Lawrence Berkeley National Laboratory
Recent Work

Title
ROLE OF END REGIONS IN THE STEADY STATE OF MIRROR-CONFINED PLASMAS

Permalink
https://escholarship.org/uc/item/4d24m3mt

Authors

Guillory, John U.
Kunkel, Wulf B.

Publication Date
1969-08-05

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/4d24m3mt
https://escholarship.org
http://www.cdlib.org/

Submitted to Plasma Physics UCRL-19260

Preprint

Ix

%1
€
; ROLE OF END REGIONS IN THE STEADY STATE OF MIRROR- CONFINED PLASMAS

RECEIVED
 LAWRENCE
RADIATION LABORATORY

SEP 24 1969

LIBRARY AND
DOCUMENTS SECTION

John U. Guillory, Jx. and Wulf B. Kunkel

August 5, 1969

AEC Contract No. W-7405-eng-48

o | ‘ N
. TWO-WEEK LOAN COPY
| &}: : | This is a Library Circulating Copy

e . which may be borrowed for two weeks.
For a personal retention copy, call

Tech. Info. Division, Ext. 5545

LLAWRENCE RADIATION LABORATORY 7\1}

UNIVERSITY of CALIFORNIA BERKELEY

09261 -TYDN



DISCLAIMER -

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



UCRL,-19260

- ROLE OF END REGIONS IN THE STEADY STATE OF MIRROR-CONFINED PLASMAS
John U. Guillory, Jr., and Wulf B. Kunkel
Lawrence Radiation'Laboratory
University of California
. Berkeley, California-
Auvgust 5, 1969
ABSTRACT
In open-ended plasma confinement at reasonable'ion temperatures

and relatively high densities (such as 10 keV and 100> cm™>

10

» or 100 eV
._and 10 cmfz) the Coulomb-scattering iose flux alone gives rise to a
charged-particle density outside the mirrorsAthat is usueily large enough
to>ieQuife,quasi-neutfelit& there?-'such.oonfinement must therefore be
.considened as involving an external,piesma even in the absence of ioni-

~ zation or other Plasma sources. in this external region. We have investi-
‘gated some of the effects of thie plasma on the steady-state features

of mirror confinement. In particular, we find that e Significant elec—
trostatic potential must usually exist between a mirror and any external
boundary (though its magnitude can be reduced by plasma sources outside
the mirrors). It follows that some energetic electrons will have turn-
1ng'p01nts well outs1de the mirrors and yet remain trapped. Any

external prlasma source will cause additional electrons to étreem through
the confinement_region. Aniestimate has been made of the change in
steady-state confinement parameters due to this streaming, in the limit
of negllgible unstable 1nteract10n with the confined plasma and some-
trapping of the r*trea,ming electrons. The effect of these properties of
open-ended confinement on various instabilities has not yet been fully

explored.
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1. INTRODUCTION

The following analysis isvapplicahle to openAended confinement
systems with gulding-center plasmas in the "local approXimation,“'with
rarticle loss times much longer than typical bounce periods, and per-
i pendicular'ion temperatures Til >> Te. .The'configuration need not be
a purely poloidal mirror field, but‘it must have magnetic mirrors
inside the vacuum'ehamber. »

The guiding-center motion df a nonuniform plasma is described in

terms of a potential for parallel motion.
U(s,n) = uB(s) + q¢(s),~ . @

Where g is the particle eharge and M= mv /2B is the magnetlc moment
invariant. We take: the maxima of B (magnetlc fleld strength) along '
any field line to be at s = +L, where s is arc length measured from
the mldplane. we assume symmetry in s and henceforth refer only to

s >'O, We call s = L "the mlrror( ) At s =W (W>1L) ve assume
there is a wall, in general accompanled by a sheath hav1ng an electro—
static potentlal drop (25 s With the wall :Ltself grounded Steady statet
loss rates maintain the mlrror-conflned plasma at a p051t1ve potential,
¢O’ at the mldplane, decrea51ng to ¢L'at s =L and ¢W at s=W , a
Debye length away from the wall. We aluays’make the "local approxima-
tion" thatiall quantities change slowly enough with distance normal to
a field line so that flux tubes can be considered independent. We call

the magnetic field at s = 0, L, W respectively BO, BL, Bw, and define

the mirror ratios RL = BL/BO and Rw = BW/BO'

»
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On the basis of single-particle behavior, Eq. (1) with § = constant

gives the familiar "loss cone" in midplane velocity space (or energy

1/2 mvﬁo, € = 1/2 mviO

mirror ratio accessible to particles on the given flux surface, then

) epéce:v.e” = uBO). If RM_is the smallest
particles with GL(RM - l)'<'e” have magnetic moment too small to be
confined: and they are 1ost'in a transit time.

But at higher densities, where scatterlng into the loss cone becomes
‘1mportant the large ratio of electron—scatterlng to 1on-scatter1ng rates
leads to the amblpolar Plasma potentlal ¢O’ which balances electron
and ion loss rates by trapping low- -1 electrons electrostatlcally
(KAUFMAN, 1956; POST, 1958) . Thus the Ioss-region is no longer a cone
in midﬁlane velocity space, but . a pair of hyperbolas (PERSSON, 1966),
one for electrons and one for ibns,‘as shown in Fig. 1. If scattering
is negligible in a bounce'time, the steady-state distribufions.in mid-

plane velocity, f_ and f,, are very nearly zero in the loss regions
g > el(RM - 1) + e(¢O -‘¢M) | (electrons) (2)
and - egg>e (R, -1) ~e(d, - 8) (ions).
o IR ' 0" M .

Theée are then boundary conditions on the f's.

In.this case one finds ¢O by equating approximate electron and ion
loss rates (KAUFMAN; 1956; BENDANIEL, 1961; PERSSON, 1966);* then‘in
calculating the profile ¢(e) one ignores the density of loss-component.
particles (one their way out) compared with the trapped ones,§ and also
uses a;better approximation to the true ioss criterion. For example,

BenDaniel célculates ¢O.using a single escape energy e¢o for the =
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electrons' (purely electrostatic trappingj. But in deriving ¢(s); the
electrqns are assumed Maxwellian for Sl f él(RL - 1) + eﬁo.** In both
calculations the ion boundary is taken to be a cone of altered slope,
€| = el(Re.- 1) ,where R, = RL(l +1e¢O/Ti)-l; in;tead of
be” = el(RL'— 1) —'e¢o; and except in R, ) is'ignored_ip‘thé caleula-
tion of fi. 'in this model the confiheménf region, betﬁeen mirrors,
is thus isolated ffom any exterior ﬁhenomena,'as long aé external
sources are absént._ -
| 2. NONISOLATED MIRROR SYSTEMS

bHoﬁever, a further ébphisfication is necessary: Ih thié paperﬁﬁe
- show thaet in many cases of_praétical interest the streaming lbés'alone
can gi&e rise to a charged;partiéle density outside the mirrors that
.is generally large enough to require qpésineutrality tﬁére.'fWe also
show that with eqﬁai’ion and electron loss flﬁxes; the loSs-éompOnent
electrons alone éénnot mgintain:the quasineuﬁfalify, and‘that‘the_émbi—
polar‘¢(s)'ﬁust cdﬁtinué to.decrease,out'ﬁo the ﬁall, with the résult
thaﬁ some energetic elect?ons will have furﬁingvpoints»well oﬁtside‘
the mirrors and yetvremain.trappeda .Theéevelectrons,:which we denote
by superscript ST (streaming Outsiae thevmirrors but still trapped)
| assist the loss—coﬁﬁonent~e1ectrons, denotedvby superscript SF (stream-
ing, free)_inbbalancing the ion loss-component density. The region
between mirrors (henceforth called region I) is thus not isolated from
the external region (region II: s > L).

- If diffusion takes place only in region I then the streaming ion

flux is independent of s in region IT except for the "area factor"
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B(s)/BL:

L

a \ _ B(s dn ‘ ' -
F(s) = f Ble) 8 (5)as, ~ R Ingy
0 1 Loss - »

vhere v is the inveérse loss time of a typical ion and n, is the mid-

plane ion density. Since B(s) decreases with s in region ITI, ions are

accelerated out, gaining parallel energy

%mivllg - .el(Ri.'» - Ry) +e(fp - 8

by the time they reach s = W (they creep over the barrier at s = L
with negligible v”).

| among these ions. Then if

ILet Tﬁoss be'a typieal value for ¢
elgy, - 4l <'1 ( df R, Rwil am
good for - ~ 1 an
0ss .
TR, - R) |

L.oss
L

tt
> 1),

then Lo ni(W) = = P no [('Ii'oss/T”)(RL - Rw)} -1/2 R_W.L__. B )
| i °I

| e M - .

where c”:= &E; T”j and T” refers to the midplane. Thgse ions,

whose density_cannot be matched byvstreaming'eleqtrons, as we will
show, cause a large positive potential and atfrabt electrons (from
region I if there are no others-available) until quasineutrality is

' established, provided that the resulting Debye length is smaller than
the éize of the external region. o

We have
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TEXT(S) 1/2 Ly lv/2‘ o | e
e 50 < ] 5 ) - o

L<s<wW | hrre n, - bare n,

(R Iy -1/2
9

where‘we have assnmed ne ~ nipand.writpen TEXT(S) for'tne~local mean
energy at s; In the absence of an externally snpplied beam, We’expect
this energy to be less than or at most eéual to the midplane'tempefa—
ture T_ because oflthenpctential‘difference é(¢ = ¢ ). Now certainly
V b 1/2 v e for RL -1~ l (the actual coeff1c1ent depends on RL

g01ng to. O for RL-—> @ and @ for RLiﬂ l), where

0 7 n In A

_T7§-37_ (n in cm 3, T in eV) ()

Y90 deg (sec ) ~k0.7 x 1

1s the'usual cumulative 90-deg Coulomb scatterlng rate for partlcles
of mass A (amu) (SPITZER, 1962). Though £y 1s not Maxwellian we assume
(B holds w1th1n a factor of 2 or so, and use T3/ = (T”T 2)1/-2
If 1nstab111ty is the domlnant loss mechanlsm, then we expect v much
larger than this Coulomb estimate.‘ . |
Assuming-Tﬁoss_ l’ con51der two examples, both with RL

R, =2, A=1amu L = 100 cm, and T, > T,

(1) for n. = 10%° cm'3,_Te = 10 eV, q, = 10 eV, T, = 100 eV:

0] 1

KD(W)Ai 1.5 cm.
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(2) For n, = 102 cm’5, T, = 100 eV, T” = 1 keV, T o= 10 keV:

Ay(W) 0.5 cm.-

\In:general the upper bound on XD(W) scales as

-1/2

oty 2 e

when the loss is dominated by'iOn-ion.collisions. Since ordinarily

. ‘W) is the minimum for fegion-II we conclude that in. many mirror-
_;,_

machine experimehts,*¢ region IT always constitutes an external plasma
all the way to the wall, even in the absence of external sources.

Slnce electron and ion fluxes must be equal however, the density

of streamlng electrons at s =~W'1s

_SF._. F (W) ' T(RL Rw) _e(¢ _¢).]-1/2 R, 1v
~ ~ ng

el R N ]

o
o .

where T” and c” still refer to the ions. One sees from thls that

unless e(¢ ¢ )/T ~ R Rw the streamlng electron density nSF is

insufffcient_for charge neutrallty at.s = W,-and-31m11arly.at s not too
near L. But if e(¢L - ¢w)/Te.z R = Ry ~ 1, many of ﬁhe e}ectrons at
s.> L would-be in class ST, not in SF as assumed.

3. DENSITY AT s IN TERMS OF MIDPLANE VELOCITY DISTRIBUTION

N

'-For each_point.s along a field line, one can drav a curve
€| = ¢ (el) = e ( R, - 1) - q(¢ ¢S) in midplane energy-s@ace, such

that if a particle at the midplane has | > Sup eg,(ei) {where Sup
. ' s'<s .

indicates the maximum value), then in the absence of collisions its
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turning point is beyond s. Of course for those rarticles with

U(s',u) = uB(s') + q¢(s}).monotonically‘increasing for s' < s, Sup €

' : s'<s
is Jjust €g° If we assume'¢(s) monotonically decreasing for all

s>0 (as indicated by the results of Section 2 for s > L, and by pre-
vious studies (BENDANIEL, 1961; PERSSON, 1966) for s <L), then for the
eiectrons'U(s,p) iébalwaysAincreasing in region I (s < L) but decreases
in region II (s > L) for large p and increases for small w. This is re-
flected iﬁ the crossiné éf theb}ines és(el) in.Fig; 2. For'thé’ions; 
U(s,1) is monotonically decreasing for s > L (so that all ions- passing

s =1 are.lost) and wé ignore the possibility .of complications arising
from udB/ds < ed(-#)ds for some s, u, B(s), @(s) in region T.°F

Assuming that all particles contributing to
n(s) ='[ewvidvljfdv”f(s,v”,vl)

include s = O in their orbits, we can use

B(V v 2)3 v ORS 2 .
a(v” v%g)’ = 2 . where xs2 = le(Rs -1) - %g (¢O - ¢S)’”
”: 1 o‘ v“ - Xs ’

0

to write the integration in terms of midplane velocities x = v”O and
v = V_I_Q: o _ _ _ .
n(s) = QWRSJ deJ f(O,x,y), _ (5) d
. 2 2 : : _ v
« X - X
. s

where particles with turning points at s' < s do not contribute and are

excluded by restricting the region of integration to |x] > sup xs,(y).
- s8'<s
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In a ferfectly'confined collisionless plaéma, f ;'O at the loss
boundary xL(y).*** If 0 < [af/axl < o there, then n(s) = (L - 5)2
for I, - s small and positive, as one can see from a Taylor expansion
of £ about x (¥)- |

With imperfect confinement, howeyer,'f(s,v”,vi) is not mapped by
fhe‘Vlasov charaéﬁeristics back onto f(O,v“,vl) but onto some function
g(O,v“,vlls) which'differ; noticeably from f near the escaﬁe Boundary,
The equations governing f have been discussed by KAUFMAN and KING (1968).

In thé collisionless approximation to.the particle dynamics our defini-

“tions of e” and € are obvious and are equivalent to p,H or u,J:

€= H - uB, - Q¢ob (H = Hamiltonian = total energy),
€) = HBy
or equivalently
m_ 2.
€ ==V at s = 0y
=27 ’
' m_ 2
€ =3 \ at s = 0.

In the presence of scattering, we define’% andvy (for a varticle
at s) to be fhe values of v” and 5 that thé particle would have if it
returned to s = O without further scatfering (i.e., along Vlasov char-
acteristics). The.definitioﬁs in terms of u,H are the same, but noﬁ.
u,H are stochastic functiqns whose expectation value in general depends
on s. But if scattering can bé neglécted in the low—density‘region IT,

the dependéhce on s there is negligible. “For this case we abbreviate

g(O)X)yl S) = g(X)Y) .
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4. TON DENSITY AT MTIRROR

To determine n?F one must either héve informatién.about the
detailed loss mechanism, or else assume a model for the loss ﬁechanism
or the detailed shape of g(0,x,y|s) near the escape boundary. ‘Since o
the former leads to calculational difficulties, we attemét the latter
in such a manner that a'specified Joss flux iS'reproduced; 'If all the
escapiﬁg ions arelplaced exactly gg‘the'éscape boundary (a simple assump-
tion for g), then hiF(s) hasvan.infinity at s = L'(ﬁhiCh'is réunded off,
physically, by diffusion due to fluctuations). Yet if small-angle
scattering predbminates, with‘only slight'scattering during a single
bounce period, then (x,y) for“an escépingtidn cannot_be_too‘far from
X = xL(y). Physically, then, a small loss rate canvprédugé_fairly ‘
lafge densities near s = i'as particleé creep over the potential barrier,
creating a "traffic jam" there. | |

Since the simplest model is inadequate, we take g(Q,x;y]L) =
go(x,y) + gl(x,y), where g, would be fb in thé'absencevof séattéring;
g, includes'a "tail" for x > 0 and y ~ yL(x).sufficient to give the
observed loss flux. OnLy‘the width of thg tail of gl should be
important, not the exact shape. ‘ ) 3

The function gl(x,y)’is'Chosénvso that g = gy + &) hés continu-
ous slope and gives the same density as 8o The loss flui, which is .
supplied entirely by 815 is equated to the known loss flux at the )
mirror. For go(x,y) we take a functién Maxwellian at large veloci-
ties inside the trapping regibn, but going to zero at the loss

boundary y = yL(x). Proceeding as in Appendix A we find, for small

loss flux,
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n, (1)/n, ~ 21/2775/8RL(P4/TT—)1/”(M/¢” 5/” | (6)

.where P | /(RL - l)c and v is'as in Section 2.
Though 1t is dlfflcult to calculate the tran51t10n shape, thls

hivalue of n, /n goes over to that calculated in Sectlon 2, assumlng

ne) L°SS<RL R el - T R

el ' Ty ' ' | c
o .‘H' . | |
- These expressions become equal (see Fig. 3) when

e [ . .LOSS<RL T =‘. i 2}(15«/' ,l,+_P)_l/'é ’3\\1'/2,
| .:§(¢L -:¢S) AR | c“/ |

A
nhich;is smaii (e.g., of,order O;Oé when T, =-lOT“ and LQ/&H'; OQ”IX lOfB)
| 5.so that. the break in Fig. 3 occurs at e(¢ - ¢ )/T” < 0. 02.

| In the calculatlons of Appendlx A and Sectlons 4 and 6 we treat
,loss precesses wh;ch lnvolve smocth'dlffu31onv1n veloCity space. For
N statistical purposes;»charge exchange."moves" ions discontinuously in
’:veloc1ty space, replac1ng an 1on in the trapplng reglon by one near the
, orrgln._ It charge exchange is 1mportant and 1f it occurs mostlv in the

‘reglon where ¢ ¢O’ then as the resultlng cold ions are accelerated

out of the plasma they produce an addltlonal dens1ty .

cX s ' R LnOvcx

% () = [<o/m Ye(d, - ¢ >]1/2 |

for's not too small. (Here Vo ig . an average charge-exchange collision
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0V ex is just the charge-exchange loss flux at s.)

This additional density only strengthens the conclusions of Section 2,

frequency, and RSLn

and in the remainder of Sections 4 and 6 it is left for the reader to
add this density to the one givén. Because the charge-exchanged cold
ions do not accumulate near s = L as do the SF ions from smooth diffu-

sion, ncx(L)/nSF(L) is small untll

S, vy -1/ " 1/2
Vox/Vairs zv[ndiff(F)/nO] [e(¢o" ¢L)/TH] ’
which is typically about 10. |
5. ELECTRON DENSITY IN TERMS OF ¢
We take the electron distribution g(x,y) to be a "damped Max-

wellian'":

g(x,y) = G(X:Y)H(XJY): v

where G(x,y) is Maxwellian with témperaturésze” end T_ , and H(x,y) is

a function which is nearly unity well inside the containmeht région in

X,y but goes smoothly to zero well inside the loss region. We proceed"

as in Appendix B to integrate such a function.(dimensiOnally) over the
regiohﬂlx[-> xL(y) to getvne(s) as in Eq. (5); The result is foqnd to

be somewhat sensitive to the abruptness with which H(x,y) drops off,

but some estimate of this is made at the'end»ofyAppendix B. The result:

is‘found to Bg _ -
n o PR
e(L) ~0.3 ! e ¢O/Te K12 _g& + "'} (7)

oo Rt Ry %

for RL - Rw ~ 1, where for simplicity we have taken Te =T, =T, =

Ny
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(m /2)c , and where K' measures the abruptness of falloff of H(x,y) -
near x (y) One expects 1 5 KieP<h in order to_reproduce a reasonable
"'electron loss fiux ‘For s > L but not too near W, n (s)/n is given
"by Eq (7) with R replaced by R and ¢ replaced by ¢ . TFor é,z.w,

we have

| . - _ r .5/ .
B R N Y L -
’ . : 3 : .
‘ no RL - RW N - L 7 Te o :
| fOI'RL - Rw ~ 1.
- 6. ESTIMATE OF EXTERNAL POTENTIAL

First at the mirror, from Egs. (6) and (7) and the requirement of

‘charge neutrality, we have

ef,  ef/r o w2
Lo te- 0 (RL RW)B/K"O (P«/ )% lg ———?. . (9).

e Leal

where B = ¢ (for elecfrons).  Then at the wall, from Section 2 and

Eq. (8); we have

= e e (RL Rw)l/g(T /TLOSS 1/26/ i — . (10)
Cle o L | 4 1“ .1

L ' 0.k
e¢w r e¢ /T To.y DV \

H g '
“ Finally we present the folloWing numerical estimates- For RL = 3,

R, = 2, T“/T 0.1, k'/p = 2, TLOSS ~ Tl, and e¢ T =5 (EENDANIEL,

1961), we have
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—— 0.4 x 107 0.k x'JLo'LlL

— . . 002 Ool

7. EFFECT OF EXTERNAL SOURCES ON CONFINEMENT

Finally we consider the small-chenge in the:steady state of an’
‘rmperfectly confined plasma when "addltlonal" -plasma is slowly 1ntro-
duced into the equlllbrated system by an external source (such as
emission of secondaries from end walls of the chamber, or a weak elec-
tron beam running through the plasme‘along magnetic field lines).

The first questlon facing such an analys1s is whether the stream-
~ing of the externally supplled electrons (whlch are supplled near one
edge of a potential well) causes addltlonal,lnstabllity (loss-cone
. modes may already ne.present) An intense beam‘or even é cold‘source"
at the end walls would produce a bump in the tall of the electron dis-
tribution and would excite two-stream:modes. The analys1s of this
unstable, inhomogeneousvsysten would be'difficult, and is not pursued
here. Instead we consider only the case in Which the total energy in
waves due to'such.interactions is small compared with nSFe¢O—-i.e., the
case of a very weak beam--and we take two equal counterstreaming com-
ponents for symmetry.. We also assume that the spectrum of any preexist-

ing instability is not changed by the new electron stream, and that -
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the_ion'distribntion is not altered by the new waves.

‘The internal source that sustains the plasma is unaffected by

- the new electron input from the ends. (There is no input of ions;

they are all repelled by the plasma potential. ) We neglect radiation

changes and diffus1on across the magnetic field and assume that some
fraction B of the externally supplied electrons is trapped during their

transit through the plasma. One can then integrate the equations Ffor

_ continuity of energy and particles over a flux tube, and subtract the

same. equations in the absence of the external (x) source. Solutions

con51stent with d/dt = 0 are then, crudely

el mo Ly '
, A(Fiei +Fe ) =0, : - | (11)

AFe +fBFx =0,

‘where A indicates the change due to addition of the "x" electrons

(which we take to be born with zero energy at the wall), F_  and F,

are the electron and ion loss fluxes, measured at s = w the flux of

'..X'electrens at s =W is FX, which has negative sign; eeL - e¢o and

eiL + e¢o are the mean energies of SF particles as measured at the

wall (exclusive of thcse:supplied'externally).

' We‘next observe thet'AFi,z 07 since the externallyksupplied
electrons do not affect the internal ion source'balancing Fi- For
the electrons, eeL S e¢o, since most of>the loss-component electrons
have nearly-thevminimun escape energy. By changing the plasma poten-

tial, one changes the loss boundary for ions in velocity space. This

~will, in general, induce a change in eiL (which could in principle be
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calculated from the Fokker-Planck equation). But we will aésumé for

-_simplicity»AeiL << eA¢O, as would be the case if energy«conServing'

scattering or charge exchange were dominant. Equations (11) then

_become, for small changes,

AP BF
¢o F,

‘Steédy state is not possiblefif'the-trappinglrate.of exterhal_eléétrdnS' :

exceeds the electron loss ratélf-Again for small éhaﬁges,’

SF, OF. F

— an + —= af + — AT, = 0,
‘on - oog - ory

and since phyéically_éa¢”<vémi < O,vWe‘have

.- ¢api/a¢ + e¢SF£/aTi fﬁFx 3 fﬁ % ¢5§i/a¢ ;@Fx
ndF, /on || Fy on T ndF fon | T,

(since aFi/BTi < 0 but BFi/5¢ and aFi/Bn > O),iwhére n, @, and T are

understood to refér to ﬁhe ﬁidplqne.’

Finally we make two temperaturé7Change estimates:”;.i

OF SF JF.

—Can+—20f 4 —S AT = -pF
an ‘ a¢ .aTe ,e» X

gives

AT @ r aFe/an /aFi/a¢ éFe/a¢ + Fe/¢ BF,,

T Tl OF, /on faFe/aTe | oF /T, |F

e

)

e

\ d

where we have taken Ami = 0 for simplicity. ‘Also

- :(12) ;

(14)
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vAee”"é (An/n)(e¢ - €e“>):

’s.where'e.”,is,the mean electron parallel'energy-at the midplane. This

"'_ comes from the fact that the new electrons are supplled at €” = e¢,

whlle any change in dens1ty due to altered loss boundary also affects

-mainly electrons near e” e¢° Thus for nearly isotropic electrons
we have
AT - an | o |
—el v er -1y >, : R (15)
ell .
. where'P'é e¢/T as befOre'and e‘” ¥:1/2 T el ~ 1/2 T ;

For one. estimate of the magnltudes involved in Egs. (13) to (15),
‘ we use the’ s1mplest Coulomb—scatterlng model for the loss fluxes,

- based on the work of BENDANIEL (1961),

2
'7Fe’ Fi é n,
oF, 3 | Fo
—_—= - — 1=,
def or T
JF. T
L.,
T T
e e
oF, ' F,
R R

—2< = =2 b(R.,T),
ded Ty (RL .)

Where‘b(RL,P) ~1 for '~ 4 and R =~ 3, which we use for typical

values. With these expressions, Egs. (13) to (15) become



and

'f'while._"

."'18‘;;'

'~ -.UCRL-19260.

)

_the external produotlon of electrons thus reduces the plasma potentlal

so. that the new net electron loss w1ll stlll balance the unchanged 1on '

;loss rate. Predlctably, Té is reduced but T ” is 1ncreased »h,d;:'

,sllghtly hlgher dens1ty results 1n the new steady state, Wthh can be

- 'reached only foriBF ]< F f‘f‘f

¥

B

4.
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APPENDIX

A. Model Calculation of Ton Density

_For_gl(x,y) we assume

e, ) | |
— (Al - B))e _ . for x> 0 and y < yL(x)
oy - :
: gl(x,y).= < 0 o _ for x'<.0,end y < yL(x) (A1)
g, -a(y-vy;) -b(y-y;)] -
: __9 [Ale "L '_' Ble . L J ' | . foi‘ y > yL(x),

oy

where ago/by is to be evaluated at yL(x) + 0, and where a > b and

"“A > B (see Flg M) On g, we impose three condltlons

, 5_ (gO + gl);y 5; (go + gl) Y o (continuous slope), (a)
' L+0 L- o
:JC Ax jr‘ 2rydy gl(x,y) = O v.v(aeneity unchanged by gl); - (b)
CL@ yL< ) o S . -
u ,xaxj_ ey g =%, @
--;-Oo 10) . ' : : 4 :

wWhere F denotes the-fictiﬁious flux at s = O which gives rise to ‘the

known flux F, (L) RLF at s = L. These conditions give

A, - B Ff | a +b : -
1 L - and K= - =——— + — ‘Vkag + b2) + 3 /F ,
kK 2opd | 2 2 S

where
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@’lo

o .
"o

I .
b yr(x)de
! (x)+0
In the llmlt of small F, K - \/WJ7F .

For go(x,y) e take a functlon Maxwelllan at large veloc1t1es in o
_ the trapplng region, but g01ng to zero at the’ loss boundary y yL(x), -

We assume a form

go(x:y) = ' e
o Gep? I ore] Sl e e < ()

o) e - e Loe ., TfTor x 7
G S T
0 L o | lflor,_xsg(y)',‘

. | o o . i (A2)
- where PECH2/<RL - l)c, T”/Teff’ A¢ ¢ ¢L; and where the ba51c ‘

parameters c”, c are related ‘to "temperatures" by 0“2 2T”/m ’
c | = 2T /m N and T (RL - l)Tl’ and go behaves llke

f—" :‘ 2 \\ ) )
% . . _ S
const x exp lQ ) atvlargevx or.y for x’<;xL(y).‘_ _

L \ c

This go-is normalized to n.s

I‘<
N
1\) N

,o"
L@ - oo}
!

i dx j, 2mydy go(x{y)v=.no.

From this one finds -
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38, 2 (1 +'P)3/2 ny 1 ( ) -(1+P)x2/¢”‘2
B = 75 T T T Yp\X)e
- 1y (x)+0 O AR B
and : |
i J 1 c” » i’lb - N eA¢ (1 P)
= — + — + .
| Wj/ﬁv?Le (1+p)? | T |
Then  |
o | : de-g (X;&)
n, (L) = RL [ 2nyay “ L
L o x(y) Vx - ()
- ¥y (x) ) e(r - 1y-1/2
=R Xd,X_[.L' 2nyay 'gl-( ’y.),(RLv l)_ —
o o X+ (2/n)e(dy - B)

vy,

Ry - 1
o 'This integral can be evaluated approximately for kyL(O) > 1, i.e.,

g(x,y) drops off rapidly in velocity space outside the loss boundary,

falling to e_lg[x,yL(x)] over a velocity small compared with | — e¢o)l/2.
We used '
v, ~k(y -¥) Ay
e e [ e
o - Aoy 1 e ’
To Vg - vy) o o

replacing upper limits by d), and using the asymptotic form (DAVIS,
196lk) of the incomplete gamma function to do the x integration,
-

: Ly 2 ” r 7 | 1.
[ 2+ 8)3 e g L h‘-7/”eh51“} L ,ms| ~ (n5) /" {l s ]
—O . | L g e -



where h = (1 + P)/c”2 and & = %‘ e(¢0 - ¢L)'
. ) i‘
result is

n, (L) /ng

n.IvV.

where we have uséd F»= 0

= gl/gwj/BRL(PA/ififﬁ)l/u(Lv/c”)5/4;

- UCRL-19260

For small F, then, the -

(A3)

B. Model Calculation of Electron Density in Terms of 4

The region of integration for ne(L) is x° > ng(yg), where

ng(yg) = (] - 1)y + (0 = o), with ¢ = % ef.  We take the electron

diétributionvg(x,y) to be a "damped Maxwellian":

2,2 2,0 .
g(x,y) = - e e H(x,y); S (Bl
W572c“cl2 . , e NBH
. -K;(Xlg - X?) %) 2 '2 »
1-G-ge T oo < %00,
: o -K(x2 - xig), 5 o o
CH(x,y) = ¢ te for x~ > x,"(y") and x > 0,
X . . . o ) e 2 , . . ', .
o R v .for;xg > x; (ye)‘and’x <0,
where ‘
- [(rR - l)y2 + Py = >
_ | L . 0 'L | T
X . Q. ‘
xlg( 2) = ¢ > for y2 ———é——f .
2 I A
R -1 <
(R - Ly + P )

See Fig. 5. We take «, «' > c”_e.and note that

\K, _

(11— 5)_ng'for a

smooth slope. (See Fig. 6.) The approximate normalization (neglecting
the damping) has been used instead of the exact one, since the differ-

ence will be at most a few percent if eﬁo‘z MTe (as expected if
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RL -1 2;1)'and if‘K"z c”-z. Then

.
[ an

¥ ; - 1 - (l - g)e |
ﬂ 75 V/XE-_ 2 oL A
k 'XL , XL
1 - d(kg) -XE/CHQ jK(Xe - Xlg)
.;__-é-' S —— L. ge ) Y.
v J o \/ o) 2 v .
IR S T

.Although'one,can evaluaﬁe thisvexaCtly by using integration by

parts; the result is unnecessarily lengthy. Instead,vsince K and ¢ are

_only guessed, we give an approximate dimensional evaluation. We ignore

the contributiohé'from the "tail", i.e., x >_xl; The region of inte-

.gration is then the pair'of triangles in x2, ye (one for x > 0 and one

,fof x <0):

X 2 < xg < Xl2, o y2 < L

L Ry Ty

' (y> o),,.

as in Fig. 5. ‘The area of these is q)LE/(RL - Rw); the centroid is at

, P (R -1 o ' P, -
leéﬂ@o TS EE———"" - 24, Y2 L

3 R -R, | ':.3(RL"—RQV)_.J

The integrand evaluvated at the centroid is
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g(x,sv,) .n063/2 -B®, -% By (@=2)

: . . -z Kool '
e L T3 e -..-Ll»«pL/s;)-l/?
e 'XLE | R | | *j |

for isotropy, where B = l/c”2 =~l/vlv_= % m /T 5 and a = RL/(RL RW)
Since o
22 s A
J/ _____-——————‘d(xz) :.2(x2 F;ng)l/g(kg -'Xg):

twice what one would get dimensionally, ve includevthe'extra factor of

. 2 in our result

o _ 1/2 5/2 on B5/ _?Btpo. _36@ (afzf)r L %K'@L
ne(L) ~ R 5 W5/2 e e » 1- (1= €e I
SR
BRI S 5&(6¢L)3/2 (rsch)5/2
o R e r
¥ terms in (B@L)7/2 t t ; “H:‘(BE)

there we have expanded exp [ 3 B@L(a 2)} and exp. ['K'¢L/3]résSnpingf.
exponents < 1, ,and neglected 13 compared w1th,K’/B.ijince_the,more'

exact caléulation glves somewhat smaller coefficients for the (BQL)7/2
and'hlgher terms, we. do not consider them~here We expect g <1 and
K' > B, so the 5/2 power term is the donlnant one. Somevlnslghtvlnto

appropriate sizes for ¢ and K' is gained from the eqpationffor electron

flux at s = W based on this model g(x,y):
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. » " no _1/2 » K -1 "B(Po 1 ’(a-l)Bch]
Fe(w)=v—i7§s §l+§ e 1-Ze J

'-for isotropic electrons, with a and B defined as before. ThlS flux,

dependlng only weakly on QL for (a - 1)3¢L > 2, must equal F, (W) That

'requlres
| . - 1/2
£ _ m T, Bo. | Lwv ‘ .
 1 +. {</B‘ m, T | | ci”}
L -2 -3 (_ _KE
wwhlch is. typlcally of order 1077 or 10 If we then choose K = T -t

so that the slope of g is contlnuous, the left side of (B3) becomes

Bg /K ) show1ng that if the "damping" of g is not too abrupt (say

K! /B <hy, then & is in fact small. The actual realistic value for «'

'caplbe determined only from the detailed nature of the scattering

"~ process.

‘For s >'L but not too near W, Fig. 2 suggests replacing xLe by
_xs2 (R - l)y + (@O - @ ) for the left-hand boundary of the 1ntegra-

tlon reglon.ff* The function n (s)/n is thus given roughly by Eq.

(B2) with R replaced by R and QL replaced by P, -

The reglon ‘of integration is poorly approx1mated near s = Wif

the sheath potentlal ¢ is nonzero. Near the wall, then, it is better

to_bound the 1ntegratlon region by the parallel lines

=Ry - DY+ (- ) e = (r - 1y% 4,

and by y2 = @L/(RL -_Rw) (again assuming-RL'_ R, not too small). The

result for s- w is then-
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+ J forl, RL"- Rw Z 1.. (BLL) ‘
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FOOTNOTES
This work was done under the auspices of the U. S. Atomic Energy
Or-even quasi-steady-state: true steady state in the presence of
particle losses requires a source, such as neutral injection, to

maintain the plasma. In the absence of such a source the problem

_ can be treated as quasi-steady if the loss rate is sufficiently
“small.
' This requires equal electron and ion source rates. For a discussion

»7of‘inde§endent ion and electron sources one should refer to FOWLER

and RANKTN (1962).

‘Uhdéf sbme cifcumstancesvwheré charge éxchaﬁge is.the‘déminant
.yloss mechanism, one ﬁay.not negléct the,density éfvioss-compoﬁent
f:ions, ginée theirnescapé time is long. iéee FOWLER;aﬁd.RANKIﬁ
(1962). - B

fWefassume e¢c is BEq. (46) of thatvpapef.should,bé 1e¢¢,,-ﬁaking

- some of Eq. (45) redﬁndant.'[

In this paper the symbol ~ is used to denote "of the same order

'of.magnitude'as".

. The 1ow-density; high—temperature:ion; or neutral-injection

eXperiments are exceptions, unless instability loss rates are

quite high.

If af/ds 4 O at s = M(n), the maximm of U(s,n), then M(u) # L

although M(p) - L is small fér almost all trapped ions and gbes
to mero as po-> . And i ed(-¢)/ds > pdB/ds Tor some u >

' -1 , ,
'(I&_— 1&) ‘0¢T and s <7 I, then there can be ions trapped in

region T away Trom the midplane.
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Perfect colllelonless conflnement really refers to a flnlte tlmeef

scale, and is the llmltlng state as the Fokker—Planck colllslon

: terms go unlformly to zero. Otherw;se f could dropjdiseontinu-
f'ously at the loss boundary

.Although thls is exact only if ¢S,(RL Rw) < ¢ (R Rw) for

all s' E s, whlch requlres d¢/ds - Oat s % L.,
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FIGURE LEGENDS

Electron and ion loss boundaries in midplane. velocity spaée _

‘when ¢O £ O.

Llnes‘e” = e (el) fo? L <vs < We o ) _ | , : 5
Approximate density outside the main cdnfinement'region._
Shape of gl for given‘x.

Electron-loss boundariés in midplané energy space.

g (with Maxwellian Qhown.dashed)}and H vs x for fixed y.
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Fig. 3



-

-34.

UCRL-19260

Sy (x)

Fig.” 4 .
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x2_>xf . absolute loss from device

x 2 >xf_ : tutning' point beyond s= L

XBL697-3274

Fig. 5
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Fig. 6
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