sophisticated
neighbor-list based data structures to make the calculation efficient. Therefore, these types
of methods are often also referred to as neighbor-list collision driven particle dynamics. For a
system of particles, or an object that can be represented as a collection of discrete particles,
we can visualize a computational domain as represented in Figure 1.2 - where the specific
area of particulate spray based coatings has been used as an example. The motion equation
for each particle can be written, for example, as:

mi
dvi
dt

= Fi = Fi,contact + Fi,fluid + Fi,em + Fi,adh (1.1)

where different kinds of physical interactions are represented in the form of a force that gets
added to the right-hand side of the equation - the subscripts ‘contact’ represents mechanical
contact phenomena, ‘fluid’ represents interactions with surrounding fluid, ‘em’ represents
electromagnetic phenomena, and ‘adh’ represents adhesive and near-field forces. This of-
fers the flexibility to deal with coupled multi-physics phenomena - and a lot of effort, as
shall be seen in the later sections, is focused on obtaining an interaction force model for
the phenomena considered. The representation of the particle-interactions as forces lends
considerable ease in terms of coupling discrete particle motions to a continuum mesh-based
finite element(FEM) type simulation framework as well. A detailed discussion of DEM-FEM
coupling is beyond the scope of this work and the interested reader is referred to the exten-
sive discussions in Munjiza [112], and the works of Wellmann & Wriggers[164], and Onate
& Rojak[115] for further details.

1.3 Dissertation objectives and outline

Owing to the broad range of coupled physical interactions that are associated with granular
and flowing particulate media as described herein, there is a need for hierarchical computa-
tional frameworks that can represent a coupled multi-physical phenomena in terms of simple
physical interaction models. The discrete element methods, with their inherent flexibility in
representing interactions as forces and fluxes at the individual particle level, are well-suited
for such materials. With this idea in mind, this dissertation focuses on the use of discrete
element based methods to model the dynamics of flowing particulate and granular media. In
the context of this broad overall objective, the dissertation was focused on two specific end-
goals. The first goal is to particularly implement such modeling and simulation frameworks
in industrial manufacturing processes involving particulate media. The second end-goal was
to use these frameworks to construct a scientific software library as a general toolkit for
performing computer simulations on such materials. This software library is designed using
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Figure 1.3: The overall architecture of the simulation libraries. The data obtained for the particle
phase-space can either be post-processed, or linked to available finite element codes to enable
coupled FEM-DEM type simulation efforts.

an object-oriented architecture in FORTRAN 95/2003 and is capable of full 3-dimensional
simulations of ensembles with rotational degrees of freedom. We present, in Figure 1.3 the
basic architecture of the libraries. It is noted herein that there are examples of existing
discrete-particle simulation libraries (both open-source and commercial) of varying degrees
of specificity - LAMMPS [121] developed and maintained by Sandia National Laboratories
is an example of a more popular library based on molecular dynamics. However, the hier-
archical computational modeling frameworks discussed here can incorporate a significantly
broader range of physical models and phenomena in sufficient detail.

The discussion in the subsequent chapters will be aimed at two main objectives, namely:

• the construction of appropriate physical models for coupled multi-physics phenomena
related to the dynamics of particulate media.

• the assembly of these models into algorithmic frameworks and the construction of
computer simulation tools

To demonstrate the utility of the simulation codes, two specific problems of importance
in manufacturing industry are discussed as examples - namely, particulate spray deposition
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process, and the impact dynamics of an erosive jet with a porous surface. One specific focus
of this work will be in the area of attempting to capture the synergy between the different
physical phenomena through the basic models. The reader will find that this discussion is in
accordance with the fundamental assumption presented in Section 1.2, especially from the
perspective of translating a particular physical interaction into a force or loading term that
can be augmented to the right-hand side of the equations. Another important aspect that
will be highlighted, especially through the two case-studies presented, will be to illustrate
how resolution of the discrete particle dynamics of each particle provides important infor-
mation that continuum approaches find hard to provide.

Following this introductory discussion, the force models for particle-particle, particle-
surface, and particle-fluid interactions are the subject of discussion in Chapters 2 and 3.
Thereafter we shift focus to the topic of developing the overall simulation framework, and
the numerical solution of the particle motion and energy equations in Chapter 4. Chapter
5 presents the sample simulations, results and analyses for the two model problems on
erosive impact of high velocity particle stream, and deposition of particulate sprays. We
conclude in Chapter 6 by linking the present work to broad over-arching future research
directions. Details about the simulation libraries, their development and user front-end have
been presented as supplementary content in the appendices.

7



Chapter 2

Particle Interaction Modeling

2.1 Introduction

The first step towards constructing a discrete particle simulation framework is to construct
appropriate models for capturing the various particle level multi physics interactions. This
will be the focus of this chapter of the dissertation. These interaction models will be the
basis of constructing the individual particle level equations - and for this dissertation, we
assume the following general forms of the ordinary differential equations for evolution of the
particle speed, spin and temperatures (as mentioned briefly in Section 1.2).

mi
dvi
dt

= Fi,contact + Fi,fluid + Fi,em + Fi,adh (2.1)

Ii
dωi
dt

= τi,contact + τi,em + τi,fluid (2.2)

miCi
dθi
dt

= Qi +Hi + Si (2.3)

The force terms in Equation 2.1 have been described in Section 1.2. The terms τi,contact,
τi,fluid, and τi,em denote the torques due to contact interactions, fluid-particle interactions,
and interactions with an applied external electromagnetic field respectively. It is assumed
that adhesive forces are acting along the particle centerlines, and since we work with spherical
particle geometries, this force does not have any torque. Furthermore, unless the sphere
center of mass and center of charge are unequal - the term τi,em will also be 0 - and we
retain this case in Equation 2.2. The terms in Equation 2.3 refer to the heat flux due to
conduction or convection (Qi), due to dissipated energy from mechanical or chemical effects
(Hi), and due to other sources or sinks (Si). There exists a broad range of models for the
aforementioned particle level interactions for discrete simulations in existing literature. For
the discussions presented in this Chapter, in some of the cases, our focus will be to capture
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the essence of the existing models and present an overview to the reader. In some other
cases, we present to the reader our modifications of the existing models, or slightly different
approaches for calculating a particular interaction term. The models presented here, have
been incorporated into the various physics modules of the simulation code-library (refer
Figure. 1.3) developed as a part of this research.

2.2 Particle contact forces: Force-deformation approach

Consistent evaluation of the impact load is a necessary starting point for such an exercise.
There exist a wide range of approaches in characterizing the force between contacting bodies
- and the interested reader is referred to the classical work of Johnson [77], and the extensive
reviews on contact force models presented by Poschel & Schwager [122], and Shafer et. al.
[138]. The most fundamental of these is the Hertzian contact force model for elastic, non-
conforming bodies (see the classical work by Hertz [67]). According to Hertz’s theory, the
contact force for two spherical bodies located at r1 and r2 (of radii R1 and R2 respectively)
is given as:

F n
c =

4

3

√
RE∗δ3/2

n = Knδ
3/2
n (2.4)

where, as represented schematically in Figure 2.1, δn = ‖r1 − r2‖ − (R1 +R2) is the
relative deformation that they undergo, 1/R = 1/R1 + 1/R2, and the effective elasticity E∗

is defined as 1
E∗

=
1−ν21
E1

+
1−ν22
E2

. The terms ν1, ν2 denote the material Poisson ratios, and E1, E2

denote the material elasticity moduli. Similar to Hertz’s approach, Mindlin [106] proposed a
model for the tangential compliance during elastic contact, from which the tangential force
can be calculated as:

F t
c =

1

8rc

(
2− ν1

G1

+
2− ν2

G2

)
δt = Ktδt (2.5)

where rc is the radius of the area of contact between the two bodies. Real contacts are
however not necessarily elastic, and to take into account the inelastic effects, the aforemen-
tioned expressions need to be modified. A common approach in literature to account for this
is to write the normal contact force using a simple linear combination of a recovery and a
dissipation term as follows:

F n
c = Kδn + γn

dδn
dt

(2.6)

where K, γn are model constants. A physical basis of choosing these two constants by
linking them constants to the restitution coefficient is provided by Poschel & Schwager [122],
which ensures that the model dissipates energy in a physically realistic manner. The relation
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Figure 2.1: A schematic representation of contact deformation. The original, undeformed config-
uration is indicated in red, and the final configuration in black. The particles come into contact
over a finite contact area.

they provide is presented as follows:

e = exp

− πγn
2meff

/√
Y

meff

−
(

γn
2meff

)2
 (2.7)

where meff = Mimj/(mi + mj) is the effective mass of the binary colliding system. A
generalized form of this contact model can be found in Brilliantov et. al.[18] where the force
for normal contact between viscoelastic spheres has been expressed in a similar manner by
adding a dissipation term to the Hertzian force presented in Equation 2.4 as follows:

F n
c = Knδ

3/2
n +KnA(ξ)

√
δn
dδn
dt

(2.8)

where the term A is a model parameter that depends on the material viscosity(ξ). A more
phenomenological approach has been presented by Walton & Braun [163] where the normal
interaction is modeled using a partially latched spring, leading to different compliances during
the loading (otherwise called the ‘compression phase’ ) and unloading (otherwise called the
‘recovery phase’ ) of the contact. This is represented as follows:
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F n
c = KL

n δn ∀dδn/dt ≥ 0 (2.9)

= KU
n (δn − δ0) ∀dδn/dt < 0 (2.10)

where the superscripts L and U denote loading and unloading phases of the contact
respectively. For the tangential contact interactions, friction plays a crucial role in the
energy dissipation. Friction forces depend on the magnitude of normal contact forces, and
during loading or unloading the normal forces keep changing, which in turn means that
Mindlin’s results presented in Equation 2.5 only presents the initial compliance as tangential
incipient motion occurs. The changing compliances for the unloading and loading phases
have been taken into account by Mindlin & Deresiewicz [105], and more recently by Vu Quoc
& Zhang [162] that accounts for the loading hysteresis (see [162] for details on the variation
in compliances). In general, according to this theory, the tangential forces are expressed as:

F t
c = Kt,0Φ

(
F t
c , F

n
c , µ

)
δt (2.11)

where Kt,0 is the compliance expressed in 2.5, and Φ is a function of the tangential and
normal loads and the dynamic friction coefficient (µ). A simpler version of this form of a
history dependent representation of tangential compliance has also been presented by Walton
& Braun [163] where the tangential stiffness is different based on whether there is an increase
or decrease in the tangential load due to slip as follows:

Φ
(
F t
c , F

n
c , µ

)
=


(
µF n

c − F t
c

µF n
c − Fsr

)α
if slip increases F t

c

−
(
µF n

c + F t
c

µF n
c + Fsr

)α
if slip decreases F t

c

(2.12)

where the force term Fsr is the total tangential force when the last instance of slip reversal
occurred, and α is a modeling constant ≈ 1/3. An alternative simpler implementation based
on the Coulomb stick-slip law has been also presented by Haff & Werner[61] where the
authors propose an incremental tangential force limited by dynamic Coulomb friction as
follows (for an incremental time-stepping calculation with time-step size ∆t):

F t
c = −sign

(
vtrel
)

min
([
Ktv

t
rel∆t+ γtmeffv

t
rel + F t

c (t−∆t)
]
, µ‖F n

c ‖
)

(2.13)

where Kt is a tangential stiffness measure, and γt is a tangential viscosity term that leads
to dissipation. A similar form of the tangential force is also found in the canonical work by
Cundall & Strack [30], where the force is expressed as:

F t
c = −sign

(
vtrel
)

min (‖Ktdrel‖, µ‖F n
c ‖) (2.14)
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where the relative displacement in contact drel is given as drel =
∫ t
t0
vtrel(t

′).dt′. It must be
noted that for most of these tangential force-deformation models there are no fundamental
microscopic mechanisms that are used to derive the expressions - rather they are more phe-
nomenological. Hence, an accurate estimation of some of these modeling constants become
an important issue - one which can be dealt with by careful construction of experiments.
Furthermore, the replication of exact stick-slip behavior for friction becomes also a critical
issue, especially since the behavior of static collections of granular systems in enduring con-
tact is governed by this behavior. Such systems are handled very well by Equation 2.14,
but their behavior is harder to capture using Equation 2.5 or 2.13. Alternatively, a direct
balance of the linear and angular momenta of colliding particles can be used to estimate the
forces of contact - an approach that does not require an explicit force deformation relation to
be evaluated and integrated. This approach has been used for flowing particulate media in
the works of Zohdi et. al. (see, for example, the works by Zohdi [178], Arbelaez & Zohdi[4])
- and for problems involving dynamic systems of particles undergoing non-enduring con-
tacts, this provides a theoretically consistent and accurate estimate of contact interactions.
Furthermore, such a derivation does not require explicit tracking of the individual contact
deformations, thereby relaxing the restrictions on time-step size - which is advantageous in
certain kinds of particle dynamics simulations.

2.3 Particle contact forces: Direct impulse-momentum bal-
ance

We provide here a derivation of contact forces evaluated from a impulse-momentum balance.
The impact of a spherical particle with a surface is considered. Assuming the surface descrip-
tion is known to be in form of a mathematical representation F(x, y, z) = 0, it is possible to
define a normal vector to the surface by using the following definition (for the unit outward
normal) n̂ = − ∇F

‖∇F‖ . We consider a spherical particle approaching this surface, and denote
the point of contact with subscript p, and center of mass with the subscript c. If the surface
velocity vector is known to be vsurf , then the slip velocity at the point of contact can be
obtained as:

vslip = (vp − vsurf )− [(vp − vsurf ) · n̂] n̂ (2.15)

following which, the direction of tangential slip can be defined as:

t̂ =
vslip
‖ vslip ‖

(2.16)

From Figure 2.2 the generic form of the contact force acting on the particle can be now
motivated to be Fcontact = fN n̂− fT t̂. The global linear and angular momentum balance for
the impacting particle now can be written as follows:
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Figure 2.2: Schematic of particle particle (left) and particle surface (right) contact force calcula-
tions using direct impulse-momentum balance.

mvc(t+ δt)−mvc(t) = 〈Fc〉δt+ 〈Fe〉δt (2.17)

Iω(t+ δt)− Iω(t) = 〈rcp × Fc〉δt+ 〈Me〉δt (2.18)

wherein, the sum of all external forces and moments other than the contact forces are rep-
resented using Fe and Me respectively. Taking the dot product of Eq. 2.17 with the normal
vector n̂, we get:

mvcn(t+ δt)−mvcn(t) = 〈fN〉δt+ 〈F e
n〉δt (2.19)

where the subscript ‘n’ denotes the dot product of the corresponding vector quantity with
n̂. Note that we assume that the surface is infinitely massive as compared to the impacting
particle and hence does not undergo any change in momentum upon impact. The inelastic
effects and energy loss during the impact can be characterized by means of the ‘Restitution
coefficient’ e - which for the present discussion, is assumed to be of the following form:

e =
recovery impulse

compression impulse
=

∫ t+δt
t+δt1

fNdt∫ t+δt1
t

fNdt
(2.20)

Correspondingly, decomposing the ‘Collide step’ into a compression phase and a recovery
phase, the following linear momentum balances can be written:
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mv̄ −mvcn(t) = 〈fN〉Cδt1 + 〈F e
n〉δt1 compression (2.21)

mvcn(t+ δt)−mv̄ = 〈fN〉R(δt− δt1) + 〈F e
n〉(δt− δt1) recovery (2.22)

with v̄ being the common normal velocity of the particle and the surface at the end of the
compression phase, such that normal relative velocity is 0 (which effectively gives v̄ = vsurf,n).
Note that the average impulses denoted here by 〈·〉 are for the corresponding intervals of
integration. Simplifying further, by writing the total contact impulse during the collide step
for the normal direction impact as follows:

〈fN〉δt = 〈fN〉Cδt1 + 〈fN〉R(δt− δt1) = (1 + e)〈fN〉Cδt1 (2.23)

= (1 + e) [mvsurf,n −mvcn(t)− 〈F e
n〉δt1] (2.24)

Furthermore, plugging the expression for the total contact impulse into Eq. 2.19, the
post impact normal velocity of the particle can be obtained as follows:

vcn(t+ δt) = (1 + e)vsurf,n − evcn(t) +
1

m
〈F e

n〉R(δt− δt1)− e

m
〈F e

n〉Cδt1 (2.25)

The tangential momentum change can now be approached in a similar way by taking the
dot product of Eq. 2.17 with t̂:

mvct(t+ δt)−mvct(t) = 〈−fT 〉δt+ 〈F e
t 〉δt (2.26)

In the implementation of a stick-slip type friction rule, under the assumption that tangential
stick occurs, the relative tangential slip velocity will vanish. This leads to the folllowing
expressions:

vslip · t̂ = [(vp − vsurf )− [(vp − vsurf ) · n̂] n̂] · t̂ = 0

For the rigid body kinematics, and using the fact that for spherical particles (see Figure
2.2,right) rp − rc = −Rn̂, the tangential-stick condition becomes

(vc − vsurf ) · t̂−R(ω × n̂) · t̂ = vct − vsurf,t −Rωs = 0 (2.27)

where we define a third unit vector ŝ = n̂ × t̂ to complete a triad, and write components
of vectors along this vector with a subsript ‘s’. Furthermore, taking the dot-product of the
angular momentum balance in Eq. 2.18 with ŝ, we get:
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Iωs(t+ δt)− Iω(t) = 〈rcp × Fc〉 · ŝ + 〈M e
s 〉δt = 〈RfT 〉δt+ 〈M e

s 〉δt (2.28)

Using Eq. 2.26, 2.28, 2.27, and performing some simple algebra, the following expression for
the total tangential force can be obtained under the condition that tangential stick condition
in Eq. 2.27 is satisfied.

〈fT 〉δt =
1

1
m

+ R2

I

[
1

m
〈F e

t 〉δt−
R

I
〈M e

s 〉δt+ [vct(t)−Rωs(t)]− vsurf,t
]

=
2

7
〈F e

t 〉δt−
5

7R
〈M e

s 〉δt+
2m

7
[vct(t)−Rωs(t)]−

2m

7
vsurf,t

[
with I =

2

5
mR2

]
(2.29)

Finally, to complete the implementation of the stick slip model for friction, the tangential
force above is compared to the static friction limit, and the following modifications are made:

If ‖ fT ‖≤ µs ‖ fN ‖ ⇒ fT = fT stick-condition (2.30)

If ‖ fT ‖> µs ‖ fN ‖ ⇒ fT = µd ‖ fN ‖ slip-condition (2.31)

Having obtained the tangential force in Eq. 2.30 and Eq. 2.31, plugging this back into
the corresponding linear and angular momentum balance laws in Eq. 2.26 and Eq. 2.28,
the respective post-collisional linear and angular velocity component updates can also be
obtained as follows:

vct(t+ δt) = vct(t)−
1

m
〈fT 〉δt+

1

m
〈F e

t 〉δt (2.32)

ωs(t+ δt) = ωs(t) +
R

I
〈fT 〉δt+ 〈M e

s 〉δt (2.33)

Eq. 2.25, 2.32, and 2.33 together provide the corresponding velocity component updates for
the particle-surface impact. We remark here that for the case of a particle-surface impact
case this provides the exact Coulomb stick-slip friction.

A similar approach is pursued to obtain the collision forces and the post-collisional ve-
locities for the impact of two spherical particles (reference schematic shown in Figure 2.2).
As opposed to the collision with a surface, for a pair of particles, we define the normal vector
for pairwise collision as:
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n̂ji =
rj − ri
‖ rj − ri ‖

n̂ij =
ri − rj
‖ ri − rj ‖

(2.34)

The velocities at the point of contact for each spherical particle can thus now be written as:

vpi = vci + ωi × (Rin̂ji), vpj = vcj + ωj × (Rjn̂ij) (2.35)

The relative velocity at the point of contact can be defined as vrel = vpj − vpi. Using the
relative velocity at the contact point, the direction of tangential slip can be characterized by
a unit vector t̂ij (similar to the case of particle-surface collision), as follows:

t̂ij =
vrel − (vrel · n̂ij)n̂ij
‖ vrel − (vrel · n̂ij)n̂ij ‖

(2.36)

The global linear momentum balance for the pairwise collision of the two particles can now
be written as:

mivi(t+ δt)−mivi(t) = 〈Fc
i〉δt+ 〈Fe

i 〉δt (2.37)

mivj(t+ δt)−mivj(t) = 〈Fc
j〉δt+ 〈Fe

j〉δt (2.38)

Taking the dot product with n̂ij, and writing the contact force as Fc
i = fN n̂ij + fT t̂ij, we

have the following:

mivin(t+ δt)−mivin(t) = 〈fN〉δt+ 〈F e
in〉δt (2.39)

mivjn(t+ δt)−mivjn(t) = 〈−fN〉δt+ 〈F e
jn〉δt (2.40)

The collision momentum balance can now again be decomposed into a compression and
a recovery phase, and the restitution coefficient defined using the ratio of recovery and
compression impulses, following which the following relations are obtained:

mivcn −mivin(t) = 〈fN〉Cδt1 + 〈F e
in〉Cδt1 (2.41)

mivcn −mivjn(t) = 〈−fN〉Cδt1 + 〈F e
jn〉Cδt1 (2.42)

mivin(t+ δt)−mivcn = 〈fN〉R(δt− δt1) + 〈F e
in〉R(δt− δt1) (2.43)

mivjn(t+ δt)−mivcn = 〈−fN〉R(δt− δt1) + 〈F e
jn〉R(δt− δt1) (2.44)

where, vcn is the common normal velocity after the compression phase (leading to a zero
relative normal velocity). Some algebra simplification using Eq. 2.41 and Eq. 2.42 gives us:
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〈fN〉δt1 =
1

mi +mj

[
mi〈F e

jn〉Cδt1 −mj〈F e
in〉Cδt1

]
− mimj

mi +mj

[vin(t)− vjn(t)] (2.45)

following which, using the definition of the restitution coefficient, the following expression
for the total contact force can be obtained for the collide step:

〈fN〉δt = 〈fN〉Cδt1 + 〈fN〉R(δt− δt1) = (1 + e)〈fN〉Cδt1

=
1 + e

mi +mj

[
mi〈F e

jn〉Cδt1 −mj〈F e
in〉Cδt1

]
− (1 + e)mimj

mi +mj

[vin(t)− vjn(t)] (2.46)

The contact impulse can now be plugged back in to the linear momentum balance equations
to get the respective post collisional velocity updates as follows:

mivin(t+ δt) = mivin(t) + 〈fN〉δt+ 〈F e
in〉δt

= mivin(t) +
1 + e

mi +mj

[
mi〈F e

jn〉Cδt1 −mj〈F e
in〉Cδt1

]
− (1 + e)mimj

mi +mj

[vin(t)− vjn(t)] + 〈F e
in〉δt (2.47)

mjvjn(t+ δt) = mjvjn(t) + 〈−fN〉δt+ 〈F e
jn〉δt

= mjvjn(t)− 1 + e

mi +mj

[
mi〈F e

jn〉Cδt1 −mj〈F e
in〉Cδt1

]
+

(1 + e)mimj

mi +mj

[vin(t)− vjn(t)] + 〈F e
jn〉δt (2.48)

For the tangential component of the contact impulses, the momentum balance in t̂ij (see
Equation.2.36) is used along with a Coulomb stick-slip criteria. Starting with the dot product
of the momentum balance in Equation.2.38 with t̂ij, we have:

mivit(t+ δt)−mivit(t) = 〈fT 〉δt+ 〈F e
it〉δt (2.49)

mjvjt(t+ δt)−mjvjt(t) = 〈−fT 〉δt+ 〈F e
jt〉δt (2.50)

Furthermore, defining a third unit vector ŝij = n̂ij× t̂ij, to complete a triad - and performing
a balance of angular momentum along this unit vector, we get the following:
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Iiωis(t+ δt)− Iiωis(t) = 〈rpi × Fc
i〉δt · ŝij + 〈Mis〉δt (2.51)

Ijωjs(t+ δt)− Ijωjs(t) = 〈rpj × Fc
j〉δt · ŝij + 〈Mjs〉δt (2.52)

From Figure 2.2 it can be seen that rpi = −Rn̂ij, which leads to 〈rpi × Fc
i〉δt · ŝij = −RfT .

Using this relation also for the j’th particle, we get the following:

Iiωis(t+ δt)− Iiωis(t) = −R〈fT 〉δt+ 〈Mis〉δt (2.53)

Ijωjs(t+ δt)− Ijωjs(t) = −R〈fT 〉δt+ 〈Mjs〉δt (2.54)

Assuming now that the particles are tangentially stuck, then tangential components of vpi
and vpj are going to be equal (no slip velocity). Performing appropriate vector operations,
this leads to the following result:

vit(t+ δt)−Riωis(t+ δt) = vjt(t+ δt) +Rjωjs(t+ δt) (2.55)

Substituting Ii = 2
5
miR

2
i for spherical particles, and performing algebra manipulations with

the Eq. 2.49, 2.50, 2.53, 2.54, we get the final form of the tangential contact impulse for the
‘stick’ case:

〈fT 〉δt =
2

7

(
mimj

mi +mj

)
[{vjt(t) +Rjωjs(t)} − {vit(t)−Riωis(t)}

+
δt

mj

{
5

2

〈Mjs〉
Rj

+ 〈F e
jt〉
}

+
δt

mi

{
5

2

〈Mis〉
Ri

− 〈F e
it〉
}]

(2.56)

To implement the complete Coulomb stick-slip condition, we use Equations 2.30 and 2.31,
and construct the appropriate velocity and angular velocity updates by plugging in the
tangential force from Eq. 2.56 into the linear and angular momentum balance relations in
Eq. 2.49, 2.50, 2.53, 2.54. For the i’th particle:

vit(t+ δt) = vit(t) +
1

mi

〈fT 〉δt+
1

mi

〈F e
it〉δt (2.57)

ωis(t+ δt) = ωis(t)−
Ri

Ii
〈fT 〉δt+

1

Ii
〈Mis〉δt (2.58)
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2.4 Velocity-dependent restitution coefficients

The derivation of contact interactions provided here is based on the knowledge of restitution
coefficient and the durations of the compression and the recovery phases of collision. A
physically consistent model for these parameters is necessary to capture the inelastic effects
during a collision, and the dissipation of energy. Experimental data on restitution indicates
that the coefficient depends on impact velocity and also material parameters of the impacting
bodies (see, for example, the works by Goldsmith [55], and the more recent work of Ramirez
et. al. [127]). From a simple integration of motion equation under the action of a Hertzian
force (see Johnson [77] for details), it can be shown that the collision times are also dependent
on these parameters. The result of this integration, for the contact of two spheres, leads to
the following expressions for the maximum contact deformation at the end of the compression
phase, and for the total collision duration:

δmaxn =

(
15mv2

n

16
√
RE∗

)2/5

, δt = 2.94
δmaxn

vn
= 2.87

(
m2

RE∗2vn

)1/5

(2.59)

Since the underlying force considered is purely elastic, the compression and recovery
durations should be equal (each being equal to δt/2 from the expression above). For an
inelastic contact this is no longer the case. To include the effects of inelasticity the arguments
presented in Johnson [77] for the case of an elastic perfectly plastic contact are re-derived
here. From a consideration of rigid fully plastic loading, it can be shown that the required
average contact pressure for contact between two spherical bodies is pm = 3.0Y . It can
also be shown from a calculation of the initiation of yield that the required average contact
pressure for yield onset is pm = Y . In between these two limits of the contact pressure, there
exists an elasto-plastic regime, where contact pressure rises from the yield limit and can go
up to the point where fully plastic, uncontained flow begins. Using this, we generalize the
calculations by Johnson [77], by assuming a maximum contact pressure pm = αY , and using
the following expressions thereafter to get the compliance relation F n

c (δn):

δn =
π2R

4E∗2

(
3

2
pm

)2

=
9π2α2

16

RY 2

E∗2
(2.60)

F n
c =

π3R2

6E∗2

(
3

2
p2
m

)3

=
27π3α3

48

R2Y 3

E∗2
(2.61)

For collision durations that are small compared to other dynamic time-scales, the def-
inition of the restitution coefficient used in the previous section reduces to the Newtonian
form of vcn(t + δt)/vcn(t), and for this case, following the calculation of the compression
and recovery work, and using pm = αY instead of 3Y , we can obtain the following for the
restitution coefficient:
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e2 =
vcn(t+ δt)2

vcn(t)2
=

3π5/443/4

10

(
αY

E∗

)( 1
2
mvcn(t)2

αY R3

)−1/4

⇒ e = 1.88α5/8

√
Y

E∗

( 1
2
mvcn(t)2

Y R3

)−1/8

(2.62)

Although a value of α = 3 for yielding is realistic for most metals, it has been shown that
for other materials this number may differ - for example, Wilsea et. al. [166] shows that
for foams and porous ceramics, α is often equal to unity. Therefore, the introduction of this
parameter provides more flexibility in terms of material types being modeled. The collision
will involve plastic deformations only beyond a threshold level of impacting energy of the
particle. Following again the approach in Johnson [77], and generalizing the mean pressure
required to initiate yielding to be pm = αY Y , we can obtain the following expression for the
limiting impact velocity:

1

2
mv2

Y =

[(
2π

3

)5(
3

4

)4
2

5
α5
Y

](
R3Y 5

E∗4

)
= 5.1α5

Y

(
R3Y 5

E∗4

)
(2.63)

For impact with energies higher than this threshold, the collision times can be given by
the same expressions as presented in the original derivation by Johnson - that is:

δt1 =

√
πm

8RαY
and δt− δt1 = 1.2eδt1 (2.64)

This provides a consistent model for incorporating the material properties and the impact
severity into the contact forces between the colliding bodies. A comparison of obtained values
of restitution coefficients for a few combinations of materials obtained using this model has
been presented in Figure 2.3.

2.5 Regularization of stick-slip friction

The classical Coulomb stick-slip friction model in rigid body dynamics has an inherent dis-
continuity, which, along with often found discontinuities in velocities in rigid body dynamics
(for example, in rigid body impact) can lead to paradoxical results in many cases - a classical
example being that of Painleve’s paradoxes. The interested reader is referred to the work
by Klarbring [83] for a discussion on an example of non-uniqueness and non-existence of so-
lutions for quasi static problems with Coulomb friction law, the work by Genot & Brogliato
[54] for some recent discussion on Painleve’s paradoxes. There have been a variety of different
approaches that have been proposed to tackle the inherent discontinuities - and an extensive
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Figure 2.3: A comparison of restitution coefficients obtained using the model presented in Equa-
tion 2.62 for different material combinations, demonstrating the impact velocity dependence

review of the techniques available can be found in Stewart[145]. The latest developments, as
discussed in the review, incorporate the idea of impulsive forces in rigid body dynamics as
measures or distributions instead, and the idea of combining the rigid body contact problem
with an area of convex analysis called the Linear Complementarity Problem (for mathemati-
cal foundations of the method see the text by Murty [113]). The formulation of contact with
Coulomb friction as a linear complementarity problem has also been extensively discussed in
some of the earlier works on the topic by Moreau [108], and more recently in Raous et. al.
[129] where the formulations are extended to adhesive contacts as well. The implementation
of such a formulation into the time-discretized motion equations for a system of particles
can be a complex task - and has been discussed in the review by Stewart [145]. Further
issues may arise with multiple particles undergoing simultaneous contacts - an issue which
has been also explored by Chatterjee & Ruina [24], and Chatterjee [25]. For loosely flow-
ing particulate systems, with non-enduring contacts, the exact determination of stick-slip
friction in an impulse-momentum balance type contact formulation can be replaced by a
simple regularization of the discontinuous Coulomb friction law. Such regularized friction
models can lead to robust numerical methods for integrating the motion equations. As was
mentioned earlier, for systems of flowing particles with non-enduring contacts, the system
behavior is not significantly dependent on the exact stick-slip nature of the contact friction.
Thereby, a complete formulation for the complementarity problem for contact friction has
not been the focus during the development of the libraries for the dissertation. Discussions

21



Chapter 2. Particle Interaction Modeling

-1.0 -0.5 0.0 0.5 1.0
slip velocity vslip

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

no
rm

al
iz

ed
ta

ng
en

tia
lf

ri
ct

io
n

f t µ
f n

R1

R2

R3

stick-slip

Figure 2.4: A comparison of various regularization models for Coulomb stick-slip friction that can
be used in numerical calculations

on the models for regularized Coulomb friction can be found in the works by Oden & Pires
[116], and by Wriggers [167], and in general, the friction force can be given by:

〈fT 〉 = µR (vslip,t) ‖ fN ‖ (2.65)

where R (vslip,t) is a regularization function that approximates the discontinuity of the
stick-slip criteria. Some possible forms of the regularization function R can be given as
follows:

R1 (vslip,t) =


−1 ∀vslip,t < ε
vslip,t

2ε
∀ − ε ≤ vslip,t ≤ ε

1 ∀vslip,t > ε

(2.66)

R2 (vslip,t) = tanh
(vslip,t

ε

)
(2.67)

R3 (vslip,t) =
vslip,t√
v2
slip,t + ε2

(2.68)
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The regularization models presented here have been compared in Figure 2.4. It is noted
that in all models, smaller values of ε will be closer to the stick-slip approximation.

2.6 Adhesive and near-field effects

2.6.1 Adhesive contacts between macroscopic, nearly rigid particles

For many applications involving particle contacts, the near-field and adhesive forces signifi-
cantly affect inter-particle contact interactions. Important examples include agglomeration
and clustering of particles in a flow, and particulate deposition processes, where a quantifi-
cation of the adhesive forces during contact becomes critical to the understanding of process
physics. The interactions between molecules that leads to such phenomena are typically char-
acterized by an appropriately modeled interaction potential U(r) - and the corresponding
forces can then be obtained using Fadh = −∇U . Considering now two macroscopic particles,
which are composed of a large number of molecules - the net interaction energy between
the particles can then be computed by summing over all possible interactions between the
molecules in the individual particles. The general form of this integration can be written as:

Uadh =

∫
V1
dV1

∫
V2
dV2ρc1ρc2U(r) (2.69)

Fadh =

∫
V1
dV1

∫
V2
dV2ρc1ρc2F(r) (2.70)

where the integrations are done over the volumes V1 and V2 of the two bodies with
molecule densities ρc1 and ρc2 respectively. The earliest calculations for two rigid spheres
using the London Van Der Waals potential form U(r) = −C

r6
was performed by Bradley [17],

and later modified slightly by Hamaker [63]. Hamaker’s famous calculation for two spheres
of radii R1 and R2 respectively, separated by a distance D, provides the following expression
for the macroscopic interaction energy:

U(d) = −A
6

[
2R1R2

(2R1 + 2R2 + d) d
+

2R1R2

(2R1 + d) (2R2 + d)
+ log

(2R1 + 2R2 + d) d

(2R1 + d) (2R2 + d)

]
(2.71)

where A is known in the literature as the ‘Hamaker constant’, and from the derivations
it can be shown that A = π2Cρc1ρc2. For further mathematical details on the estimation of
macroscopic interaction forces for various different cases, the interested reader is referred to
the extensive discussions presented in the text by Isarelachvili [73].

23



Chapter 2. Particle Interaction Modeling

In order to find the interaction energy due to any other form of potential, Equation
2.69 has to be numerically integrated. However, particularly for the case of calculating
interaction forces and energies between spheres separated by a distance d such that R1, R2 �
d, an important result exists due to the work by Derjaguin [32] (see also the discussion in
Israelachvili [73] for details). The result, referred to as the ‘Derjaguin approximation’, states
that the interaction force between two spheres, for any choice of potential U(r), can be
related to the interaction energy between two semi infinite planes as follows:

‖ F(d)spheres ‖= 2πRU(d)planes (2.72)

where R is the effective radius, and for most common potential choices, the integration to
obtain U(d)planes is easier to compute than that for spheres. An interesting conclusion that
can be drawn from this is the relation between interaction forces and surface energy γ. If
we assume that two spheres are in contact, then the actual separation length-scale between
the two will be of the order of molecular separation. Representing this separation by ε0, the
energy of interaction U (ε0) = −2γ, thereby giving:

‖ F (ε0) ‖= −4πγR (2.73)

The surface energy for creating an interface by bringing two surfaces in contact can be
estimated using a simple combination law as follows:

γ12 = γ1 + γ2 − 2
√
γ1γ2 = (

√
γ1 −

√
γ2)2 (2.74)

From the aforementioned definition of surface energy in terms of interaction energy at
molecular separations, a direct relation between the Hamaker constant a and the surface
energy γ can be easily constructed using the interaction energy between two flat surfaces:

Uplanes (ε0) = − A

12πε20
= −2γ ⇒ γ =

A

24πε20
(2.75)

This is a useful relation for us to now embark on some detailed discussion on evaluating
the Hamaker constants to account for effect of temperature and non-binary interactions with
surrounding particles.

2.6.2 Detailed theoretical discussions on Hamaker constants

The Van Der Waals force between polar molecules is the most important near-field interac-
tion force in a wide range of applications. In reality, this is a combination of three distinct
types of interactions (1) the ‘induction’ force for polar molecules, (2) the ‘orientation’ force
for dipoles induced, and (3) the ‘dispersion’ force. Consequently, the simple pairwise addi-
tion of Van Der Waals forces, will not always provide the correct interaction energies, since
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the influence of neighboring molecules on the pairwise addition and influence of the medium
in which the pair resides have to be considered. To take into account these aspects, the
forces between macroscopic bodies treated as continuum were presented by Lifshitz [87] via
the Lifshitz theory of Van Der Waals forces. For detailed reviews on calculating interaction
energies using the Lifshitz theory, the interested reader is also referred to Israelachvili [72],
Bergstrom [12], Parsegian & Ninham [117], and Visser [160].

The expressions derived in the previous section for the interaction forces and energies
will still remain the same when the Lifshitz theory is used - but the Hamaker constants will
change, and the effect of temperature, and presence of a medium between particle pair are
all incorporated through a detailed calculation of the Hamaker constant A. To present the
results for A based on Lifshitz theory, we consider a pair of particles indexed as 1 and 2
respectively, to be interacting across a medium indexed by 3, and the resulting expression is
given as follows:

A = π2Cρc1ρc2 =
3

2
kBT

∞∑
n=0,1,2,···

[
ε1(iνn)− ε3(iνn)

ε1(iνn) + ε3(iνn)

] [
ε2(iνn)− ε3(iνn)

ε2(iνn) + ε3(iνn)

]
(2.76)

≈ 3

4
kBT

(
ε1 − ε3
ε1 + ε3

)(
ε2 − ε3
ε2 + ε3

)
+

3~
4π

∫ ∞
ν1

(
ε1(iν)− ε3(iν)

ε1(iν) + ε3(iν)

)(
ε2(iν)− ε3(iν)

ε2(iν) + ε3(iν)

)
(2.77)

where εj is the static dielectric constant for the j’th entity, and ε(iν) is the corresponding
dielectric constant values at imaginary frequencies. Following the discussion in Israelachvili
[73], we use the fact that the variation of the dielectric constant εj with frequency is similar
to that of the atomic polarizability, and can write the dielectric constant ε(ν) as:

ε(ν) = 1 +
constant

1− iν/νrot
+

constant

1− ν2/ν2
e

(2.78)

following which, after some algebra and introducing the definition of the refractive index
nj of the j’th entity, we can write:

ε(iν) = 1 +
ε− n2

1 + ν/νrot
+

n2 − 1

1 + ν2/ν2
e

(2.79)

where νrot is the molecular rotational relaxation frequency, usually in the microwave
frequency range or lower (< 1012Hz). The term νe refers to the main electronic absorption
frequency in the ultraviolet range, usually around 3 × 1015Hz. It can be shown that ν1 ≈
4×1013Hz � νrot thereby making the third term in Equation 2.79 dominant over the second,

and the latter can be neglected. Plugging this expression for εj ≈ 1+
n2
j−1

1+ν2/ν2e
into the integral

in Equation. 2.77 we get the final expression for the Hamaker constant to be:
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A = Aν=0 + Aν>0 (2.80)

=
3

4
kBT

(
ε1 − ε3
ε1 + ε3

)(
ε2 − ε3
ε2 + ε3

)
+

3~νe
8
√

2

(n2
1 − n2

3) (n2
2 − n2

3)√
(n2

1 + n2
3) (n2

2 + n2
3)
[√

n2
1 + n2

3 +
√
n2

2 + n2
3

]
(2.81)

This provides a more general theory for calculating interactions for different temperatures,
for different geometries, and for bodies interacting across different media. We remark also
that the estimate using Equation 2.76 is more exact, and when required, can be solved
numerically as has been presented in the work by Bergstrom [12].

2.6.3 Deformable contacts and Greenwood’s mapping

The mechanics of contacting macroscopic particles when the particles undergo significant
levels of deformation will involve the combined analysis of the elastic forces and adhesive
forces due to Van Der Waals type effects. For contact scenarios where a detailed resolution
of the deformations are desired, a rigorous treatment of the adhesive contact mechanics has
been provided by Johnson et. al. [79] in terms of their theory referred to as the ‘Johnson-
Kendall-Roberts (JKR) theory’. According to this theory, the total deformation during
contact will increase due to the adhesive forces pulling the surfaces of the two macroscopic
particles together in the vicinity of the contact. The net contact area can then be given as:

a3
c =

3R

4E∗

[
F + 3πγR +

√
6πγRF + (3πγR)2

]
(2.82)

where F = Fn in the context of the discussions presented in Section 2.2. It is evident
that for γ = 0 we get back the Hertzian contact case as discussed in Section 2.2. When the
applied external force F is zero, the JKR theory gives a non-zero contact area a0 given by:

a0 =

(
9πR2γ

2E∗

)1/3

(2.83)

This indicates that the equilibrium between adhesive forces and elastic forces in the
material continua together lead to a deformed configuration even in the absence of any
external loading. As the external loading starts separating the particles, a tensile force
develops at the contact region and it rises until a cut-off value of the force, when complete
detachment of the particles occur (see Figure 2.5 for an illustration). This is called the
‘pull-off’ or ‘adhesive’ force, and is given by:
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Equilibrium under 
applied load

contact area greater 
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finite contact area, 
residual adhesion 

Spontaneous 
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−3
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π γ R
F<0

F≥0

Reversing applied load

Figure 2.5: Sequence of schematics illustrating the typical force-deformation behavior seen of
adhesive contact predicted by the JKR theory

Fadh = −3

2
πγR (2.84)

The corresponding value of the contact area is then given by:

as =
a0

41/3
(2.85)

after which the contact area abruptly becomes zero. During the process of the contact
deformations, the net deformation between the centerline δn is related to the contact area
ac by the following relation:

δn =
a2
c

R

[
1− 2

3

(
a0

ac

)3/2
]

(2.86)

An alternative theory to the adhesive contact deformations was presented by Derjaguin
et. al. [33] which is commonly refererred to as the ‘Derjaguin-Muller-Toporov (DMT)
theory’. The basis of this theory is the consideration that the surface forces do not modify
the deformed profile obtained from a Hertzian contact solution, and the attractive surface
forces all lie outside of the contact area. The original work by Derjaguin et. al. [33] was later
modified by Muller et. al. [110] and further discussions in great detail were provided in Muller
et. al. [111] - with the primary idea being that of a direct calculation of the force as opposed
to an energy based thermodynamic approach presented in the original work. Assuming that
the Hertzian deformation remains unchanged during contact, the deformation profile is given
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by (see Johnson [77] and Muller et. al. [110] and also the discussions presented in Pashley
[118]):

H(r, ac) =
1

πR

[
ac
(
r2 − a2

c

)1/2 −
(
2a2

c − r2
)

arctan

[
r2

a2
c

− 1

]1/2
]

+ ε0 (2.87)

and the force can be calculated directly as:

Fsurf = 2π

∫ ∞
ac

d

dH
[φ(H(r, ac)] rdr (2.88)

dφ(H)

dH
=

8∆γ

3ε0

[( ε0
H

)3

−
( ε0
H

)9
]

(2.89)

where the Equation 2.89 refers to the suitably normalized form of the Lennard Jones
potential used in the calculations by Muller at. al. ([110] and [111]). Recalling now from
Section 2.2 the expression for Hertzian contact force, the total applied force on the particles
can be given now to be:

F (ac) = FHertz(ac)− Fsurf (ac) (2.90)

=
4E∗a3

c

3R
− 2π

∫ ∞
ac

d

dH
[φ(H(r, ac)] rdr (2.91)

and ac is related to the deformation δn using the Hertzian contact geometry relation
a2
c = Rδn. The Equation 2.91 can now be numerically integrated to provide the complete

force deformation behavior. Furthermore, as mentioned in Pashley [118] amongst others, for
small deformations the total surface force is given to be 2πRγ which is what the original
work had predicted. For other cases, the behavior is more realistic and correct. Henceforth,
we shall refer to the Equation 2.91 as the DMT theory - instead of any references to the
original work. Furthermore, as discussed in many references including Pashley [118], and
Greenwood [58] amongst others, the force value predicted by the original work to be 2πRγ is
nothing but the result of Equation 2.72 - and hence does not contribute any new result other
than representing the results for adhesive forces between nearly rigid macroscopic bodies.

The comparative analysis of these two theories was further extended by Maugis [95] using
an analysis based on stresses at a crack tip approximated by the Dugdale model. The details
of this theory is not presented here for the sake of brevity, and the reader is referred to the
original article cited herein. However, their analysis, along with the discussion presented by
Pashley [118], Greenwood [58], and Johnson & Greenwood [78] all refer to the formulation
of a common non-dimensional parameter to compare the various approaches and thereby
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decide on the regimes where individual approaches are applicable. The existence of such
a parameter was originally discussed in the work by Tabor [150], following which Muller
et.al.[110] used a modified form of the same parameter to expand upon the calculations for
DMT theory. Further validation of the role of such a parameter that combines the material
elastic properties, size of the macroscopic bodies in contact, and their surface energies has
been presented also by Pashley [118], Maugis [95], Attard & Parker [5], and Greenwood [58]

amongst many others. The correct choice of the parameter to be used in any simulation
work is complicated by the many different versions that are found in the literature - and the
work by Greenwood [58] provides a list of many of these variants as an appendix to their
article. For the present discourse, we will be using the slightly modified form of the original
variant proposed by Tabor - and call it the Tabor coefficient µT given as follows:

µT =

[
R∆γ2

E∗2ε30

]1/3

(2.92)

Figure 2.6: The mapping of adhesion models with varying load intensities and material elasticity
parameters as presented by Johnson & Greenwood (figure reproduced from the original article).

Using this coefficient, Johnson & Greenwood [78] provides a very useful mapping of the
different theoretical approaches for contact between two macroscopic bodies, the original
form of which has been re-printed here in Figure 2.6. The map provides the regime of
application of the Hertzian approach, the rigid-sphere adhesion approach (which is referred to
as ‘Bradley’ in the Figure), and the JKR theory. The DMT theory is considered to be almost
equivalent to the rigid-sphere approach - since for small deformation of the macroscopic
bodies the theory predicts forces more accurately. Therefore, the regime of application of
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DMT theory is presented to be adjacent to the Bradley theory. The intermediate regime,
for low impact forces as compared to adhesive forces (low P̄ from the map) is best described
using the generalized calculations presented by Maugis Dugdale. This classification is not
really rigid, and from our survey of the literature, we interpret this as a general qualitative
guideline for evaluating the applicability of a theory to a specific problem instead.

2.7 Electromagnetic effects

2.7.1 Force on a charged particle

A description of the forces on a charged particle or computational element is presented
here with the assumption that the particle sizes are small compared to the characteristic
length-scales of the problem - such that the particles can be treated as lumped charges with
their center of mass being the same as the center of charge (that is, there is no variation of
charge within the material extent of each particle). With this assumption, the force on a
charged particle due to externally applied electric and magnetic fields (of strengths E and
B respectively) is given by the classical Lorentz force:

Fem = q (E + v ×B) (2.93)

The individual charged particles in a collection of particles can interact with each other
via Coulomb interactions as well, an efficient treatment of which poses considerable chal-
lenges. This particular aspect has been a topic of much discussion - most notably amongst
molecular dynamics researchers attempting to study molecular systems and condensed mat-
ter. The interaction energy for an N-body system of charged particles is given by:

U (r1, r2, · · · , rN) =
1

2

N∑
i

∑
j 6=i

N
qiqj
|ri − rj|

(2.94)

which amounts to an O (N2) calculation, and is prohibitively expensive for systems with
large number of particles. The contributions of the long-range effects of Coulomb interactions
are crucial for the behavior of such systems - for a broad review of the various computa-
tional techniques available to resolve these interactions see Sagui & Darden [136]. The most
prominent of these techniques is that of Ewald summation for periodic systems wherein the
interaction potential is decomposed into a short-range and long-range components, and the
long-range terms are calculated in the Fourier space (see Frenkel & Smit [52] for a compre-
hensive discussion on such techniques, and Toukmaji & Board [156] for a survey of Ewald
and fast multipole method based techniques). An alternative to the non-trivial algorithmic
implementation of such summations that is often used is to truncate the interaction poten-
tial by multiplying U(ri, rj) with a truncation function T (ri, rj) that truncates the potential
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beyond a chosen truncation distance (characterized here by rc) so as to calculate the inter-
actions over a more restricted region in space. A discussion of such techniques can be found
in Brooks et. al. [71] for example, and three commonly used variants of the functional form
of the truncation function are presented as follows:

T (|ri − rj|) =

{
1 |ri − rj| ≤ rc

0 |ri − rj| > rc
(2.95)

T (|ri − rj|) =


[
1− |ri − rj|

rc

]
|ri − rj| ≤ rc

0 |ri − rj| > rc

(2.96)

T (|ri − rj|) =


[

1− 2
(|ri − rj|)2

rc

]
|ri − rj| ≤ rc

0 |ri − rj| > rc

(2.97)

For the function presented in Equation. 2.95 there is a discontinuity in both the potential
and its derivative, for Equation. 2.96 the potential is zero at the truncation distance rc but is
continuous, and for Equation 2.97 the derivative is zero at rc and is continuous. The relative
performance of truncation based approaches, and Ewald summation approaches have been
presented in the works of Bader & Chandler [7] and York et. al. [169] amongst others -
and for atomic or molecular systems the latter has been shown to be more accurate. We
remark here that, for the kinds of discrete, macroscopic particle systems being discussed in
this work, the thermodynamic nature is essentially different from that of a molecular system.
Such systems often are driven by forces that are more dominant than Coulomb interactions -
thereby making the use of a truncated potential a viable option. Moreover, the requirement
of periodic boundary conditions - as is the case with many Fourier space based summation
techniques - might not be satisfied with many such systems (for example, a flowing spray of
powder particles).

Particularly we illustrate the aspect of relative dominance of Coulomb interactions through
an example where we compare the Lorentz force with Coulombic interactions. Mathemati-
cally speaking, the dominance of Lorentz forces entails the observation of a scaling argument
between the relative magnitudes of these two forces (assuming the magnetic field contribution
for illustration):

q|V |B >>
q2

4πεr2
(2.98)

where r is a characteristic inter-particle separation for the ensemble of particulates. It can
be assumed that r = γdp, where γ is an appropriate scaling measure of the separation between
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particles in terms of particle sizes. For most practical applications dp ≈ O(20− 80µm), and
q ≈ O(10−100µC). Plugging these orders of magnitude in, it can be seen that the argument
on the relative magnitudes will hold only for very small γ, or very high |V |. The factor γ
correlates inversely to the volume-fraction of a particulate system - which means that for
a low volume-fraction ensemble of particles, the average inter-particle separation is high.
This indicates that the Coulomb interactions are weaker for low-volume fraction ensembles
traveling at high-velocities - which is precisely the regime that many of the commercial
applications of loosely flowing particulates fall under.

2.7.2 Magnetic particles interacting with an applied magnetic field

Many applications of flowing particulate media may involve interactions between magnetic
particles and an applied magnetic field. We present here a simple derivation of an expression
for this interaction force that can then be easily incorporated into the hierarchical modeling
framework. We begin with the Ampere force acting on a current loop carrying current I in
an external magnetic field of strength B, which is given by:

Floop = I

∮
dl×B (2.99)

A plane current loop of sufficiently small size is referred to as an elementary current loop,
and its behavior is described using the Magnetic moment µm, defined as follows:

µm = ISn (2.100)

where I is the current carried by the loop, S is the area bound by the loop, and vector
n is the normal to the surface bounded by the loop. Using the definition of the force in
Equation. 2.99, and Equation. 2.100, the total potential energy and force of interaction of
an elementary loop with a non-uniform magnetic field can be given by:

Um = −µm ·B (2.101)

F = ∇ (µm ·B) = |µm|
∂B

∂n
(2.102)

For a material, the magnetization vector is defined to be the density of all the vector mag-
netic moments in a magnetic material at a given point, and mathematically, is represented
using the following formulation:

M =

∑
δV µm
δV

(2.103)

The presence and orientation of these elementary magnetic moments in a material gov-
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erns the material bulk behavior in the presence of a magnetic field. For example, diamagnetic
materials are such that in the absence of an external magnetic field there are no magnetic
moments at the molecular level. When introduced into a magnetic field, expand this formu-
lation further, the integral form of Ampere’s law is written for a contour around a material
with a collection of such magnetic moments as follows:

∮
C

B · dl = µ0

∫
S

J · dS︸ ︷︷ ︸
conduction current

+ µ0

∮
C

M · dl︸ ︷︷ ︸
magnetization current

(2.104)

∮
C

(
B

µ0

−M

)
· dl = µ0

∫
S

J · dS (2.105)

The magnetic field intensity H is defined from above as:

H =
B

µ0

−M (2.106)

For most materials the magnetization vector is a linear function of the local magnetic
field vector B, and the relationship is defined in terms of the magnetic susceptibility χm as:

M = χmH (2.107)

Furthermore, using the definition of H as in Equation. 2.106, furthermore we can write:

B = µ0 (1 + χm)H = µ0µrH = µH (2.108)

where µr is the relative magnetic permeability of the material, and µ is the magnetic
permeability of the material. For a particle that is small in size (relative to the other
dominant length scales of the system) the total magnetic moment can be given as:∑

µm = MV (2.109)

For paramagnetic and ferromagnetic particles, it can be assumed that all of the magnetic
dipoles in the material are oriented along th direction of B, following which, using Equation.
2.102, the following expression for the force can be obtained:

Fmag = |MV |∂B
∂n

=

∣∣∣∣ χmµ0µr
BV

∣∣∣∣∂B∂n (2.110)

where the definitions of χm in Equation. 2.107, and of µr in Equation. 2.108 were used
to relate the force entirely to the applied external magnetic field B.
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2.8 Particles at different temperatures

2.8.1 An energy balance at the particle level

Let us consider the continuum form of the energy balance equation:

ρ
De

Dt
= T : ∇v −∇ · q + ρh (2.111)

where, e is the internal energy density of the continuum of the particle, the term T : ∇v
is the work done by all the forces in the continuum of the material, ∇·q is the total heat flux
from the material of the body, and h denotes heat exchange density from a source or a sink.
From the discussion on particle level forces as presented here, the total forces acting on the
particle can be decomposed into the conservative forces (which include adhesive or surface
forces, near-field forces, and electrostatic forces), and dissipative forces (which include fric-
tional forces and viscous drag). In addition, for the rigid body collision model using impulse
momentum balance , it is to be noted that the assumption that the particles are rigid is
only an idealization - since during the collision, the material continua of colliding particles
undergo inelastic deformation, the energy loss due to which is characterized using the resti-
tution coefficient. The sum total of the work done by all these forces can be represented
through the mechanical energy balance for the entire particle as below:

∆KE =Wcon +Wdis (2.112)

∆(KE + PE) =Wdis (2.113)

whereWcon is the work done by all the conservative forces, andWdis is the work done by
all the dissipative forces. The dissipation of this energy can be visualized, at least in parts,
to be the generation of heat - and if we make the assumption that the entire dissipated
energy is converted into heat, then, writing E as the total internal energy for the particle,
and using the mechanical energy balance we can write the following:

∆E = ∆H +Q∆t+ Sext∆t (2.114)

∆H = ∆ (KE + PE) (2.115)

where, Q is the sum of all heat fluxes from the particle, which may include inter-particle
heat exchange between particles of different temperatures, and particle-fluid convective heat
transfer, and Sext is the sum of all external sources and sinks. As a final step towards mod-
eling this energy balance, we represent the internal energy of the particle E in terms of the
temperature of the bulk of the particle. This characterization of the entire particle’s thermal
state with one temperature can be justified on the basis of a non-dimensional parameter
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called the Biot number, which captures the ratio of the resistance to heat transfer within
the bulk and that to heat transfer across the surface. It is mathematically defined as:

Bi =
hL

K
(2.116)

where, h is the convective heat transfer coefficient (which will be explored in more detail
in Chapter 3), L is a characteristic length of the body, and K is the thermal conductivity
of the body. For small particle length scales, it is evident that the Biot number will also
be small, thereby indicating lower resistance to heat transfer across the bulk. Hence, the
entire particle can be assumed to conduct heat quickly and the bulk of the body can then
be characterized by one temperature. The balance for the energy can then be written as:

∆(mCθ) = mC∆θ = Q∆t+ ∆ (KE + PE) + Sext∆t (2.117)

We now address the particular aspect of using this energy balance relation in the formu-
lation of a discrete particle simulation framework. This issue needs to be addressed based on
considerations of the duration of contact, as was used to categorize various material systems
in Figure 1.1 in Chapter 1. For systems with enduring contact (that is δt > ∆t), the flux Q
will include the conduction of heat between particles during the entire contact duration, the
convection of heat from the particle to the fluid. However, for collisionally dominant systems
(that is δt� ∆t), over the short contact durations, inter-particle thermal conduction will not
be a relevant mechanism, and the flux Q will include contributions due to convection alone.
For a single time-step therefore, the forces acting on the particles can be used to update
the velocities. Following this, the dissipated energy ∆H is calculated from the mechanical
energy balance, and used in the overall energy balance in combination with conductive and
convective heat flux terms. This therefore motivates a detailed discussion on modeling the
flux Q as a combined sum of contributions from different heat-exchange mechanisms.

2.8.2 Modeling the heat flux

The exchange of heat between particles in a system of particles surrounded by a fluid can be
a combination of multiple simultaneous mechanisms - and a simplified modeling of the heat
fluxes between particles can therefore become a complicated task. The work by Batchelor
& O’Brien[11] address the issue of modeling the heat flux for a collection of static system
of particles in enduring, frictionless, elastic contact. Their objective was to obtain the
heat fluxes, and thereby, obtain the effective conductivity of the system. The expression
they derived, from continuum thermal conduction considerations across the bulk of the
contacting particles, for two particles of effective radius R, and conductivity Kp in a fluid
(of conductivity Kf ) is as follows:
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Qtouch = πKf (T0 − T1)R loge

(
Kp

Kf

)2

(2.118)

Qh = πKf (T0 − T1)R loge
R

h
+ const.− P (λ) (2.119)

P (λ) =

∫ ∞
0

f(σ)

λ+ σ2
2σdσ, σ =

Kp

Kf

r

R
, λ =

(
Kp

Kf

)2
h

R
(2.120)

where the function f(σ) was derived in terms of an integral equation as presented below:

f(σ) =

∫ ∞
0

1− f(σ′)

λ+ σ′2
I

(
σ′

σ

)
dσ′ (2.121)

I

(
σ′

σ

)
≈ 2

σ′

σ
as

σ′

σ
→ 0 (2.122)

I

(
σ′

σ

)
≈ 2 as

σ′

σ
→∞ (2.123)

The corresponding expressions for heat exchange over a deformed circular area of contact
is also similarly formulated in terms of an integral equation, and the expressions for the total
heat flux combines the contributions due to flux across the contact region, and flux across
the annular fluid layer immediately around the contact region. For the sake of brevity of
the discussion, these expressions are not presented here and the interested reader is referred
to the original article. It is evident here that for particles with dissimilar materials would
require some form of an effective conductivity value for evaluating the heat flux, and Zhou
et.al.[172] suggest the use of 1

Kp
= 1

Kp1
+ 1

Kp2
for the same.

The effect of the impact durations on the heat transfer is further incorporated by Sun
& Chen[147], where, using Hertzian contact mechanics principles, the expression for heat
exchange between particles due to impact is characterized in terms of the flux Qij given by:

Qij =
0.87 (T0j − T0i)Ac

√
δt

(ρ1Cp1Kp1)−1/2 + (ρ2Cp2Kp2)−1/2
(2.124)

It is to be noted that the expression in Equation 2.124 was originally derived for low
Fourier numbers, which in turn indicate high thermal conductive transport rates. To extend
the formulation for more general cases, Sun & Chen[147] provided numerically obtained
values for a constant CQ that can be multiplied with Qij as presented in Equation 2.124.
In a more detailed, finite element based analysis of heat exchange between particles during
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impact, [171] extends this idea and provides an expression for the constant CQ based on the
finite element results as follows:

CQ =
0.435

(√
C2

2 − 4C1 (C3 − Fo)− C2

)
C1

(2.125)

C1 = −2.3

(
ρ1Cp1
ρ2Cp2

)2

+ 8.909

(
ρ1Cp1
ρ2Cp2

)
− 4.235 (2.126)

C2 = 8.169

(
ρ1Cp1
ρ2Cp2

)2

− 33.77

(
ρ1Cp1
ρ2Cp2

)
+ 24.885 (2.127)

C3 = −5.758

(
ρ1Cp1
ρ2Cp2

)2

+ 24.464

(
ρ1Cp1
ρ2Cp2

)
− 20.511 (2.128)

where Fo = Kp1δt

ρ1Cp1r2c
is the particle based Fourier number characterizing the transient

heat exchange. The expressions presented by Zhou et.al.[171] can be used as a good approx-
imation for a wide range of transient heat exchange phenomena between dissimilar particles
impacting with a finite impact duration δt. In another work aimed at obtaining the effective
thermal conductivity of a packed granular bed, Cheng at.al.[26] illustrate the use of Voronoi
polyhedra based calculation of particle-particle heat transfer and heat transfer between parti-
cle and interstitial fluid. Such an approach would be very suitable for calculations of particle
systems primarily in static, enduring contact. Yet another approach towards heat transfer
in particle systems has been presented by Hunt[69] where a combination of discrete element
simulation techniques and kinetic theory applied to particle systems is used to characterize
the effective conductivity of the particulate system. While Hunt[69] does not actually pro-
vide expressions for the flux term Q to be used in Equation 2.117, their approach provides an
alternative method of characterizing the heat transfer by means of macroscopic homogenized
effective conductivities and diffusivities. In their analysis, they also remark on the depen-
dence of the ratio between discrete element and kinetic theory based values of conductivities
on the Biot and Fourier numbers.

An intermediate approach to discrete particle media and continuum field partial differ-
ential equations was presented using a network model for packed particles by Siu & Lee[140]

which models each particle as an element with a certain thermal resistance. The particles
in contact form a network of thermal resistances which can then be solved using ordinary
differential equations to obtain the temperature of each particle. The limitations of the
requirement that the particles be isothermal is overcome in a similarly motivated approach
presented by Feng et.al.([43] and [44]) called the Discrete Thermal Element Method. The
method utilizes the analytical integral solution for the temperature distribution in a circle
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Figure 2.7: A comparison of heat flux between particles of millimeter radius for different material
properties, illustrating how thermal exchange during impact is governed by mechanical parameters.

with Neumann boundary conditions. The particle or element equations resemble a finite
element like discretized system, but with the unknowns being the average temperatures over
the contact regions for all the other particles that are in contact with the particle. Such
methods have been dominantly used in two-dimensional dense packings of particles, but ref-
erences in the literature to applying such techniques to three-dimensional problems are rare.

For particulate systems, an alternative approximation to the heat exchange flux between
a collection of particles in contact has been presented by Zohdi[179] which makes use of a
Fourier law representation of the particle heat fluxes, and performs a discretization of the heat
flux based on the particle positions, assuming that for small Biot number the temperature
variations within the bulk of the particles is negligible. The generalized form for this flux
contribution for particle-particle thermal conduction is given as follows:

mCp
dθ

dt
= Kp

Nc∑
j=1

θj − θi
‖ rj − ri ‖

2

(2.129)

where Nc is the number of particles in contact, and the summation is done over all particle
contact pairs. In another work by the same author, referred here as Zohdi[175], additional
mechanisms of heat exchange are incorporated into the model for the flux represented in
Equation 2.129.
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Fluid-Particle Interaction Modeling

3.1 Introduction

Particle laden fluid flows are ubiquitous in a wide spectrum of applications that include trans-
port systems, fluidized beds, manufacturing and materials processing technologies, energy
conversion and propulsion technologies, sprays, jets and slurry flows. A broad overview of
industrial applications of particle-laden, multi-phase flows can be found in Crowe et.al.[29].
Primarily such flows comprise of a carrier fluid medium in which small (compared to the
fluid flow scales) particles, droplets, or bubbles are dispersed - hence the alternative term
dispersed multiphase flows. Such flows can appear in multiple regimes dependent on the
volume fraction of the particles, Φp, with varying levels of phase interactions. They can also
be categorized into flows where the background fluid is laminar and where it is turbulent.
The complex physics of turbulence, along with such interactions, lend formidable complexity
to the physics of particle-laden turbulent flows. The main advances in both experimental
and computational work in particle laden flows have been in the two-way coupling regime
of dilute suspensions as a result of the computational complexity in evaluating dense sus-
pensions and the negligible effects that very dilute particles have on the flow as discussed in
Elghobashi[36]. Our focus in this chapter will be to present a broad overview of the physics
and techniques of particle-laden flows - both laminar, and turbulent. Following which, we
will outline a suitable method that we have incorporated into the discrete particle simulation
framework - the basis of which is one-way coupling models. For reference throughout the
section, we define the particle response number τp as:

τp =
2ρpR

2

9µf
(3.1)

which is a measure of how quickly a particle responds to changes in the luis flow around
it. We would also like to point out to the reader that our objective and the scope of this
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Four-way coupling

High Φp: particle interactions are significant

Particle Collisions
Interaction of particle

boundary layers

One and two-way coupling

Low Φp: particles do not interact 

Figure 3.1: A representation of the different ways in which the dispersed and the carrier phase
interact while transitioning from two-way to four-way coupling regimes

dissertation does not include a detailed resolution of the fluid-particle interactions and the
effect on turbulence. Such an investigation would require a further intense set of algorithmic
formulations and numerical computations.

3.2 Overview of the underlying physics

The physics of particle-laden turbulent flows comprises a broad spectrum of important length
and time scales - which in turn makes it difficult to provide a unified theory explaining all
related phenomena for such flows. A number of researchers have reviewed the underlying
physical mechanisms, and we refer the interested reader to the work of Hetsroni [68], El-
ghobashi [36] and Balachandar & Eaton [9]. Perhaps the most important physical aspect
that complicates our understanding of such flows is the nature of the fluid flow around the
dispersed phase (‘particles’). The microscale flow around these particles is very hard to
measure experimentally due to limitations of available experimental tools, and a direct com-
putation of the flow is not possible using available computing resources. To cite an example,
Elghobashi [36] demonstrates that for an engineering application of Re ≈ 103 the compu-
tational complexity scales to O (109) for just one field variable component. Hence a range
of studies have been done to gain a more fundamental understanding of how the different
phases interact with each other through momentum and energy coupling and how the inter-
action between these phases modulates the flow. The existing studies clearly demarcate a
relationship between the physical phenomena and both the particle response times, τp (or it’s
non-dimensional form, the Stokes Number Stp), and the dispersed phase volume fraction,
Φp. In his review, Elghobashi [36] provides a mapping of phase coupling and turbulence
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Figure 3.2: Mapping of phase coupling and turbulence modulation in terms of Stokes Number
and volume fraction from Elghobashi (1994)

modulation in terms of these two parameters in Figure 3.2.

If the particle length-scales are small compared to the dominant length scales of the flow
or if Φp is very low, then the overall effect of the dispersed particles on the carrier flow is
negligible (although there maybe local modifications to the flow near the particle). Such a
regime is referred to as ‘One-way coupling’. As the concentration is further increased - the
global characteristics of the flow start getting affected. This is referred to as the ‘Two-way
coupling’ regime and the particles have a significant effect on the carrier phase - but the
inter-particle interactions are deemed negligible (see Figure 3.1 for a schematic representa-
tion). The particulate phase now starts affecting the carrier phase turbulence and can lead
to both enhancement or dissipation of turbulent energy. Of the different mechanisms that
have been proposed for turbulence modulation (see Balachandar & Eaton [9]) - the most
prominent ones are represented schematically in Figure 3.3.
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Drag on particle enhances dissipation

Vortex shedding and wake dynamics

enhances turbulence production

Particle size similar to characteristic length

of large eddy enhances turbulence production

Particles sized smaller than large eddy

do not effect turbulence structure

Figure 3.3: A schematic representation of turbulence modulation mechanisms

When the particle Stokes number is small, the corresponding particle length-scales are
small which thereby corresponds to a higher surface-to-volume ratio. The viscous stresses
along the surface of the particles cause dissipation of the turbulence energy - and with in-
creased surface-to-volume ratio there is an increased dissipation of turbulence. On the other
hand, as the particle length-scale increases, the corresponding particle Reynolds number
also increases and can lead to the onset of vortex shedding. Addition of these vortices into
the flow field thereby enhances the turbulence of the carrier phase flow. As Φp increases
even further, the effects of the particles colliding with each other, and the interaction of
the microscale flows around the particles and the wakes behind the particles can become a
dominant factor. This is referred to as the ‘Four-way coupling’ regime, and the turbulence
modulation in this regime is still not very well understood. Intuitively, as Φp keeps increasing
further, it can be imagined that there will be a limit wherein the carrier phase will simply be
an interstitial fluid amidst the particles. From this regime until Φp = 1 is typically referred
to as dry granular flow.

It must be noted, however, that from the vast amount of existing studies in the literature
- there have been ample evidences of other possible mechanisms of turbulence modulation.
For example, turbulence can be enhanced by buoyancy induced instabilities caused when
there are density variations induced by variable particle concentrations in different regions
of the flow. On the other hand, turbulence can be dissipated by enhanced inertia of the
multiphase media, and increased effective viscosity of the combined fluid. Oftentimes there
is evidence of a competition between these different mechanisms in the literature - or other
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phenomena (for example particle-wall collisions in a closed channel flow) that may explain
some of the data. Such aspects of turbulence modulation are, however, still not very well
understood. Along the same lines, existing literature indicates that it can be hard to de-
marcate a well-defined regime for characterizing turbulence modulation. There have been
attempts by Elghobashi [36], Tanaka & Eaton[151], and Balachandar & Eaton[9] to charac-
terize the regimes based on scaling or self-similarity considerations. A recent categorization
by Tanaka & Eaton [151] was presented in terms of a non-dimensionalized Particle Moment

Number(PaSt) defined as: PaSt = 1
54
√

2

Re2L
St1/2

(
ρp
ρf

)3/2 (
dp
L

)3

.

The fluctuations in the velocity field of the carrier media add a stochastic component to
the forces on the particles, and an interesting phenomena that originates from this is that of
turbulent diffusion of the particle phase. The particles, acted upon by a stochastic loading,
tend to follow a random excursion - particularly for low inertia particles. This phenomena
causes a dispersion of the particle concentration spatially - a phenomena which is much like
molecular diffusion, except that the origins of this are not the thermal agitations at the
molecular level, but the fluctuations of a turbulent flow field. In his classical work, Taylor
[154] provided a theoretical basis for analysing this phenomenon - and as per his theory, the
effective particle diffusivity behaves linearly with time for short time-scales, and is constant
for long time-scales. This is in contrast to molecular diffusivity - which does not have any
time-scale dependence. The simulation or measurement of diffusivity becomes harder as
Φp increases, since there are chances that inter-particle interactions and carrier turbulence
modulation will significantly affect diffusion of the particles.

Another interesting phenomenon in dispersed multi-phase flows is that of preferential
concentration of particles (see for example Squires & Eaton [144]). Such a phenomenon
causes the particle distribution to be non-uniform even in an isotropic turbulent flow. The
primary physics behind this is that low inertia particles tend to be drawn towards the core
of a vortical flow field owing to centripetal effects, while higher inertia particles tend to be
thrown out of the vortices and end up concentrating in regions of low vorticity. At the
largest inertial scale, the particles are unaffected by vortices in the flow. Existing studies
(see for example Aliseda et.al.[3], and more recently Pozorski & Apte[123]) show evidence of
preferential concentration through both experiments and simulations, and of key interest is
to observe the effect of particle Stokes number on the distribution of particles.

3.3 Brief review of available computational techniques

A wide variety of computational methods have been studied and documented for dispersed
multiphase flows. Their range of applicability is strongly dependent upon the particle Stokes’
numbers (Stp), and the particle volume fractions (Φp). Comprehensive reviews of such meth-
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Method/Approach Contributors/References Remarks

Dusty Gas approach Marble[91], Marble[92],
Monaghan[107]

assumes particle follows fluid
perfectly, most simple formula-
tion for low Φv flows

Equilibrium Eulerian
method

Ferry & Balachandar[46],
Ferry et.al.[47]

works for low particle response
times, no need to solve PDE to
get particle velocities

Deterministic Two
Fluid method

Crowe et.al.[29], Druzhinin
& Elghobashi[34], Fevrier
et.al.[49], Fox et.al.[51]

dispersed phase treated as a
continuum (averaged over a
control volume), ‘cloud’ of par-
ticles are tracked instead of in-
dividual

Statistical Two Fluid
method

Buyevich[20], Buyevich[21],
Reeks[130], Reeks[131],
Reeks[132]

continuum modelling of dis-
persed phase, but dispersed
phase equations derived from
transport equations of phase
probability density function

Lagrangian particle
methods

Elghobashi & Truesdell[38],
Squires & Eaton[142],
Ferrante & Elghobashi[45],
Berlemont et.al.[13], Ya-
mamoto et.al.[168]

small (point) particles tracked
individually using Newton’s
laws, handles polydispersity
and even collisions easily, hard
to determine coupling between
phases

Fully resolved DNS Elghobashi & Truesdell[37],
Mclaughlin[99], Squires
& Eaton[143], Burton &
Eaton[19]

all scales of fluid flow, and flow
induced by particles’ presence is
resolved, computationally heav-
ily intensive, impossible to per-
form for larger Φv systems

Table 3.1: A brief summary of computational modeling approaches highlighting their main feature,
and a mix of canonical and key recent literature. The categorization of the references are from
the authors’ survey of the literature.
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ods have been presented by Elghobashi [36], Crowe et.al.[29], and Balachandar & Eaton[10]

and extensive details on the mathematical formulations of each approach can be found in
these reviews. From amongst the existing literature that the authors surveyed, a very broad
summary has been provided in Table 3.1 for a concise reference for the interested readers. In
their review, Balachandar & Eaton [10] have also presented a classification of applicability
of these methods based on Stp and Φp.

At low Stokes number regimes approaches like the ‘Dusty Gas approach’, and the ‘Equi-
librium Eulerian approach’ are useful tools - primarily because of the simplicity that they
lend by assuming that the particles are not affecting the fluid flow - and their velocities are
either the same as (for the former), or simple functions of (for the latter) the fluid velocities.
By this assumption, these methods do not require explicit solutions of differential equations
for the particle phase. However, as Stp and Φp increase, this simple approximation about the
particle phase ceases to be applicable. Eulerian approaches that consider the two-phases to
be interpenetrating fluids - and uses averaging techniques to derive transport equations for
the particles - can be used for such cases (see Table 3.1). The particle concentration and the
velocity fields now need to be evolved along with the carrier phase velocity and pressure fields
- leading thereby to a coupled set of eight PDE’s to be solved. Elghobashi[36] comments
upon the differences between the averaging techniques to obtain the transport equations -
and also describes significant advantages of evolving the particle phase equations in terms
of their probability density functions - particularly in terms of it’s ability to correctly deal
with boundary conditions, and establishing a natural length-scale (that of the mean free
path of particles) that can be used to validate simple gradient diffusion. Note that in such
cases, deriving an appropriately accurate transport equation for the turbulence Reynolds
stresses is a major issue, one that has been addressed in mathematical detail, for example,
by Elghobashi & Abou-Arab [39].

In contrast with Eulerian methods, the Lagrangian particle tracking methods solve for
the trajectories of individual particles and thereby essentially don’t suffer from any restric-
tions on maximum Stokes number they can simulate, or in terms of not being able to handle
particle phase polydispersity. The basis of much of this work is to identify an equation for
individual particle in a fluid - the most famous version being the one proposed by Maxey &
Riley[96] which was later corrected by Kim et.al.[82]. The effect of the turbulent velocities
can be usually included in this equation by solving for the mean velocities and adding a
random fluctuation component - typically from a normal distribution with zero mean, and
variance proportional to the turbulence kinetic energy. See Berlemont et.al.[13] for a detailed
description of incorporating the turbulent velocities into the particle trajectory equations. As
the number of particles keep increasing, these methods become computationally expensive -
and requires usage of efficient data structures and memory handling. Some such techniques
can be found in the literature for granular flows (see Poschel & Schwager[122]). As the parti-
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cle size increase, however, these methods are physically inaccurate and require fully resolved
DNS or LES simulations. The accurate implementation of the back coupling of the particles
to the fluid is also a problem for such methods.

To perform simulations of size greater than or comparable to the smaller scales of carrier
flow, any approximations such as the ones discussed so far, will not be correct and the only
option left is to perform fully resolved simulations using DNS. Such calculations are com-
putationally intensive even for a small number of particles, and low Reynolds numbers (see
Elghobashi[36] for a discussion on their computational complexity) - and existing studies in
the literature have reported simulations of up to O (103) particles using intensive computa-
tional resources. Given that most engineering or real-world applications involve much larger
numbers of particles, a fully resolved DNS for realistic problems is still an impossible task
even with the rapid strides being made in the field of parallel computations and efficient
memory management techniques. In the subsequent sections we will present a Lagrangian
particle tracking based approach to incorporate fluid-particle interactions within the discrete
particle simulation framework developed as a part of this research. We will also, for the sake
of the rest of the dissertation, assume that the fluid-particle interaction is only one-way
coupled - that is, the particles do not affect the fluid.

3.4 Motion of a particle in a fluid

As discussed, a fully resolved solution of the flow around a sphere is computationally intensive
proposition. Hence, an alternative approach of characterizing the unsteady motion of a
particle in a fluid is provided by deriving an equation for the particle motion by superposing
the steady and unsteady forces due to the fluid on the particle. The earliest of these equations
was provided by Basset, Boussinesq, and Oseen who provided a solution of Navier-Stokes
equation for creeping flow. Much later, Maxey & Riley [98] rederived the motion equations
for non-uniform, creeping flow by considering the forces from the background fluid flow, and
the perturbed flow created by the presence of the moving sphere. The full form of their
equation can be presented as follows:

mi
dvi
dt

= 6πµfRi

(
u− vi +

1

6
R2
i∇2u

)
︸ ︷︷ ︸

viscous and pressure drag

+
1

2
mfluid

d(u− vi + 1
10
R2
i∇2u)

dt︸ ︷︷ ︸
added mass

+ mfluid
Du

dt︸ ︷︷ ︸
undisturbed flow

+ 6R2
i

√
πµfρf

∫ t

0

d(u− vi + 1
6
R2
i∇2u)/dτ

√
t− τ

dτ︸ ︷︷ ︸
Basset history force

+ (mi −mf )g︸ ︷︷ ︸
weight, buoyancy

(3.2)

where the fluid velocities are represented using u. The terms involving∇2u are due to the
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Faxen type forces accounting for non-uniform free stream velocity (see the work by Rallison
[125] for details). The term mfluid refers to the mass of fluid displaced by the particle.
Oftentimes, a Saffman type lift force is also added to the above equation (as discussed in
Elghobashi [36]). A widely used variant of the original Maxey-Riley equation presented in
Equation. 3.2 for many practical engineering applications can be obtained by neglecting
the Faxen forces, and rewriting the drag force in the more general form as follows (see for
example Balachandar & Eaton[9], Yuu et.al.[170], and Berlemont et.al.[13] amongst other
works):

mi
dvi
dt

=
1

2
ρfCD (Rei)

(
πR2

i

)
|u− vi| (u− vi) +

1

2
mfluid

d(u− vi)

dt
+mfluid

Du

dt

+ 6R2
i

√
πµfρf

∫ t

0

d(u− vi)/dτ√
t− τ

dτ + (mi −mf )g (3.3)

thereby relaxing the creeping flow assumption in an ad hoc manner. If the particle starts
moving in the fluid with an initial velocity that is different from the carrier fluid velocity then
the motion equations need to be modified further - and Maxey [97] gave the correction term
for this effect as 6R2

i
√
πµfρf [u(0)− vi(0)] /

√
t. Another version of the equation for spherical

particle motion was proposed by Mei [100] and Mei & Adrian [101] which is applicable to
finite Reynold’s number flows, and has been validated against experiments over a broad
range of Reynold’s numbers. Their equation is presented as follows:

mi
dvi
dt

=
1

2
ρfCD (Rei)

(
πR2

i

)
|u− vi| (u− vi) +

1

2
mfluid

(
Du

Dt
− dvi)

dt

)
+mfluid

Du

dt

+ 6πµfRi

∫ t

−∞
K(t− τ, τ)

d(u− vi)

dτ
dτ + (mi −mfluid)g (3.4)

where the correction for initial velocity difference has to be added on, and the integral
kernel for the history force term is given as follows:

K(t− τ, τ) =

[[
π(t− τ)νf

R2
i

]1/4

+

[
π|u(τ)− vi(τ)|3

2Riνff 3
H(Reτ )

(t− τ)2

]1/2
]

(3.5)

fH(Reτ ) = 0.75 + 0.105Reτ (τ) (3.6)

Reτ =
|u(τ)− vi(τ)|2Ri

νf
(3.7)

From a detailed theoretical derivation, and numerical results for the Navier-Stokes, Kim
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et.al. [82] provided another modified version of the equation that performed well when
compared to other prescribed equations over a broad range of Reynolds numbers. Their
modification was primarily in terms of the integral kernel used to model the history force,
and the equations can be summarized as follows:

mi
dvi
dt

=
1

2
ρfCD (Rei)

(
πR2

i

)
|u− vi| (u− vi) +

1

2
mfluid

(
Du

Dt
− dvi)

dt

)
+mfluid

Du

dt

+ 6πµfRi

∫ t

0+
K(t− τ, τ)

d(u− vi)

dτ
dτ + (mi −mfluid)g

+ 6πµfRiK1(t)
[
u(0+)− v(0+)− u(0−) + v(0−)

]
(3.8)

where the modified form of the integral kernel can be described as follows:

K(t− τ, τ) =

[[
π(t− τ)νf

R2
i

]1/2c1

+G(τ)

[
π|u(τ)− vi(τ)|3

2Riνff 3
H(Reτ )

(t− τ)2

]1/c1
]−c1

(3.9)

G(τ) =
1

1 + β
√
MA1(τ)

(3.10)

β =
c2

1 + φrφ
c4
r / [c3 (φr + φc4r )]

(3.11)

fH = 0.75 + c5Ret(τ) (3.12)

where MA1 = 2Ri

|u−vi|2 |
d|u−vi|
dt
| is the dimensionless relative acceleration between the particle

and the fluid. The dimensionless parameter φr is defined as MA2/MA1, where the numerator
is another dimensionless parameter that involves the second derivative of the relative velocity

between the particle and the fluid, defined as MA2 =
4R2

i

|u−vi|3 |
d2|u−vi|

dt
|.

K1(t) =

[[
πtνf
R2
i

]1/2c1

+G1

[
π|u(0)− v(0)|3

2Riνff 3
HRe0

]1/c1
]−c1

(3.13)

G1 =
1

1 + c6Re
−1/4
0 (ρi/ρf + 0.5)−1/2

(3.14)

where ρr is the ratio of the density of the particle to that of the fluid. In their original
article [82], the values of the six coefficients fitted from numerical results and some scaling
analysis have been tabulated, which is reproduced here for the sake of completion as follows:
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c1 = 2.50, c2 = 22.00, c3 = 0.07

c4 = 0.25, c5 = 0.126, c6 = 17.8 (3.15)

We remark that the modifications to the integral kernel made in Equations 3.4, and 3.8
are such that for high-frequencies of oscillations (that is, for short times) of the spherical
particle they attain the same mathematical form as the original integral kernel proposed by
Basset, as included in Equation 3.2.

Additionally, we remark that owing to the underlying superposition idea and the additive
nature of the interaction terms in the equation, it is possible, as a first order approximation,
to include further particulate interaction contributions to the Equations 3.2, 3.3, 3.4, and 3.8.
For example lift forces due to particle rotations (otherwise referred to as Magnus forces),
and lift due to shear in the carrier flow (otherwise referred to as Saffman lift forces) can
be incorporated as and when required. It is also worthwhile to make a few remarks on the
relative importance of the various force terms that were assembled in the equations presented
here. For many practical applications, the density ratio between particles and fluid (ρr) is
reasonably large. Under such a condition, it can be seen that the added mass contribution,
the history force contribution, and the pressure gradient contributions will all be negligible,
leading to a relatively simple form of the motion equation given as follows;

mi
dvi
dt

=
1

2
ρfCD (Rei)

(
πR2

i

)
|u− vi| (u− vi) (mi −mf )g (3.16)

Such applications may include macroscopic, solid particles carried in a gaseous media,
or even molten metal droplets (which owing to their high surface tension, does not lead
to major oscillations of the free surface, and deformations). The Basset history force term
incorporates the gradual development of the boundary layer around the particle as it moves
through a transient field - and as such is important in highly transient fluid flows, or turbulent
flows. Hence, in many applications involving unsteady effects and reasonably low values of
the density ratio ρr, often the history terms can be neglected as a first-order approximation
towards integrating the particle motion equation.

3.5 Drag coefficient for a sphere

From the discussions presented in Sections 3.2, and 3.4, the drag force can be seen to be the
most dominant interaction that is present in a broad range of applications. Hence a correct
estimate of the drag force is crucial to resolving the dispersed particulate phase behavior.
Using the standard form of the drag force, this would then require a reasonably accurate
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estimate of the drag coeficient Cd(Rep). There are numerous correlations available in the
existing literature and the reader is referred to the works by Crowe et.al.[29], Fritsching[53]

and Bailey & Hiatt[8] amongst others. Of these, the correlation presented by Haider &
Levenspiel[62] finds applicability over a broad range of Reynolds numbers, and also has a
very low mean square error when compared to values of drag coefficients obtained from
available experimental data - and hence has been the dominant choice for the simulation
libraries developed as a part of this research. Their correlation can be numerically expressed
as follows:

CD (Rep) =
24

Rep

(
1 + 0.1806Re0.6459

p

)
+

0.4251

1 + 6880.95
Rep

(3.17)

3.6 Rotational momentum transfer

The interactions between a particle and its surrounding fluid can affect the rotational mo-
mentum of the particle as well. There are relatively fewer studies on the torque transferred
to a particle by the carrier fluid over a broad range of Reynolds numbers. The problem of a
spinning sphere in a viscous fluid at low Reynolds number regimes was analytically studied
by Rubinow & Keller [133]. Their expression for the torque due to the Stokes flow on the
sphere can be presented as follows:

τi = −8πµfR
3
iω (3.18)

In a later work by Feuillebois & Lasek [48], the above expression was extended to the
non-stationary Stokes flow regime, and the modified equation for the fluid rotational motion
was derived to be of the following form:

Ii
dωi
dt

= τext − 8πµfR
3
iω − 8πµfR

3
i

(
Ri

3
√
πνf

∫ t

0

dωi
dt

dt∗√
t− t∗

)

+
8πµfR

3
i

3

[∫ t

0

dωi
dt

exp

(
νf (t− t∗)

R2
i

)
erfc

(√
νf (t− t∗)

R2
i

)
dt∗

]
(3.19)

where the viscous history forces on the particle (as discussed in Section 3.4) account for
the modifications to the total torque.
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3.7 Integration of history forces

A salient feature of the particle motion equations presented in Section 3.4 is the presence
of a history force term, which can render considerable computational challenges to solving
the particle equation for a large number of particles dispersed in a fluid - since the storage
requirements for the convolution term (that is, the relative acceleration) is going to be
very high. An additional issue with the form of the chosen kernel is the singularity as
t → τ (see Equations 3.2, 3.4, and 3.8).The history forces are important for many highly
transient, unsteady flow applications, and as such an accurate estimation of this force is
quite critical. Vojir & Michalides [161] present a discussion on the conditions under which
the history contributions are signficant, while Van Hinsberg et. al. [158] mention more recent
findings on applications where history forces are significant contributors. Hence, there have
been many alternative approaches proposed to particularly deal with the estimation of the
history force. The particular issue for dealing with the singularity in the integral kernel
can be dealt with by specialized numerical quadrature formulae like the Euler-MacLaurin
summation formulae. The evaluation of the history term was approached using expressing
the term using semi derivatives or fractional derivatives by Tatom [153]. For the original
Basset term as in Equation 3.2, this entails writing the history term using the following:∫ t

a

d(u− v)/dτ√
t− τ

dτ = Γ

(
1

2

)
d−0.5 (d(u− v)/dt)

[d(t− a)]−0.5 (3.20)

The term on the right-hand side is a fractional derivative, and for a general function f ,
a fractional derivative of fractional order q can be expressed in terms of a series expansion
as follows:

dqf

[d(t− a)]q
= lim

N→∞

[(
t− a
N

)−q
1

Γ(−q)
∑
k=0

N − 1
Γ(k − q)
Γ(k + 1)

f

(
t− k(t− a)

N

)]
(3.21)

where f can be replied by the relative acceleration. While Tatom’s work did not pro-
vide further analysis on evaluation of the history term, in a recent work Bombardelli et. al.
[16] provided a detailed discussion on using the semi-derivative approach to calculate the
Basset history forces on colliding particles for sediment transport problems. Their exam-
ples, however, are based on approximated forms of the relative acceleration terms in form
of simple trigonometric and algebraic functions - and hence the issue of implementation for
more generalized calculation for unsteady relative motion velocity profiles is not completely
clear. Another solution technique of particle equation with the history force was proposed by
Mei et. al. [102] where the equation for a gravitationally settling particle in the Stokes flow
regime was solved in the frequency domain. A similar approach was presented by Michaelides
[103] where Laplace transform techniques are used to convert the original Maxey-Riley form
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of the particle motion integro-differential equation into a higher-order ordinary differential
equation, where the particle velocities are no longer the part of an integral kernel. It is
not very clear as to whether the extensions of these approaches would hold for the case of
complex multi physically interacting particles in a flow - however, they can definitely form
very good starting points for undertaking detailed calculations for particles dispersed in a
flow.

An alternative to the aforementioned methods was provided by Dorgan & Loth [2] where
a strategy to reduce the cost of storage for evaluating the history force is provided by means
of modifying the integral kernel to be defined over a specified temporal window as follows:

Kmod(t− τ) =

{
Khistory(t− τ) ∀ τ ∈ (t− twindow, t)
0 ∀ τ < t− twindow

(3.22)

where the functional form for twindow can be obtained by using scaling arguments with
an appropriate particle flow time-scale τp as follows:

t− twindow = max(0, t− βτp) (3.23)

with β being a factor obtained by an integration of the history kernel for a chosen particle
phase Reynolds number. This formulation was further modified in a more recent work by
Van Hinsberg et. al. [158] where the tail of the kernel is no longer set to 0 as in Equation.
3.24, but set to a particular functional form as follows:

Kmod(t− τ) =

{
Khistory(t− τ) ∀ τ ∈ (t− twindow, t)
Ktail(t− τ) ∀ τ < t− twindow

(3.24)

where [158] proposes a choice of the approximated tail to beKtail =
√

e
twindow

exp
(
− t

2twindow

)
.

The numerical integration of the history term can now be performed using the modified
kernels, by discretizing the integral over intervals over the window duration twindow, and
expressing the relative acceleration as a linear interpolation function over the discretized
intervals.

3.8 Convective heat transfer

In continuation with the discussions presented in section 3.4, the thermal interactions be-
tween a particle and the carrier fluid are also assumed to be one-way coupled. Analogous to
the mechanical interactions and flow velocities, a complete resolution of the heat exchange
with the micro scale flow around the particles is not pursued here. Instead, the interactions
are modeled through a direct convective heat transfer, and the total convective heat flux
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from the particle to the fluid is then given by (see Crowe et. al.[29]):

Qi,conv = πR2
ihconv (θfluid − θi) (3.25)

where the convective transfer coefficient hconv can be more conveniently represented in
terms of the fluid thermal conductivity (Kf ) using the definition of the non-dimensional
Nusselt number (Nu)as follows:

Nu =
hconv2Ri

Kf

⇒ Qi,conv =
1

2
πNuKfRi (θfluid − θi) (3.26)

The Nusselt number is typically estimated indirectly from the particle phase based
Reynolds number and the fluid phase Prandtl number (Pr = Cfµf/Kf ) using the Ranz-
Marshall correlations [128] which can be given in the following form:

Nu = 2.0 + 0.6Re0.5Pr0.33 (3.27)

Further details on modified Ranz-Marshall correlations can be found in the work by
Fritsching [53] and Crowe et. al. [29]. Along the same idea of expressing the Nusselt number
using the Reynolds and Prandtl numbers, Acrivos & Taylor [1] provided a solution of the
heat transfer due to a single sphere in the Stokes flow regime, and developed an expression
of the Nusselt number in terms of the dimensionless Peclet number (Pe), which is defined
to be the product of Reynolds and Prandtl numbers for heat transfer. Their result can be
summarized as follows:

Nu = 2 + 0.5Pe+ 0.25Pe2 logPe+ 0.03404Pe2 + 0.0625Pe3 logPe (3.28)

An alternative approach towards understanding heat transfer between sphere and the
carrier fluid was given in a later work by Michaelides & Feng [104] where they perform a
basic derivation of the energy equation for a spherical particle in a manner analogous to that
presented by Maxey & Riley [98]. The equation for the rate of change of temperature of the
spherical particle obtained from this derivation is presented as follows:

miCi
dθi
dt

= mfCf
Dθf
Dt
− 4πRiKf

(
θi − θf −

1

6
R2
i∇2θf

)
− 4πR2

iKf

∫ t

0

d
dτ

(
θi(τ)− θf (τ)− 1

6
R2
i∇2θf (τ)

)√
πKf

ρfCf
(t− τ)

dτ (3.29)

where the effect of the history terms have been explicitly taken into account. There are
not many discussions on utilizing such an equation for multiple particles dispersed in a carrier
fluid, and from our review of the existing literature, utilizing correlation based estimates for
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convective heat transfer seems to be the more widely used alternative.

3.9 A simple treatment for isotropic turbulence

A significantly detailed discussion on modeling the effect of flow turbulence in particle laden
fluid flows will be remarkably extensive, and deserves, in our opinion, separate attention.
Hence for the scope of the current work, such a discussion is not pursued. However, since
turbulent phenomena play a crucial role in transport of the dispersed, particle phase - we
include in our simulation library, a simplistic approach to be able to provide some qualitative
simulation capabilities for indicating the potential effects of turbulence. This is done by re-
writing the particle motion equations presented in Section 3.4 in an abstract form as follows:

mi
dvi
dt

= F(vi,ui) (3.30)

where, it is noted that ui is the instantaneous velocity of the fluid at the location of the
particle indexed by i. Keeping consistent with our assumption of a one-way coupled modeling
approach, the velocity ui has been assumed to be unaffected by the particle motion. In more
detailed simulation of two way coupling - it is typical to evolve the fluid flow field and the
particle motion in a staggered or partitioned manner, and in such cases, for the staggered
update of the particle motion as well the aforementioned assumption will hold. More details
on staggering has been presented in Chapter 4, Section 4.2. The simplest approximation
that can be performed now to obtain the velocity ui is to represent it as:

ui = Ui + u′i (3.31)

where Ui is the time-averaged velocity field (obtained either from known data, or ad-
ditional computations), and u′i is a fluctuating component of velocity. Additionally, it is
typical to assume that the fluctuations are sampled randomly from a Gaussian distribution
with zero mean and variance equal to the fluid turbulent intensity 2kt/3. Such a sampling
method produces a homogenous, isotropic turbulent flow field only (see Elghobashi [36] for
detailed review on such methods). A particle in a certain turbulent eddy will now continue
to see this modified velocity until it resides in the eddy or the eddy decays. The size of the
large energy containing eddies - also referred to as the integral length scale (see for example
Davidson[31] for theoretical details) can be obtained to be

l0 =

∫ ∞
0

Qxx(r)

〈u2〉
dr (3.32)

where Qxx is the velocity correlation function. The corresponding integral time-scale can
be simply then given by Tl = l0/u (see the works by Corrsin [28] and Snyder & Lumley
[141]). in terms of the viscous dissipation ε we can express the integral length scale as

54



Chapter 3. Fluid-Particle Interaction Modeling

l0 ∝ k
3/2
t

ε
and the time scale as Tl ∝

√
3
2
kt
ε

. The correlation functions are usually the subject

of experimental measurements and examples of such measurements can be found in Snyder &
Lumley [141] amongst others. Thus as a basic approximation to the particle motion, it can be
assumed that as it travels across an eddy of size l0 and life-time Tl it experiences a fluctuating
fluid velocity obtained from sampling from a distribution with variance proportional to kt.
This process is schematically illustrated in Figure 3.4.

integral length scale l
0

lifetime of 
eddy 1 = T

L1

lifetime of 
eddy 2 = T

L2
 

lifetime of 
eddy 3 = T

L3
 

time

Figure 3.4: Schematic representation of a discrete element moving across a series of eddies in a
turbulent flow field.

The implementation of this simplified idea by itself is not effective other than basic illus-
tration of the dynamics of a particle ensemble in a fluctuating flow field. Advanced modeling
techniques based on this idea has been devised in the works by Picart et. al. [120], Berlemont
et. al. [13], the work by Macinnes & Bracco [90], an approach based on Langevin dynamics
presented by Pozorski & Minier [124] and a detailed review on Lagrangian techniques by
Gouesbet & Berlemont [57]. The main technique behind these is to obtain a fluid velocity
correlation and then use the correlation to obtain fluctuating velocity components at the
location of the particle, and update the velocities of both phases with time.
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Chapter 4

Algorithmic considerations for discrete
particle simulations

4.1 Introduction

In this chapter we focus on assembling the particle-particle, particle-surface, and particle-
fluid interaction models into a framework for numerical computation of the dynamics of a
collection of particles or discrete elements, which we shall refer to as a particle ensemble.
This notion of an ensemble may seem somewhat similar to that encountered in statistical
mechanics - however, we would like to note that there are critical differences that stem
from the fact that for an ensemble of macroscopic particles the randomness in the phase
space is introduced by some non-thermal mechanism, and is thereafter typically sustained
by collisions and other interactions. A detailed review of granular physics in this context can
be found in Duran[35] for example. Analogously, the degrees of freedom of each particle -
positions, velocities, angular velocities and orientations - will be referred to as the phase-space
for that particle. Various algorithmic consideration for numerically updating the dynamic
variables of the ensemble phase-space have been presented in the remaining sections of this
Chapter - and each aspect has been illustrated using appropriate pseudocodes wherever
detailed clarification of the implementation was found necessary. Note that the pseudocode
implementations were all programmed into the various modules of the simulation library
developed as part of this research.

4.1.1 Brief note about interpreting the algorithms presented

In the pseudocodes presented in the following sections, the usual programming constructs
(for example, for-loops, while-lops etc) should be interpreted as the way they have been
written. Wherever specific calculations are to be noted, they have been explicitly typed out,
otherwise, they have just been verbally described. The idea being that in a program, there
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will be a corresponding function/subroutine that will perform the task described (and the
details of how it is done is unimportant for the context). Wherever particular references
were required to a category of physics subroutines to be invoked, they have been done in
capitalized phrases that describe the subroutines. For example, to evaluate inter-particle
contact forces, using any of the broad range of models specified in Chapter 2, the name
EV ALUATE−PARTICLE−PARTICLE−CONTACT will be used as the place-holder.

4.2 Time-stepping for system dynamics

We begin our discussion by modifying the particle dynamics equations presented at the
beginning of Chapter 2 so as to represent the contact interactions appropriately:

mi
dvi
dt

=
Ns∑
j=1

I(i,Sj) [Fijs,contact + Fijs,adh] +

Np∑
j 6=i,j=1

I(i, j) [Fij,contact + Fij,adh]

+ Fi,fluid + Fi,em (4.1)

dxi
dt

= vi (4.2)

miCi
dθi
dt

=
Ns∑
j=1

I(i,Sj)Qis +

Np∑
j 6=i,j=1

I(i, j)Qij +Qi,conv +Hi + Zi (4.3)

where only the translational motion equations have been written out in detail. The func-
tion I is an indicator function for contact occurrence. For example I(i,Sj) is equal to unity
if the i’th particle and the surface Sj are in contact, and zero otherwise. Similarly, I(i, j) is
unity if the i’th and j’th particles are in contact, and zero otherwise. The heat fluxes dur-
ing particle-particle contact, particle-surface contact, and through particle-fluid convective
transfer are represented using Qij, Qis, and Qi,conv respectively.

The time integration of such coupled ordinary differential equations involving short-
range interactions like contact with a steep gradient is an issue that has been discussed by
many researchers. A detailed treatment of construction and analysis of numerical integra-
tion schemes for the generalized N-body problem can be found in Leimkuhler & Reich[85].
More specific discussions on the integration of motion equations for particles using the Verlet
type integration schemes can be found in Frenkel & Smit [52]. Such algorithms have been
developed and analyzed in great detail for molecular dynamics applications - for instance,
we refer the interested reader to the work by Swope & Andersen[149] on a modification
to the Verlet algorithm called the Velocity Verlet algorithm, the work by VanGunsteren &
Berendsen[157] on modified higher-order Leap-Frog methods for particle systems behaving
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stochastically. A detailed discussion on the usage of predictor-corrector type schemes (Gear
algorithm) for such systems can be found in Poschel & Schwager[122]. It can be seen that
the exact schemes for the popular Verlet type algorithms for motion equations are all essen-
tially one-step difference schemes. The usage of multi-step schemes for simulating dynamics
of ensembles of particles is limited by their high storage requirements for storing dynamic
variables at previous time-steps. One-step schemes with multi-stage approximations to the
derivatives - which are commonly referred to as Runge-Kutta(RK) methods - are on the
other hand a useful choice, and the reader is referred to the text by Leimkuhler & Reich[85]

and the work by Blanes & Moan[15] for examples on using RK methods for N-body dynamics.

For the rest of the present discussion, further details of the various possible numerical
schemes for integrating the particle equations is not presented. Instead, we will outline
in sufficient detail, three important aspects, that were found to be critical to performing
computer simulations of multi-particle ensembles. These aspects are:

• Staggered, iterative computations for multi-field, coupled phenomena

• Resolution of collisions in a time-step

• Algorithmic treatment of time-step adaptivity

4.2.1 Staggered, iterative computations for multi-field, coupled phe-
nomena

Let us consider the scenario where the coupled mechanical and thermal equations of a particle
are to be simultaneously solved. We represent the equations for the updated velocities,
positions, and temperatures in the following abstracted form:

vN+1
i = G1

(
vN+1
i ,xN+1

i , θN+1
i

)
+R1 (4.4)

xN+1
i = G2

(
vN+1
i ,xN+1

i , θN+1
i

)
+R2 (4.5)

θN+1
i = G3

(
vN+1
i ,xN+1

i , θN+1
i

)
+R3 (4.6)

where the function Gi and Ri are derived from the corresponding operators for numerical
discretization of the ordinary differential equations. The solution of the system above can
be possibly performed monolithically using an appropriate implicit time-stepper. However,
owing to the underlying physics of the different phenomena captured in the equations, the
convergence characteristics of each equation may be different. Furthermore, staying consis-
tent with the central idea of having a computational tool that can be easily linked to other
available solvers for applications in potentially complicated fluid-particle interaction prob-
lems, and combined finite-discrete element type problems - it is advantageous to partition
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the system physics and solve for the different dynamic physical variables in a staggered man-
ner. Such staggered schemes have been investigated and implemented by many researchers
and the interested reader is referred to the extensive review and tutorial article by Felippa
et.al.[42], a discussion on staggered solution schemes formulated for two-field coupled prob-
lems by Felippa & Park[41], the implementation of staggered solution schemes for solving
non-linear, transient, fluid-structure interaction problems associated with flutter of wings by
Farhat & Lesoinne[40], the work by Zienkiewicz et.al.[173] on solving fluid-soil-pore interac-
tion problems using such methods, and the work by Schrefler[137] on a staggered simulator
of a geothermal reservoir. Specifically for the case of discrete particle systems, if we are con-
cerned only with the dynamic fields of the particles then the updates to field variables will
have to be staggered and iterative - and a detailed formulation of such techniques has been
presented for discrete particle simulations by Zohdi (see [174], [175], and [179]). The same
formulation is also extended to coupled fluid-particle systems in the work by Zohdi[178]. We
remark here that, for fluid-particle or fluid-continuum or particle-continuum type coupled
problems - the individual subsystems that are staggered can be solved using appropriate
available methods (explicit/implicit or discrete/finite element/finite volume) and software
tools - with the subsystems exchanging information with each other through interaction
terms. This aspect will not be addressed herein, but has been identified as a topic for future
research and investigations.

We now seek to demonstrate the implementation of the staggered, iterative formulation
for discrete particle systems as presented by Zohdi[174] etc. For this purpose, we chose a
one-step φ-trapezoidal method given as follows (a choice consistent with the popular Verlet
type schemes which have been extensively studied for the related application of simulation
of molecular systems):

vN+1
i − vNi =

∆t

2mi

[
φFN+1

i + (1− φ)FN
i

]
etc. (4.7)

where the superscripts N and N + 1 denote the values at the current and the future
time-steps respectively. From the discussions presented in Chapters 2 and 3, it is clear that
Fi is in reality a complicated function of the particle velocities and positions, hence we do
not write the explicit dependence on vN+1

i and vNi in the terms on the right hand side of
Equation. 4.7. Therefore, following the notation of Equations 4.4, 4.5, and 4.6, we can write
for the φ-trapezoidal method the following forms of Gi, and Ri:
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G1 =
∆t

2mi

φFN+1
i , R1 = vNi −

∆t

2mi

(1− φ)FN
i (4.8)

G2 =
∆t

2
φvN+1

i , R2 = xNi −
∆t

2
(1− φ)vNi (4.9)

G3 =
∆t

2miCi
φQN+1

i , R3 = θNi −
∆t

2miCi
(1− φ)QNi (4.10)

The idea behind implementing this scheme now has been illustrated in detail in form of
a pseudocode presented in Algorithm 1. The form of the iteration function Gi also plays a
major role in controlling iteration error, and extensive discussion of using the iterative error
estimate to perform time-step adaptivity has been presented by Zohdi[174].

4.2.2 Resolving collisions in a time-step

Let us consider the numerically discretized time-interval (t, t + ∆t), and assume in general
that for a single particle, a collision event occurs over time interval (t∗, t∗ + δt). The time
instant t∗ is the moment of collision detection. Tracking the exact collision time t∗ within
a single time-step is a computationally intensive task, thereby motivating a simplifying as-
sumption that shifts (as an approximation) the instant t∗ to either the beginning or the end
of the time-step. Hence, the computation of position and velocity updates occur by identi-
fying which particles undergo a collision over a certain interval i and allowing the collision
updates to occur first at the beginning of the i + 1’th interval, followed by updates due to
all other forces. With this context, we can envisage two distinct cases of time-step selection.

First, let us consider the case that t∗ ∈ (t, t+∆t) and ∆t > δt. The sequence of dynamic
events within this time-step can then be decomposed as follows:

mivi(t
∗)−mivi(t) =

∫ t∗

t

Fi,non−contactdt (4.11)

mivi(t
∗ + δt)−mivi(t

∗) =

∫ t∗+δt

t∗
(Fi,contact + Fi,non−contact) dt (4.12)

mivi(t+ ∆t)−mivi(t
∗ + δt) =

∫ t+∆t

t∗+δt

Fi,non−contactdt (4.13)

Shifting t∗ → t allows us to have a collision event for a duration δt, followed by streaming
motion of particles under the action of external, non-collisional forces. Therefore, such a sce-
nario is useful for implementing an impulse-based approach to treat collisions as discussed in
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Algorithm 1 A pseudocode to illustrate the implementation of time-stepping with staggered,
iterative updates for integrating particle equations using the one-step trapezoidal scheme as
performed in the developed simulation library.

Evaluate-Particle-Particle-Contact(particles)
Evaluate-Particle-Surface-Contact(particles, surfaces)
Evaluate-Particle-Fluid-Interaction(particles, fluid)
Evaluate-Particle-EM-Interaction(particles, EMfields)
for i = 1, Np do

FN
i ← sum of all forces, QNi ← sum of all fluxes

vNi ← store current velocity, xNi ← store current position
θNi ← store current temperatures
set initial guess for velocity → vN+1,0

i , set initial guess for position → xN+1,0
i

set initial guess for temperature → θN+1,0
i

update dynamic variables vi, xi, θi
end for
while errvx ≥ errTOL do

Evaluate-Particle-Particle-Contact(particles)
Evaluate-Particle-Surface-Contact(particles, surfaces)
Evaluate-Particle-Fluid-Interaction(particles, fluid)
Evaluate-Particle-EM-Interaction(particles, EMfields)
for i = 1, Np do

FN+1,K
i ← sum of all forces

vN+1,K+1
i = vNi + ∆t

2mi

[
FN+1,K
i + FN

i

]
xN+1,K+1
i = xNi + ∆t

2

[
vN+1,K+1
i + xNi

]
update dynamic variables vi, xi, retain θi

end for
errvx =

∑
i
‖vN+1,K+1

i −vN+1,K
i ‖+‖xN+1,K+1

i −xN+1,K
i ‖

‖vN+1,K+1
i −vN+1,0

i ‖+‖xN+1,K+1
i −xN+1,0

i ‖
end while
while errθ ≥ errTOL do

Evaluate-Particle-Particle-Contact(particles)
Evaluate-Particle-Surface-Contact(particles, surfaces)
Evaluate-Particle-Fluid-Interaction(particles, fluid)
for i = 1, Np do

QN+1,K
i ← sum of all fluxes

θN+1,K+1
i = θNi + ∆t

2miCi

[
QN+1,K
i +QNi

]
update dynamic variables θi, retain vi, xi

end for
errθ =

∑
i
‖θN+1,K+1

i −θN+1,K
i ‖

‖θN+1,K+1
i −θN+1,0

i ‖
end while
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Chapter 2, Sections 2.3. The forces from the collision can be also averaged over the time-step
to obtain momentum conservation as mentioned in Section 2.3. It must be noted however
that as an artifact of the way collisions are dealt with, there could be cases where colliding
particles have a delay in responding to the collision event, and they end up penetrating each
other further than realistically allowed. During the time step they are then allowed to resolve
the collisions. Therefore this method can be very useful for collisionally dominant systems,
but can lead to erroneous particle configurations with unrealistic penetrations for particle
systems undergoing enduring contact.

For particle systems with enduring contacts, we consider the case where t∗ → t and
∆t < δt, such that the contact events for every particle level contact are resolved within
the time-scale of the contact lifetime. From the theoretical discussion on force-deformation
relations for deformable contacts presented in Chapter 2, Section 2.2, it can be seen that
such models are well suited to deal with this particular scenario. During the course of de-
veloping algorithms for integrating such equations, we found that a choice of time-step such
that Ndiv∆t = δt with Ndiv ≈ 3 − 5 can capture dynamics reasonably well - although the
choice of Ndiv is an issue completely dependent on the problem and the user.

For the sake of completion, we discuss two further specific cases that can be obtained
from the decomposition of physical events presented in Equations 4.11, 4.12, and 4.13. The
first one is the specific case where the sum of all non-contact external forces acting on the
particle Fi,non−contact is either zero or a constant. Under such a scenario, the particle motion
is collisionally driven, and the non-collisional motion of the particles is easily integrable and
gives the following:

vN+1
i = vNi +

Fconstant

mi

∆t (4.14)

xN+1
i = xNi + vNi ∆t+

Fconstant

2mi

(∆t)2 (4.15)

This provides a direct way of estimating when two particles would collide by solving a
quadratic equation involving particle positions and the time interval ∆t - and allows for a
discrete event based treatment of collisions where the velocities get updated during colli-
sions whenever they occur, and particles follow Equations 4.14 and 4.15 otherwise. This
is the main idea behind Event-driven Particle Dynamics Simulations and a very detailed
review of existing techniques and applications for this technique can be found in Poschel &
Schwager[122].

Along similar lines, a second technique can be motivated by considering the case where
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δt << ∆t, and revisiting the Equations 4.11-4.13. Shifting the collision instant to the
beginning of the time-step, and using the assumption of very short impact durations, the
time-step can be decomposed into a collision step where the particle velocities are directly
updated post-collision, and the updated velocities are then used to propagate the particle
under the action of non-contact forces for the rest of the time-duration ∆t. This leads to the
premise of a ‘Collide and Stream’ type calculation - which is usually employed in Lattice-
Boltzmann type calculations (see Sukop & Thorne[146] for a detailed discussion on such
methods).

mivi(t+ δt)−mivi(t) = 〈Fc
i〉δt+ 〈Fe

i 〉δt Collide step (4.16)

mivi(t+ δt)−mivi(t+ ∆t) =

∫ t+∆t

t+δt

Fe
idt Stream step (4.17)

It must be remarked furthermore, that since the ‘Collide step’ only lasts physically until
the collision event gets over, the positions of the colliding bodies will not get updated during
the collide step. Hence with the post-collisional velocities the positions and future velocities
get updated together in the stream step - making the collide step behave mathematically
more like an operator that modifies the momenta.

4.2.3 An example of time-step adaptivity

The computation of the dynamic variables of a particle ensemble can be made more efficient
if the time-step sizes are allowed to vary based on a control strategy. Specifically for discrete
particle simulations, there could be distinct time-scales of the physical interactions during a
single simulation - dynamic variables could vary slowly during certain durations, and rapidly
during others. We present here an example of time-step adaptivity using Runge-Kutta
methods, which are, as mentioned earlier, higher-order accurate, one-step methods that can
be represented typically using the following tableaux representation called the Butcher array:

c1 a11 . . . a1s
...

...
...

cs as1 . . . ass

b1 . . . bs

(4.18)

where s is the number of stages used for approximating the derivatives. The updates to
the primary variable in an ordinary differential equation of the form y = d

dt
f(y, t) is given

using the coefficients as follows:
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ki = f

(
tn + ci∆t, yn + ∆t

s∑
j=1

aijkj

)
(4.19)

yn+1 = yn + ∆t
s∑
j=1

bjkj (4.20)

The typical approach for time-step adaptivity is to seek a measure of the error in the
solution, and the conventional approach is to use the one-step error also called the local
truncation error τn. For a numerical discretized scheme of order p, τn has an asymptotic
behavior as follows:

τn ≈ C∆tp+1 (4.21)

where C is a constant dependent on the discretization. simple way of estimating this error
can be proposed by considering now the solutions obtained through successively refining the
time-step size. Considering time-step size to be ∆t, let us consider two successive refinements
in time-step as α∆t and 1−α∆t (with α ∈ (0, 1)). Writing the exact solution at the instant
n + 1 going from n to be ȳn+1, and the original and refined solutions to be yold and yref
respectively, we can write the following:

yold = ȳn+1 + C (∆t)p+1 +O
(
∆tp+2

)
(4.22)

yref = ȳn+1 + C
(
αp+1∆tp+1

)
+ C

(
(1− α)p+1∆tp+1

)
+O

(
∆tp+2

)
(4.23)

subtract⇒ C =
‖ yref − yold ‖

[1− αp+1 − (1− α)p+1] ∆tp+1
(4.24)

Plugging this value of C back into Equation. 4.23, an estimate of the error can be
obtained now as follows:

τn =
[αp+1 + (1− α)p+1]

[1− αp+1 + (1− α)p+1]
‖ yref − yold ‖ (4.25)

For the particle dynamics Equations 4.1 and 4.3, now, the function f in the above
discussion, will be replaced by Fi

mi
and Qi

miCi
respectively. Assuming that higher order accurate

Runge-Kutta methods are used, the fact that the function f is evaluated three times for
getting the error estimate makes this a computationally expensive procedure. To estimate
the error more efficiently therefore, a specialized class of such methods called the embedded
Runge-Kutta methods can be used. In such methods, two embedded discretizations one of
order p (say) and the other of order p + 1 are chosen such that they have the same stage

64



Chapter 4. Algorithmic considerations for discrete particle simulations

derivatives ki - which avoids recalculation of the complicated force and flux terms in our
simulation framework. Assuming the solution obtained from the lower and higher order
discretizations to be yp and yp+1 respectively, we have the following:

C∆tp+1 = yp − yp+1 (4.26)

= yn + ∆t
s∑
j=1

bpjkj − yn −∆t
s∑
j=1

bp+1
j kj (4.27)

= ∆t
s∑
j=1

(
bpj − b

p+1
j

)
kj (4.28)

Assuming now that the objective of the control strategy is to keep the error within a
tolerance TOL, the folioing can be written for the optimal step-size ∆topt:

C (∆topt)
p+1 = TOL⇒ ∆topt = ∆t

(
TOL

∆t
∑s

j=1

(
bpj − b

p+1
j

)
kj

)1/p+1

(4.29)

In reality, the time-step sizes for a simulation will always have to be bound between a
chosen maximum and minimum step-size which are dictated by either simulation time or
other physical time-scale requirements or both. Also, to obtain the estimated error, it is
typical practice to scale the error measure with a constant factor less than 1. Using the dis-
cussions presented here, the implementation of a control strategy ported into the developed
simulation library, has been illustrated in form of a simple pseudocode in Algorithm 2.

4.3 Pre-processing - generation of initial ensemble config-
urations

At this point in our discussion, having explored the issue of integrating the motion equations,
we focus on specifying the initial conditions for these motion equations - since essentially
we are solving an initial value problem for each particle in the ensemble. In the context
of discrete particle simulations, specification of initial conditions entail the generation of an
initial configuration of a required number of particles. The classical method for generating
an arbitrary configuration of spheres is the Random Sequential Addition algorithm proposed
by Widom [165]. The central idea of this method is to place non-overlapping spheres at
random locations within a specific domain - and the implementation of the algorithm has
been illustrated using a flowchart in Figure 4.1.

While essentially simple to implement, such an algorithm cannot computationally gen-
erate volume fractions beyond a certain threshold (≈ 0.35-0.40 in 3D). To provide for a
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Algorithm 2 The pseudocode sequence illustrating the implementation of a simple time-step
adaptivity algorithm based on Equation 4.29

1: obtain values of vNi , θNi , ∆t, TOL
2: calculate updated solution using Equation 4.19, 4.20
3: error = ∆t

∑s
j=1

(
bpj − b

p+1
j

)
kj

4: if error ≤ TOL then
5: accept the step-updated solution vN+1

i , θN+1
i

6: ∆tnew = βsafe ∗∆t

(
TOL

∆t
∑s

j=1 (bpj−b
p+1
j )kj

)1/p+1

7: if ∆tnew ≥ ∆tmax then
8: ∆tnew = ∆tmax
9: else if ∆tnew ≤ ∆tmin then
10: ∆tnew = ∆tmin
11: end if
12: else
13: reject the step-updated solutions

14: ∆tnew = βsafe ∗∆t

(
TOL

∆t
∑s

j=1 (bpj−b
p+1
j )kj

)1/p+1

15: if ∆tnew ≥ ∆tmax then
16: ∆tnew = ∆tmax
17: else if ∆tnew ≤ ∆tmin then
18: ∆tnew = ∆tmin
19: end if
20: reiterate, goto Step 2
21: end if

technique to generate higher packing volume fractions, Lubachevsky & Stillinger [88] pro-
posed an alternative algorithm based on concurrent collision and growth of an ensemble of
randomly located particles. According to the original version of this algorithm, after every
impact the velocities of the particles are modified as follows:

vi = vi,n + h
xi − xj
‖ xi − xj ‖

+ vi,t (4.30)

vj = vj,n + h
xj − xi
‖ xj − xi ‖

+ vj,t (4.31)

where the subscripts n and t represent the velocity components normal and tangential
to the plane of contact. The post-impact velocities are augmented with additional energy in
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Figure 4.1: A flowchart illustrating the algorithm for random sequential addition of spheres to a
domain

form of an added velocity component of magnitude h. This addition of energy to the particles
is justified by the fact that at each step the radius of the particles are also increased by a
simple law:

dRi

dt
= λi (4.32)

and the growth of particles therefore causes particle surfaces to approach each other faster
than the particle centers. The original form of the growth rate was simply a constant. In a
later modification to this algorithm Kansal et. al. [81], improved upon the statistical prop-
erties of the packing obtained by making the growth rate proportional to the initial radius
of the particles. This will still be a constant for the case of a monodisperse ensemble, but
will ensure a uniform increase in mean particle volume with simulation time for polydisperse
ensembles as well. Kansal et. al. [81] further discuss aspects of the addition of energy to
the particles. It must be noted here that an increase in energy with time for the particles
may cause increasingly diverging collision rates, and leads to scenarios that are numerically
difficult to tackle. Appropriate strategies have been provided in both Lubachevsky & Still-
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inger [88], and Kansal et.al.[81]. The original form of the algorithm uses an event-driven
simulation algorithm - but keeping with the current work on force based simulations, we
present in Algorithm 3 a modified form of the algorithm that has been implemented and
included in the libraries developed as a part of this work - where the ensemble growth and
energy addition both continue up until the time in the simulation when the ensemble volume
fraction reaches very close to the desired volume fraction. The criteria can be based solely
on the energy addition as well - such modifications can be easily made if required.

Algorithm 3 A pseudocode illustrating the implementation of a modified form of the con-
current growth based algorithm for generating a high density ensemble of spheres.

1: Generate-Random-Sequentially-Added-Ensemble(Np)
2: for i = 1, Np do
3: assign small initial velocity → vi
4: λi ← Ri

5: end for
6: while volfrac ≤ desired do
7: Evaluate-Particle-Particle-Elastic-Contact(particles)
8: if boundary condition = hard wall then
9: Evaluate-Particle-Surface-Elastic-Contact(particles, surfaces)
10: end if
11: for i = 1, Np do
12: update particle velocities → vi

13: add energy to particles vi ← vi +
[
λ√
3
, λ√

3
, λ√

3

]
14: Ri ← Ri + λi∆t
15: if boundary condition = periodic then
16: Apply-Periodic-Boundary-Condition(particles)
17: end if
18: calculate and update volfrac
19: end for
20: end while

The implementation of these two algorithms has also been illustrated in Figure 4.2 where
an ensemble with a low volume fraction was initially generated using an RSA algorithm,
and thereafter, was grown using the LS type algorithm as presented in Algorithm 3 up un-
til a desired higher volume fraction value was attained. Further discussions on advanced
algorithms for generating particle ensembles using a modified random sequential addition
algorithm can be found in the work of Torquato et. al. [155]. However since the objective
here is to create an initial configuration for a more detailed calculation of particle dynamics,
and not the accurate estimation of statistics of packed spherical or ellipsoidal particles - such
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Figure 4.2: An example of a low volume fraction (top) ensemble created using a random sequential
addition implementation, and a high volume fraction (bottom) created using a concurrent growth
algorithm as presented in Algorithm 3
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algorithms will not be explored in detail here.

The generation of an initial configuration also involves the assignment of an initial velocity
(and angular velocity if needed) to each particle. For most applications this velocity can be
set based on the kind of problems being addressed. For example, for particulate spray
applications, it is typical practice to set the particulate initial velocities based on the exit
velocities from the spray nozzle (see for example the work by Fritsching [53] for further details
and examples). For granular beds and silo flows on the other hand, typically the particles are
all started from rest (see the examples presented in Poschel & Schwager[122] for details). For
a broad range of applications, the particle velocities can also be set to be randomly sampled
from an underlying distribution with a mean value and variance that is characteristic to
the problem being addressed. Particularly interesting is the case of assigning random initial
velocities to the particles such that the particles all have constant energy. For translational
motion, this entails sampling vi,x, vi,y, vi,z such that:

1

2
mi

(
v2
i,x + v2

i,y + v2
i,z

)
= E0 ∀i = 1, · · · , Np (4.33)

This essentially entails choosing points on a sphere with radius E0/2mi. Such problems
of choosing random points on an N-dimensional hypersphere have been studied extensively
and the interested reader is referred to the works by Muller [109], Sibuya [139], and Tashiro
[152], and the review by Saff & Kuijlaars [135]. The simplest approach, as cited in Muller
[109] is to generate normal random variates xk, k = 1, 2, 3, and then obtain the velocities as

vk =
xk√

x2
1 + x2

2 + x2
3

√
2miE0 (4.34)

4.4 Neighbor-lists for contact checks

From Equation 4.1 and 4.3, the evaluation of the contact forces involve a detection of contact
between particles (that is to say, evaluation of the indicator function I(·, ·)). While for
spherical particles, the check for contact between particles is a simple geometric criteria
given by:

(Ri +Rj)− ‖ xi − xj ‖≥ 0 (4.35)

a naive evaluation of this criteria for all possible pairs in a system of Np particles involves
0.5Np(Np − 1) operations, and turns out to be the most expensive step for the computation
(scaling with system size asymptotically as O

(
N2
p

)
). To deal with this check in an efficient

manner, it is noted that contact interactions (and other similar short-range interactions)
for any particle will be restricted mainly within other neighboring particles in close vicinity.
Therefore, ideas based on partitioning of particles in the domain, and maintaining a list
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R
verlet

Figure 4.3: Schematic representation of creating neighbor lists for efficient detection of contact
pairs for a particle ensemble. For binned domain (left) the red particles in a bin interact with other
red and surrounding green particles. For Verlet list (right), particles within a cut-off distance from
the red particle are in the neighbor list.

of close neighbors will reduce contact checks and make the computations more efficient.
The classical form of such a neighbor list was introduced by Verlet [159] in a work on
molecular systems driven by Lennard-Jones type interactions, where a bookkeeping technique
for maintaining a list of particles within a specified cut-off distance from a given particle was
introduced. Such lists are named Verlet lists, and the basic idea is illustrated in Figure 4.3
(right hand side). The lists are created for each particle based on inter-particle separations,
and therefore need to be updated if particles are displaced appreciably since the time the
lists were constructed last. The interested reader is referred to the works by Frenkel & Smit
[52], and Poschel & Schwager [122] for implementation details. Since the Verlet lists are
created based on inter-particle separations, a naive implementation of the algorithm would
again require O

(
N2
p

)
operations to initialize the lists every time. An alternative method

- also referred to as Cell-List method, or Linked-Cell method or simply Binning method -
overcomes this by partitioning the particles into grids or bins in the domain, and seeking
contact pairs for a particle in its own bin, and all of its neighboring bin. The basic idea
has been illustrated also in Figure 4.3 in the second panel. From a simple analysis of the
number of operations, it can be claimed that the number of operations required to initialize
the bins will be approximately equal to the number of particles (and hence asymptotically
scale as, O (Np)). If we consider that on an average, there are Nb bins, and each bin gets
Np/Nb particles then a simple estimate of the total operation count for contact checks can
be given to be (for a single simulation time-step):

Ncontact = O (Np) +O

((
Np

Nb

)2

Nb

)
≈ O (Np) (4.36)

Identifying this advantage in computational effort Auerbach et. al. [6] combined the two
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Algorithm 4 The pseudocode illustrating a binning algorithm implementation used for the
simulation libraries for DEM described in this work. It is assumed that each bin is of dimen-
sion ∆x ×∆y ×∆z. The variables are self-explanatory.

1: for i = 1, Np do
2: binx = int

(
xi−x0

∆x

)
etc.

3: place particle i in bin indexed by (binx, biny, binz)
4: end for
5: for b = 1, Nb do
6: Pb ← number of particles in bin b
7: for i = 1, Pb do
8: for j = i+ 1, Pb do
9: Evaluate-Particle-Particle-Contact(i, j)
10: end for
11: end for
12: Nbr ← number of neighbors of bin b
13: for n = 1, Nbr do
14: Pnor ← number of particles in bin b
15: for i = 1, Pb do
16: for j = 1, Pnbr do
17: Evaluate-Particle-Particle-Contact(i, j)
18: end for
19: end for
20: delete n from the list of neighbors of b
21: delete b from the list of neighbors of n
22: end for
23: end for

implementations to provide a fast way of initializing the Verlet lists while retaining the update
scheme - an implementation that has also been discussed in detail by Poschel & Schwager
[122]. In order to illustrate the implementation details, a variant of the Binning algorithm
used to develop the simulation libraries for this work has been illustrated in Algorithm 4.
Further references on expanding such algorithms into parallel computing applications can
be found in the works of Chialvo & Debenedetti [27], Grest et. al. [59], and Sutmann &
Stegailov [148].
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Chapter 5

Representative Simulations of Spray
Dynamics and Particulate Flow

5.1 Introduction

In this chapter we present representative numerical simulations performed using the com-
puter simulation library developed based on the ideas presented in Chapters 2, 3, and 4. The
objective of the examples presented here is to demonstrate, in general, the utility of such
simulations in analyzing dynamics of granular and particulate media for a broad range of
applications, and also specifically to demonstrate the capabilities of the simulation libraries
developed. In particular, our focus has been on loosely flowing particulate media for man-
ufacturing applications. Particulate media enjoy substantial prominence in a vast range of
modern manufacturing processes - spray-forming, abrasive finishing, and additive manufac-
turing to name a few. Such processes essentially involve coupled multi-physical phenomena
in media comprising discrete particles or grains surrounded by a fluid. The interested reader
is referred to the works by Martin (see [93] and [94]) for a detailed overview about a broad
range of such processes for deposition and surface engineering, the work by Fritsching [53] for
spray process engineering, the work by Luo & Dornfeld[89] and Arbelaez & Zohdi [4] on the
abrasive polishing of surfaces using chemical-mechanical planarization, and the review on
additive manufacturing technologies by Kruth et.al.[84] and Gu et.al.[60]. In the following
sections, two representative case-studies have been discussed in detail. The first example
presented in Section 5.2 is that of a stream of abrasive particles impacting a porous compos-
ite material layer. This is a problem of interest in polishing and abrasive finishing processes,
and in the analysis of performance and durability of an engineered surface coating against
abrasive wear. The second example presented in Section 5.3 is that of a spray of particles
being deposited on a target surface. For both examples, the insights provided through a de-
tailed resolution of discrete particle dynamics, as compared to a continuum based approach
will be illustrated in sufficient detail.
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5.2 Dynamics of a Jet Impacting a Porous Surface

5.2.1 Simulation configuration

stream of N
p
 

particles/discrete elements

substrate layer 
material properties E, ν, 

porosity p

stream angle (θ)

layer thickness (d)

stream-wise 
coordinate

cross-stream 
coordinate

layer width (w)

Figure 5.1: Schematic representation of the simulation set-up for analysis of the impact of a
stream of particles impacting a material layer of thickness d and width w such that both d, r �
particle radius.

The schematic of the simulation configuration is presented in Figure 5.1, where a stream
of loose, non-bonded particles are propagating towards a surface which can be either porous
or heterogeneous (or both) in terms of its microstructure. The particle ensemble is gen-
erated using pre-processing algorithms as presented in Section 4.3. The domain is binned
into subdomains for checking for possible contacts. The actual computation domain being
much bigger than the cross-span dimensions of the particle stream, so as to capture the
dynamic spreading of the stream after collision with the surface. Any particle that exits the
computation domain is taken out of the simulation data structures. For the examples pre-
sented here, the impulse-momentum form of the contact law has been used. To account for
stream angle, the impact forces are transferred to the surface using appropriate coordinate
transformations. The details of stress-calculation and damage evolution have been discussed
separately in the subsequent sections - and together, they can be thought of to be a naive
implementation of a coupling technique between discrete particles and a material continuum.
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5.2.2 Stress calculation

The translation of the contact forces into stresses in the surface material can be approached
by considering the surface being impacted to be a semi-infinite half-space, and considering
the contact forces to be applied surface tractions, as explained in the schematic in Figure 5.2.
This is a good abstraction for cases where the contact does not involve extensive deformations
as compared to the dimensions of the surface - which is a reasonably good approximation for
erosive wear of surfaces under impact by abrasive particles. Semi-analytical solutions for the
sub-surface stresses obtained using Boussinesq potential functions for point and distributed
tractions on a semi-infinite elastic half-space are used for the applied surface tractions. For
the sake of a concise presentation the detailed expressions for the solutions for stress com-
ponents are not provided here, and the interested reader is referred to Johnson[77] for the
details of the derivation and the explicit expressions for point tractions, and Hamilton[64]

for the explicit expressions for Hertzian tractions distributed over the contact area between
a sphere and a half-space. A fully detailed analysis of the deformations and stresses would
require a finite element type calculation over a discretized mesh of the bulk of the particle-
surface combination - as found in Camacho & Ortiz[22] and more recently in Ramanujam &
Nakamura[126].

ω

v

porous layer of material of thickness 
d (pores represented in gray)

single impacting particle 
undergoing translation 

and rotation

porous layer of material of thickness d 
(pores replaced by effective property)

impacting particle provides 
a normal and tangential 

surface load

stress calculations performed 
on a computational grid 
over the surface material

Figure 5.2: A schematic representation of the translation of impact loads and material porosity
into a simple stress-calculation framework over the material continuum.

In order to incorporate the surface material porosity and microstructure in the calcula-
tions, without a detailed mesh-discretized resolution of the microstructure - we approximate
the effective material properties of the surface material using analytical approaches involving
variational bounds on the properties as presented by Hashin & Shtrikman[66], and Hashin
& Shtrikman[65]. Such an approach has been used by Zohdi[177] for rapid parametric ini-
tial design investigations for tailoring microstructures to obtain desired effective properties -
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and is advantageous owing to its minimal requirement of computational effort. The Hashin-
Shtrikman bounds for material bulk modulus and shear modulus for a two-phase material
are given by:

κ∗,− = κ1 +
v2

1
κ2−κ1 + 3(1−v2)

3κ1+4µ1

≤ κ∗ ≤ κ2 +
1− v2

1
κ1−κ2 + 3v2

3κ2+4µ2

= κ∗,+ (5.1)

µ∗,− = µ1 +
v2

1
µ2−µ1 + 6(1−v2)(κ1+2µ1)

5µ1(3κ1+4µ1)

≤ µ∗ ≤ µ2 +
1− v2

1
µ1−µ2 + 6v2(κ2+2µ2)

5µ2(3κ2+4µ2)

= µ∗,+ (5.2)

where κ1, κ2 are the bulk moduli of the two-phases, and µ1, µ2 are the shear moduli of
the two phases (with κ2 > κ1 and µ2 > µ1). For isotropic microstructure with isotropic
effective properties, these bounds are the tightest provided no additional micro-topological
information is available. A reasonably good approximation of the overall effective property
can now be constructed using a convex combination of the bounds as follows:

κ∗ = φκ∗,+ + (1− φ)κ∗,−, µ∗ = φµ∗,+ + (1− φ)µ∗,− (5.3)

In order to incorporate the porosity, we assume that the material is effectively a multi-
phase composite, with the pores and voids making up phase 1 - such that κ1 = Cκ2, and
µ1 = Cµ2, where C is a very small number. This can be plugged into Eq. 5.1, 5.2, 5.3 to
obtain the effective mechanical properties of the porous material. It was found from repeated
numerical experimentation that the property estimates are insensitive to changes in the value
of C beyond ≈ 10−4. Clearly then the porosity(p) is going to be given by p = v1, and we can
plug in v2 = 1− p in Eq. 5.1 and 5.2.

5.2.3 Damage evolution

The characterization of damage due to particle erosion and material removal has received
much attention from both experimental and modeling perspectives. The earlier works by
Finnie[50] and Bitter[14] characterized a series of erosive wear phenomena, and for ductile
and brittle materials, they outlined the different causes of erosive wear. In a later work on
ceramic coatings, Nicholls et.al.[114] further explored the characterization of erosive material
loss from these coatings upon impact by particles. For brittle materials, Finnie[50] described
the mechanics of crack induced damage and the propagation of circumferential ring cracks
- whose diameter was explicitly reported to be dependent on the normal impact velocity as
dcrack ∝ v0.4

n . The detailed analysis of the evolution of these cracks and the characterization of
material removal will however require fully resolved analysis of the material continuum. For
the current example, we incorporate a simplified damage criteria based on an appropriately
defined equivalent stress. This is a non-local form of characterizing the potential damage a
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particle impact can induce and in order to do so, we define (as per the discussions presented
in the work by Lemaitre & Desmorat[86]) the triaxiality function Rν as follows:

Rν =
2

3
(1 + ν) + 3(1− 2ν)

(
σdil
σvm

)2

(5.4)

where σdil is the total dilatational stress, and σvm is the Von Mises effective stress. The
criteria for non-local damage can now be stated in terms of an equivalent stress σeq that can
be written as:

σeq = σvm
√
Rν ≥ σ0 (5.5)

where σ0 is an effective stress threshold, and can be set to be the yield stress or ultimate
stress depending on the kind of material. The function Rν relates to the strain energy
density release rate (see Chaboche[23] and also Lemaitre & Desmorat[86] for details on the
derivations) thereby providing a thermodynamic basis for utilizing such a criteria. It can be
shown that the value of σeq as presented above is often quite different from the Von Mises
stress - and could lead to a less conservative estimate of the extent of material damaged. In
order to use this equivalent stress to estimate the evolution of damage across the continuum
of the material the following variable is defined:

Σ =
σeq − σ0+ ‖ σeq − σ0 ‖

2σ0

(5.6)

This variable is a non-dimensional indicator of damage initiation, and is zero for all
cases where the equivalent stress is lesser than the critical. The potential damage at a
certain location in the material continuum can be tracked by the number of times during
the simulation that Σ exceeds zero - that is, by tracking the number of occurrences of high
damage equivalent stresses at a location.

5.2.4 Simulation results

The simulation parameters used for the examples presented here have been summarized
in Table 5.1. The results for the simulation can be discussed from the perspective of the
dynamics of the particle ensemble, and the evolution of stresses and damage in the material
being impacted. For the former, snapshots of the particle ensemble at various instants during
the process of impact have been compiled in Figure 5.3. All particles have been colored based
on their energy content. Even though the incident velocities are all normal to the surface,
the inherent randomness of the particle initial configuration, causes a significant number of
oblique inter-particle collisions that lead to a spread pattern of the particle jet as observed
here. In order to demonstrate the corresponding dynamics for a oblique incidence of the
particle ensemble on the surface - the snapshots of the particle ensembles for a stream angle
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of θ = 30 degrees has also been presented in Figure 5.4. The side view of the stream dynamics
is presented for this case so as to emphasize on the spread pattern upon oblique impact -
which is driven by both oblique particle particle collisions, and by oblique particle surface
collisions.

Parameter Assumed values

Material bulk modulus (both surface and particle) 100 GPa
Poisson ratio (both surface and particle) 0.30
Particle density 8500 kg/m3

Impact velocity range 80 - 90 m/s
Porosity range 0.10 - 0.40
Friction coefficients (static, dynamic) 0.55, 0.50

Table 5.1: Simulation parameters for the examples of abrasive jet impacting a porous surface

The evolution of the accumulated damage due to the normal incident stream of particles
has been shown in Figure 5.5, and it can be seen that the accumulated damage spreads
radially outward from the centerline of the stream. The corresponding evolution of the
damage equivalent stress σeq as defined in 5.5 has also been compared in Figure 5.6 for
normal vs oblique incidence, and for varying levels of material porosity at a point very
close to the centerline of the stream, located across the thickness (that is, z = d, for the
snapshots presented in Figure 5.5). The corresponding accumulated damage shows a direct
correlation of increased accumulated damage due to increased porosity, and a lower level
of damage sustained due to an oblique impact - particularly as is evident from the sample
results on accumulated damage due to a jet impacting at 80 m/s as presented in Figure
5.6 (bottom). The stress-signatures (presented in Figure 5.6 top) indicate an interesting
feature of a sharper rise in the stresses immediately when impact initiates, followed by a
reduced level of stresses as the impact progresses on. This reduction can be explained by
a retardation of the incident stream of particles owing to collisions with reflected particles
from the surface. Since each collision will involve some energy losses, the energy with which
the stream impacts the surface therefore reduces after the first set of particles impact the
surface. In this regard, it is remarked that further modifications to the simulations can be
done in terms of boundary conditions to maintain a constant mass flow rate of particles.
To do this, for every particle that leaves the computation domain as the stream spreads
out post-impact, another particle of equal mass has to be entered into the domain from the
stream inlet. Although this has not been implemented here, such modifications are easy
to perform given that explicit tracking of particles entering and leaving the computation
domain is already being performed as a part of binning the computation domain.
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Figure 5.3: Snapshots of the particle stream dynamics for normally incident stream

79



Chapter 5. Representative Simulations of Spray Dynamics and Particulate Flow

Figure 5.4: Snapshots of the particle stream dynamics for an obliquely incident stream
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Figure 5.5: Snapshots of evolving accumulated damage across the material
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Figure 5.6: A comparison of stress levels and accumulated damage at a point located across the
depth of the layer of material, at a location very close to the centerline of the stream. The stress
signatures for varying angles and porosity are shown on top, and comparison of accumulated
damage at this location is shown in bottom.
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5.3 Dynamics of Spray Deposition

5.3.1 Simulation configuration

stream of N
p
 

particles/discrete elements

adhered particles representing the deposit 
rigid substrate layer 

for deposition

stream angle (θ)

stream-wise 
coordinate

obtained deposition 
thickness

imposed 
spray gas 

velocity field

Figure 5.7: Schematic representation of the simulation set-up for analysis of spray deposition.
The lines in blue indicate an imposed background gas velocity field, and the already deposited
particles have been indicated in gray.

The schematic of the simulation configuration set-up for analysis of spray dynamics and
deposition is presented in Figure 5.7, where similar to the previous example a stream of
loose, non-bonded particles are propagating towards a surface for deposition. The particle
ensemble is treated in the same manner as in the previous example. We are concerned here
with the combined mechanics of collision and adhesion at the surface, and not the sub-
surface stresses. A simple criteria to algorithmically model the deposition phenomena based
on near-field, adhesive effects is presented in the next section. It must be noted that inter-
particle adhesive interactions that could lead to particle agglomeration while in flight has not
been incorporated here. As the particles are released into the spray gas stream emanating
from the nozzle, the dynamic interactions of the particles with the gas are modeled using
the discussions presented in Section 3.4. An appropriately imposed fluid velocity field is a
necessary boundary condition for such one-way coupling analysis, and this has also been
discussed in the subsequent sections. The exact mechanism of introducing the particles
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into the spray-stream is not important here. The simulation parameters for the examples
presented here have been summarized in Table 5.2.

Parameters Assumed values

Particle radius 80 µm
Particle density 5680 kg/m3

Particle bulk modulus 167 GPa
Particle shear modulus 77 GPa
Particle yield stress 200 MPa
Particle surface energy 46 mJ/m2

Surface bulk modulus 160 GPa
Surface shear modulus 80 GPa
Surface surface energy 1100 mJ/m2

Fluid density 1.1 kg/m3

Fluid viscosity 25e-6 m2/s
Average nozzle velocity 20 - 30 m/s
Assumed α for adhesion 5000

Table 5.2: Simulation parameters for the spray deposition examples

5.3.2 Deriving a simple criteria for deposition

The exact mechanism of deposition is a complicated aspect of the governing physics of spray
manufacturing technologies - and as such, deposition can result from chemical reactions,
solidification of molten droplets, physical bonding, or ionic/electrostatic mechanisms. For a
detailed review on these various processes the reader is referred to the work by Martin [94],
and the discussions presented by Fritsching [53]. For the current example, it is sought to have
a simple model to treat the basic process of a flowing discrete element sticking to a surface -
which can then be hierarchically integrated into a large-scale simulation to understand global
system behavior. To do this, we refer to the macroscopic force of adhesion between a sphere
and a surface at very small distances as presented in Section 2.6. Using the Derjaguin
Approximation for forces between a sphere and a flat surface, the adhesion force can be
written as in terms of the particle-surface interface energy (γ12) as:

F adh = −4πγ12R (5.7)

with γ12 ≈ 2
√
γ1γ2 (see Equation 2.74 in Section 2.6). Referring to Figure 5.8 on the left,

and using the expression for the final velocity as in Equation 2.25, it can be seen that

vcn(t+ δt) = −evcn(t) +
1

m
F adh
n (δt− δt1)− e

m
F adh
n δt1 (5.8)
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Figure 5.8: Schematic for the derivation of a velocity dependent adhesion criteria.

Let us consider vcn(t) = −v0, and Fadh = −F adhn̂, which is consistent with Figure 5.8.
Furthermore, since the fundamental assumption is that of a nearly-rigid collision, with very
small time-scales of collision that do not overlap the simulation time-steps, it will be expected
that within one time-step of the simulation, the final velocity vcn(t+ δt) should be positive
if adhesive effects have not dominated the collision. On the other hand, if vcn(t + δt) is
negative, then the above assumptions are contradicted, and adhesion effects are dominant -
and appropriate physical bonding interactions are established. Therefore, if vcn(t + δt) < 0
it is assumed that the particle sticks to the surface, and assumes the same velocity as the
surface. With the further consideration that purely elastic collisions will occur at very low
velocities for all practical purposes (which leads to lower collision forces, and more adhesion
dominant collisions), it can be assumed that this criteria on final velocity be applied in
the regime of inelastic collisions, which then gives us the following final criteria after some
algebra:

0 > −ev0 −
1

m
F adh(1.2eδt1) +

e

m
F adhδt1

v0 <
0.2F adhδt1

m
(5.9)

where we have used the discussions presented in Section 2.4 for the relative magnitude of
compression and recovery times in inelastic collision. Note that as particle sizes keep getting
bigger, the particle mass increases, thereby leading to very low upper bounds for impact
velocities to induce complete adhesion - which is consistent with the physical behavior of such
systems. Furthermore, the effect of temperature can be incorporated into this criteria using
the discussions presented in Setion 2.6.2, in particular Equation 2.77. In accordance with
this, as temperature rises, there is an increase in interface energy required, thereby requiring
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higher upper bounds on impact velocities to complete adhesion. This is also physically
consistent with the physical behavior of such systems. The simple form of Equation 5.9 also
allows for a simple integration into simulation algorithms.

5.3.3 Jet velocity profile for one-way coupling
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Figure 5.9: A vector plot in two dimension representing the flow velocity profile used in the
one-way coupling simulations demonstrated here.

For the examples presented here, a simple jet velocity profile has been assumed as follows:

uf =
C1

x1/3
sech2

(
C3y

x2/3

)
(5.10)

vf =
C2

x2/3

[
2
C3

x2/3
sech2

(
C3y

x2/3

)
− tanh

(
C3y

x2/3

)]
(5.11)

For three-dimensional simulation, the assumption of axi-symmetry is invoked, and y
is replaced by the radial cross-span coordinate location, and x becomes the stream-wise
coordinate location (as represented in Figure 5.7). The obtained velocity distribution is
illustrated in 5.9 for a two-dimensional cross-section of the flow. In consistent with free
jet-flow from a nozzle, a small region of flow with no entrainment has been assumed near
the nozzle exit - which is referred to as core in the Figure. Other possible forms of velocity
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profiles appropriate for spray dynamics have been discussed in detail by Pawlowski [119], and
Fritsching [53], and Yuu et. al. [170], and can be imported into the simulation framework
easily if required.

5.3.4 Simulation results

The three dimensional dynamics of the particulate spray under the combined action of par-
ticle collisions and fluid particle interactions has been demonstrated by means of snapshots
taken from the side (along the full length of the stream-wise coordinate axis) at different
instants of simulation time in Figure 5.10. A close analysis of the Figures will reveal two
physical mechanisms that compete with each other. The nature of the imposed fluid velocity
as presented in Equations 5.10 and 5.11 is such that the particles away from the centerline
move much slower than the particles closer to the centerline. However, since the particle
length scales (and correspondingly their response times) are small, they respond to the en-
trainment velocities very quickly, thereby leading to some non-uniformity in the cross-span
particle velocities. Further non-uniformities could be introduced from the mechanism by
which the particles are introduced into the spray gas - which has been incorporated in the
present example by assigning each particle a small random cross-span velocity component.
The combined action of these cross-span velocities therefore leads to inter-particle collisions,
and causes the flow pattern as observed in Figure 5.10. Such an effect can lead to an in-
creased scattering of the particles as they are deposited onto the surface, thereby causing
non-uniformities in the deposition. It would be expected then that for a reduced number
density of particles, and for reduced non-uniformities in cross-span velocities, the flow pat-
tern will show reduced scattering due to collisions. This is indeed the case, as can be seen
from the snapshots for a different configuration of spray particulate stream presented in
Figure 5.11 - where the number of particles is 8000 as compared to 20000 for the previous
case, and the cross-span velocity non-uniformities are very low. Furthermore, from the data
presented in the simulation parameter list in Table 5.2, the calculated density ratio ρf/ρp
is found to be 1.95 × 10−4, and the particle response time can be given to be τp ≈ 55µs.
For this configuration, by analyzing the particle motion equations in Section 3.4, it can be
seen that the unsteady terms involving added mass and pressure gradient are insignificant
owing to the low density ratio. Also, the drag forces turn out to be more dominant than the
history forces for this regime, owing to the small particle sizes.

As an example of translating the particulate flow analysis to a metric for deposition,
simple metrics for deposit pattern analysis can be augmented with the simulations. For
the purpose of the examples presented here, it is assumed that once a particle satisfies the
deposition criteria and gets adhered, it is removed from the set of dynamic particles in the
system, and therefore remains adhered permanently during the simulation lifetime. Given
that the list of particles that are stuck to the target surface can be represented using the list
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Figure 5.10: Snapshots for the simulated dynamics of a high number density spray plume
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Figure 5.11: Snapshots for the simulated dynamics of a lower number density spray plume
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Simulation conditions hdep/nozzle radius ndep

20000 particles, non-zero cross-span velocities 0.0391 0.0932
20000 particles, zero cross-span velocities 0.0601 0.1449
8000 particles, non-zero cross-span velocities 0.0049 0.3718
8000 particles, angled at 5 degrees 0.0050 0.3755

Table 5.3: Sample results for analysis of deposit metrics presented in Equation 5.12 for processing
spray simulation data

Pstuck, we can define a representative deposit height hsep, and a proportion of the number of
particles that adhered during the simulation life-time as nsep as follows:

hdep = (xmax +Rav)− (xmin −Rav), ndep = Nstuck/Np (5.12)

where xmax, xmin represent the maximum and minimum height at which an individual
particle is located at the location of the deposit, Rav represent the average particle radius.
A calculation of these deposit metrics for four different representative simulation runs have
been summarized in Table 5.3. A higher number density causes more scatter in deposition at
the target surface, and hence results in a lower proportion of deposit particles, as compared
to lower number density. However, there being more particles overall that get deposited at
the deposit location, the average deposits will be thicker for the former. Additionally, for
a certain spray particle number density, reduced cross span velocities cause lesser collisions
and better deposition as is reflected from the first two entries in Table 5.3. Furthermore, it
is also important to note that there could be scatter introduced in the deposit pattern due to
collisions between the collection of already deposited particles which is growing with time,
and the incoming particles from the spray-plume. In order to illustrate this mechanism,
simulations of deposition from a particle spray with a lot of inter-particle collisions and
scatter has been compared with those of deposition from a spray where the inter-particle
collisions before impact with the deposit on the target surface were algorithmically restricted.
Representative deposit growth patterns for 20,000 particles have been presented for these two
cases in Figure 5.12. While the latter case does show more uniform and efficient deposition
pattern, there are variabilities seen in Figure 5.12 on the bottom which are entirely due to
collisions between the incoming particle stream and the growing deposit of particles.
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Figure 5.12: Deposit patterns for a highly scattered spray plume, and a plume generated by
restricting all scatter due to inter-particle collisions in the propagating spray
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Conclusions and Future Work

6.1 Concluding Remarks

In this dissertation, the computational modeling and simulation of flowing particulate and
granular media was addressed using discrete element method and collision driven particle
dynamics type models. The particular focus of the discussions presented here was on the
hierarchical modeling of coupled multi-physical phenomena that are common in many ap-
plications involving particulate media. While a comprehensive list of all possible interaction
models and their details cannot be provided in a dissertation or monograph, an attempt has
been made to present a broad and representative collection of physical models, numerical
techniques, and their algorithmic implementations under a single research and development
exercise. The frameworks discussed herein, were used to develop a research purpose com-
puter simulation library named SLIDES (acronym for ‘Software Library for Discrete Element
Simulations’ ) for reference and continued future development - which was the end product
of the research and development exercise presented in this dissertation. The library has been
developed in Fortran (2003 standard) using an object oriented architecture, and is capable
of performing fully three-dimensional particle dynamics simulations. The capabilities of the
simulation tool, and the utility of such modeling frameworks have been illustrated using
two particular case-studies. In both examples, the treatment of individual particle motions
revealed information on system behavior that would be otherwise hard to obtain using a
continuum based approach.

The first case-study presented was on the analysis of a flowing particulate stream im-
pacting a surface at high velocities. The analysis was motivated by the analogous real-world
problem of erosive wear of engineered surface coatings. The example demonstrated the cal-
culation of the impact forces and spread patterns of the impacting particle stream, and the
translation of impact loads into stresses and damage. The explicit resolution of collisions
provided the exact variation of stresses with time, and also allowed a resolution of the re-
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tardation effect due to collisions between incident and reflected particles from the surface.
The second case-study presented was on the analysis of particulate media propagating to-
wards a surface carried by a carrier fluid. This analysis was motivated by the analogous
real-world problem of spray-deposition based manufacturing of a surface coating. The ex-
ample demonstrated the utility of such models in hierarchically representing the deposition
phenomena and derive a velocity based criteria for particle deposition. The calculations also
provided valuable insights into the dynamics of the spray plume as it propagates from the
spray-nozzle towards the target surface. Particularly, it was possible to see the effects of par-
ticle number-density, and inter-particle collisions on the scattering of the spray-plume and
the variabilities in the deposit pattern. Both case studies involved simulations performed
using the developed software libraries, and were performed within reasonable computation
time on readily available computing resources. For most of the models presented here, only
very few phenomenological modeling constants appear. For many other case, however, it
may be of interest to include further interaction physics into the simulations through simple
phenomenological models. The constants and parameters for these can only be validated
by a systematic comparison with available experimental data. The generalized problem of
parameter estimation can then be formulated as an Inverse problem to find the set of pa-
rameters that best match available predictions - and such problems have been addressed by
Zohdi([177] and [176]). To keep with the scope of the current discussion, further details on
construction of inverse problems for parameter estimation have not been discussed here.

6.2 Future Research Directions

In closing, we remark on a few important aspects that are relevant to the ideas discussed
in this dissertation, and that can be discussed in specific detail as future research objectives
now that a developed simulation framework exists. The first of these is the issue of a
detailed resolution of the fluid-particle coupling phenomenon. The combined interaction of
collisions, steady and unsteady forces on the particle due to the fluid, steady and unsteady
heat transfer, and presence of a turbulent flow field can make a detailed analysis of the flows
quite complicated (even in the one way coupling regime). A consistent resolution of this
interaction, combined with the already developed simulation framework, will then provide
for a probe into phenomena like the role of collisions in turbulent diffusion of particles,
and their preferential concentration. In fact, with existing fluid dynamics solvers, better
approximations of the carrier flow velocity fields can be obtained for more complex flow
configurations, which can then be linked to the discrete particle frameworks developed here
directly.

Continuing along the same idea, we remark also that even further utility can be rendered
to such simulations if the more complex problem of particle-continuum coupling is considered.
While the example on erosive wear calculations due to impact by a stream of particles did
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Figure 6.1: An illustration of coupling between a discrete particle/element and a finite element
mesh

provide a naive implementation of such a coupling - this topic can be further explored. A
simple way of making the discrete elements talk to a finite element mesh is to represent the
interactions through applied surface tractions - similar to the erosive wear example - and
convert the tractions on the mesh into nodal loads for augmenting the global system matrix
equations. A schematic of this is shown in Figure 6.1.
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Figure 6.2: An illustration of incorporating two-way coupling between fluid and particle within a
continuum volume element of fluid.

For the two-way coupled fluid-particle interaction, if we consider a single computational
cell of the fluid continuum, then the presence of the particle will lead to addition of a source
term for the momentum and the energy equation for that computational cell. This is the
main concept behind a series of methods called Particle Source In a Cell (see Crowe et. al.
[29]), and the concept has been illustrated in Figure 6.2. The presence of the demonstrated
simulation capabilities for discrete elements, and already existing algorithms and software
tools for finite elements/finite volume allow for detailed exploration of such coupled problems
- which has been identified as a broad topic for future research.
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Appendix A: Details on the software
library for discrete element simulations

The models and algorithms described in the dissertation were utilized to construct the ba-
sic layer of a computer simulation library for discrete particle simulations called ‘Software
Library for Discrete Element Simulations’ (in short, SLIDES). The development of the soft-
ware has been an integral part of the research documented in this dissertation. At the time
of compiling the dissertation, the first stage of development has been completed and primary
architecture, multi-physics libraries, and data structures have been developed and tested -
examples of which have been presented in the dissertation. The libraries have a modular,
object-oriented design with the flexibility of adding more functionalities and also using the
existing functionalities as basic API’s for scripting simulations. The programs have all been
written in FORTRAN with many 2003 standard features incorporated. Therefore a FOR-
TRAN 2003 standard compatible compiler is a necessary system requirement. The SLIDES
library is not meant to be a full-service commercial package. Instead, it is intended to be a
flexible, general purpose research tool that can be used to model and simulate a wide range
of discrete particle dynamics based phenomena. Many such modeling aspects have been
discussed in detail in this dissertation. This appendix will provide a brief description of the
design details and usage of the libraries. A comprehensive user manual (both offline, and
navigable html format) is also being developed, and can be provided upon request.

Program structure

The main architecture of the library has already been presented in Figure 1.3. The directory
structure for the simulation library files has been presented in Figure 3. This structure can
be modified- but it is advisable to keep the sources and applications directories unchanged
unless necessary. The generic structure of a simulation script that can be used as a basic
layout for using the library functionalities has been presented in form of a sequence of
instructions in Algorithm 5. These may be translated into relevant sequences of FORTRAN
syntax. The script being written in FORTRAN, the general syntax rules of the language
apply throughout. All data structures have accessor functions or subroutines whose names
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begin with ‘get...’ and ‘set...’. The execution of the script is usually done in the following
format:

./sampleSimulationScript.out <command-argument-1>

<command-argument-2> .... <command-argument-N>

The standard of the library is to place the name of the input file as the first command-
line argument. The input file is to be prepared by the user, and essentially the problem
parameters and their values can be typed into a formatted data file - an example of which,
with a brief explanation of the relevance of each problem parameter has been presented
separately in Appendix B. In order to explain the way in which sequence of instruction
flows occur in a typical simulation that involves the library subroutines - a sample call-graph
generated using Doxygen for the erosive jet application discussed in this dissertation has been
presented in Figure 4. The graph indicates set of possible alternative flow of instructions,
and in a way is a representation of the static dependency of procedure calls, since every call
relationship that may occur (that is, every possible run of the program) is indicated.

rootroot

sourcessources

scriptsscripts

datadata

applicationsapplications

documentationdocumentation

htmlhtml

latexlatex

figuresfigures

imagesimages

animationsanimations

Figure 3: The directory structure of the discrete particle simulation libraries
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Algorithm 5 The sequence of instructions that can be used to script a simulation using the
simulation library

1: define and declare all local variables
2: read and parse all command-line arguments
3: read input data from input file provided as first command-argument
4: allocate all data structures
5: initialize particle configuration and particle data
6: if control surfaces are needed then
7: initialize control surface data
8: end if
9: if fluid media is needed then
10: initialize fluids data
11: end if
12: if domain requires binning then
13: bin domain and sort particles
14: end if
15: while time ≤ simulation time do
16: integrate system using a time-stepper of choice
17: if time since last output dump ≥ dump-interval then
18: write phase-space and other dynamics data to output files
19: end if
20: if time since last bin sort operation ≥ bin-interval then
21: bin domain and sort particles
22: end if
23: end while
24: clear all allocated memory
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Scripting and compilation

In order to avoid complications owing to complication cascades and creating and executing
simulation scripts, the compilation and execution tasks have been outlined clearly in form of
a pseudocode sequence in Algorithm 6. These tasks can either be scripted (for example, using
shell-scripts in Unix), or the user can manually execute the sequence of tasks. The function
names in capitals are just presented as place-holders for the actions to be performed on the
input arguments specified in the pseudocode. The ‘dump’ directory refers to a temporary
directory that can be named according to user convenience. There may be other possible
ways of achieving the same using other similar techniques.

Algorithm 6 The pseudocode sequence that can be used to execute simulations using the
compiled simulation libraries

1: enter root-level
2: compile all sources
3: create temporary dump directory
4: Copy-To-Dump(compiled application)
5: Copy-To-Dump(user input data)
6: execute simulation from dump directory
7: Copy-From-Dump(simulation output data)
8: delete temporary dump directory
9: jump back to root-level

Further development plans

As mentioned earlier, at the current stage of development the basic layer of simulation
libraries have been developed. Possible extensions to the current libraries will include the
following steps in the subsequent stages of development:

• more application specific physics modules that can expand the applicability of the
simulation tool to a broader range of research problems.

• making the front-end of the application more graphical - possibly using a Python based
graphical interface.

• making the compilation and application generation more generic for cross-platform
application development.
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user-input file

DOMAIN−DATA
&ComputationDomain isDomainCuboid = . t rue . , !< Boolean cho i c e v a r i a b l e f o r

! ! cubo ida l s t a r t i n g domain
isDomainCylinder= . f a l s e . , !< Boolean cho i c e v a r i a b l e f o r

! ! c y l i n d r i c a l s t a r t i n g domain
i sRegularArray = . f a l s e . , !< Boolean cho i c e v a r i a b l e f o r

! ! a r e g u l a r l a t t i c e s t a r t i n g domain
isBinDomain = . f a l s e . , !< Boolean cho i c e v a r i a b l e f o r

! ! b inning the domain
domainRadius = 0 .0 d0 , !< Radius o f c y l i n d r i c a l domain
domainLength = 0 .0 d0 , !< Length o f c y l i n d r i c a l domain
domainX = 0.0 d0 , !< X−coord inate l ength o f cubo ida l domain
domainY = 0.0 d0 , !< Y−coord inate l ength o f cubo ida l domain
domainZ = 0 .0 d0 , !< Z−coord inate l ength o f cubo ida l domain
NX = 10 , !< Number o f b ins along X d i r e c t i o n
NY = 10 , !< Number o f b ins along Y d i r e c t i o n
NZ = 10 , !< Number o f b ins along Z d i r e c t i o n
outerBinX = 0.0 d0 , !< Outer span o f binned computation domain

! ! a long the X d i r e c t i o n
outerBinY = 0.0 d0 , !< Outer span o f binned computation domain

! ! a long the Y d i r e c t i o n
outerBinZ = 0 .0 d0 , !< Outer span o f binned computation domain

! ! a long the Z d i r e c t i o n
XYZ0 = 0 .0 d0 , 0 . 0 d0 , 0 . 0 d0 / !< Reference coo rd ina te f o r

! ! l o c a t i n g the domain o r i g i n

PARTICLE
&P a r t i c l e I n i t i a l i s e numPart = 1 , !< Number o f p a r t i c l e s in the system

radiusMean = 0 .0 d0 , !< Mean p a r t i c l e rad iu s
radiusVar = 0 .0 d0 , !< Variance o f p a r t i c l e rad iu s
isMonoDisperse = . t rue . / !< Boolean cho i c e v a r i a b l e f o r

! ! handl ing p a r t i c l e monodispers i ty
&P a r t i c l e M a t e r i a l densityP = 0 .0 d0 , !< Density o f the p a r t i c l e s

e l a s t i c i t y P = 0 .0 d0 , !< E l a s t i c i t y modulus o f the p a r t i c l e s
poissonP = 0 .0 d0 , !< Poisson r a t i o o f the p a r t i c l e s
shearP = 0 .0 d0 , !< Shear modulus o f the p a r t i c l e s
bulkP = 0 .0 d0 , !< Bulk modulus o f the p a r t i c l e s
y ie ldP = 0 .0 d0 , !< Yie ld s t r ength f o r p a r t i c l e s
surfaceEnergyP = 0 .0 d0 , !< Sur face energy o f the p a r t i c l e s
conduct iv i tyP = 0 .0 d0 , !< Thermal conduc t i v i t y o f p a r t i c l e s
spec i fHeatP = 0 .0 d0 , !< S p e c i f i c heat capac i ty o f the p a r t i c l e s
m u l t i P a r t i c l e I n i t = ’ f i l e . dat ’ / !< Filename f o r i n i t i a l i s i n g p a r t i c l e s

! ! us ing pre−proces sed p a r t i c l e data
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SURFACE
&Sur faceMate r i a l numSurf = 0 , !< Number o f c o n t r o l s u r f a c e s / boundar ies

e l a s t i c i t y S = 0 .0 d0 , !< E l a s t i c i t y modulus f o r s u r f a c e
po i s sonS = 0 .0 d0 , !< Poisson r a t i o f o r s u r f a c e
shearS = 0 .0 d0 , !< Shear modulus f o r s u r f a c e
bulkS = 0 .0 d0 , !< Bulk modulus f o r s u r f a c e
y i e l dS = 0 .0 d0 , !< Yie ld s t r ength f o r s u r f a c e
conduct iv i tyS = 0 .0 d0 , !< Thermal conduc t i v i t y f o r the s u r f a c e mate r i a l
sur faceEnergyS = 0 .0 d0 / !< Sur face energy f o r s u r f a c e mate r i a l

FLUID
&Flu idMater ia l dens ityF = 0 .0 d0 , !< Density o f the f l u i d medium

v i s c o s i t y F = 0 .0 d0 , !< Dynamic v i s c o s i t y o f f l u i d medium
conduct iv i tyF = 0 .0 d0 , !< Thermal conduc t i v i t y o f f l u i d medium
spec i fHeatF = 0 .0 d0 , !< S p e c i f i c heat capac i ty o f f l u i d medium
isTurbu lent = . f a l s e . / !< Boolean cho i c e v a r i a b l e f o r per forming

! ! a turbu l ent f low s imu la t i on

CONTACT
&Contact s t a t F r i c = 0 .0 d0 , !< S t a t i c f r i c t i o n c o e f f i c i e n t between p a r t i c l e s and s u r f a c e s

dynFric = 0 .0 d0 , !< Dynamic f r i c t i o n c o e f f i c i e n t between p a r t i c l e s and s u r f a c e s
r e s t C o e f f = 0 .0 d0 , !< R e s t i t u t i o n c o e f f i c i e n t f o r normal i n e l a s t i c impact
c o l l i d e T = 0 .0 d0 , !< Estimate o f the t o t a l c o l l i s i o n durat ion
recoveryT = 0.0 d0 , !< Estimate o f the recovery durat ion o f the c o l l i s i o n
compressT = 0 .0 d0 , !< Estimate o f the compress ion phase durat ion o f the c o l l i s i o n
alphaRest = 0 .0 d0 , !< Model l ing constant f o r the r e s t i t u t i o n c o e f f i c i e n t
alphaYRest= 0 .0 d0 , !< Model l ing constant f o r the r e s t i t u t i o n c o e f f i c i e n t
isRestVary= . t rue . , !< Boolean cho i c e v a r i a b l e f o r mode l l ing

! ! r e s t i t u t i o n dependent on v e l o c i t y
isGeneralRestModel = . f a l s e . , !< Boolean cho i c e v a r i a b l e f o r mode l l ing

! ! r e s t i t u t i o n f o r gene ra l m a t e r i a l s
i s F r i c R e g u l a r i z e d = . t rue . , !< Boolean cho i c e v a r i a b l e f o r mode l l ing

! ! a r e g u l a r i s e d f r i c t i o n law
fr icRegP = 0 .0 d0 , !< The r e g u l a r i z a t i o n parameter f o r f r i c t i o n s t i ck−s l i p law
modelChoice = 1 , !< Choice f o r contact model methods
isContactImplementUsingPointers = . f a l s e . , !< Choice f o r code f e a t u r e to s e l e c t

! ! contact models us ing a po in t e r
implementation

contactPena l ty = 0 .0 d0 , !< Model parameters f o r a pena l ty based
! ! contact law f o r s imple ca s e s

l inearDashpot = 0 .0 d0 , 0 . 0 d0 , !< Free parameters f o r l i n e a r dashpot normal f o r c e
v i s c o E l a s t i c = 0 .0 d0 , !< Free parameters f o r v i s c o e l a s t i c normal f o r c e
waltonBraun = 0 .0 d0 , 0 . 0 d0 , 0 . 0 d0 , 0 . 0 d0 ,!< Free parameters f o r walton−braun ’ s

! ! complete f o r c e model
haffWerner = 0 .0 d0 , !< Free parameters f o r ha f f−werner ’ s t a n g e n t i a l f o r c e

cunda l lS t rack = 0 .0 d0 / !< Free parameters f o r cundal l−s t rack ’ s t a n g e n t i a l f o r c e

E−AND−M
&EMFields EField = 0 .0 d0 , 0 . 0 d0 , 0 . 0 d0 , !< Exte rna l l y app l i ed e l e c t r i c f i e l d

BField = 0 .0 d0 , 0 . 0 d0 , 0 . 0 d0 / !< Exte rna l l y app l i ed magnetic f i e l d

BODY−FORCE
&Body BFDensity = 0 .0 d0 , !< Body f o r c e dens i ty

BFDirection = 0 .0 d0 , 0 . 0 d0 , 0 . 0 d0 / !< Body f o r c e o r i e n t a t i o n

ADHESIVE−PAR
&Adhesives alphaDep = 0 .0 d0 , !< Parameter f o r p a r t i c l e−s u r f a c e adhes ion f o r d e p o s i t i o n

alphaAgg = 0 .0 d0 / !< Parameter f o r p a r t i c l e−p a r t i c l e adhes ion f o r agg lomerat ion
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TIME−STEP
&TimeStepper startTime = 0 .0 d0 , !< Simulat ion s t a r t i n g time

stopTime = 0 .0 d0 , !< Simulat ion ending time
s t e p S i z e = 0 .0 d0 , !< Simulat ion step−s i z e
s t e p E r r t o l = 0 .0 d0 , !< Error t o l e r a n c e f o r adapt i v i t y
stepSizeMax = 0 .0 d0 , !< Maximum step s i z e s e l e c t i o n
s teps i zeMin = 0 .0 d0 , !< Minimum step s i z e s e l e c t i o n
schemeChoice = ’FWD’ , !< Time stepp ing scheme cho i c e
i sAdapt iveStep = . f a l s e . / !< Boolean cho i c e v a r i a b l e f o r an adapt ive time−

s t epper

STRESS−ANALYSIS
&S t r e s s C a l c u l a t o r i sMult iComposite = . f a l s e . , !< Choice v a r i a b l e f o r composite

! ! or porous m a t e r i a l s
p o r o s i t y = 0 .0 d0 , !< S p e c i f i c va lue f o r the p o r o s i t y
numStressPoints = 0 , 0 , 0 , !< Number o f g r id po in t s in each d i r e c t i o n

! ! f o r s t r e s s a n a l y s i s
stressAddDomainX = 0.0 d0 , !< Extending X d i r e c t i o n to bound the x domain
stressAddDomainY = 0.0 d0 , !< Extending Y d i r e c t i o n to bound the y domain
stressAddDomainZ = 0 .0 d0 , !< Extending Z d i r e c t i o n to bound the z domain
probeSt r e s s = 0 .0 d0 , 0 . 0 d0 , 0 . 0 d0 / !< S p e c i f i e d probe po int

coo rd ina t e s
! ! f o r s t r e s s c a l c u l a t i o n

END−OF−INPUT
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[16] FA Bombardelli, AE González, and YI Niño. Computation of the particle Bas-
set force with a fractional-derivative approach. Journal of Hydraulic Engineering,
134(October):1513–1520, 2008.

[17] R.S. Bradley. The cohesive force between solid surfaces and the surface energy of solids.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
13(86):853–862, 1932.

[18] Nikolai V Brilliantov, Frank Spahn, Jan Martin Hertzsch, and P Thorsten. A model
for collisions in granular gases. Physics Rev. E, 53(5), 1996.

[19] T M Burton and J K Eaton. Fully resolved simulations of particle-turbulence interac-
tion. Journal of Fluid Mechanics, 545(1):67–111, 2005.

[20] Y A Buyevich. Statistical hydromechanics of disperse systems Part 1. Physical back-
ground and general equations. Journal of Fluid Mechanics, 49(03):489–507, 1971.

[21] Y A Buyevich. Statistical hydromechanics of disperse systems. Part 2. Solution of the
kinetic equation for suspended particles. Journal of Fluid Mechanics, 52(02):345–355,
1972.

[22] GT Camacho and M Ortiz. Computational Modelling of Impact Damage in Brittle
Materials. International Journal of Solids and Structures, 33(2):2899–2938, 1996.

[23] J L Chaboche. Continuum damage mechanics. Journal of Applied Mechanics, 55(1):59–
64, 1988.

[24] A. Chatterjee and A. Ruina. A New Algebraic Rigid-Body Collision Law Based on
Impulse Space Considerations. Journal of Applied Mechanics, 65(4):939, 1998.

104



BIBLIOGRAPHY

[25] Anindya Chatterjee. On the realism of complementarity conditions in rigid body
collisions. Nonlinear Dynamics, 20:159–168, 1999.

[26] GJ Cheng, AB Yu, and P Zulli. Evaluation of Effective Thermal Conductivity from
the Structure of a Packed Bed. Chemical Engineering Science, 54:4199–4209, 1999.

[27] Ariel a. Chialvo and Pablo G. Debenedetti. On the use of the Verlet neighbor list in
molecular dynamics. Computer Physics Communications, 60(2):215–224, September
1990.

[28] S Corrsin. Estimates of the relations between Eulerian and Lagrangian scales in large
Reynolds number turbulence. Journal of Atmospheric Sciences, 20:115–119, 1963.

[29] C T Crowe, J D Schwarzkopf, M Sommerfeld, and Y Tsuji. Multiphase flows with
droplets and particles. CRC press, 2011.

[30] P. a. Cundall and O. D. L. Strack. A discrete numerical model for granular assemblies.
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