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Abstract

Item response theory (IRT) models typically rely on a normality assumption for
subject-specific latent traits, which is often unrealistic in practice. Semiparametric
extensions based on Dirichlet process mixtures offer a more flexible representation of
the unknown distribution of the latent trait. However, the use of such models in
the IRT literature has been extremely limited, in good part because of the lack of
comprehensive studies and accessible software tools. This paper provides guidance for
practitioners on semiparametric IRT models and their implementation. In particular,
we rely on NIMBLE, a flexible software system for hierarchical models that enables
the use of Dirichlet process mixtures. We highlight efficient sampling strategies for
model estimation and compare inferential results under parametric and semiparametric
models.

Keywords: binary IRT models, Dirichlet process mixture, MCMC strategies, NIM-
BLE.
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1 Introduction

Traditional approaches in item response theory (IRT) modeling rely on the assumption
that subject-specific latent traits follow a normal distribution. This assumption is often
considered for computational convenience, but there are many situations in which it may be
unrealistic (Samejima, 1997). For example, Micceri (1989) gives a comprehensive review of
many psychometric datasets where the distribution of latent individual trait does not respect
the normality assumption and presents instead asymmetries, heavy-tails or multimodality. In
addition, estimation of IRT parameters in the presence of non-normal latent traits has been
shown to produce biased estimates of the parameters (see, for example Finch & Edwards,
2016; Kirisci, chi Hsu, & Yu, 2001; Schmitt, Mehta, Aggen, Kubarych, & Neale, 2006; Seong,
1990).

Different proposals have been made in the general IRT literature for relaxing this nor-
mality assumption, using either Markov chain Monte Carlo (MCMC) or Marginal Maximum
Likelihood (MML) estimation methods. One option is to rely on more general parametric as-
sumptions. For example, Azevedo, Bolfarine, and Andrade (2011) considered a skew-normal
distribution (Azzalini, 1985), while others have suggested finite mixtures of normal distribu-
tions (Bambirra Gonçalves, da Costa Campos Dias, & Machado Soares, 2018; Bolt, Cohen,
& Wollack, 2001). Alternatively, one can refrain from making a distributional assumption
on the latent abilities by using nonparametric maximum likelihood estimation (Laird, 1978;
Mislevy, 1984), B-splines (Johnson, 2007; Woods & Thissen, 2006) or empirical histograms
(Woods, 2007).

This paper considers a Bayesian nonparametric approach that uses a Dirichlet process
mixture (Escobar & West, 1995; Ferguson, 1973; Lo, 1984) as a nonparametric prior on
the distribution of the subject-specific latent trait. Dirichlet process mixtures are often
used as flexible models to describe the unknown distribution of a heterogeneous population
of interest. These models are sometimes interpreted as mixture models with an infinite
number of components. In practice these models treat the number of groups as an unknown
parameter and estimate it from the data, so that the model can easily account for multi-
modality, asymmetries or outliers in the latent trait distribution. We focus in particular
on semiparametric extensions of logistic IRT models for binary responses. Such models
are semiparametric because they retain other, parametric, assumptions of binomial mixed
models, such as the functional form of the link function.

Even though some Bayesian nonparametric extensions of binary IRT models have been
presented in the literature, they have been given only limited consideration. Within this ap-
proach, the semiparametric 1PL model has been the focus of more effort as well as software
(Jara, Hanson, Quintana, Müller, & Rosner, 2011, DPpackage, no longer actively main-
tained). San Mart́ın, Jara, Rolin, and Mouchart (2011) investigated a semiparametric gen-
eralization of the 1PL model from a theoretical perspective, while Finch and Edwards (2016)
provided results from simulation studies. An example using the semiparametric 2PL model
is given in Duncan and MacEachern (2008). However, such semiparametric models have
not received much attention in applied IRT modeling, in good part because of the lack of
comprehensive studies and accessible software tools.

The goal of this paper is to provide a practical guide to semiparametric IRT models for
both (i) applied researchers interested in using Dirichlet process mixtures, and (ii) those fa-
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miliar with Bayesian nonparametrics concepts who are interested in IRT models. To achieve
these goals, we fill three major gaps that hinder the widespread application of semiparametric
Bayesian IRT models.

First, we implement the semiparametric 1PL, 2PL and 3PL models in NIMBLE (de
Valpine et al., 2017) (R package nimble, de Valpine et al., 2020), a flexibleR-based system for
hierarchical modeling. In particular, NIMBLE provides functionality for fitting hierarchical
models that involve Dirichlet process priors either via a Chinese Restaurant Process (CRP)
(Aldous, 1985; Blackwell & MacQueen, 1973; Pitman, 1996) or a truncated stick-breaking
(SB) (Sethuraman, 1994) representation of the prior. Hence, NIMBLE supports a much
wider class of models than those that are implemented in standard software packages. Code is
provided for all examples in a publicly accessible GitHub repository (https://github.com/
salleuska/IRTnimblecode).

Second, focusing on the 2PL model, we study the efficiency of several MCMC sampling
strategies in both simulated and real-data scenarios. We define sampling strategies as the
combination of model parameterization, identifiability constraints and sampling algorithms,
focusing on general MCMC algorithms available in easy-to-access software tools for Bayesian
hierarchical models. We find that some choices of parameterization and identifiability con-
straints can yield order-of-magnitude differences in sampling efficiency compared to others.
This approach also allows us to compare various random walk Metropolis-Hastings MCMC
strategies to the Hamiltonian Monte Carlo (HMC) strategy implemented in the widely used
Stan package (Stan Development Team, 2018). Although there is Stan support for many
parametric IRT models (Bürkner, 2021; Furr, 2017), HMC algorithms are not readily avail-
able for Dirichlet process prior models, since HMC cannot sample discrete parameters (the
component indicators), which cannot be easily integrated out in infinite mixture models.

Finally, we present a comparison of inferential results for item and subject parameters
under parametric and semiparametric specifications. To make these comparisons fair, we
carefully elicit prior distributions for the models by matching the prior predictive distribu-
tion of the data to a common distribution (Berger & Pericchi, 1996). We also illustrate
how to estimate the entire distribution of latent traits and its functionals under the two
specifications. As expected, we find that the semiparametric model improves recovery of
item and individual latent trait parameters in the case of non-normal latent traits. More
surprisingly, there seems to be little inferential penalty in using a semiparametric model
when a parametric model would be correct, supporting the benefit of greater robustness to
mis-specification. These conclusions are based on analyses carried out on simulated data
as well as two real datasets related to education and medical assessments: the 2007 Trends
in International Mathematics and Science Study (TIMSS) and the 1996 Health Survey for
England. For both the real data examples, the semiparametric model performs better than
the parametric counterpart, with the semiparametric model identifying distinct modes in the
distribution of the latent trait missed by the parametric model.

We note that other authors have considered nonparametric IRT models that rely on a
general monotonic function in place of the logistic/probit link function. These models are
sometimes referred as NIRT models. Some work using the Dirichlet process falls in this class
of models (Karabatsos, 2017; Miyazaki & Hoshino, 2009; Qin, 1998). While we do not pursue
this direction in this paper, focusing instead on nonparametric modeling of the latent trait
distribution, such an extension is relatively straightforward.

https://github.com/salleuska/IRTnimblecode
https://github.com/salleuska/IRTnimblecode
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The remainder of the paper is organized as follows. In Section 2 we present the standard
IRT model and the Bayesian semiparametric extension along with considerations for iden-
tifiability. We then present different potential sampling strategies (Section 3) and discuss
the goals of our experiments. To fairly compare the different strategies, we give guidance
on selecting prior distributions in Section 4. We introduce simulated and real-world data in
Section 5. Comparison of the results in terms of MCMC efficiency and statistical inference is
presented in Sections 6 and 7. In Section 8, we conclude that having access to semiparamet-
ric models can be broadly useful, as it allows inference on the entire underlying latent trait
distribution and its functionals, with NIMBLE being a flexible framework for estimation of
such models.

2 IRT models and background

IRT models are widely used in various social science disciplines to scale binary responses into
continuous constructs. For conciseness, in this section we introduce model notation in the
context of educational assessment, where typically data are answers to exam questions from
a set of individuals and the latent trait is interpreted as an individual’s ability. In particular,
let yij denote the answer of individual j to item i for j = 1, . . . , N and i = 1, . . . , I, with
yij = 1 when the answer is correct and 0 otherwise. Responses from different individuals
are assumed to be independent, while responses from the same individual are assumed in-
dependent conditional on the latent trait (this is sometimes called the local independence
assumption in the psychometric literature).

2.1 Binary logistic IRT models

Let πij denote the probability that individual j answers item i correctly, given the model
parameters ηj, λi, βi; i.e., πij = Pr(yij = 1 | ηj, λi, βi) for i = 1, . . . , I and j = 1, . . . , N .
The parameter ηj represents the latent ability of the j-th individual, while βi and λi encode
the item characteristics for the i-th item. In the two-parameter logistic (2PL) model, the
probability πij is determined using the logistic function as

logit(πij) = λi(ηj − βi), i = 1, . . . , I, j = 1, . . . , N. (1)

A further assumption for the latent abilities is that they are independently and identically
distributed according to some distribution G,

ηj
iid∼ G, j = 1, . . . , N, (2)

with G traditionally a standard normal distribution. The parameter λi > 0 is often referred
to as discrimination, since items with a large λi are better at discriminating between subjects
with similar abilities, while βi is called difficulty because for any fixed ηj the probability of
a correct response to item i is decreasing in βi.

Often, the log-odds in (1) are reparameterized as

λiηj + γi,
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with γi = −λiβi. The two parameterizations are sometimes referred to as IRT parame-
terization and slope-intercept (SI) parameterization, respectively. While the slope-intercept
parameterization is often considered for computational convenience, the IRT parameteriza-
tion is the most traditional in terms of interpretation. In exploring different strategies for
Bayesian estimation, we will consider both alternatives and investigate potential differences
in terms of computational performance.

Alternative models can be obtained by considering a different number of item parameters.
When λi = 1 for all i = 1, . . . , I, the model in (1) reduces to the one-parameter logistic (1PL)
model, also known as Rasch model (Rasch, 1990). In some settings one may wish to account
for the probability of answering correctly by chance, by introducing a third set of item
parameters, υi, i = 1, . . . , I, referred to as guessing parameters, so that

Pr(yij = 1 | ηj, λi, βi, υi) = υi + (1− υi)expit{λi(ηj − βi)},

where expit{·} denotes the inverse of the logistic function. This model is typically referred
to as the three-parameter logistic model (3PL), and is often relevant in educational assess-
ments.

2.2 Semiparametric IRT models

The classical formulation of IRT models assumes that the latent abilities in (2) follow a
normal distribution. This assumption can be relaxed, modeling the distribution of ability as
a mixture of normal distributions, where the number of mixture components does not need
to be specified in advance but rather is learned from the data. This can be achieved using
a Dirichlet process mixture (DPM) model for the distribution of ability. In particular, the
distribution of ability G in (2) can be specified as a convolution involving a Dirichlet process
(DP) prior, i.e.

G =

∫
K(ηj | θ)F (dθ), F ∼ DP(α,G0), (3)

where K(· | θ) is a suitable probability kernel indexed by the parameter θ, while α and
G0 are, respectively, the concentration parameter and the base distribution of the Dirichlet
process.

In the context of binary IRT models, it seems natural to choose a normal kernel for
K(· | θ), indexed by parameters θ = {µ, σ2}. This means the distribution of ability is a mix-
ture of normal distributions, where the number of mixture components and their means and
variances are unknown. Furthermore, under this choice, taking α → 0 leads to the original
parametric model discussed in Section 2.1, in this case a single normal. Parameters character-
izing each mixture component are drawn from the base distribution, G0. For computational
convenience the base distribution is typically the product of conjugate distributions, e.g., a
normal distribution for µ and an inverse-gamma distribution for σ2.

We proceed now to discuss the Dirichlet process prior in more detail. There are two main
representations of the Dirichlet process, each leading to a different MCMC posterior sampling
strategy, namely the stick-breaking representation (SB) (Sethuraman, 1994) and the Chinese
Restaurant Process (CRP) (Aldous, 1985; Blackwell & MacQueen, 1973; Pitman, 1996). In
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this work we use the CRP representation. The CRP representation is derived from (3)
integrating out the random measure F . More specifically, let θ1, . . . , θN be an independent
sample from F , with some values possibly repeated. Integrating over F one can obtain the
joint prior distribution on (θ1, . . . , θN), which can be written as the product of a sequence of
conditional distributions, where

(θj | θj−1, . . . , θ1) ∼
α

α + j − 1
G0 +

j−1∑
l=1

1

α + j − 1
δθl , (4)

for j = 1, . . . , N , where δa is the Dirac probability measure concentrated at a. The second
term in (4) represents the probability that a new observation is equal to one of the previous
ones, while the first term captures the possibility that we observe a new value, which would
be drawn from the base measure G0.

The CRP name comes from an analogy often used to describe the process in (4). Consider
a Chinese restaurant with an infinite number of tables, each table serving one dish shared by
all customers sitting at that table. In this metaphor, each table represents a possible mixture
component, while each dish represents the parameter indexing the distribution associated
with the mixture component. Customers entering the restaurant can seat themselves at
a previously occupied table and share the same dish (with probability proportional to the
number of customers already sitting at the table), or go to a new table and order another
dish (with probability proportional to α). The dishes are selected according to the centering
distribution G0.

One way to make the Chinese restaurant analogy clearer is by reparameterizing the
model. Denote by θ∗k the dish served in table k (which is a draw from G0) and let zj be the
variable denoting the table chosen by the jth customer. Then

p(zj = k | zj−1, . . . , z2, z1, α) =

{
nj−1
k

α+j−1
, k = 1, . . . , Kj−1,

α
α+j−1

, k = Kj−1 + 1,
(5)

where Kj−1 is the total number of occupied tables by the first j − 1 customers, and nj−1
k is

the number of customers at table k among the first j− 1. This new parameterization can be
related to the old one by noting that θi = θ∗zi . The concentration parameter α controls the
distribution of the number of tables (components), with larger values favoring more tables.
Using the indicators z = {zj, j = 1, . . . , N}, we can denote by z | α ∼ CRP(α) the joint
distribution induced by (5), and rewrite the DPM model for the distribution of ability in (3)
using

ηj | zj, θ∗1, θ∗2, . . .
ind∼ K(· | θ∗zj), j = 1, . . . , N,

z | α ∼ CRP(α),

θ∗k
iid∼ G0, k = 1, 2, . . . .

Together, the probability kernel, base measure, and CRP form a Dirichlet process mixture.
Alternatively, the distribution F can be written using the stick-breaking representation:

F (·) =
∞∑
k=1

wkδθ̃k ,
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where θ̃1, θ̃2, . . . is a sequence of independent draws from G0 and the weights are constructed
by letting wk = vk

∏k−1
l=1 (1− vl), with v1, v2, . . . being a sequence of independent draws from

a Beta(1, α) distribution. This construction makes it clear that, as long as the kernel K(· | θ)
is continuous, the distribution of ability G is also continuous, but F is almost surely discrete,
naturally inducing clustering via repeats in the parameter indexing the distribution of ability.

Note that an alternative to the formulation described above is to model the distribution
of the ability G directly using a DP, e.g., centered around a normal distribution. Such a
model also comprises the standard parametric model as a limiting case (now, when α → ∞)
and leads to slightly simpler computational algorithms. However, we believe that such an
approach has some serious drawbacks in the context of most IRT applications. By definition,
realizations from a Dirichlet process are almost surely discrete. This property has made the
Dirichlet process a useful tool in clustering applications. However, in our context, it implies
that we believe that two (or more) individuals potentially have exactly the same ability.
Not only is this assumption not realistic, but it potentially prevents us from distinguishing
individuals based on their abilities, which is one common goal in IRT modeling. The use of
a Dirichlet process mixture with a continuous kernel (Gaussian, in this case) sidesteps this
issue.

2.3 Identifiability and constraints

Without additional constraints, the parameters of the models presented in Section 2 are not
identifiable (e.g., see Bafumi, Gelman, Park, & Kaplan, 2005; Geweke & Singleton, 1981, as
well as Section A in the Supplementary Materials). For example in the 2PL and 3PL models,
increasing all ηj and βi values by the same amount yields the same probabilities in (1) for
all i and j. More generally, the ability parameters are known up to a linear transformation,
and constraints are needed to identify them. To address this problem, traditional work on
parametric IRT models assumes that latent abilities in (2) come from a standard normal
distribution, i.e., G ≡ N (0, 1), and constrains the discrimination parameters λi for i =
1, . . . , I to be positive.

Alternative constraints can also establish identifiability and could yield different com-
putational performance for MCMC sampling. A common alternative considers sum-to-zero
constraints for the item parameters (Fox, 2010)

I∑
i=1

βi = 0,

(
or

I∑
i=1

γi = 0

)
,

I∑
i=1

log(λi) = 0. (6)

Centering the difficulty parameters addresses the invariance to translations, while centering
the log of the discrimination parameters (setting their product to one) accounts for the
invariance to rescalings of the latent space. Another potential set of constraints, popular in
political science applications, involves fixing the value of the latent traits for two individuals
(e.g., see Clinton, Jackman, & Rivers, 2004). Whatever the set of constraints, it is worthwhile
to note that they can be either directly incorporated in the model as part of the prior
(and, therefore in the structure of the sampling algorithms), or they can be applied as a
postprocessing step (after running an unconstrained MCMC). This last approach is typical
of parameter-expanded algorithms, which embed the target model in a larger specification.
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Parameter expansion has been proposed in the literature to accelerate EM (C. Liu, Rubin,
& Wu, 1998) and Gibbs sampler (J. S. Liu & Wu, 1999) convergence, as well as to induce
new classes of priors (Gelman, 2004). Although targeting the same posterior, constrained
priors and parameter expansion can lead to very different results in terms of convergence
and mixing of the MCMC algorithms.

Similar arguments apply for the semiparametric extensions using the Dirichlet process
mixture. In that setting, one identifiability strategy may be to constrain the base distribution
G0, e.g., by letting G0 ∼ N (0, 1) (for example, see Duncan & MacEachern, 2008). However,
even if the prior expectation and variance of G0 are zero and one, the corresponding posterior
quantities can deviate substantially from these values, leading to biased inference (Yang &
Dunson, 2010). More general centering approaches have been proposed in the literature
when a DP distribution is used to model random effects or latent variables in a hierarchical
model (Li, Müller, & Lin, 2011; Yang & Dunson, 2010; Yang, Dunson, & Baird, 2010). These
approaches rely on parameter expansion by sampling from the unconstrained DP model and
then applying a post-processing procedure to the posterior samples. This post-processing
procedure requires the analytical evaluation of the posterior mean and variance of the DP
random measure, with Li et al. (2011) providing results under the CRP representation and
Yang et al. (2010) under the stick-breaking one. Although such strategies are useful for
general hierarchical models to avoid identifiability issues, for the semiparametric 1PL, 2PL,
and 3PL models it is simpler to use the sum-to-zero constraints on the item parameters in
(6), and that is the approach we adopt in this work. As in the parametric case, we can either
include these constraints in the prior or use the parameter expansion approach for sampling
and then center and rescale the posterior samples as appropriate.

3 Sampling strategies for logistic IRT models

In this work we explore different sampling strategies for Bayesian estimation of the logis-
tic parametric and semiparametric IRT models. We define a sampling strategy to include
the combination of model parameterization, identifiability constraints and sampling algo-
rithms. We focus on the case of the 2PL model, as it contains the 1PL as a special case
and presents the same identifiability challenges as the 3PL model. The strategies considered
are summarized in Table 1.

We explore both parameterizations of the 2PL model mentioned in Section 2.1: the IRT
and the slope-intercept parameterization. To compare estimates obtained from different
parameterizations on a common scale, we post-process posterior samples (using transforma-
tions described in the Supplementary Materials, Section A) to respect the following base
parameterization

logit(πij) = λi(ηj − βi), i = 1, . . . , I,

I∑
i=1

log(λi) = 0
I∑

i=1

βi = 0,

ηj ∼ G, j = 1, . . . , N, (7)
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Identifiability constraints
Parametric Semi-parametric

Slope-intercept IRT Slope-intercept IRT

Constrained abilities MH/conjugate MH/conjugate

Centered HMC (Stan)

Constrained item parameters MH/conjugate MH/conjugate∗ MH/conjugate MH/conjugate∗

Unconstrained MH/conjugate MH/conjugate MH/conjugate MH/conjugate

Centered Centered

Table 1: Summary of the 14 sampling strategies considered for the parametric and semi-
parametric 2PL model. Each of the 14 entries is a different strategy with “MH/conjugate”,
“Centered”, and “HMC (Stan)” referring to three different sampling algorithms discussed
below. The asterisk symbol denotes the sampling strategies that lead directly to samples
parameterized as model (7). Others need post-processing to correspond to model (7).

where G denotes a general distribution for the latent abilities, either parametric or nonpara-
metric. The model in (7) follows the IRT parameterization with sum-to-zero identifiability
constraints, which is typically the target one for inference for interpretability reasons.

As discussed in Section 2.3, our target inferential model in (7) can be estimated directly,
accounting for identifiability constraints. This can be achieved by introducing in the model
formulation a set of auxiliary item parameters, {λ′

i, β
′
i} for each i = 1, . . . , I and defining

{λi, βi} as

log(λi) = log(λ′
i)−

1

I

I∑
i=1

log(λ′
i) βi = β′

i −
1

I

I∑
i=1

β′
i, i = 1, . . . , I. (8)

In Table 1 we label this model as the constrained item parameters model. Unconstrained
priors are then placed on the auxiliary parameters {λ∗

i , β
∗
i }. The same formulation applies

under the slope-intercept parameterization, where the sum-to-zero constraints are placed on
the pairs {log(λi), γi} for i = 1, . . . , I.

Alternatively, we can consider unconstrained versions of the 2PL model, treating the
unconstrained model as a parameter-expanded version of the target inferential model in
(7), where the redundant parameters are the means of the difficulty and log discrimination
parameters. Hence we conduct MCMC sampling with known model unidentifiability, and
before using the results for inference, we transform samples to follow the model in (7), as
described in the Supplementary Materials, Section A.

Finally, for the parametric case only, we consider the traditional version of the 2PL model
that assumes the ability parameters ηj for j = 1, . . . , N follow a standard normal distribution
(constrained abilities model).

3.1 Sampling algorithms

We focus on general MCMC sampling algorithms available in easy-to-access software tools
for Bayesian hierarchical models, such as NIMBLE and Stan, that can flexibly accommodate
different choices of prior distributions and link functions. In this section we give an overall
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description of the algorithms considered for the different sampling strategies. We refer to
the Supplementary Materials, Section B, for a detailed summary of the samplers used for
each parameter.

For both the parametric and semiparametric models we consider NIMBLE’s default sam-
pling configuration (MH/conjugate algorithm). NIMBLE’s MCMC uses an overall one-at-
a-time sampling strategy, cycling over individual parameters, or parameter blocks for pa-
rameters with a multivariate prior. By default, specific sampler types are assigned to the
parameters or parameter blocks, but the user can choose to change sampler types, control
blocking strategies, and modify details of sampling algorithm behavior. NIMBLE’s default
MCMC configuration assigns a conjugate (sometimes called “Gibbs”) sampler where possible,
sampling from the corresponding full conditional posterior distribution. For non-conjugate
continuous-valued parameters, NIMBLE’s default sampler assignment is an adaptive random
walk Metropolis-Hastings. For the parametric versions of the 2PL model, the strategies using
the default NIMBLE assignments (MH/conjugate algorithm) correspond to these conjugate
and adaptive random walk Metropolis-Hastings samplers, with the latter also used for most
parametric components of the semiparametric 2PL. Specialized samplers are assigned when
Bayesian nonparametric priors are considered in the semiparametric 2PL.

In the case of the slope-intercept parameterization, we take advantage of NIMBLE’s
flexibility to include user-programmed custom samplers (centered sampler). The proposed
centered sampler uses an adaptive random walk Metropolis-Hastings sampler with a joint
proposal for each pair of item parameters {λi, γi} for i = 1, . . . , I, thereby accounting for
their posterior correlation. The proposal is made under a reparameterization of the model
that centers the abilities to have mean zero. Implementation details are provided in the
Supplementary Materials, Section B.

Finally, in the parametric setting only, we consider a Hamiltonian Monte-Carlo (HMC)
algorithm, as implemented in the Stan software (Carpenter et al., 2017). Stan implements
an adaptive HMC sampler (Betancourt, Byrne, Livingstone, & Girolami, 2017) based on the
No-U-Turn sampler (NUTS) of Hoffman and Gelman (2014). HMC algorithms are known
to produce samples that are much less autocorrelated than those of other samplers but at
more computational cost given the need to calculate the gradient of the log-posterior. In this
work, we limit the comparison to the IRT parameterization with constraints on the abilities
distribution, as that is the model provided in the edstan R package (Furr, 2017).

3.2 Aims

In the remainder of the paper, we study the efficiency of the MCMC sampling strategies in
Table 1 to fit binary logistic IRT models, and we compare inferential results under parametric
and semiparametric specifications. Using both simulated and real-world data, we aim to
answer the following questions:

Q.1 For the parametric binary logistic IRT model, which of the Metropolis-Hastings-based
MCMC sampling strategies in Table 1 are most efficient? Do different strategies work
better in different scenarios for the distribution of ability?

Q.2 For the parametric binary logistic IRT model, how does efficiency of random walk
Metropolis-Hastings sampling compare to Hamiltonian Monte Carlo (HMC), as imple-
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mented in the popular Stan package? This question is of interest because HMC is not
readily available for semiparametric models using Dirichlet process priors.

Q.3 How does MCMC efficiency of a semiparametric model compare to that of a parametric
one? Does this comparison differ when the parametric model is correctly vs. incorrectly
specified?

Q.4 To what degree does the use of a parametric model when its assumptions are violated
yield bad inference? Does the use of a semiparametric model change inference even
when a parametric model would be valid?

Q.5 How much do results differ between the semiparametric and parametric models for the
real data examples?

In Section 6 we discuss the choice of efficiency metrics to address Q.1-Q.3 and present
the results obtained using simulated and real-world data. In Section 7, we discuss differences
in the inferential results to investigate Q.4-Q.5.

4 Choice of prior distributions

Past research on Bayesian IRT models has warned about the use of either vague priors or
highly informative priors when there is little information about the parameters (Natesan,
Nandakumar, Minka, & Rubright, 2016; Sheng, 2010). In particular Natesan et al. (2016)
investigated the use of different prior choices in 1PL and 2PL models using MCMC and
variational Bayes algorithms and found that the use of vague priors tends to produce biased
inference or convergence issues. Similarly, it is well known that highly informative prior
distributions on parameters can strongly affect model comparison procedures.

To ensure a fair comparison between results from different strategies, we chose the pa-
rameters of the priors in such a way that the induced prior predictive distribution of the
data is similar across all the different model parameterizations. This “predictive match-
ing approach” has been widely used to guide prior elicitation in model comparison settings
(Bedrick, Christensen, & Johnson, 1996; Berger & Pericchi, 1996; Ibrahim, 1997).

In the context of binary logistic IRT models, we aim to match the prior marginal pre-
dictive distribution of a response yij, which in turn can be achieved by matching the in-
duced prior distribution on the marginal prior probability of a correct response, πij =
expit{λi(ηj − βi)}. Note that all the priors discussed in this paper are separately exchange-
able, which means that this prior marginal will be the same for any values of i and j. In
particular, we attempt to match a Beta(0.5, 0.5) distribution, which is both the reference
and the Jeffreys prior for the Bernoulli likelihood in the fully exchangeable case (Berger,
Bernardo, & Sun, 2009; Bernardo, 1979). A similar approach to prior elicitation in the con-
text of latent space models for networks can be found in Guhaniyogi and Rodriguez (2020)
and Sosa and Rodr̀ıguez (2021). Because there are no analytical expressions available for the
prior distribution of πij, we use simulations to estimate the shape of the prior distribution
and obtain an approximate match. This is facilitated by our implementation in NIMBLE.
Indeed, one of the advantages of the NIMBLE system is that it provides a seamless way to
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simulate from the model of interest. Histograms of samples from the resulting induced priors
can be seen in Figure 1 for a set of parametric and semiparametric models. Further details
are presented in the following subsections.

Figure 1: Histogram of samples from the induced prior on πij under each of the considered
models. Dashed line indicates the density function of a Beta(0.5, 0.5) distribution. Samples
for the semiparametric models use a prior distribution Gamma(2, 4) for the DP concentration
parameter α, but similar results are obtained under the other settings presented Section 4.

4.1 Priors for the item parameters

In Bayesian IRT modeling, normal distributions are typically chosen as priors for the item
parameters. This is true under both parameterizations. In addition, the discrimination
parameters, {λi}Ii=1, are typically assumed positive, so we consider a normal distribution on
the log-scale. To summarize, priors on the item parameters are:

log λi ∼ N (µλ, σ
2
λ), βi ∼ N (0, σ2

β), γi ∼ N (0, σ2
γ) i = 1, . . . , I.

By default, we center on the difficulty parameters βi (or the reparameterized version γi) on
0 for i = 1, . . . , I, while we set σ2

β = σ2
γ = 3. For the discrimination parameters, we set

µλ = σ2
λ = 0.5 such that the prior probability mass on the original scale is mostly in the

range (0.5, 2.5).

4.2 Priors for the distribution of ability

In choosing priors for the abilities, we distinguish between the parametric and semiparametric
cases. In the parametric case, excluding the strategies in which the distribution is a standard
normal, we assume G ≡ N (µη, σ

2
η). We specify hyperpriors for the unknown mean and

variance, using a normal distribution for the mean µη ∼ N (0, 3), and an inverse-gamma
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distribution for the variance, σ2
η ∼ InvGamma(2.01, 1.01) as in Paulon, De Iorio, Guglielmi,

and Ieva (2018), with hyperparameter values implying an a priori marginal expected value
of 1 and an a priori variance equal to 100.

In the semiparametric case, we need to specify the base distribution G0 of the DP mixture
prior along with the hyperparameters. We choose G0 ≡ N (0, σ2

0)× InvGamma(ν1, ν2) where
InvGamma(ν1, ν2) denotes an inverse-gamma distribution with shape parameter ν1 and mean
ν2/(ν1 − 1). In choosing values for the hyperparameters {σ2

0, ν1, ν2}, we first considered the
concentration parameter α as fixed and evaluated the induced prior distribution on π for
values of α ∈ {0.01, 0.05, 0.5, 1, 1.5, 2}. Recall that α controls the prior expectation and
variance of the number of clusters induced by the DP, which are both of the order α log(N).
We discuss prior choice for the α in Section 4.3. As in the parametric case, we center the
normal distribution for the mixture component means on 0 with σ2

0 = 3 and set ν1 = 2.01 and
ν2 = 1.01 for the inverse-gamma distribution. Given these settings, we found that choosing
α ∈ {0.01, 0.05, 0.5, 1, 1.5, 2} does not have much effect on the marginal prior distribution of
the πijs.

4.3 Prior on the DP concentration parameter

One may be interested in placing a prior distribution on the concentration parameter α of
the Dirichlet process. A typical choice for the DP concentration parameter is a Gamma(a, b),
with shape a > 0 and scale b > 0, due to its computational convenience (Escobar & West,
1995). As previously stated, the concentration parameter controls the prior distribution of
the number of clusters (Escobar & West, 1995; S. J. Liu, 1996). In choosing values a and b,
we considered the implied prior mean and variance of the number of clusters.

Let KN denote the number of clusters for a sample of size N . Results from Antoniak
(1974) and S. J. Liu (1996) show that the expected value and variance of KN given α is

E(KN | α) =
N∑
i=1

α

α +N − i
, Var(KN | α) =

N∑
i=1

α(i− 1)

(α +N − i)2
. (9)

We exploit these results to choose values a and b that lead to reasonable a priori values
for the moments of the number of clusters for each of our applications. For a given N and
for different values of a and b, we evaluated the marginal expectation and variance of the
quantities in (9) via Monte Carlo approximation. We sample αr for r = 1, . . . , R from its
prior and compute

Ê(KN) =
1

R

R∑
r=1

E[KN | αr], V̂ar(KN) =
1

R

R∑
r=1

Var(KN | αr) + V̂ar (E[KN | α]) ,

where V̂ar (E[KN | α]) = R−1
∑R

r=1

[
E[KN | αr]− Ê[KN ]

]2
.

We explored a few prior choices and tabulate approximated moments in Table 4.3, for
the values of N in our datasets. We consider the popular choice of a = 2, b = 4 for the
hyperparameters as in Escobar and West (1995) along with values favoring a small number
of clusters (a = 1, b = 3) and values leading to a more vague prior (a = 1, b = 1). For our
applications we decided to favor a relatively small number of clusters, choosing a = 2, b = 4
as hyperparameters for the simulated data, and a = 1, b = 3 for the real-world data.
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α ∼ Gamma(a, b) E[α] Var(α) Ê(K2,000) V̂ar(K2,000) Ê(K14,525) V̂ar(K14,525) Ê(K7,377) V̂ar(K7,377)
a = 2, b = 4 0.5 0.12 4.7 9.3 5.6 14.12 5.3 12.2
a = 1, b = 3 0.3 0.11 3.5 7.6 4.2 11.76 3.9 10.2
a = 1, b = 1 1 1 7.8 43.7 9.8 73.35 9.2 64.5

Table 2: Approximate expectation and variance of the a priori number of clusters, KN , under
different choices of the concentration parameter distribution, for N = 2,000, 14,525, 7,377
as in our data example presented in Section 5.

5 Data examples

5.1 Synthetic data

We specify three different simulation scenarios for the distribution of ability: unimodal,
bimodal and multimodal distributions. For all the scenarios, we simulate responses from N =
2, 000 individuals on I = 15 binary items. Values for the discrimination parameters {λi}15i=1

are sampled from a Uniform(0.5, 1.5) distribution, while values for difficulty parameters
{βi}15i=1 are taken to be equally spaced in (−3, 3). We center the log of the discrimination
parameters on zero, while the difficulty parameters are already centered based on how they
are generated. We consider three different underlying distributions for the latent abilities,
ηj for j = 1, . . . , 2, 000. In the unimodal scenario, latent abilities are generated from a
normal distribution with mean 0 and variance (1.25)2. In the bimodal scenario, we use an
equal-weights mixture of two normal distributions with means {−2, 2} and common variance
(1.25)2. Finally, for the multimodal scenario, latent abilities are generated from the following
mixture

1

5
N (−2, 1) +

2

5
N (0, (0.5)2) +

2

5
SN (3, 1,−3),

where SN (ξ, ω, ζ) indicates a skew-normal distribution (Azzalini, 1985) with location pa-
rameter ξ, scale parameter ω > 0 and parameter ζ that controls the asymmetry of the
distribution.

As a sensitivity analysis, we considered other values of N and I, simulating data for each
scenario following a factorial design with I ∈ {10, 30} and N ∈ {1, 000, 5, 000}. We discuss
efficiency results of the different sampling strategies in Section 6 and report results in the
Supplementary Materials, Section D.

5.2 Real world data

The first example is a subset of data from the 1996 Health Survey for England (Joint Health
Surveys Unit of Social and Community Planning Research and University College London,
2017), a survey conducted yearly to collect information concerning the health and behavior
of households in England. In particular, we have data for 10 items measuring Physical Func-
tioning (PF-10), which is a sub-scale of the SF-36 Health Survey (Ware, 2003) administered
to people aged 16 and above. In this case the latent trait quantifies the physical status of a
given individual (Hays, Morales, & Reise, 2000; McHorney, Haley, & Ware Jr, 1997).

Participants in the survey were asked whether they perceived limitations in a variety
of physical activities (e.g., running, walking, lifting heavy objects) and if so the degree of
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limitation. We list the original questions in the Supplementary Materials, Section C. Answers
to items comprised three possible responses (“yes, a lot”, “yes, limited a little”, “no, not
limited at all”); however, in our analysis we consider the dichotomous indicator for not being
limited at all. The left panel of Figure 2 shows the distribution of raw scores, i.e. the total
of correct answers. We consider the 2PL model for this data, as it is reasonable to assume
that some of the questions are more informative in defining individuals with high physical
impairment (see Supplementary Materials, Section C). For simplicity, we analyzed complete
case data from 14, 525 individuals out of 15, 592 respondents, although the model can easily
accommodate missing data.

The second example uses data from the TIMSS (Trends in International Mathematics
and Science Study) survey, which is an international comparative educational survey dedi-
cated to improving teaching and learning in mathematics and science for students around the
world (http://timssandpirls.bc.edu/TIMSS2007/about.html). We used data from the
2007 eighth-grade mathematics assessment for the United States (N = 7, 377), publicly avail-
able at https://timssandpirls.bc.edu/TIMSS2007/idb ug.html. The dataset comprises
214 items, with 192 of them dichotomous, while the remaining 22 have three category re-
sponses (“incorrect”, “partially correct”, “correct”). We dichotomized these latter questions,
considering partially correct answers as incorrect ones. Like other large-scale assessments,
participants in TIMSS only received a subset of the items according to a booklet design,
resulting in 28-32 item responses per student. Distribution of the raw scores for the data
are shown in the right panel of Figure 2. As for the previous example, it is reasonable to
assume that some items discriminate differently between students with high and low ability.
However, in the context of educational testing, the 3PL model is often considered because it
accounts for the probability of answering correctly by chance. Hence we consider both the
2PL and the 3PL models when evaluating the different strategies.

Figure 2: Distribution of the raw scores (total of correct answers) for the real data examples:
health data (left panel) and TIMSS data (right panel).

Finally, we note that participants in the survey were sampled according to a complex two-
stage clustered sampling design that we did not consider in our application. In other contexts
the design is typically taken into account using sampling weights for model estimation, as

http://timssandpirls.bc.edu/TIMSS2007/about.html
https://timssandpirls.bc.edu/TIMSS2007/idb_ug.html
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discussed for example by Rutkowski, Gonzalez, Joncas, and von Davier (2010).

6 Comparing results in terms of efficiency

MCMC performance is often evaluated in terms of mixing, often by calculating the effec-
tive sample size (ESS), which is the equivalent number of independent samples that would
contain the same statistical information as the actual non-independent samples. However,
comparison between different MCMC algorithms based solely on mixing can be misleading,
as different samplers can vary greatly in terms of computational cost (Nguyen et al., 2020).
Hence, it is appropriate to consider ESS per computation time (in seconds), the rate at which
effectively independent samples are generated. A second issue is how to combine ESS results
for multiple parameters. For this purpose, we used the multivariate ESS (mESS) recently
introduced by Vats, Flegal, and Jones (2019), which accounts for cross-correlations among
parameters.

Computation time is typically measured for the actual MCMC run, not accounting for
steps to prepare for a run, thereby focusing on the algorithms of interest rather than un-
related aspects of the software. Comparison between HMC and MCMC algorithms raises
the question of how to fairly account for computation times, given that these two classes
of algorithms use different tuning phases. Since there is not an established way to compare
these two algorithms in the literature, we decided to consider different timings when using
the two algorithms: (i) sampling time, which accounts only for the time to draw the posterior
samples, hence discarding the time needed for the burn-in and warm-up phases of the two
algorithms and (ii) total time comprising also the burn-in and warm-up phases. Although
one can use alternative metrics for the comparison, this choice can provide interesting and
useful insights. When computing efficiency based on the sampling time, we can assess pure
efficiency of sampling from the posterior. Using total time accounts for potentially different
times needed for warm-up/burn-in by the different algorithms but introduces the difficulty
of determining the optimal burn-in/warm-up time, which we avoided here in favor of using
basic defaults.

Estimate of the mESS is based on the multivariate batch means estimator as described
in Vats et al. (2019) and implemented in the mcmcse (Flegal et al., 2021) package. Since
we used different specifications for the distribution of ability across the different sampling
strategies, we calculate the mESS considering only the common parameters (i.e., the item
parameters and sampled abilities) after transforming samples to the parameterization of our
target inferential model (7). The mESS provides a single scalar measure of joint mixing for
all the parameters of interest in a model, but it does not necessarily reflect univariate ESS
values of each parameter. For example, mESS can be larger than all the univariate ESS
values (see Supplementary Materials, Section D, Figures 1-3 for some insights). Given this,
it can be useful as a simple overall performance metric but does not replace ESS for specific
parameters of interest.

Given the large number of examples and sampling strategies, we performed a preliminary
experiment to choose the number of iterations and number of burn-in or warm-up samples.
In particular, for a portion of the simulations we used multiple runs to determine the number
of iterations and samples needed to obtain reliable estimates of the mESS. For all MCMCs
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using NIMBLE, we decided to use a total of 50, 000 iterations, with a 10% burn-in of 5, 000
for all examples. When running the HMC algorithm via Stan, we used a total of 15, 000
iterations, with the first 5, 000 iterations as warm-up steps. However, we observed highly
variable values of the mESS estimates when using the HMC algorithm. We also found that
values of mESS are correlated with those of the HMC tuning parameters (see Supplementary
Materials, Section D). Given this variability in mixing performance, we decided to limit
comparisons with HMC to the simulation scenarios, reporting results from the run with
the median ESS across multiple replications. All the models were estimated using a Linux
cluster with 4 nodes having 24 cores and 128 GB RAM per node (Intel(R) Xeon(R) CPU E5-
2643 v2 @ 3.50GHz). Across simulations, the running times ranged between 15-94 minutes
for parametric models and between 37-124 minutes for semiparametric ones. For the data
applications, running times ranged between 85-384 minutes for the parametric models, and
410-610 minutes for semiparametric ones.

6.1 Efficiency results for simulated data

For the three simulation scenarios we estimated the 2PL parametric model using the differ-
ent sampling strategies summarized in Table 1. Figure 3 compares efficiency for all these
strategies using the multivariate ESS per second, computed with respect to both the total
and sampling time.

Figure 3: Multivariate ESS per second for various sampling strategies used to estimate
the 2PL parametric model for the unimodal (left column), bimodal (middle column), and
multimodal (right column) scenarios. Results are computed using total time (top row) and
sampling time (bottom row). Note that SI stands for “slope-intercept”.
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Figure 4: Multivariate ESS per second (computed using the total time) for semiparametric
2PL models (bottom row) in comparison with their parametric version (top row) under the
two simulation scenarios. Note that SI stands for “slope-intercept”.

Using different time baselines when computing efficiency changes the ranking of the
MCMC algorithms for the unimodal and multimodal simulation, highlighting the trade-
off for the HMC algorithm between sampling efficiency and computational cost. While
the HMC is highly efficient in producing samples with low correlation, warm-up steps are
computationally expensive. Recall that efficiency values presented for the HMC strategy are
relative to a median performance across multiple runs. Amongst the non-HMC strategies,
unconstrained scenarios generally mix well, as do scenarios with constraints on the abilities.
However, imposing constraints on the item parameters directly in the sampling performs
poorly because obtaining each sample is time-consuming. This is because the constraints
in (8) require calculation of all the likelihood terms for each parameter update, whereas
for other strategies only the likelihood terms for individuals’ responses on the item under
consideration need to be calculated. While incorporating constraints on the item parameters
is time-consuming, such a strategy could be useful in more complicated hierarchical models,
in particular when it is unclear how to rescale posterior samples. The centered strategy for
the slope-intercept parameterization seems to have little impact across the scenarios.

Moving to the semiparametric models, recall that we did not consider identifiability con-
straints on the abilities. We either included identifiability constraints on the item parameters
in the sampling or sampled from the unconstrained model and rescaled the posterior samples.

As expected when using a more complicated model, we observed some reduction in ef-
ficiency in the semiparametric model compared to the parametric model, but not a drastic
one (Figure 4). Results for the semiparametric case are similar in relative terms, but not in
absolute magnitudes, when comparing the different parameterizations and constraints.

For the non-HMC strategies, we also looked at how different combinations of numbers
of items and individuals affect efficiency of the different sampling strategies (as discussed
in Section 5.1), with results shown in the Supplementary Materials, Section D. We found
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that the ranking across strategies is generally stable across the different scenarios; strategies
using constraints on items are the worst overall, and the benefit of using other strategies is
most evident when the number of individuals N is low.

6.2 Efficiency results for real-world data

We did similar comparisons using the real-data examples (Figure 5), noting that we excluded
the constrained items strategy, given its poor performance on the simulated datasets, and
the HMC strategy, because of the high variability in mixing performance.

Figure 5: Multivariate ESS per second (computed using the total time) for the health data
(left column) parametric and semiparametric 2PL models, and TIMSS data for the 2PL
(middle column) and 3PL (right column) models. Note the scales are different for the
different rows and that SI stands for “slope-intercept”.

The efficiency is lower than for the simulated datasets because the real data have many
more individuals or items, and therefore more parameters. The same consideration applies
when comparing efficiency of the 2PL and 3PL models for the TIMSS data. We also noted
that for the health data, when considering the posteriors for the abilities in the semiparamet-
ric model, we saw evidence for multimodality and some difficulty moving between modes for
individuals with high raw scores. The multimodality is likely related to it being difficult for
the semiparametric model to identify the exact magnitude of the ability for such individuals.
The use of more informative priors, with careful elicitation of the prior distribution, may be
important in such cases.

7 Comparing results in terms of statistical inference

In this section we compare results for the parametric and semiparametric models in terms
of statistical inference, regardless of the sampling strategy used to obtain posterior samples.
All posterior samples follow the parameterization in (7), and we use samples from the most
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efficient sampling strategy for each dataset. We use posterior means as point estimates for
the item and ability parameters. For the simulated datasets, we measure how well the models
recover the (known) true value of the parameters using absolute error, e.g., |β̂i − βi|, and
squared error, e.g., (β̂i − βi)

2.
A crucial point of this paper is to make inference on the distribution of latent abilities.

An estimate of this distribution is sometimes based on the posterior means of the abilities
(Bambirra Gonçalves et al., 2018; Duncan & MacEachern, 2008), and histograms or kernel
density plots are reported. Such an estimate ignores uncertainty in the estimates of individual
abilities. Instead, one should directly obtain the point estimate of the posterior distribution
of the latent abilities p(η | Y) (for any value of η) using the posterior samples. In the
parametric case, this reduces to:

̂p(η | Y) =
1

T

T∑
t=1

N (η;µ(t), σ2(t)), (10)

with N (·;µ, σ2) indicating the probability density function of a normal distribution with
mean µ and variance σ2, and t = 1, . . . , T denoting an MCMC iteration. In the semipara-
metric case, a point estimate of p(η | Y) is the posterior mean of the mixing measure G of
the Dirichlet process. This can be obtained using posterior samples, averaging over the DP
conditional distribution in (4) computed for each iteration t = 1, . . . , T ,

p ̂(η | Y) =
1

T

T∑
t=1


K(t)∑

k=1

n
(t)
k

α(t) +N
N (η;µ

(t)
k , σ2(t)

k )

+
α(t)

α(t) +N
N (η;µK(t)+1, σ

2
K(t)+1)

 ,

(11)

with n
(t)
k the number of observations in cluster k at iteration t, K(t) the total number of

clusters at iteration t, and µK(t)+1 and σ2
K(t)+1

sampled from G0 (conditional on the data).
We graphically compare estimates for the distribution of ability resulting from (10)–(11)
with the estimates obtained using the posterior means.

It is possible to make full inference on p(η | Y) in the semiparametric setting; this requires
sampling from the posterior of the mixing distribution F . A computational approach to ob-
tain the entire posterior distribution has been presented in Gelfand and Kottas (2002), a ver-
sion of whose algorithm is implemented in NIMBLE in the function getSamplesDPMeasure.
This function provides samples of a truncated version of the infinite mixture to a level L.
The value of L varies at each iteration of the MCMC’s output when α is random, while
it is the same at each iteration when α is fixed. In our case, for every MCMC iteration,
we can obtain samples of the vector of mixture weights {w(t)

1 , . . . , w
(t)

L(t)} and parameters of
the mixture components. We can use these samples to make inference on functionals of the
distribution, such as the percentile for an individual, 100 × pj, where pj =

∫ ηj
−∞ p(η | Y)dη,

typically paired with test scores when giving results for educational assessments. For an
individual j for j = 1, . . . , N we estimate pj at each MCMC iteration as

p
(t)
j =

L(t)∑
l=1

w
(t)
l FN (η

(t)
j ;µ

(t)
l , σ

2(t)
l ), (12)

where FN denotes the distribution function of the normal distribution. For comparison, we
define the parametric counterpart as p

(t)
j = FN (η

(t)
j ;µ(t), σ2(t)).



23

Unimodal Simulation Bimodal Simulation Multimodal Simulation
Parametric Semi-parametric Parametric Semi-parametric Parametric Semi-parametric
MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Difficulty
parameters

0.0996 0.0185 0.0988 0.0183 0.0895 0.0137 0.0673 0.0083 0.0647 0.0080 0.0737 0.0103

Discrimination
parameters

0.0734 0.0069 0.0731 0.0070 0.0832 0.0105 0.0397 0.0020 0.0721 0.0082 0.0677 0.0062

Ability
parameters

0.4836 0.3719 0.4836 0.3720 0.5944 0.5571 0.5501 0.4775 0.5477 0.4753 0.5212 0.4444

Table 3: MAE and MSE for the item and ability parameters estimates, under the three
simulation scenarios, using samples from most efficient MCMC-based sampling strategies.

7.1 Inferential results for the simulated datasets

We report results using posterior samples from the unconstrained sampling strategy under
the IRT parameterization. Using the absolute error and the squared error for each parameter,
we report in Table 3 the mean absolute error (MAE) and the mean squared error (MSE)
across item and ability parameters.

Figure 6: Unimodal simulated data. Comparison of the posterior mean estimates (with 95%
credible interval) of item parameters (difficulties β and discriminations λ) for parametric
and semiparametric 2PL models and true simulated values. Note that some estimates from
the parametric model overlap almost exactly with semiparametric ones.

In the unimodal scenario, we observe similar performance for the parametric and semi-
parametric 2PL in estimating item parameters (Figure 6). As expected, we observe some
differences when considering the bimodal and multimodal scenario (Figure 7). The use of a
model with a more flexible distribution improves recovery of both item and ability parame-
ters in the bimodal scenarios (Table 3). This is especially evident when comparing estimates
of the discrimination parameters, in particular for larger values. Instead, in the multimodal
case the inference for the item parameters seems relatively insensitive to the specification.
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Figure 7: Bimodal Simulation (top row) and multimodal simulation (bottom row). Com-
parison of the posterior mean estimates (with 95% credible interval) of item parameters
(difficulties β and discriminations λ) for parametric and semiparametric 2PL models and
true simulated values.

Results for the ability parameters are similar when estimating abilities using the posterior
means of the individual abilities (Figure 8). However, results are very different when one
looks at estimates of the distribution of ability (Figure 9).
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Figure 8: Histogram and density estimate of individual posterior mean abilities, under uni-
modal (left column), bimodal (middle column), and multimodal (right column) scenarios
compared with the true density (dotted line).

Figure 9: Distribution of ability estimated under the unimodal (left column), bimodal (mid-
dle column), and multimodal (right column) scenarios, compared with the true density (dot-
ted line). Dashed lines indicate 95% credible intervals for the estimated distributions.

The normality assumption of the parametric model leads to unimodal density estimates,
inconsistent with the true distribution, whereas the semiparametric model can recover it. The
posterior means of individual abilities in Figure 8 are a compromise between the inferred
distribution of ability and the information in the data, so with sufficient observations, one
can obtain estimates of the distribution that are reasonable even with severe model mis-
specification. In other words, for mis-specified parametric models, the in-sample predictions
for observed individuals can be reasonable, while the out-of-sample predictions based on (10)
for new individuals are poor. Note that when using the parametric model, inspection of the
posterior means of individual abilities can be used to assess model mis-specification relative
to the assumed parametric distribution.

Mis-specification of the distribution of ability has limited effect when estimating indi-
vidual percentiles. In Figure 10 we compare the posterior mean estimates of individual
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percentiles with the percentiles calculated using the true distribution assumed for the simu-
lation, for a subset of 50 individuals. Overall, the parametric and semiparametric estimates
produce similar results even when the estimated density is largely different. This is because
estimation of percentile is basically ranking the individuals; it makes sense that ranking is
relatively insensitive to the estimation of the distribution of ability.

Figure 10: Estimates of individual percentiles (with 95% credible interval) for a subset of
50 individuals with varying (true) ability levels under the unimodal (left column), bimodal
(middle column), and multimodal (right column). Black dots correspond to true percentiles.

7.2 Inferential results for real-world data

For the real data examples we graphically inspect results from the parametric and semi-
parametric models. To compare the overall model fit in the parametric and semiparametric
cases, we computed the Widely Applicable Information Criterion (WAIC) (Watanabe & Op-
per, 2010). We refer to the NIMBLE user manual for details about WAIC calculation (de
Valpine et al., 2022, see Section 7.7).

We found that for the health data the semiparametric model performs better than the
parametric one (WAIC of 68,527 versus 70,414), while for the TIMSS data the best model is
the semiparametric 3PL (WAIC of 228,871; parametric 3PL: 229,123; semiparametric 2PL:
229,529; parametric 2PL: 229,575). Hence in this Section, we show inferential results using
samples from the IRT unconstrained model for both the health and TIMSS data, using
the 3PL model for TIMMS. We also report inferential results for the 2PL model in the
Supplementary Materials (Section E).

In Figure 11 we compare item parameter estimates from the two models for the health
data application, while Figure 12 shows estimates for the distribution of abilities. Recall that,
in this case, we interpret the latent ability as physical ability, with high values characterizing
healthy individuals. As with the bimodal simulation, estimates from the parametric model
of the distribution of physical ability are quite different than the distribution of individual
posterior mean abilities. It is clear that the parametric model is badly mis-specified and
would produce bad out-of-sample predictions. In contrast, the semiparametric model seems
to nicely characterize multi-modality in the latent distribution. We observe in Figure 12 large
credible intervals for high values of this distribution that can be explained by the presence of
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many individuals with high raw scores, (i.e., 9 or 10 out of 10, Figure 2) for whom the model
can clearly determine that their physical abilities are high, but with the exact magnitudes
being difficult to identify.

The two modeling assumptions yield different estimates of the item parameters (Fig-
ure 11), with this difference being higher for extreme values. However, the relative ranking
of the items is roughly the same in both cases, with for example item 1 (Vigorous activities)
being the most difficult item and the one with the lowest value of the discrimination param-
eter. According to the parametric model, discrimination parameters for item 3 (Lift/carry)
and item 10 (Bathing/dressing) should have similar values, while the semiparametric model
separates them.

Figure 11: Health data. Comparison of item parameter estimates from the parametric and
semiparametric models. In each panel items are ordered by increasing values of the parameter
estimate under the semiparametric model.

Figure 12: Health Data. Histogram and density estimate of the posterior means of the latent
abilities (left panel) and estimate of the posterior distribution for the latent abilities (right
panel). Dashed lines indicate 95% credible intervals for the estimated distributions.

For the TIMSS data we only compare point estimates of the item parameters (Figure 13),
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due to the large number of parameters. Estimates for the difficulty parameters and discrim-
ination parameters have the largest difference for low/high values of the parameters, while
estimates of the guessing parameters are quite different. Figure 14 shows estimates of the
distribution of ability. In this case the semiparametric model estimate shows departure from
the normal parametric assumption, with multimodality in the estimated distribution. Dif-
ferences in the distribution of ability between the semiparametric and parametric model may
explain the large discrepancies between the guessing parameter estimates; however, further
investigation of this matter is outside the scope of the paper. We found also that the estimate
of the ability distribution is quite different under the semiparametric 3PL and semiparamet-
ric 2PL model with the distribution under the 2PL model being unimodal and right-skewed
instead of multimodal (see Supplementary Materials, Section F).

Figure 13: TIMSS data. Comparison of posterior estimates of the item parameters between
the parametric and semiparametric 3PL model both using the SI unconstrained centered
sampling strategy.
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Figure 14: TIMSS Data. Histogram and density estimate of the posterior means of the latent
abilities (left panel), and estimate of the posterior distribution for the latent abilities (right
panel). Dashed lines indicate 95% credible intervals for the estimated distributions.

Figure 15: Estimates of individual percentiles (with 95% credible interval) for a subset of 50
individuals, for the health data (left panel) and TIMSS data (right panel).

Figure 15 compares estimates of the percentiles for both the health and TIMSS data for
a sample of 50 individuals sorted according to the point estimates of the abilities from the
semiparametric model. There are moderate differences in percentile values and individual
ordering between the parametric and semiparametric models; in particular some estimates
are associated with larger intervals than in the semiparametric case.
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8 Discussion

In this paper, we consider a semiparametric extension for binary logistic IRT models, using
Dirichlet process mixtures as a nonparametric prior to flexibly characterize the distribution
of ability. We provide an overview of these models and study how different sets of constraints
can address identifiability issue and lead to different MCMC estimation strategies.

Focusing on the 2PL and 3PL models, we compare efficiency and inferential results un-
der different sampling strategies based on model parametrization, constraints and sampling
algorithms. We find that MCMC performance across strategies can vary in relation to the
underlying shape of the latent distribution and the total number of parameters.

When moving to semiparametric modeling, the computational cost can be high for large
datasets, given that sampling from the Dirichlet process requires iteration through all indi-
viduals. However we find computational costs to be reasonable in our applications in light
of the better inferential results.

In particular under model mis-specification, inference for item parameters worsens notice-
ably in the parametric model compared to the semiparametric model. With sufficient data,
inference for the abilities of observed individuals can be decent even under mis-specification
of the distribution of ability, but inference for the unknown latent distribution (i.e., the
predictive distribution for new individuals) as a whole can be quite bad. Although para-
metric IRT models can work well in applications in educational assessment, having access to
semiparametric models can be broadly useful as it allows inference on the entire underlying
distribution of ability and its functionals. This is particularly relevant in contexts where the
distribution of the individual latent trait is more complicated, for example, when measur-
ing health (Smits, Öğreden, Garnier-Villarreal, Terwee, & Chalmers, 2020) or psychological
outcomes (Reise & Rodriguez, 2016).

Results of this work potentially can be generalized to versions of binary IRT models
using different prior distributions or link functions (e.g. probit), since we considered general
MCMC sampling algorithms as opposed to algorithms tailored to specific choices of such
model components. As a general recommendation for IRT models, we found that sampling
strategies using parameter expansion are more efficient than those embedding the constraints.

In this work we extensively use the NIMBLE software for hierarchical modeling, with
code reproducing results in the paper available at https://github.com/salleuska/IRT

nimble code . Although there are other software solutions enabling Bayesian nonparametric
modeling, these are often limited in the type of algorithms or in the class of models available.
NIMBLE offers a high degree of flexibility in that the models considered in this paper could be
easily embedded in more complicated ones. Sampler assignment can be highly customized by
the user, including user-defined sampling algorithms. This customizability makes NIMBLE
a powerful platform for comparing different sampling strategies. At the same time, NIMBLE
allows easy sharing of the most successful strategies as black-box implementations for end
users.
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Supplementary Material to “Computational strategies
and estimation performance with Bayesian

semiparametric Item Response Theory models”

A. Identifiability

The 2PL model is not identifiable based on the likelihood. Here we demonstrate the non-
identifiability for the two parameterizations we consider, showing how different linear trans-
formations lead to the same probabilities. Note that these transformations are defined for
every parameter associated with each item i = 1, . . . , I and individual j = 1, . . . , N .

Under the IRT parameterization:

1. η′j = ηj/s and λ′
i = sλi

λ′
i(η

′
j − βi) = sλi(ηj/s− βi) = λiηj − λiβi = λi(ηj − βi),

2. η′j = ηj + c and β′
i = βi + c,

λi(η
′
j − β′

i) = λi(ηj + c− (βi + c)) = λi(ηj − βi).

Under the slope-intercept parameterization:

1. η′j = ηj/s and λ′
i = sλi,

λ′
iη

′
j + γi = sλiηj/s+ γi = λiηj + γi,

2. (λiηj)
′ = λiηj + c and γ′

i = γi − c, or η′j = ηj + c and γ′
i = γi − λic

λiη
′
j + γ′

i = λi(ηj + c) + γi − λic = λiηj + γi.

Post-processing to satisfy identifiability constraints

This section reports the transformations we apply to item and ability parameters in order to
satisfy the identifiability constraints in our base parameterization (??). These transforma-
tions are applied to each posterior sample.

Under the IRT parameterization, the set of transformations for each posterior sample of
{λi, βi, ηj} for i = 1, . . . , I, j = 1, . . . , N takes these forms:

λ∗
i = sλi, β∗

i =
βi − b

s
, η∗j =

ηj − b

s
,

1



subject to
∏I

i=1 λ
∗
i = 1,

∑I
i=1 β

∗
i = 0. By solving the system of equations given by the

transformations and the set of identifiability constraints, we obtain

s = exp

{
I∑

i=1

log(λi)/I

}
, b =

∑I
i=1 βi

I
. (1)

Under the slope-intercept parameterization, the set of transformations for each posterior
sample of {λi, γi, ηj} for i = 1, . . . , I, j = 1, . . . , N takes these forms:

λ̃i = sλi, γ̃i = γi − λic, η̃j =
ηj + c

s
,

subject to
∏I

i=1 λ̃i = 1,
∑I

i=1 γ̃i = 0. Similarly, by solving the system of equations given by
the transformations and the set of identifiability constraints, we obtain

s = exp

{
I∑

i=1

log(λi)/I

}
, c =

∑I
i=1 γi∑I
i=1 λi

. (2)

Finally, to get from the slope-intercept parameterization to the IRT parameterization, we
define β̃i := −γ̃i/λ̃i and then calculate β∗

i = β̃i −
∑

i β̃i/I.

Rescaling the DP density

We can obtained posterior samples from the mixing distribution F via NIMBLE’s getSamplesDPmeasure
function, allowing us to estimate the density for the latent ability distribution. However, when
comparing these estimated densities between models, for some of the sampling strategies, we
need to transform the estimated density to account for the transformations of the abilities
from the scale on which sampling is done to the scale in (??).

As an example, consider the IRT parameterization without constraints. From the MCMC
output we can obtain p(η̃) evaluated for different values of η̃, but we want p(η̃∗) with η̃∗ =
(η̃− b)/s. To do so we need the Jacobian of the transformation, which is simply s. Then, we
obtain p(η̃∗)

p(η̃∗) = pη̃(sη̃
∗ + b)

∣∣∣∣∂(sη̃∗ + b)

∂η̃∗

∣∣∣∣ = pη̃(sη̃
∗ + b)s. (3)

B. Details about the sampling algorithms

Tables 1-2 summarize the sampling algorithms used for each sampling strategy in Table ??.
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Table 1: Summary of the sampling algorithms used for each parameter under the sampling
strategies considered for the parametric 2PL model.

Model constraints
IRT parameterization SI parameterization

MH/conjugate HMC (Stan) MH/conjugate Centered

Constrained abilities Adaptive MH {log(λi), βi, ηj} HMC {{log(λi)}, {βi}, {ηj}} Adaptive MH {log(λi), γi, ηj}
Centered sampler for pairs {log(λi), γi}

Adaptive MH {ηj}

Constrained item Adaptive MH {log(λ∗
i ), β

∗
i , ηj} - Adaptive MH {log(λ∗

i ), γ
∗
i , ηj} -

Unconstrained
Adaptive MH {log(λi), βi, ηj}

Conjugate {µ, σ2} -
Adaptive MH {log(λi), γi, ηj}

Conjugate {µ, σ2}

Centered sampler for pairs {log(λi), γi}
Adaptive MH {ηj}
Conjugate {µ, σ2}

Table 2: Summary of the sampling algorithms used for each parameter under the sampling
strategies considered for the semiparametric 2PL model.

Model constraints
IRT parameterization SI parameterization

MH/conjugate MH/conjugate Centered

Constrained item
Adaptive MH {log(λ∗

i ), β
∗
i , ηj}

CRP sampler {α, {zj}}
Conjugate {{µ∗

k}, {σ2∗
k }}

Adaptive MH {log(λ∗
i ), γ

∗
i , ηj}

CRP sampler {α, {zj}}
Conjugate {{µ∗

k}, {σ2∗
k }}

-

Unconstrained
Adaptive MH {log(λi), βi, ηj}

CRP sampler {α, {zj}}
Conjugate {{µ∗

k}, {σ2∗
k }}

Adaptive MH {log(λi), γi, ηj}
CRP sampler {α, {zj}}
Conjugate {{µ∗

k}, {σ2∗
k }}

Centered sampler for pairs {log(λi), γi}
Adaptive MH {ηj}

CRP sampler {α, {zj}}
Conjugate {{µ∗

k}, {σ2∗
k }}

Description of the sampling algorithms

� Conjugate sampler: for the models used in the paper, we exploit conjugancy re-
sults for the Normal distribution with Normal Inverse-gamma priors for the mean and
variance.

� Adaptive MH (Metropolis-Hastings): uses a normal proposal distribution, with ini-
tial proposal variance equal to 1 and and adaptation interval of 200 iterations. The
adaptation routine is implemented as given in Shaby and Wells (2010).

� Centered sampler: this is a custom defined sampler implemented by the authors.
Details are given in the below.

� CRP sampler: under the CRP specification, the random measure G is integrated out
from the model and NIMBLE assigns a collapsed sampler.

– clustering indicators z are updated as in described in Neal (2000);

– the DP concentration parameter α is sampled as described in Escobar and West
(1995) (Section 6) when a Gamma prior is used, as in the models considered in the
paper. If another prior is considered, NIMBLE uses a random walk Metropolis-
Hastings.
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Centered sampler

We consider a custom sampler for the 2PL model under the slope-intercept parameterization.
Intuition for this sampling strategy comes from the resemblance to a linear model. In order to
sample {λi, γi} efficiently, we propose centering the implied covariate, ηj, to have mean zero.
This is analogous to centering covariates in a linear model, but in this case the ”covariate”
values are not fixed, so the centering needs to be done in each iteration. For a given item i
for i = 1, . . . , I we can rewrite

λiηj + γi = λi(ηj − η̄) + λiη̄ + γi,

= λiη
c
j + γc

i ,

such that the quantity ηcj = ηj − η̄ is centered. The idea is to propose a new value λ∗
i in

this new parameterization at each MCMC iteration, using a random walk on the log scale.
Translating to the original parameterization, we have:

λ∗
i η

c
j + γc

i = λ∗
i (ηj − η̄) + λiη̄ + γi,

= λ∗
i ηj − λ∗

i η̄ + λiη̄ + γi.

This means that we are proposing γ∗
i = γi+ η̄(λi−λ∗

i ). Thus we have a joint proposal (λ∗
i , γ

∗
i )

that accounts for the usual correlation in a regression between intercept and slope. Apart
from accounting for sampling λi on the log scale, the proposal is symmetric, so no Hastings
correction is needed. The original sampler for γi can stay the same. This is because in the
reparameterization with γc

i above, shifting γi by a certain amount is equivalent to shifting
γc
i .

C. Health data questions

The following items are about activities you might do during a typical day. Does your health
now limit you in these activities? If so, how much?

1. Vigorous activities: Vigorous activities, such as running, lifting heavy objects, partici-
pating in strenuous sports.

2. Moderate activities: Moderate activities, such as moving a table, pushing a vacuum
cleaner, bowling or playing golf.

3. Lift/Carry: Lifting or carrying groceries.

4. Several stairs: Climbing several flights of stairs.

5. One flight stairs: Climbing one flight of stairs.

6. Bend/Kneel/Stoop: Bending, kneeling, or stooping.

7. Walk more mile: Walking more than a mile.

8. Walk several blocks: Walking several blocks.
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9. Walk one block: Walking one block.

10. Bathing/Dressing: Bathing or dressing yourself.

D. A note on efficiency comparisons

Comments on the multivariate ESS

In this section we compare univariate and multivariate efficiency metrics. In particular, we
compare efficiency values based on the mESS (multivariate efficiency), with the distribution
of efficiencies calculated for each parameter (univariate efficiency) using the total time. We
report these metrics for each simulation scenario, selecting three representative strategies
under the IRT parameterization for the parametric 2PL model. Figures 1-3 show the distri-
bution of univariate efficiency for difficulty, discrimination and ability parameters, along with
a table reporting information for the multivariate efficiency. There are some differences be-
tween the multivariate and univariate efficiency results. This is expected because the mESS
provides a single scalar measure of mixing performance that accounts for cross-correlation
among the parameters and does not necessarily reflect the distribution of univariate ESSs.
In fact, values of the mESS can be larger than all the univariate ESSs. For example, the IRT
HMC strategy has larger univariate ESS values compared to other sampling strategies, but
lower mESS.
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Strategy mESS total time (second) efficiency (mESS/second)
IRT HMC (Stan)** 31802 1405 23
IRT unconstrained 27540 934 29

IRT constrained item 27904 7318 4

Figure 1: Unimodal simulation (N = 2000, I = 15). Distribution of univariate efficiencies
(univariate ESS/seconds) for each group of parameters used to compute the multivariate
efficiency (mESS/second) using the total time. The symbol ** denotes median results across
11 runs.
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Strategy mESS total time (second) efficiency (mESS/second)
IRT HMC (Stan)** 30473 2191 14
IRT unconstrained 27167 937 29

IRT constrained item 27463 4508 6

Figure 2: Bimodal simulation (N = 2000, I = 15). Distribution of univariate efficiencies
(univariate ESS/seconds) for each group of parameters used to compute the multivariate
efficiency (mESS/second) using the total time. The symbol ** denotes median results across
11 runs.
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Strategy mESS total time (second) efficiency (mESS/second)
IRT HMC (Stan)** 22698 1176 19
IRT unconstrained 27442 1407 19

IRT constrained item 27756 5248 5

Figure 3: Multimodal simulation (N = 2000, I = 15). Distribution of univariate efficiencies
(univariate ESS/seconds) for each group of parameters used to compute the multivariate
efficiency (mESS/second) using the total time. The symbol ** denotes median results across
11 runs.

Variability of mESS when using HMC from the Stan software

When deciding on the number of posterior , burn-in and warm-up samples, we tried to
obtain a reliable estimate of the multivariate ESS. To ensure the chains were long enough,
we used multiple runs for some of the experiments. We found that mESS estimates based on
the chosen settings of the MCMC algorithm (i.e., number of iterations, number of burn-in
or warm-up samples) have negligible variability across multiple runs for all strategies with
the exception of using HMC as implemented in Stan. As an example, Figure 4 shows the
distribution of multivariate ESS for the IRT constrained abilities approach.
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Figure 4: Comparison of mESS estimates across multiple runs for the IRT constrained abil-
ities approach using the unimodal simulation scenario.

We also found that lower and higher values of ESS for the strategies using the HMC are
highly correlated with values of the tuning parameters of the HMC (i.e., leapfrog and step-size
parameters), which are typically estimated during the warm-up phase (see Figure 5).
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Figure 5: Estimates of the mESS versus average values of the HMC tuning parameters (step-
size and leapfrog) across post warm-up iterations.

E. Results from additional simulations

We investigated how different combinations of numbers of items and individuals affect effi-
ciency of the different sampling strategies. In particular, we simulated data under the three
scenarios presented in Section ?? following a factorial design with I ∈ {10, 30} and indi-
viduals N ∈ {1, 000, 5, 000}. We omit results for the strategy using HMC due to the high
variability in estimating the mESS.
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Figure 6: Multivariate ESS per second of the parametric sampling strategies (excluding
HMC) across different combinations of numbers of items and individuals.

Figure 7: Multivariate ESS per second of the semiparametric sampling strategies (excluding
HMC) across different combinations of numbers of items and individuals.
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F. Inferential results for the TIMSS data using the 2PL

model

Figure 8: TIMSS data, 2PL model. Comparison of posterior estimates of the item parameters
between the parametric and semiparametric model both using the SI unconstrained centered
sampling strategy.

Figure 9: TIMSS Data, 2PL model. Histogram and density estimate of the posterior means
of the latent abilities (left panel), and estimate of the posterior distribution for the latent
abilities (right panel). Dashed lines indicate 95% credible intervals for the estimated distri-
butions.
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Figure 10: Estimates of individual percentiles (with 95% credible interval) for a subset of
50 individuals, for the health data (left panel) and TIMSS data (right panel) under the 2PL
model.
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