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Benefits and Risks of Early Life Iron Supplementation
Shasta A. McMillen , Richard Dean, Eileen Dihardja, Peng Ji and Bo Lönnerdal *

Department of Nutrition, University of California, Davis, CA 95616, USA
* Correspondence: bllonnerdal@ucdavis.edu

Abstract: Infants are frequently supplemented with iron to prevent iron deficiency, but iron supple-
ments may have adverse effects on infant health. Although iron supplements can be highly effective
at improving iron status and preventing iron deficiency anemia, iron may adversely affect growth and
development, and may increase risk for certain infections. Several reviews exist in this area; however,
none has fully summarized all reported outcomes of iron supplementation during infancy. In this
review, we summarize the risks and benefits of iron supplementation as they have been reported in
controlled studies and in relevant animal models. Additionally, we discuss the mechanisms that may
underly beneficial and adverse effects.

Keywords: infant nutrition; iron supplement; iron deficiency anemia; growth; neurodevelopment;
oxidative stress; trace mineral interactions; gut microbiome

1. Introduction

Iron is an essential trace element for human life: basic cellular reactions like energy
production and DNA replication require iron, and in mammals, iron transports oxygen
in the blood as hemoglobin. Insufficient iron intake to meet basic metabolic requirements
leads to deficiency. Iron deficiency (ID) affects 10–40% of infants and causes approximately
50% of anemia cases worldwide [1–3].

Infants are especially susceptible to ID and iron deficiency anemia (IDA), both of which
disrupt health and development [2–5], including adverse effects on long-term cognition
and behavior. Once an infant becomes iron deficient, correcting iron status through dietary
intervention prevents anemia, but may not correct disruptions to neurodevelopment and
long-term cognitive development because critical phases of brain development occur
during infancy [6,7].

Concern about the harms of ID has led to routine use of iron supplements to prevent
ID [4,5]. Iron supplements, whether iron drops, multi-nutrient packets (MNPs), fortified
formula, or fortified complementary foods, are effective at preventing or treating ID in
most infants. Based on the success of iron supplements for preventing ID and IDA, the
World Health Organization (WHO) recommends that iron supplements are provided to
infants in populations where anemia prevalence exceeds 40% [4]. The same rationale backs
the American Academy of Pediatrics’ (AAP) recommendations that exclusively breast-fed
infants receive iron supplements beginning at 4 months, and that formula-fed infants
receive iron-fortified formula [5].

The vast difference in iron intake—between the iron supplemented infant and the
un-supplemented infant receiving only breast milk—is important but generally under-
recognized. The Dietary Reference Intake (DRI) for iron for infants 0–6 months is 0.3 mg
per day, based on the amount provided in breast milk [8]. For healthy infants born at term,
liver iron stores in combination with the small amount provided in breast milk supports
healthy growth and development up to 6 mo [9–11], but most fortified formulas in the
USA contain 40×more iron than breast milk [12]. Even after accounting for differences in
bioavailability between breast milk iron and formula iron, formula still provides around 7×
more absorbable iron than breast milk. Furthermore, the AAP recommends 1 mg iron/kg
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daily supplementation for all exclusively or primarily breast-fed infants [5]. Following
these recommendations, an iron-supplemented 5 kg infant would receive 17×more iron
than what is provided by breast milk.

The WHO and AAP recommendations may lower the risk of ID, but infants with
low risk of ID who receive iron supplements may be at risk of adverse effects, including
disrupted growth and neurodevelopment, adverse nutrient interactions, and increased
morbidity and mortality [13–17]. The mechanisms underlying these effects remain unclear
and must be investigated for the risks of iron to be characterized; to predict which infants
are the most vulnerable to which outcomes; and to improve efficacy and safety of iron
provision [18,19].

Existing reviews in this area are of high quality [13–15,17,20], but they do not provide
a full overview of outcomes that have been observed in controlled human and animal
studies. The purpose of this review will be to summarize outcomes of iron supplementation
between birth and 12 months in infants, as well as the corresponding developmental stage
in animal models. With the goal of identifying the most promising directions for future
iron intervention research, we discuss likely biological mechanisms underlying risks and
benefits of iron supplementation during infancy.

2. Deficiency & Toxicity

Currently, the WHO recommends that infants age 6–23 months of age receive addi-
tional iron wherever anemia prevalence is estimated to be >40% [21]. Their recommenda-
tion is based on evidence from a meta-analysis of anemia outcomes [20]—part of a large
systematic review by Pasricha et al.—which showed that iron was effective at increas-
ing hemoglobin (p < 0.00001 for overall effect) and reducing risk of anemia for infants
(0.61 relative risk; p < 0.00001 for overall effect) (see Appendix Figure A1) [20]. Reductions
in anemia prevalence following iron provision are attributed to improvements in iron status,
because risk of ID is typically also reduced [20]. Nevertheless, it is necessary to re-evaluate
iron prophylaxis and its dose in infant populations—especially those living in areas of low
risk of IDA—despite effective anemia prevention, because studies have reported adverse
developmental outcomes of iron provision based on the current recommendations [22–26].

2.1. Defining Anemia

It is also necessary to re-evaluate the clinical definition of anemia for infants. The
global cutoff for infants and children under 5 years (<110 g Hb/L) has been unchanged
since it was defined in a 1968 WHO technical report on nutritional anemias [27,28]. The
technical report cites infant data from two studies published in 1954 and 1959 [29,30], both
of which included relatively small samples of infants (n = 237 and n = 129, respectively). In
their current guide for assessing anemia [27] the WHO states their cutoff was “validated” by
survey data collected in 1976–1980 during the National Health and Nutrition Examination
Survey II (NHANES II), published by the United States Center for Disease Control &
Prevention (CDC) in 1989 [27,31]. The CDC’s anemia cutoffs were derived from the 5th
percentile Hb values, calculated from a “nationally representative sample” (n = 979) of
“healthy” children 1–2 years old [31]. Notably, no Hb values were assessed in infants
under 12 months old during this survey [31,32]. In summary, the current definition of
anemia for infants is based on very limited evidence; therefore it is necessary to reconsider
population-level iron recommendations designed around preventing anemia.

2.2. Defining Iron Deficiency

Hb defines anemia but is not a specific biomarker for iron status [2]. Specific iron
biomarkers are serum ferritin (SF), serum iron, total iron binding capacity (TIBC), trans-
ferrin saturation, zinc protoporphyrin (ZPP) and soluble transferrin receptor (sTfR) [2].
Table 1 lists commonly used biomarkers as well as their cutoffs and their response to iron
supplementation. Based on NHANES II data, the CDC recommends three biomarkers are
used (ZPP, sTfR & SF), where at least two abnormal values would indicate ID [33]; however,
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often it is not feasible for clinicians to measure three biomarkers of iron in infants and young
children. Instead, SF is used in combination with Hb to detect IDA. For anemic infants and
children under 5 years of age, IDA is diagnosed when ferritin is <12 µg/L [34]. SF is a good
biomarker for iron but also an acute phase protein that is elevated during systemic inflam-
mation and thus may mask the presence of ID. Therefore, the WHO recommends a higher
SF cutoff (<30 µg/L) to diagnose ID in infants in the presence of infection [34]. Researchers
may assess inflammatory status alongside SF (e.g., C-reactive protein) to determine the
validity of SF values; however, this method has not yet been standardized and the overall
validity of SF as a biomarker for iron status during infancy remains uncertain [35].

Table 1. Common biomarkers for defining anemia and iron deficiency in infants.

Biomarker Anemia Cutoff Iron
Deficiency Cutoff

Response to Iron
Supplementation References

Hemoglobin <110 g/L - ↑ or no change [27–32]
Serum Ferritin 1 - <12 µg/L ↑ [33–35]

Transferrin Saturation 1 - <10% ↑ [32,33]
Zinc Protoporphyrin - 80µmol/mol heme ↓ [33]

Soluble Transferrin Receptor - 8.3 mg/L ↓ [33]
1 Also elevated by inflammation [33]. ↑, Increased with iron supplementation; ↓, decreased with iron supplementation.

Concrete evidence remains limited surrounding iron assessment and anemia diagnosis
in infants, as well as the prevalence of infant ID or IDA. Thus, current practices for assessing
iron status of infants and diagnosing ID or IDA rely on biomarker cutoffs that were defined
by outdated, poor-quality evidence. Nevertheless, if one assumes these cutoffs are reliable,
then there is evidence that: (1) there is high prevalence of IDA among toddlers 1–3 years of
age [2]; (2) ID or IDA during infancy is associated with poorer developmental outcomes,
particularly outcomes related to the nervous system and cognitive development [7]; (3) as
stated above, controlled iron supplementation trials show reduced risk for ID and IDA [20].
However, whether iron supplementation improves and prevents poorer development
outcomes is still unclear [15,20,36].

2.3. Iron Supplementation, Iron Status, & Hematology

There are inherent limitations to diagnosing ID and IDA during infancy, but there
is good evidence that providing additional dietary iron will improve iron status. This is
further supported by animal models: increased Hb, SF, transferrin saturation and serum
iron, as well as increased liver iron concentration (a direct measure of iron stores) have
been observed in swine, rats and mice. Studies in animal models support that Hb and iron
biomarkers are elevated by iron supplementation but depend on baseline iron status as
well as the dose, duration and form of iron supplementation.

Domesticated pigs are born without sufficient iron stores and must receive exogenous
iron to prevent anemia (defined as <90 g Hb/L). Typically, 100–200 mg iron is administered
to piglets during the first week of life as a single intramuscular or subcutaneous injection
of iron dextran [37]. In one neonatal piglet study, non-supplemented piglets were severely
anemic (mean Hb 72 g/L) by postnatal day (PD) 8, but piglets that had received an
iron dextran injection or 5 days of oral iron had normal Hb levels (99 g/L and 100 g/L,
respectively). SF, TIBC and serum iron, as well as spleen, liver, heart and kidney iron
levels were also significantly elevated compared to non-supplemented piglets. Notably,
greater iron loading in spleen, liver and kidney was observed in the iron dextran group
compared to the oral iron group [38]. A small study from our group also found that non-
supplemented piglets became severely anemic by PD 14, but iron dextran injections (100 mg
iron) or oral iron (10 mg iron/kg BW as ferrous sulfate drops) prevented anemia at this
age [39]. Similar results were reported in other pig studies [40–43]. Recently, in a larger and
more robustly designed study where the control group received vehicle supplementation
without additional iron, Hb was similar at PD 14 between control and iron-supplemented
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groups; anemia was observed at PD 35 only in the control group (82 g Hb/L), suggesting a
long-term effect of iron supplementation [44]. The smaller effect of iron on Hb in the latter
study [44] compared to the previous studies [38,39] may be explained by the differences in
iron dose (1 vs. 10 or 15–20 mg iron/kg BW, respectively).

Rodent studies show that iron supplementation prior to weaning increases body iron
levels, but effects on hematology are inconsistent [45–54]. Our group observed that in rat
pups with ID, induced by a maternal low iron diet, iron supplementation corrected Hb
and tissue iron levels [45]. Other studies show that hematopoiesis in rodents that were
not ID at birth was either increased or unchanged by iron supplementation. Varying the
iron dose produces variation in hematology and iron status outcomes, suggesting that
iron intake levels affect hematopoiesis [39,41,44,46]. In summary, the extent to which iron
supplementation improves iron stores and Hb in the pre-weanling animal depends on
baseline iron status as well as the dose and type of iron administered.

2.4. Developmental Regulation of Iron

Homeostatic mechanisms control iron availability in early life, and postnatal growth
necessitates rapid expansion of blood volume which increases demand for iron (Figure 1).
Erythropoietin (EPO) is synthesized by the kidney in response to low oxygen or ID. Through
endocrine signaling, EPO drives erythropoiesis and increases erythroferrone (ERFE) pro-
duction in the bone marrow. ERFE signaling ensures that there is sufficient iron available for
heme synthesis and RBC production by promoting iron absorption and increases circulating
levels of iron, which is accomplished through suppression of hepcidin transcription in
hepatocytes. Conversely, the iron regulatory hormone hepcidin is upregulated by bone mor-
phogenic protein (BMP6) signaling in response to iron sensing by hepatic endothelial cells—
in the absence of suppression by ERFE [55,56]. Hepcidin blocks ferroportin-mediated iron
export in enterocytes, iron-storing hepatocytes, and spleen reticuloendothelial macrophages
resulting in reduced iron circulation in the blood. This also leads to reduced iron absorption
in the small intestine. The hepcidin-ferroportin axis serves as the systemic regulatory
mechanism that prevents iron toxicity from dietary overexposure [57,58]. However, re-
cent evidence suggests that this mechanism is not functionally mature in infants: Iron
absorption is not well regulated in response to iron over-supplementation during the first
year of life [9,10]. The same appears to be true for pre-weanling mice [59], rats [45,60] and
piglets [39]. These animal studies show that intestinal ferroportin is hypo-responsive to
hepcidin-induced degradation and permits elevated iron absorption during early develop-
ment, despite substantial hepatic iron deposition [39,45,48,59,60]. This suggests infants are
more vulnerable to iron overload.

2.5. Oxidative Stress Results from Iron Overload

Iron is a pro-oxidative element and iron overload in cells disrupts the oxidative balance
by generating reactive oxygen species (ROS). Iron catalyzes the conversion of hydrogen
peroxide into the highly oxidizing species hydroxyl radical. Iron overload thereby causes lipid,
protein and DNA oxidation, which can ultimately result in cell death. This type of cell death
caused by iron-induced lipid peroxidation and ROS accumulation is termed ferroptosis [61,62].
Mutations in the hepcidin-ferroportin pathway cause hereditary hemochromatosis (HH), an
iron overload disease that demonstrates the pathological effects of iron toxicity. During HH,
iron accumulates in the liver, where extreme iron overload initiates fibrosis, then cirrhosis and
loss of liver function [63,64], eventually leading to complications and death if untreated [63,64].
In HH patients, liver fibrosis is believed to result from iron-induced oxidative stress [65]. Iron
overload leads to extrahepatic iron loading, negatively affecting functions of other tissues.
Thus, iron overload resulting from blunted regulation of iron absorption in early life may
explain how excess iron can be harmful to development, but whether excess iron in early
life causes tissue iron overload and oxidative stress remains to be investigated. Iron-toxicity
injuries to developing organs like the liver would explain delays in growth and other adverse
effects of iron supplementation in young children [10,13].
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Figure 1. Iron regulation in the infant in response to iron supplementation. TOP—Iron regulation in
the breast-fed infant in the absence of iron supplementation (1) The kidney secretes erythropoietin
(EPO) to support the expansion of blood volume in response to low iron and low oxygen sensing;
(2) EPO enters circulation and travels to the bone marrow, (3) where it drives erythropoiesis and
secretion of erythroferrone (ERFE); (4) ERFE travels to the liver and suppresses hepcidin (HAMP)
production, which allows for increased transferrin-bound iron in circulation; suppression of HAMP
allows export of iron from the (5) spleen via ferroportin, as well as increased intestinal absorption
of iron through ferroportin, both of which further increases iron in circulation. BOTTOM—Iron
regulation in response to iron supplementation: (1) iron from supplementation is absorbed through
the duodenal mucosa, is picked up by transferrin, and travels to the liver (2), increasing iron stores
and up-regulating HAMP; (3) HAMP enters the circulation; (4) transferrin-bound iron supports
increased erythropoiesis; in the spleen (5) erythrocytes are recycled but iron is sequestered because
HAMP prevents export through ferroportin; (6) elevated iron and blood volume suppresses EPO
production in the kidney.
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One double-blinded RCT investigated whether the amount of iron in formula alters
blood markers of oxidative stress in infants [66]. Infants consuming 4 mg iron/L (as lactoferrin
and FS) had greater plasma glutathione peroxidase activity (a marker of antioxidant activity)
than those receiving more iron (6.9 mg iron/L as FS). The higher activity may have been due
to higher levels of selenium in the 4 mg iron/L formulas, because selenium is a required
component of glutathione peroxidase. When controlling for copper and selenium, there was
no difference in glutathione peroxidase activity due to iron levels. Another RCT in Sweden
and Honduras found that daily iron supplementation from 4–9 mo of age (at 1 mg/kg body
weight, the current recommended dose) reduced plasma copper-zinc superoxide dismutase
(SOD) activity, which is an antioxidant marker as well as an indicator of copper status [26].

Few other studies in human infants have reported effects on oxidative stress markers,
but animal studies provide some insight. Nearly all iron supplementation studies that have
measured oxidative stress in pre-weanling animal models have focused on oxidative stress
in the CNS [39,48,49,53,67–74]. Our group observed no significant effect on hippocam-
pal oxidative stress in pre-weanling rats or weanling piglets [39,48]. Dong et al. found
that in piglets—which are born with ID—iron supplementation decreased expression of
pro-inflammatory cytokines in the liver and spleen while increasing expression of genes
involved in anti-oxidative activity [38]. Intriguingly, this effect was unique to the piglet
group orally receiving ferrous glycine chelate iron, while the iron dextran injection group
actually had increased expression of interleukin-1β and had no effect on antioxidant gene
expression in the liver. Although both forms of iron had similar effects on Hb and SF,
injection of iron dextran further increased hepatic and extrahepatic iron loading, and this
likely contributed to the elevated inflammatory and oxidative stress markers [38]. Inconsis-
tent oxidative stress effects have been observed in various brain regions in aging rodents
following excess neonatal iron supplementation [49,53,67,69–74]. Few studies assessed
tissue iron content or iron status when determining long-term oxidative stress effects of
neonatal iron exposure. Kaur et al. observed increased oxidative stress in the substantia
nigra (SN) of aged mice (12 mo) but not young adult mice (2 mo) following neonatal iron
exposure, and this was associated with increased SN iron levels and reduced CNS motor
circuit (nigrostriatal) activity [49]. Additional studies in human infants and animal models
are necessary to understand how the pro-oxidative effects of iron might play a role in the
growth and development outcomes of iron supplementation.

3. Growth & Development
3.1. Growth Effects of Dietary Iron Excess

Controlled studies have shown that iron supplementation of iron-replete infants neg-
atively impacts their growth [22,24,75], but this effect has not been consistent in all stud-
ies [20,76]. A randomized placebo-controlled trial (RCT) reported iron supplementation from
4–9 mo reduced length-gain and head circumference-gain to 9 mo in Swedish infants who
had low risk of ID [22]. A separate RCT in Indonesia found that iron provision reduced
weight-for-age and length-for-age z-scores of iron-replete infants [24]. Another RCT in South
East Asia found that iron supplementation from 6 to 12 months reduced length-for-age,
but only in infants who had a healthy birth weight at baseline [75]. However, a more re-
cent RCT from our group did not find any effects on growth metrics for healthy, full term
Swedish infants from 6 weeks to 6 months [77]. It should be noted, though, that the previous
three studies [22,24,75] all provided iron as drops, whereas the latter one provided iron in
infant formula. A systematic review and meta-analysis of randomized controlled studies in
children age 4–23 months reported negative effects of iron on weight and length gain [20],
while another systematic review and meta-analysis of studies in children age 6–23 months did
not find an effect on growth [76]. The difference in age of introduction of iron supplementation
may explain this discrepancy–considerably more iron may be absorbed during 4–6 months of
age when regulation of iron absorption is immature [9,10]. Yet, another comparable review
and meta-analysis will investigate growth effects in iron-replete infants [36]. To date, there are
insufficient studies to conclude the effect of iron supplementation on the growth of healthy,
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iron-replete infants. Nevertheless, the finding that iron is disruptive to growth in some cases
demands further investigation into these effects.

3.2. Neurodevelopmental Outcomes of Iron Supplementation

The cognitive and behavioral effects of iron administration are also inconsistent [15]. Iron
provision may prevent ID-related disruptions to nervous system development, but may be
harmful to iron-replete infants, leading to long-term cognitive and behavioral deficits [78,79].

A well-powered, double-blind RCT conducted in Chile observed improved iron status
and metrics of behavioral and social development in infants fed high-iron formula levels
(12 vs. 2.3 mg iron/L as FS) from 6–12 mo of age. However, the pooling of breast-fed
and formula-fed groups and the poor control of iron intake in this study muddles the
interpretation of these results [80,81]. Moreover, despite exclusion of infants with IDA,
ID may have been common at baseline. A follow-up study found increased response to
reward, language abilities, and motor function in 10-year-olds who had been pooled into
the high-iron group as infants. The authors did not report whether baseline iron status
or estimated daily iron intake influenced behavioral outcomes of iron provision [82]. An
additional follow-up study of this trial reported adverse cognitive and behavior effects
in 16-year-olds who had received high-iron formula during infancy [79]. A small RCT in
Canada found a positive effect of iron on Bayley’s scores of cognitive development [83],
but iron intake from formula was poorly controlled and drop-out rates relatively high in
this study. Another small RCT in Spain found that adding iron to cow’s milk improved the
iron status of infants who were already iron-replete at baseline, but did not affect mental
and psychomotor development metrics [84]. Thus, the impact of iron supplementation on
long-term cognitive function is still unclear.

Ideally, supplement dose would be determined by an infant’s baseline iron status and
optimized for healthy brain development, but this requires robust, well-powered studies.
Unfortunately, few well-powered studies have measured baseline iron status or stratified
results according to baseline iron status. One follow-up [78] of the same RCT above [80,81]
found that after exclusion of anemic infants, baseline Hb predicted the effects of formula iron
(12 vs. 2.3 mg/L) on cognitive development scores: infants with higher hemoglobin levels at
baseline had poorer development scores at 10 years of age if they received high-iron formula,
while infants with lower hemoglobin at baseline had improved development scores [78].

In a meta-analysis of RCTs, Pasricha et al. found that iron supplementation of all
children aged 4–23 months did not affect Bayley’s mental or psychomotor development
scores. Indeed, they observed a positive effect on Bayley scores when iron was provided to
iron-deficient children, but stated there were insufficient well-powered studies to conclude
whether iron provision is beneficial or harmful to iron-replete infants [20]. An upcoming
systematic review from Hare et al. and meta-analysis may provide further insight on this
matter [36]. Animal studies provide some compelling evidence that excess iron is harmful
to brain development and leads to long-term cognitive and psychomotor deficits (discussed
below); however, more human studies are needed to confirm these effects [15].

3.3. Mechanisms Underlying Neurodevelopmental Effects of Iron Supplementation

Iron is required not only for postnatal proliferation and differentiation of the central
nervous system (CNS)—which begins prenatally and continues postnatally—but also for
CNS-specific pathways, including neurotransmitter synthesis and myelination [85]. Brain
regions with greater metabolic need for iron are programmed to import iron more rapidly
than other regions. By this reasoning, such regions may permit excess iron loading and
influence susceptibility to iron toxicity-induced oxidative stress. Oxidative stress damages
CNS cells by triggering apoptosis, ferroptosis and necrosis.

The adult hippocampus is heavily myelinated, and the infant hippocampus requires
relatively large amounts of iron because myelin synthesis is iron-demanding and peaks
at this age. Myelin sheaths in the CNS are formed by oligodendrocytes, which wrap their
myelin around neuronal axons, surrounding and insulating them to reduce axon resistance
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and accelerate signaling speed. Oligodendrocytes and their precursors must import and
store sufficient iron for myelination, which is why ID leads to insufficient myelination. This
may explain how ID during infancy leads to long-term cognitive and behavioral deficits;
however, myelination is only one of many iron-demanding processes that take place in the
CNS during the first year of life [86].

One study in pre-weanling rats observed that excess iron increased total iron content
in the cortex, hippocampus, substantia nigra, thalamus, deep cerebellum and pons, but not
in the striatum at PD 21. In contrast, supplying iron after weaning increased iron in the
hippocampus and pons at PD 35, but not in other regions. Moreover, pre-weanling rats
supplemented through PD 35 had elevated iron levels in the cortex, hippocampus, pons
and superficial cerebellum [54]. These findings provide evidence that brain regions are
differentially affected by iron supplementation.

Another study investigated how the timing of excess iron exposure affected oxidative
stress in various brain regions. A gastric gavage of iron (10 mg iron/kg BW as ferrous
succinate) was administered daily to rats PD 5–7, PD 10–12, PD 19–21 (pre-weaning), or PD
30–32 (post-weaning), and brain regions were assessed for oxidative stress at 3–5 mo of age
(adulthood) [73]. They observed that pre-weanling iron exposure caused oxidative stress
in the hippocampus, cortex and substantia nigra, suggesting a lasting effect of early life
brain iron accumulation. Furthermore, CNS oxidative stress in this study was associated
with impaired recognition memory. The hippocampus is part of the brain circuitry that
encodes learning and memory—including spatial mapping and social cognition—and was
also the region most consistently affected by oxidative stress in this study. The results
from this study [73] are in agreement with recent studies from our group in piglets [39,87]
and suggest that excess iron provision causes iron loading and oxidative stress in the
hippocampus, associated with adverse effects on long-term cognitive function.

In a long-term animal study, oxidative stress was measured in brain regions of aging
rats that were exposed to excess iron as neonates (oral gavage of 120 mg iron/kg BW as
carbonyl iron). They found that pre-weanling iron overexposure elevated substantia nigra
malondialdehyde (MDA) content (a marker for lipid peroxidation) and reduced glutathione
content (a marker for antioxidant activity) at PD 400. These changes were associated with
reduced dopamine neurotransmitter content in the striatum, as well as alterations in motor
behavior, suggesting that excess iron in early life may lead to long-term dysfunction of the
nigrostriatal pathway, a brain circuit involved in controlling movement, memory and response
to reward [68]. Additional animal studies are needed to confirm these effects; however, these
findings are congruent to cognitive and behavior effects in human infants [78].

4. Trace Mineral Interactions
4.1. Iron Deficiency May Mask Copper or Zinc Deficiency

Prolonged copper or zinc deficiency leads to iron deficiency. Copper is a required
component of hephaestin and ceruloplasmin, which operate as co-transporters of iron [88].
Copper deficiency progressively diminishes the activity of these co-transporters, thereby
reducing intestinal iron absorption, which causes iron deficiency. Similarly, zinc deficiency
reduces iron absorption by suppressing the expression of the iron importer DMT1 and the
iron exporter ferroportin [89–91].

In cases when ID derives from copper or zinc deficiency, iron supplementation would not be
an effective treatment, as iron intake may be sufficient. Conversely, excess dietary trace mineral
intake, such as excess iron, can affect absorption and metabolism of other trace minerals [92].

4.2. Iron Competes with Other Trace Minerals for Absorption & Metabolism

Excess iron may disrupt absorption and metabolism of other trace minerals. In a
secondary analysis of a randomized, placebo-controlled trial, serum zinc decreased in
infants after 6 months of iron supplementation, but only in infants that were iron-replete at
baseline (6 months). However, a study in non-anemic Kenyan infants did not find an effect
on serum zinc or zinc absorption with the addition of iron in micronutrient powder [93].
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Copper-zinc superoxide (CuZnSOD) dismutase activity, a marker of copper status, was
reduced in iron vs. placebo-supplemented infants at 9 months; however, no effect on
serum copper was observed [26]. Insufficient research exists to ascertain that excess iron
influences infant zinc and copper status, but similarities in biochemistry and pathways of
absorption among iron, zinc, copper and manganese may explain how excess iron intake
would disrupt trace mineral metabolism.

A pre-weanling rat supplementation study from our group demonstrated that tissue
levels of zinc, copper, and manganese were altered by excess iron supplementation [46]. Pre-
weanling rats with high iron intake had reduced liver copper levels and elevated levels of
zinc in the liver, kidney, brain, and intestine compared to a vehicle control group. Prolonged
supplementation with excess iron reduced zinc and copper levels in rat brains, reduced
zinc and manganese in spleen tissue and caused elevated zinc in the liver. Lower levels of
iron supplementation affected trace mineral levels to a lesser extent in the pre-weanling
rats, suggesting that excess early life iron supplementation stimulates dysregulation of
trace mineral metabolism. Nevertheless, additional studies are needed to determine how
and when excess iron influences or disrupts trace mineral status in infants.

4.3. Trace Minerals and Oxidative Stress

The transporters DMT1, ZIP8, and ZIP14 import divalent metals including iron, copper,
zinc, and manganese [45,94–96], therefore it is possible that high levels of iron may out-
compete other divalent metals for import, and this may explain alterations in availability
of these minerals in response to excess iron supplementation. Likely a secondary effect
of cellular iron loading is the upregulation of trace metal binding and storage proteins
such as copper-zinc SOD, manganese SOD, metallothioneins (MT) and ceruloplasmin (CP).
MTs, CP, and copper-zinc or manganese SODs require these metals to function as ROS
scavengers and their upregulation is induced by oxidative stress. By this reasoning iron
loading may upregulate antioxidant, metal-binding proteins including MTs, SODs and
CP by inducing oxidative stress. Since zinc and copper are needed for basic metabolism,
growth and resistance to infection, disrupting their availability to growing organs and
tissues would disrupt development and health [8]. However, it remains to be investigated
if mineral interactions in the context of excess iron are linked to the adverse growth and
development effects of excess iron.

5. Morbidity & Mortality
5.1. Iron Affects Morbidity & Mortality of Infants & Children

Approximately 90% of iron from FS, a common iron supplement, remains in the
gastrointestinal (GI) tract until it is excreted [9]. The GI side effects of FS iron supplements
are well-established: after pooling data from 43 studies, a meta-analysis of GI side effects
of FS for adults estimated an 11% incidence rate for nausea, 12% for constipation and 8%
for diarrhea [97]. Another systematic review and meta-analysis estimated that 1 in 3 adults
who received FS supplementation experiences some adverse effects [98]. It seems likely
that infants would be affected similarly, but this has not been fully investigated.

Iron provision has been associated with increased risk of diarrhea and respiratory infection
in some studies [17,20]. If excess iron increases infection risk, this may explain how growth is
negatively affected by iron supplementation in some cases [22,24,75]. A previous study from
our group found that diarrhea frequency increased and growth was reduced for infants in
Sweden and Honduras who had normal Hb levels at baseline, while the opposite was true
for infants who were anemic at baseline [22]. For many studies reporting no effect of iron
supplementation on diarrhea frequency, results are not stratified according to baseline iron
status (provided that baseline iron status was measured in the study) [99–104]. One recent
study found that infants who were treated with antibiotics experienced greater frequency of
diarrhea if they were also receiving MNP with iron, as compared to infants who were treated
with antibiotics while receiving MNP without iron, as part of a larger double-blinded RCT [25].
Increased iron availability in the gut may have increased the proliferation of diarrhea-causing
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Clostridium difficile in infants receiving high-iron formula and iron drops [105]. The bioavailability
of iron (i.e., the extent to which iron is absorbed or passed through the gut) may be influenced
significantly by intervention methodology: supplementation vs. fortification with iron, form of
iron used, and timing of iron administration [9,11,17]. In their review of diarrhea outcomes [17],
Ghanchi et al. suggested that supplementation may increase risk for diarrhea when compared
to fortification; conversely, more expensive forms of iron (such as NaFeEDTA) may lower the
risk for diarrhea compared to iron salts. Furthermore, common foods introduced as part of
the complementary diet after 6 months of age influence iron absorption: grains, beans, and
legumes contain indigestible phytates that reduce iron bioavailability, and citric or ascorbic
acids in foods can augment iron absorption [106]. However, there are still an insufficient
number of comparative studies to define the safest iron intervention methods for infants. In
summary, current evidence suggests that baseline microbiota, iron status and iron intervention
methodology are essential for predicting whether iron may increase morbidity in infants.

5.2. Gut Development & the Gut Microbiota

Alterations to the gut microbiota may contribute to GI side effects of iron supplements,
as well as growth and development outcomes. Infancy is a critical period for symbiotic gut
microbiota colonization and recent studies show that iron supplements alter the gut micro-
biota in ways that may be unfavorable to infant GI health [23,105,107,108]. Enteropathogens
invade more easily during this age due to immature barrier function of the intestinal mu-
cosa [109], leading to diarrhea or other infections [17,110]. Bacteria translocating across the
mucosa trigger pro-inflammatory signaling, perhaps leading to diarrhea, both of which are
likely to impair the nutrient absorption capacity of the GI tract [111]. Prolonged GI inflam-
mation or diarrhea might therefore reduce an infant’s growth rate, suggesting GI effects are
mechanistically related to adverse growth and development effects of excess iron.

An important aspect of development involves healthy colonization of the gut with
commensal microbes, because the gut microbiota provides essential roles to their host’s
health and development [112–114]. Besides maternal microbiota and birth method, the
infant diet is the major determinant of gut colonization [114–117]. Breastfeeding and breast
milk support healthy gut microbiota development by providing prebiotic oligosaccharides
that preferentially craft the infant gut so that it is dominated by commensal Bifidobacterium
infantis, which serves multiple health and development roles [118–121]. Bifidobacterium
infantis has been shown to suppress the proliferation of pathogens and improve the integrity
of the mucosal barrier, preventing inflammation and diarrhea [121]. Multiple studies have
shown that iron reduces the abundance of commensal bacteria (including Bifidobacterium
infantis) and elevates pathogen-associated bacteria [16,25,107]. Since commensal gut bac-
teria are so important for health and development, disrupting healthy colonization with
commensals might explain some adverse outcomes of iron [108,112,122]. The gut micro-
biome of iron-replete infants may be more adversely affected by iron, but only one study
has investigated gut microbiota outcomes in healthy, iron-replete infants [105].

A double-blind RCT of iron in micronutrient powder (MNP) given to Kenyan infants
found increased abundance of Clostridium and Escherichia/Shigella–including increased
pathogenic strains of E. coli–as well as elevated calprotectin, a measure of GI inflamma-
tion [23]. An additional robustly designed, double-blinded placebo controlled trial tested
the effects of iron in MNP which was provided to 6-months old Kenyan infants for 3 months.
In contrast to infants who received MNP without iron, infants who consumed MNP with
iron had reduced abundance of commensal bacteria Bifidobacterium over time, while main-
taining the abundance of Escherichia [107]. Another study from this group that was part of
a large double-blind RCT in Kenya concluded that the addition of galacto-oligosaccharides
(GOS) to the MNP with iron prevented its adverse effects on the microbiome. Despite the
small sample size in this study, the results provide compelling evidence that iron adversely
alters microbiome development by disruption of colonization by commensal bacteria [108].
A separate analysis that was part of this RCT followed gut microbiota changes and diar-
rhea outcomes in infants participating in the trial that had to be treated with antibiotics.
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Antibiotics were not as effective at suppressing the growth of enteropathogens or reduc-
ing diarrhea incidence in infants who were receiving MNP with iron, as compared to
antibiotic-treated infants receiving MNP without iron [25]. These findings suggest that
infants receiving iron supplements would be more susceptible to enteropathogens and
have more diarrhea despite antibiotic treatment [35].

Disruptions to gut microbiota development lead to adverse effects on infant health,
including alterations to GI development, metabolic signaling, brain development and
immune system development [112,122]. Therefore, further studies are necessary to define
how excess iron-induced alterations to gut microbiota development during infancy impact
infant health and growth [13,16]. Considering that infant gut microbiota development is
so important for overall development and that increased iron levels in the gut may cause
adverse GI side effects and gut microbiota dysbiosis, it seems likely that the gut microbiota
is involved in the adverse development effects of excess iron. Additional studies in animal
models should characterize effects of excess iron on gut microbiota development and
generate hypotheses about iron-induced alterations to the microbiota that may be causing
adverse health and development outcomes.

6. Conclusions

Our conclusions are summarized graphically in Figure 2. Iron supplementation during
infancy improves iron status, thereby reducing the risk of developing ID or IDA. However,
the capacity of exogenous iron provision to disrupt health and development of otherwise
healthy infants who are iron-replete is unclear because few existing studies have specifically
measured iron status at baseline. Further, translationally optimized animal models are
needed to investigate the mechanisms behind the adverse effects to infant health. Excess
iron provision may delay growth and neurodevelopment and increase susceptibility to
disease and infection, and it is likely that iron toxicity, mineral interactions and alterations
in the gut microbiota are behind these outcomes.

Figure 2. Iron Supplementation During Infancy. A graphical summary of the beneficial and adverse
effects of iron supplementation of infants.
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