
UCSF
UC San Francisco Previously Published Works

Title
Purification and characterization of mammalian integrins expressed by a rat neuronal cell 
line (PC12): evidence that they function as alpha/beta heterodimeric receptors for laminin 
and type IV collagen.

Permalink
https://escholarship.org/uc/item/4d3127tq

Journal
Journal of Cell Biology, 107(3)

ISSN
0021-9525

Authors
Tomaselli, KJ
Damsky, CH
Reichardt, LF

Publication Date
1988-09-01

DOI
10.1083/jcb.107.3.1241
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4d3127tq
https://escholarship.org
http://www.cdlib.org/


Purification and Characterization of Mammalian Integrins Expressed by 
a Rat Neuronal Cell Line (PC12): Evidence That They Function as  t/13 
Heterodimeric Receptors for Laminin and Type IV Collagen 
Kevin J. Tomaselli,* Carol ine H.  Damsky,~ and Louis E Reichardt*  

* Department of Physiology, Division of Neuroscience and Howard Hughes Medical Institute, and ~ Departments of Anatomy and 
Stomatology, University of California, San Francisco, California 94143-0724 

Abstract. Cells of the rat neuronal line, PC12, adhere 
well to substrates coated with laminin and type IV col- 
lagen, but attach poorly to fibronectin. Adhesion and 
neurite extension in response to these extracellular ma- 
trix proteins are inhibited by Fab fragments of an an- 
tiserum (anti-ECMR) that recognizes PC12 cell sur- 
face integrin subunits of M~ 120,000, 140,000, and 
180,000 (Tomaselli, K. J., C. H. Damsky, and L. E 
Reichardt. 1987. J. Cell Biol. 105:2347-2358). Here 
we extend our study of integrin structure and function 
in PC12 cells using integrin subunit-specific antibodies 
prepared against synthetic peptides corresponding to 
the cytoplasmic domains of the human integrin 13~ and 
the fibronectin receptor ct (~tFN) subunits. Anti-integrin 
13~ immunoprecipitated a 120-kD 13t subunit and two 
noncovalently associated integrin tt subunits of 140 
and 180 kD from detergent extracts of surface-labeled 
PCI2 cells. Immunodepletion studies using anti-inte- 
grin 13~ demonstrated that these two putative ct/13 het- 
erodimers are identical to those recognized by the 
adhesion-perturbing ECMR antiserum. Anti-aFN im- 
munoprecipitated fibronectin receptor heterodimers in 

human and rat fibroblastic cells, but not in PC12 cells. 
Thus, low levels of expression of the integrin CtFN 
subunit can explain the poor attachment of PC12 cells 
to FN. The PC12 cell integrins were purified using a 
combination of lectin and ECMR antibody affinity 
chromatography. The purified integrins: (a) completely 
neutralize the ability of the anti-ECMR serum to in- 
hibit PC12 cell adhesion to laminin and collagen IV; 
(b) have hydrodynamic properties that are very similar 
to those of previously characterized integrin ct/13 het- 
erodimeric receptors for ECM proteins; and (c) can be 
incorporated into phosphatidylcholine vesicles that 
then bind specifically to substrates coated with laminin 
or collagen IV but not fibronectin. Thus, the ligand- 
binding specificity of the liposomes containing the 
purified PC12 integrins closely parallels the substrate- 
binding preference of intact PC12 cells. These results 
demonstrate that mammalian integrins purified from a 
neuronal cell line can, when incorporated into lipid 
vesicles, function as receptors for laminin and type IV 
collagen. 

I 
NTERACTIONS with extracellular matrix (ECM) ~ com- 
ponents are likely to regulate neuronal differentiation 
during the development of the nervous system. Several 

well-characterized constituents of the ECM affect neuronal 
adhesion, process outgrowth, or survival in vitro. The base- 
ment membrane glycoprotein, laminin (LN), stimulates neu- 
ronal adhesion (Hall et al., 1987), process outgrowth (Rogers 
et al., 1983; Manthorpe et al., 1983; Lander et al., 1983, 
1985), and survival (Edgar et al., 1984; Calof and Reich- 
ardt, 1984, 1985) of both central and peripheral neurons. 
Two other ECM components, fibronectin (FN) and type IV 

1. Abbreviations used in this paper: anti-ECMR, anti-extracellular matrix 
receptor serum; Col IV, collagen IV; ECM, extracellular matrix; FN, 
fibronectin; LN, laminin; NRK, normal rat kidney; octylglucoside, n-octyl- 
13-D-glucopyranoside: VLA, very late antigen; WGA, wheat germ agglu- 
tinin. 

collagen (Col IV), also stimulate neuronal adhesion and, for 
some neurons, process outgrowth (cf. Akers et al., 1981; 
Rogers et al., 1983, 1985; Hall et al., 1987; Carbonetto et 
al., 1983). Studies of ECM protein expression in nervous tis- 
sue suggest that ECM proteins are likely to influence axon 
growth both during development and in response to injury 
in vivo. In particular, LN immunoreactivity has been demon- 
strated in regions of the developing central and peripheral 
nervous systems where axonal pathways are established (cf. 
Rogers et al., 1986; Cohen et al., 1987; Letourneau et al., 
1988; Adler et al., 1985; Liesi, 1985). More recently, anti- 
bodies to a putative LN-proteoglycan complex have been 
shown to transiently inhibit sympathetic nerve regeneration 
and/or differentiation in the iris after chemical sympathec- 
tomy (Sandrock and Matthew, 1987). 

Neuronal responses to ECM proteins must depend on the 
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function of specific receptors on the neuronal plasma mem- 
brane. Cell surface receptors for several adhesive ECM pro- 
teins, including LN, FN, Col IV, vitronectin, fibrinogen, 
and yon Willebrand factor, have recently been identified on 
a variety of adherent cells (Horwitz et al., 1985; Buck et al., 
1986; Akiyama et al., 1986; Gardner and Hynes, 1985; 
Santoro, 1986; Pytela et al., 1985a, b; 1986; Plow et al., 
1985). A common structural feature of these receptors is the 
noncovalent association of one of several homologous ~t 
subunits with a common 13 subunit to form t~/13 receptor het- 
erodimers with distinct ligand-binding specificities. Protein 
and cDNA sequencing of these receptor a and 13 subunits has 
established the existence of two multigenic families (corre- 
sponding to ~x and 13) whose members have been called inte- 
grins (Tamkun et al., 1986; Takada et al., 1987b; Argraves 
et al., 1987a, b; Kishimoto et al., 1987; Suzuki et al., 1986, 
1987; Corbi et al., 1987; Poncz et al., 1987; reviewed in 
Hynes, 1987, and Ruoslahti and Pierschbacher, 1987). At 
present, three integrin ~t/13 heterodimer subfamilies, distin- 
guished by three distinct but homologous 13 subunits, have 
been characterized (Hynes, 1987). At least five ct/13 heterodi- 
mers comprise the integrin 131 subfamily: on human cells, 
these correspond to the five "VLA/' protein heterodimers 
(VLA 1-5) first described on T cells as very late activation 
antigens (Hemler et al., 1985, 1987a; Takada et al. 1987b). 
One of the VLA heterodimers (VLA 5) appears to corre- 
spond to the integrin 13t/aFN FN receptor heterodimer ini- 
tially purified from human cells (Pytela et al., 1985tl; 
Takada et al., 1987a; see Hynes, 1987 for integrin nomencla- 
ture). A similar FN-binding heterodimer has been character- 
ized in rodent cells (Brown and Juliano, 1986; Patel and Lod- 
ish, 1986). 131-class integrins that bind to FN and LN have 
also been purified from avian cells using an adhesion-per- 
turbing monoclonal antibody (Horwitz et al., 1985; Buck et 
al., 1986). These avian integrins are also likely to be hetero- 
dimeric in structure (Horwitz et al., 1985). Integrin 13t re- 
ceptors are expressed on the surfaces of avian neurons and 
function in neuronal adhesion and process outgrowth in re- 
sponse to LN, FN, and Col IV (Bozyczko and Horwitz, 
1986; Tomaselli et al., 1986; Hall et al., 1987; Cohen et al., 
1987). Integrin 13~ antibodies have also been shown to di- 
minish but not prevent central and peripheral neuronal pro- 
cess outgrowth on glial and muscle cell surfaces (Bixby et 
al., 1987, 1988; Tomaselli et al., 1988; Neugebauer et al., 
1988). 

The molecular characterization of neuronal receptors for 
ECM proteins is hampered by the difficulty in obtaining pure 
neuronal cultures in large quantities for biochemical studies. 
We have attempted to circumvent some of these difficulties 
by studying the interactions of a rat pheochromocytoma cell 
line, PC12, with ECM proteins. PC12 cells display many 
properties of differentiated sympathetic neurons after ex- 
posure to nerve growth factor, including process outgrowth, 
electrical excitability, and synapse formation (Tischler and 
Greene, 1975; Schubert et al., 1977). Previous studies have 
shown that PC12 cells adhere efficiently to and extend neu- 
rites on LN and Col IV, but attach poorly to FN (Tomaselli 
et al., 1987; Turner et al., 1987). PC12 cell adhesion and 
process outgrowth on these ECM proteins is inhibited by an- 
tibodies (anti-ECMR) that immunoprecipitate three PC12 
cell surface glycoproteins of 120, 140, and 180 kD. The 120- 

kD protein, which cross reacts with antibodies to the avian 
integrin 131 subunit, is noncovalently associated with both 
the 140- and 180-kD glycoproteins (Tomaselli et al., 1987). 
In the present report, we have purified and further studied 
the physical properties and ligand-binding specificities of 
these PC12 cell integrins. Our results indicate that these inte- 
grins are organized as ct/13 heterodimers that function as 
receptors for LN and Col IV on the surfaces of PC12 cells. 

Materials and Methods 

Materials 
LN and Col IV were purified from Engelbreth-Hoim-Swarm sarcoma 
tumors using published methods (Kleinman et al., 1982; Timpl et al., 1982) 
and were the generous gifts of Drs. J. L. Bixby, A. D. Lander, and J. Winter. 
Human plasma FN was from Collaborative Research Inc. (Waltham, MA). 
Cyanogen bromide-activated Sepharose CL-4B, protein A-Sepharose CL- 
4B, and Sephacryl S-300 were purchased from Pharmacia (Piscataway, N J). 
Affigel 10 was from Bio-Rad Laboratories (Richmond, CA). Wheat germ 
agglutinin (WGA), N-acetyl-D-glucosamine, and n-octyl-13-v-glucopyrano- 
side (octylglucoside) were from Calbiochem-Behring Corp. (La Jolla, CA). 
Aquasol and [3H]phosphatidylcholine, (L-0t-dipalmitoyl [2-palmitoyl-9,10- 
3H(N)]) were from New England Nuclear (Boston, MA). Nal2SI was pur- 
chased from Amersham Corp. (Arlington Heights, IL). All other chemicals 
were from Sigma Chemical Co. (St. Louis, MO). 

Cell Culture 
Rat pheochromocytoma (PC12) cells (Tischler and Greene, 1975) were 
grown in monolayer culture in DME with 4.5 g/liter of glucose (DME H-21; 
University of California, San Francisco, Cell Culture Facility) sup- 
plemented with 10% hot-inactivated horse serum, 5 % newborn calf serum, 
2 mM glutamine, and 100 U/ml of penicillin/streptomycin. Cells were pas- 
saged with Ca++-/Mg++-free PBS (15 mM Na2HPO4, 1.5 mM KH2PO4, 
0.14 M NaCI, 2 mM KCI) containing 5 mM EDTA. Human placental fibro- 
blasts were isolated as described in Fischer et al. (1984). Normal rat kidney 
(NRK) and human placental fibroblastic cells were grown in DME 1-121 
supplemented with 10% FCS, 2 mM glutamine, and 100 U/ml of penicil- 
lin/streptomycin. 

Antibodies 
The anti-ECMR serum was made in goats to a preparation of 120-160-kD 
cell-substrate adhesion-related integral membrane glycoproteins purified 
from baby hamster kidney fibroblastic cells as described in Knudsen et al. 
(1981). IgG was prepared from the ECMR antiserum by sodium sulfate 
precipitation as described in Wylie et al. (1979). ECMR IgG used in the 
preparation of ECMR IgG-Sepharose CL-4B for affinity chromatography 
was further purified on protein A-Sepharose CL-4B before coupling to 
Sepharose CL-4B. Fah fragments of anti-ECMR IgG were prepared by 
digestion with papain as described in Parham (1986). Rabbit anti-LN serum 
was the generous gift of Dr. J. Winter. Col 1V antibodies were purchased 
from Dr. H. Furthmayr, Yale University, New Haven, CT. Polyclonal an- 
tisera to integrin ct and 13 subunit peptides were prepared as described below. 

Preparation of Antisera to Synthetic Integrin Peptides 
A 24-amino acid peptide consisting of an NHrterminal cysteine linked to 
the last 23 COOH-terminal amino acids of the cytoplasmic domain of the 
human and chicken intcgrin 131 subunits (DTGENPIYKSAVTTVVNP- 
KYEGK; Tamkun et al., 1986; Argraves et al., 1987b) was synthesized by 
Dr. Chris Turk at the Howard Hughes Medical Institute, University of 
California, San Francisco. A second peptide of 19 amino acids consisting 
of an NH2-terminal cysteine coupled to the last 18 COOH-terminal amino 
acids of the cytoplasmic domain of the human fibronectin receptor a subunit 
(YGTAMEKAQLKPPATSDA; Argraves et al., 1987b; henceforth referred 
to as the integin aFN subunit as described in Hynes, 1987) was also synthe- 
sized. The peptides were synthesized on a peptide synthesizer (model 430A; 
Applied Biosystems, Inc., Foster City, CA) and cleaved from the resin and 
deprotected using liquid hydrogen fluoride. Purification of the peptides by 
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preparative HPLC was carried out with a Vydac C18 column (Vydac, 
Hesperia, CA), 1 x 25 cm, using a gradient of 5-65% acetonitrile in water 
plus 0.1% trifluoroacetic acid. Peptide identity was verified by gas phase se- 
quencing. Each peptide was coupled via the NHrterminai cysteine residue 
to Keyhole Limpet Hemocyanin (KLH) using the water-soluble hetero- 
bifunctional cross-linking reagent m-maleimidobenzoyl sulphosuccini- 
mide ester according to manufacturer's instructions (Pierce Chemical Co., 
Rockford, IL). Rabbit antisera to the peptide-KLH conjugates were raised 
in New Zealand White rabbits by the Berkeley Antibody Co. (Richmond, 
CA). Antisera that reacted with unconjugated peptides by ELISA were 
screened on human placental and NRK fibroblastic cells by antigen blotting. 
The antiserum to the peptide derived from the integrin 13~ subunit cytoplas- 
mic domain used in this study recognizes a single ll0-kD integrin 131 
subunit in antigen blots of both human and rat fibroblastic cell proteins. The 
antiserum to the peptide derived from the integrin ¢tFs subunit cytoplasmic 
domain used in this study recognizes a 160-kD integrin ¢t~r~ subunit in an- 
tigen blots of both human and rat fibroblastic cell proteins. 

Cell Surface Iodination and lmmunoprecipitation 
PC12 cells, NRK cells, and human placental fibroblasts were labeled by 
lactoperoxidase-catalyzed iodination as described in Tomaselli et al. (1987). 
About 3 x 107 labeled cells were extracted in 1 ml of PBS plus 1 mM 
CaCI2, 0.5 mM MgCI2, 1 mM phenylmethylsulfonyl fluoride (PMSF), and 
1% Triton X-100 as described previously (Tomaselli et al., 1987). Im- 
munoprecipitations were performed on detergent extracts as detailed in 
Tomaselli et al. (1987) using 10 I~1 of the appropriate antiserum and 50 Ixl 
packed volume of protein A-Sepharose CL-4B. Immunoprecipitates were 
washed five times in extraction buffer by centrifugation, eluted in SDS gel 
sample buffer (Laemmli, 1970) without 13-mercaptoethanol, and stored at 
-70°C until use. 

For the immunodepletion studies with the integrin I~-specific antibod- 
ies, a 1-ml aliquot of PCI2 cell extracts (107 cpm) was sequentially immu- 
noprecipitated four times with 30 lal of anti-integrin I~ serum, followed by 
two extractions with protein A-Sepharose alone, and, finally, 20 ~tl of the 
anti-ECMR serum. In control experiments, the ECMR antiserum recog- 
nized proteins of 120, 140, and 180 kD in PC12 cell extracts that had been 
extracted five times with a control antiserum. 

Purification of PC12 Cell lntegrins 
For analytical studies (cf. Figs. 3 A, 5, and 7) ,~10 s PC12 cells were sur- 
face labeled by lactoperoxidase-catalyzed iodination as previously de- 
scribed (Tomaselli et al., 1987). Labeled cells were extracted for 30 min 
on ice in 5 ml of ice-cold PBS containing 1.0 mM CaCI2, 0.5 mM MgCI2, 
200 mM octylglucoside, 1 mM PMSE 1 mg/ml leupeptin, and 1 mg/ml pep- 
statin (extraction buffer). Detergent-insoluble material was removed by cen- 
trifugation at 12,000 g for 20 min at 4°C. For the purification of larger 
amounts of protein used in functional studies (cf. Figs. 3 B, 4, and 6), ~5 
× 109 unlabeled PC12 ceils were extracted with stirring as described 
above in ",,20 ml of extraction buffer and insoluble material was removed 
by centrifugation at 12,000 g for 30 min at 4°C. This cell extract was then 
mixed with a 5-ml extract of ,x,10 s PC12 cells that had been surface labeled 
and extracted with octylglucoside as described above. Before continuing 
with the purification, PC12 cell extracts were mixed with an equal volume 
of extraction buffer without detergent to yield a final octylglucoside concen- 
tration of 100 mM. Extracts were mixed for 5 h at 4°C by end-over-end rota- 
tion with 10 mi packed volume of WGA coupled to Affi-gel 10 (coupling 
of 10 nag of WGA per mi of Affi-gel 10 was achieved following manufac- 
turer's instructions [Bio-Rad Laboratories]). The slurry was loaded into a 
column (15 × 3 cm) and washed with 30 column vol of extraction buffer 
containing 50 mM octylglucoside (wash buffer). Bound proteins were eluted 
with 5 % N-acetyl-D-glucosamine in wash buffer, and the peak ~251-contain- 
ing fractions were pooled and mixed for 2 h at 4°C with 10 ml packed vol- 
ume of normal goat IgG coupled to Sepharose CL-4B (coupling of 10 mg 
of goat IgG per mi of cyanogen bromide-activated Sepharose was achieved 
using manufacturer's instructions). The gel slurry was loaded into a column 
(15 x 3 cm) and the unbound, flow-through material was collected and 
mixed end-over-end with 1.5 ml of anti-ECMR IgG coupled to Sepharose 
CL-4B (4 mg of ECMR IgG/ml of gel) for 3-4 h at'4°C. The anti-ECMR 
IgG-Sepharose CL-4B was loaded into a column (1 × 5 cm), the flow- 
through was collected, and the column was washed with 50-100 ml of wash 
buffer followed by 10 rnl of wash buffer containing 0.5 M NaCI at a flow 
rate of •1 ml/min. Bound proteins were eluted with 50 mM diethylamine 

pH 11.5, 1.0 mM CaCI2, 0.5 mM MgClz, 0.1 M NaCl, 50 mM octylgluco- 
side, and 1 mM PMSF, and immediately neutralized with Hepes pH 7.4. 

Neutralization of Anti-ECMR Serum with 
Purified PC12 Cell lntegrins 
Immunopurified PC12 cell proteins (•5 ltg in 2 ml of elution buffer as 
judged from silver-stained gels by comparison to known amounts of BSA) 
were concentrated eightfold by centrifuging at 2,500 g for 20 rain at 4"C 
through an Amicon filter with a 30,000-D cutoff (Centricon 30; Amicon 
Corp., Danvers, MA). Concentrated proteins (in "~250 Ixl) were mixed with 
50 IH of normal goat serum (to help minimize protein loss in subsequent 
manipulations) and dialyzed for 48 h at 4°C against four l-liter changes of 
PBS with 1.0 mM CaCh and 0.5 mM MgCI2 to remove the octylglucoside. 
Dialyzed proteins were mixed with the anti-ECMR serum and incubated 
30 rain at 25°C before testing the ECMR antiserum for its ability to inhibit 
PC12 cell attachment. As a control, the ECMR IgG-column elution buffer 
was mixed with 50 lal of normal goat serum, dialyzed, and mixed with the 
ECMR antiserum. PC12 cell attachment was measured in the presence of 
the anti-ECMR serum that had been premixed with either purified proteins 
or control proteins (normal goat serum) using a cell attachment assay de- 
scribed previously (Hall et al., 1987; Tomaselli et al., 1987). 

Reconstitution of Purified PC12 Cell lntegrins 
into Lipid Vesicles 
Immunopurified proteins ("~20 tag as judged by silver-stained gels) were 
concentrated to 1 ml using a Centricon 30 (Amicon Corp.) as described in 
the preceding section. A mixture of unlabeled phosphatidylcholine (100 l.tg 
for analytical studies [Fig. 5]; 50 lag for liposome-binding experiments [Fig. 
6]) and [3H]phosphatidylcholine (106 cpm for analytical studies [Fig. 3]; 
107 cpm for liposome-binding experiments [Fig. 4]) was dried onto a glass 
tube under a stream of N2 and then redissolved in either the antibody 
column elution buffer alone or the antibody column elution buffer contain- 
ing the purified PC12 cell proteins. Liposomes were formed by detergent 
dialysis as described in Mimms et al. (1981). Liposomes that were formed 
by dialyzing for 36 h at 4°C against four l-liter changes of PBS containing 
1 mM CaClz and 0.5 mM MgCI2 were made 45% in sucrose, overlaid with 
2 ml of 30% sucrose, and then 2 mi of 10% sucrose in PBS plus Ca ++ and 
Mg +÷ and centrifuged at 45,000 rpm for 18-24 h in an SW 60 rotor (Beck- 
man Instruments Inc., Palo Alto, CA). The resulting sucrose gradient was 
fractionated and fractions were analyzed for the presence of [3H]phos- 
phatidylcholine by scintillation counting and for the presence of t251-1a- 
beled proteins by gamma counting. 3H-labeled liposomes were recovered 
as an opaque band at the top of the gradient. 

Liposome Attachment Assay 
LN, Col IV, FN, and hemoglobin were diluted in Ca++-/Mg++-free PBS to 
the concentrations indicated in the legend to Fig. 6 and 100 I.tl were used to 
coat microtiter wells (0.28 crn 2 surface area; Linbro, Flow Laboratories, 
Hamden, CT) by incubation overnight at 4°C. Wells were washed twice with 
PBS and blocked for 2-3 h with PBS plus 10 mg/ml hemoglobin. Wells were 
rinsed again with PBS before the addition of "~105 cpm of 3H-labeled lipo- 
somes suspended in PBS plus 1.0 mM CaCI2, 0.5 mM MgCI2, and 2 mg/ 
ml hemoglobin. Liposomes were allowed to attach for 4-5 h at 4°C and then 
the supernatants were removed and the wells were washed twice with ice- 
cold PBS containing 1.0 mM CaCI2 and 0.5 mM MgClz. Bound liposomes 
were dissolved in 1% SDS (100 lal well), mixed with 3 ml of Aquasol, and 
counted in a scintillation counter. 

Sucrose Gradient Analysis of lmmunopurified 
PC12 Cell lntegrins 
Aliquots of immunopurified surface-labeled PCI2 cell proteins (500 lal, 
,'~10,000 cpm) were dialyzed into PBS plus 50 mM octylglucoside, 1.0 mM 
CaCI2, and 0.5 mM MgCI2 and mixed with protein standards exhibiting 
known sedimentation coefficients (s20.w). The protein standards were: 
fumarase, 9.09S; aldolase, 7.35S; and BSA, 4.7S. Proteins were layered onto 
a 5-20% sucrose gradient (11 ml) in PBS plus 1 mM CaCI2, 0.5 mM 
MgCI2, and 50 mM octylglucoside. The tubes were centrifuged at 40,000 
rpm for 20 h at 4°C in an SW 41 Ti rotor (Beckman Instruments, Inc.). Frac- 
tions were collected and were assayed for protein content by Amido black 
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staining (to identify the positions of the sedimentation standards) and for 
nsI by gamma counting (to identify the positions of the PC12 cell pro- 
teins). The s2o.~, for the PC12 cell proteins was determined graphically by 
plotting the known s20.w values of the sedimentation standards versus frac- 
tion number and interpolating the value for PC12 peak fractions. 

Molecular Sieve Chromatography of lmmunopurified 
PCI2 Cell Integrins 
An aliquot of immunopurified, surface-labeled PCI2 cell proteins (,x,200 
~tl; ~10,000 cpm) was dialyzed into PBS plus 50 mm octylglucoside, 
1.0 mM CaCI2, and 0.5 mM MgC12, and layered onto a column (29 × 0.7 
cm) of Sephacryl S-300 that had been precalibrated with blue dextran 
(Vo), phenol red (V0, and standards of known Stokes radii (thyroglobulin, 
85 A,; I~-galactosidase, 69 A; and BSA, 36 .~,). The column was run in PBS 
plus 1 mM CaCI2, 0.5 mM MgCI2, and 50 mM octylglucoside at a flow 
rate of '~2 ml/h and 0.25-ml fractions were collected and assayed for ~25I- 
containing PC12 cell proteins by gamma counting. The distribution 
coefficients of the standards were calculated and plotted against known 
values for their Stokes radii. The value for the Stokes radii of the PC12 cell 
proteins was then interpolated. 

SDS-PAGE Analysis 
Samples were run on polyacrylamide gels according to Laemmli (1970). 
Gels were stained with either Coomassie Blue or reducing silver (Merril 
et al., 1981), dried, and subjected to autoradiography at -80°C using 
Kodak XAR x-ray film and intensifying screens (Dupont Lightning Plus; 
Newtown, CT). Molecular mass standards used were myosin (200,0000 D), 
13-galactosidase (116,000 D), phosphorylase a (97,000 D), and BSA (68,000 D). 

Results 

Identification of Cell Surface Integrins Expressed 
by PCI2 Cells 
PC12 cells attach well to substrates coated with LN and type 
IV collagen, but attach poorly to FN (Tomaselli et al., 1987; 
Turner et al., 1987). In a previous study we used an 
adhesion-perturbing antiserum (anti-ECMR) to identify and 
initially characterize integrin-related PC12 cell surface gly- 
coproteins of 120, 140, and 180 kD that are involved in at- 
tachment and process extension on substrates coated with 
LN and Col IV (Tomaselli et al., 1987). This study also 
showed that the 120-kD protein specifically cross reacted 
with antibodies to the avian integrin I~ subunit and was 
noncovalently associated with both the 140- and 180-k_D pro- 
teins. Integrin expression by PC12 cells was studied here 
using antibodies specific for individual integrin tl and 13 
subunits. A rabbit antiserum raised against a 24 amino acid 
peptide derived from the COOH-terminal cytoplasmic do- 
mains of the human and avian integrin [31 subunits (Tamkun 
et al., 1986; Argraves et al., 1987b) was used to immunopre- 
cipitate proteins from detergent extracts of surface-labeled 
PC12 cells. The anti-integrin 13~ serum specifically immu- 
noprecipitated three labeled PC12 cell surface proteins of 
120, 140, and 180 kD under nonreducing conditions (Fig. 1 
A, lane 1 ). These three glycoproteins comigrate in SDS gels 
with three glycoproteins that are immunoprecipitated by the 
adhesion-perturbing anti-ECMR serum (Fig. 1 A, lane 3). 
When separated under reducing conditions, the mobility of 
the 120-kD protein is decreased while that of the 140-kD 
protein is increased, resulting in the comigration of these two 
proteins at ,o130 kD. The mobility of the 180-kD protein is 
not noticeably affected by reduction (see Tomaselli et al., 
1987). Since the 120-kD PC12 cell protein is the rat homo- 
logue of the avian integrin ~ subunit (Tomaselli et al., 

Figure 1. Immunoprecipitation of 125I surface-labeled cells with 
integrin 13~ and aFN peptide antibodies. (A) lmmunoprecipitation 
of PC12 cell extracts with anti-integrin 15L serum (lane 1 ), preim- 
mune serum (lane 2), anti-ECMR serum (lane 3), or normal goat 
serum (lane 4). Arrowheads indicate that the 120-kD protein corre- 
sponds to the integrin I~ subunit and the 140- and 180-kD proteins 
represent noncovalently associated integrin ct subunits that are 
coprecipitated with the 120-kD protein. For comparison, NRK 
fibroblastic cells were also immunoprecipitated with the integrin 
13~ antiserum (lane 5). Three putative NRK cell integrin a sub- 
units of '~150, 160, and 180 kD are coprecipitated in addition to 
a ll0-kD 13~ subunit. (B) Immunoprecipitation of surface-labeled 
human placental fibroblast (lane I),  NRK cell (lanes 2 and 3), and 
PC12 cell (lanes 4 and 5) extracts with the anti-integrin UFN se- 
rum (lanes 1, 2, and 5) or with preimmune serum (lanes 3 and 4). 
Integrin ~tFN antibodies recognize an FN-binding heterodimer in 
the human fibroblastic (lane 1 ) and NRK (lane 2) cell extracts but 
not in PC12 cell extracts (lane 5). Arrowheads indicate the position 
of the a~r~ (160 kD) and I~ (110 kD) subunits. Samples were sepa- 
rated on 6% polyacrylamide gels under nonreducing conditions. 
Molecular mass markers, in kilodaltons, indicated are myosin 
(200,000), 15-galactosidase (116,000), phosphorylase a (97,000), and 
BSA (68,000). 

1987), the 140- and 180-kD proteins that are coprecipitated 
by the integrin 13~ subunit-specific antibodies and the anti- 
ECMR serum are likely to be integrin tt subunits that are 
each associated noncovalently with the I20-kD 151 subunit. 

For comparison, integrin 13~-specific antibodies were 
used to immunoprecipitate extracts of surface-labeled rat 
fibroblastic cells (NRK). In contrast to PC12 cells, NRK 
cells attach well to FN-coated substrates, in addition to LN 
and Col IV (unpublished observations). The integrin 13~ an- 
tiserum immunoprecipitated a l l0-kD 13~ subunit in ad- 
dition to three putative integrin ~t subunits of 'ol50,  160, and 
180 kD from NRK cell extracts (Fig. 1 A, lane 5). The two 
well-resolved a subunits of 140 and 180 kD appeared to cor- 
respond to the two PC12 cell ~t subunits, while the diffuse 
160-kD NRK a subunit appeared to be absent from PC12 
cell extracts (compare Fig. 1 A, lanes 1 and 5). An identical 
group of proteins is immunoprecipitated from NRK cell ex- 
tracts using a polyclonal antiserum to a FN-binding integrin 
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13t heterodimer purified from chinese hamster ovarian cells 
(Tomaselli et al., 1987; Brown and Juliano, 1986). 

To determine if either of the two putative PC12 cell inte- 
grin tl/~l heterodimers recognized by the integrin 13t and 
ECMR antibodies is the rat homologue of the previously 
characterized human and mouse FN receptor heterodimers 
(Pytela et al., 1985a; Patel and Lodish, 1986; Brown and 
Juliano, 1986), a rabbit antiserum was raised against a 
19-amino acid peptide derived from the COOH-terminal of 
the cytoplasmic domain of the "human FN receptor" ~t 
subunit (Argraves et al., 1987b; referred to here as the inte- 
grin ~tFN subunit as described in Hynes, 1987). The 
specificity and species cross-reactivity of this antiserum 
were established by immunoprecipitation of detergent ex- 
tracts of surface-labeled human placental and NRK fibro- 
blastic cells, both cell types that adhere well to FN. The inte- 
grin QtFN antibodies specifically immunoprecipitated two 
cell surface glycoproteins of '~160 (~tFN) and 110 kD (I]0 
from both NRK and human placental fibroblast extracts (Fig. 
1 B, lanes I and 2). These proteins likely correspond to the 
FN-binding integrin 13t/CtFN heterodimer expressed by many 
types of mammalian cells (Pytela et al., 1985a; Brown and 
Juliano, 1986; Patel and Lodish, 1986). Based on the spac- 
ing of these proteins in SDS gels, the ll0/160-kD heterodi- 
mer immunoprecipitated from NRK extracts by anti-tlFN 
appeared to correspond to one of the three putative NRK 
dimers that are immunoprecipitated by the integrin 1~1 anti- 
bodies (compare Fig. 1 A, lane 5 with Fig. 1 B, lane 2). 

In contrast to NRK cell extracts, integrin O.FN antibodies 
failed to immunoprecipitate any labeled proteins in extracts 
of PC12 cells (Fig. 1 B, lane 5). From quantitative im- 
munoprecipitations we estimate that PC12 cells express <4% 
of the integrin 131/~t~N dimer as compared to NRK cells, yet 
express comparable levels ('~50%) of total integrin I~t 
dimers. The lack of detectable integrin ~j/a~N heterodimers 
on PCt2 cells may account for the inability of these cells to 
attach efficiently to FN-coated substrates (Tomaselli et al., 
1987; Turner et al., 1987). It seems likely, therefore, that the 
PC12 cell integrins recognized by both the integrin 13~ and 
ECMR antibodies function as receptors for ECM proteins 
other than FN. 

AJ~nity Purification of PC12 Cell lntegrins 
To study the function of the PC12 integrins, these proteins 
were purified from detergent extracts of PC12 cells using a 
procedure that combined WGA and ECMR antibody affinity 
chromatography. The specificity of the ECMR antiserum 
was established by immunodepletion studies using the inte- 
grin 131 subunit-specific antibodies (Fig. 2). 125I-labeled de- 
tergent extracts of PC12 cells were depleted of all detectable 
120-, 140-, and 180-kD glycoproteins by sequential immu- 
noprecipitation with integrin [31 antibodies (Fig. 2, lanes 
1-3). ECMR serum antibodies failed to immunoprecipitate 
any residual proteins in the PC12 cell extract that had been 
depleted of these proteins with integrin 13~ antibodies (Fig. 
2, lane 5). Since the ECMR antibodies recognize only 
integrin-related proteins on the surfaces of PC12 cells, they 
were used to immunopurify the PC12 cell integrins. Octyl- 
glucoside extracts of surface-iodinated PC12 cells (Fig. 3 A, 
lane 1 ) were passed over WGA-Affi-gel l0 and eluted with 
N-acetyl-D-glucosamine. This procedure appeared to enrich 
for cell surface glycoproteins in the 80-200-kD range 

Figure 2. Specificity of the anti-ECMR serum tested by immuno- 
depletion of ~25I-labeled PC12 cell extracts with integrin I~-spe- 
cific antibodies. PC12 cell extracts were immunoprecipitated three 
times with anti-integrin I~ (lanes 1-3), once with protein A-Seph ~ 
arose alone (lane 4), and then with the anti-ECMR serum (lane 5). 
Integrin 13t antibodies quantitatively deplete the PC12 cell extract 
of labeled proteins recognized by ECMR antibodies. Samples were 
run on 6% polyacrylamide gels under nonreducing conditions. 
Molecular mass standards, in kilodaltons, indicated are myosin 
(200,000), ~galactosidase (116,000), phosphorylase a (97,000), and 
BSA (68,000). 

representing ,x,5-10% of the total surface-iodinated PC12 
cell proteins (Fig. 3 A, lane 3). Subsequent adsorption of 
the WGA-eluted proteins to anti-ECMR IgG coupled to 
Sepharose and elution at pH 11.5 yielded three labeled glyco- 
proteins of molecular mass 120, 140, and 180 kD under non- 
reducing conditions (Fig. 3 A, lane 6). These were the only 
detectable surface-iodinated proteins purified by this proce- 
dure (Fig. 3 A, lane 6, B, lane 2). Silver-stained gels 
confirmed that the 120-, 140-, and 180-kD glycoproteins 
were prominent constituents of the cellular proteins purified 
by this procedure (Fig. 3 B, lane 1 ). A protein of ,x,60 kD 
was also seen in addition to other faintly stained proteins 
(Fig. 3 B, lane 1). These additional proteins were unlabeled 
by lactoperoxidase-catalyzed cell surface iodination (Fig. 3 
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Figure 3. SDS-PAGE analysis of PCI2 cell integrin purification. (A) 
Autoradiogram of an 8% nonreducing SDS gel showing fractions 
from different stages of the purification. Lane 1, surface-iodinated 
and detergent-extracted PCI2 cell starting material (100,000 cpm); 
lane 2, material that flowed through WGA-Sepharose (100,000 
cpm); lane 3, material that bound to WGA-Sepharose and was 
eluted with N-acetyi-o-glucosamine (30,000 cpm); lane 4, material 
that flowed through normal goat IgG-Sepharose (30,000 cpm); lane 
5; material that flowed through the anti-ECMR IgG-Sepharose 
(30,000 cpm); lane 6, proteins eluted from anti-ECMR IgG-Seph- 
arose at pH 11.5 (2,000 cpm). Longer exposures of autoradiograms 
of this and other purifications failed to identify any labeled proteins 
other than the 120-, 140-, and 180-kD proteins shown in lane 6. (B) 
Protein silver stain and autoradiographic analysis of purified mate- 
rial used for ECMR antiserum neutralization and liposome recon- 
stitution and binding experiments. Proteins were separated on a 
6.8% SDS gel under nonreducing conditions. Lane 1, silver stain 
of material eluted from the anti-ECMR IgG column. Lane 2, auto- 
radiogram of material eluted from the anti-ECMR IgG column. 
Note the silver-stained 60-kD contaminating protein was not la- 
beled by cell surface iodination. Molecular mass markers, in kilo- 
daltons, indicated are myosin (200,000), ~galactosidase (116,000), 
phosphorylase a (97,000), and BSA (68,000). 

B, lane 2) and, therefore, are likely to be contaminating intra- 
cellular or serum proteins. Immunopurified PC12 cell inte- 
grins were used for further studies, as described below. 

Neutralization of the Ant i -ECMR Serum with 
Purified PC12 Cell lntegrins 
The purified PC12 cell integrins were tested for their ability 
to neutralize the adhesion-blocking activity of  the anti- 
ECMR serum. We showed previously that a 0.6 % concentra- 
tion of the an t i -ECMR serum inhibits the high levels of PC12 
cell attachment to LN and Col IV, as well as the low levels 
of attachment to FN (Tomaselli et al., 1987). W h e n  the 
an t i -ECMR serum was premixed with the purified 120-, 
140-, and 180-kD PCI2 cell integrins that had been dialyzed 
free of detergent, it was rendered incapable of  inhibiting 
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Figure 4. Neutralization of the adhesion-blocking activity of the 
anti-ECMR serum by immunopurified PC12 cell integrins. PCI2 
cell attachment to substrates coated with LN (5 Ixg/ml), Col IV (2 
ltg/ml), or FN (20 ~tg/ml) was tested in the absence of added anti- 
bodies (open bars), in the presence of a 0.6% concentration of the 
anti-ECMR serum that had been mixed with antibody column elu- 
tion buffer containing 20% normal goat serum as a control (solid 
bars), or in the presence of a 0.6% concentration of the anti-ECMR 
serum that had been mixed with the immunopurified and dialyzed 
120-, 140-, and 180-kD PC12 cell proteins in addition to 20% nor- 
mal goat serum (stipled bars). Values represent the average and 
range of determinations made on duplicate cultures run in parallel 
and are expressed as percent of cell attachment to the highly adhe- 
sive substrate, poly-n-lysine. Note: PC12 cells attach to FN at 
,,o10% of the levels of attachment to LN and Col IV. 

PC12 cell attachment to any of these ECM proteins (Fig. 4, 
stipled bars). In contrast, when the an t i -ECMR serum was 
mixed with control proteins, it remained fully active in in- 
hibiting PC12 cell attachment to LN, Col IV, and FN (Fig. 
4, solid bars). Thus, all of  the adhesion-blocking antibodies 
in the an t i -ECMR serum recognize epitopes on either the 
120-, 140-, or 180-kD PC12 cell surface glycoproteins. 

Incorporation of PC12 Cell Integrins into Liposomes 

To determine if the surface-labeled, purified PC12 cell in- 
tegrins could be incorporated into artificial phosphatidyl- 
choline vesicles, the purified proteins were mixed with 
[3H]phosphatidylcholine and liposomes were formed by de- 
tergent dialysis (Mimms et al., 1981). Liposomes were sepa- 
rated on 10-45 % sucrose gradients and fractions were ana- 
lyzed for [3H]phosphatidylcholine and '25I-labeled PC12 
cell proteins. Under these conditions, liposomes were recov- 
ered at the tOp of the sucrose gradient as reflected by the pres- 
ence of a peak of 3H in fractions taken from the top of the 
gradient (Fig. 5, open bars). When usI-labeled, immuno- 
purified PC12 cell proteins were mixed with [3H]phospha- 
tidylcholine before liposome formation, •70% of the la- 
beled proteins comigrated with the liposomes to the top of 
the gradient (Fig. 5, solid bars). When phosphatidylcholine 
was omitted, virtually all of the '25I-labeled PC12 cell pro- 
teins could be recovered in the bottom fractions of  the su- 
crose gradient (Fig. 5, stipled bars). In additional control 
experiments, <10% of added BSA comigrated with [3H]- 
phosphatidylcholine-containing liposomes to the top of the 
gradient, indicating that little protein-trapping during lipo- 
some formation occurs (not shown). SDS gel analysis of  
liposome-containing fractions from the top of the gradient 
demonstrated that the 120-, 140-, and 180-kD PC12 cell gly- 
coproteins were incorporated into the lipid vesicles (Fig. 5, 
inset). 
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Figure 5. Incorporation of sur- 
face-labeled, immunolxlrified PC12 
cell integrins into phosphatidyl- 
choline liposomes. Purified pro- 
teins in 50 mM octylglucoside 
were either mixed with [3H]- 
phosphatidylcholine and dialyzed 
against PBS (open and solid bars) 
or just dialyzed against PBS with- 
out added phosphatidylcholine 
(stipled bars). The dialysates were 
fractionated by sucrose gradient 
centrifugation and aliquots of frac- 
tions were analyzed for [3H]phos- 
phatidylcholine (open bars) or 
t25I-labeled protein (solid and 
stipled bars). Fraction number 1 
represents the top of the sucrose 
gradient. About 70% of the ~25I- 
labeled proteins are associated 
with the 3H-labeled liposomes at 
the top of the gradient. (Inset) Au- 

toradiogram of t25I-labeled proteins recovered in fraction 1 and run on a 7% SDS-polyaerylamide gel under nonreducing conditions. Ar- 
rowheads indicate the position of the molecular mass markers, in kilodaltons, myosin (200,000; upper arrowhead) and 13-galactosidase 
(116,000; lower arrowhead). 

Binding of Reconstituted Liposomes to ECM Proteins 

3H-labeled liposomes prepared containing the purified 
PC12 cell integrins were tested for their ability to bind to 
ECM protein-coated substrates. Integrin-containing lipo- 
somes bound to LN-coated substrates at a level of twice the 
background binding to hemoglobin-coated wells (Fig. 6 A). 
Binding of liposomes to LN was inhibited either by Fab frag- 
ments of anti-ECMR IgG or by anti-LN serum, but was not 
inhibited by preimmune IgG (Fig. 6 A). Integrin-containing 
liposomes also bound to Col IV-coated substrates at a level 
of "~ 2.3 times background levels of binding to hemoglobin 
(Fig. 6 A). Liposome binding to Col IV was inhibited either 
by Fab fragments of anti-ECMR IgG or by antibodies to Col 
IV, but not by preimmune IgG (Fig. 6 A). In contrast, 
integrin-containing liposomes did not bind to FN-coated 
substrates significantly above background binding to hemo- 
globin (Fig. 6 A). 3H-labeled liposomes formed in the ab- 
sence of purified PC12 cell integrins did not bind sig- 
nificantly to either LN, Col IV, or FN (Fig. 6 B). The 
background levels of binding of empty liposomes to these 
ECM proteins was not reduced by anti-ECMR Fab or by ei- 
ther LN or Col IV antibodies (not shown). SDS-PAGE analy- 
sis confirmed the presence of the purified PC12 integrins in 
the liposomes that bound to LN and Col IV (not shown). 
Thus, liposomes containing the 120-, 140-, and 180-kD 
PC12 cell integrins bound specifically but at low levels to LN 
and Col IV but not to FN. The low levels of binding of the 
integrin-containing liposomes to LN and Col IV may be ac- 
counted for, in part, by irreversible denaturation of the inte- 
grin heterodimers into monomers during the pH 11.5 elution 
from the ECMR IgG column (see below). 

Comparison of  the Hydrodynamic Properties of  
the Purified PC12 Cell Integrins with Those of  Other 
Integrin Heterodimers 

Since the 140- and 180-kD PC12 cell glycoproteins are both 
noncovalently associated with the 120-kD 13~ subunit (Fig. 1 

A and Tomaselli et al., 1987), these proteins exist in deter- 
gent solution as either a heterotrimer or as two heterodimers 
with a shared 120-kD 13~ subunit. To determine if the PC12 
cell integrins have the physical properties expected of hetero- 
dimers, the hydrodynamic properties of the purified PC12 
cell integrins were studied and compared to the known 
hydrodynamic properties of other well characterized integrin 
t~/l~ heterodimers. 

When 125I-labeled, immunopurified PC12 cell integrins 
were subjected to centrifugation in a 5-20% sucrose density 
gradient, two peaks centered at 5.0S and 8.8S were observed 

Figure 6 Binding of 3H-labeled liposomes formed in the presence 
of (A) or absence (B) of the immunopurified PC12 cell integrins. 
Binding of 3H-labeled liposomes to hemoglobin (Hgb; 10 p.g/ml), 
FN (20 lag/ml), LN (20 Ixg/ml), or Col IV (10 txg/ml) was measured 
in the absence of added antibodies (open bars), or in the presence 
of either 1 mg/ml of preimmune goat IgG (solid bars), 1 mg/ml 
anti-ECMR Fab (stipled bars), a 1:20 dilution of rabbit anti-LN 
serum (hatched bar on LN), or 100 p.g/ml of anti-Col IV IgG 
(hatched bar on Col IV). Values from one experiment are shown 
here and represent the average and range of 3H cpm bound to 
duplicate wells run in parallel. Liposome binding experiments were 
repeated twice using different preparations of immunopurified 
PCI2 cell glycoproteins with quantitatively similar results. 
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Figure 7. Hydrodynamic properties of PCI2 cell integrins. (A) 
5-20% sucrose density gradient analysis of immunopurified i25I- 
labeled PCI2 cell integrins. Fractions were analyzed for ~25I-ia- 
beled proteins (solid circles) and for sedimentation standards (open 
circles; 1: BSA, 4.7S; 2: aldolase, 7.35S; 3: fumarase, 9.09S). (In- 
set) plot of the sedimentation coefficients (s2o.w) of the standards 
versus fraction number. Arrows indicate the positions of the two 
PC12 cell protein peaks. (B) Molecular sieve chromatography of 
purified ~2SI-labeled PCI2 cell integrins on Sephacryl S-300. Pro- 
teins were run on a column that had been precalibrated with protein 
standards of known Stokes radii (open circles; 1: thyroglobulin, 85 
.~; 2: ~-galactosidase, 69 A; 3: BSA, 36 A). Fractions were ana- 
lyzed for J2~I-labeled PC12 cell proteins (solid circles). (Inset) plot 
of the distribution coefficients (KD) versus Stokes radius (RJ of the 
calibration standards. The arrow indicates the position of the PCI2 
cell protein peak. 

(Fig. 7 A). SDS gel analysis of fractions from this gradient 
demonstrated that the purified 120-, 140-, and 180-kD gly- 
coproteins were present in both peaks (Fig. 8, lanes 3 and 
4). The presence of all three proteins in both peaks suggests 
that the heavier 8.8S peak contains proteins that are either 
aggregated or noncovalently associated with each other, 
perhaps as dimers or larger oligomers, while the 5.0S peak 
contains monomeric proteins. Consistent with this interpre- 
tation, the pooled trailing fractions of the 5.0S peak were 
found to contain predominantly the smaller 120-kD protein 
(Fig. 8, lane 2), while the pooled peak and leading fractions 
from the 5.0S peak contained all three proteins (Fig. 8, lane 
3). This is what one might expect if the 5.0S peak repre- 
sented three partially superimposed peaks corresponding to 
the positions of integrin subunit monomers of 120, 140, and 
180 kD. In contrast, all three proteins appeared to be present 
in both the leading and trailing fractions from the 8.8S peak. 

The sedimentation coefficient of the putative PC12 cell 

Figure 8. Nonreducing 7% 
SDS gel analysis of ~25I-la- 
beled PC12 cell proteins in 
fractions from the sucrose 
gradient shown in Fig. 7 A. 
Lane 1, immunopurified start- 
ing material which contains 
three proteins of 120, 140, and 
180 kD; lane 2, fractions 10- 
12 from the 5.0S peak; lane 3, 
fractions 13-16 from the 5.0S 
peak; lane 4, fractions 20- 
24 from the 8.8S peak. Mo- 
lecular mass markers, in kilo- 
daltons, indicated are myo- 
sin (200,000), 13-galactosidase 
(116,000), phosphorylase a 
(97,000), and BSA (68,000). 

dimers (8.8S) is similar to that for the human platelet integrin 
0 3  heterodimer, Ill/Ilia (Table I), and the avian integrin 13~ 
heterodimers recognized by the CSAT monoclonal antibody 
(Table I). The sedimentation coefficient of the more slowly 
sedimenting form of the PC12 cell proteins (5.0S; putative 
monomers) is similar to that determined for the monomeric 
~t (lib) and ]3 (Ilia) subunits of the platelet integrin 133 dimer 
and that of the avian integrin 13t subunit monomer (Table I). 

~25I-labeled, immunopurified PC12 cell proteins were also 
subjected to molecular sieve chromatography on Sephacryl 
S-300. Under these conditions, a single broad peak with a 
Stokes radius centered at 68/~ was observed (Fig. 7 B). The 
Stokes radius of the PC12 cell integrins is similar to that of 
the platelet Ill/Ilia heterodimer (Table I) and the avian inte- 
grin I~ dimers recognized by the CSAT monoclonal anti- 
body (Table I). The presence of a single peak by molecular 
sieve chromatography is in contrast to the presence of two 
peaks in sucrose density gradients (compare Fig. 7, A and 
B). A possible explanation for this is that the Stokes radii 
of the two populations of PC12 cell proteins seen in sucrose 
density gradients (putative monomers and dimers) are too 
similar to be resolved on the Sephacryl column. A consistent 
observation is that the Stokes radii of the isolated platelet 
integrin monomers I l l  and Ilia are quite similar to the Stokes 
radius observed for the IIb/IIIa heterodimer complex (Ta- 
ble I). This close similarity in the effective Stokes radii of 
monomers and dimers is what one would expect if the dimers 
were composed of monomers with the shapes of rods or pro- 
late ellipsoids (Tanford, 1961). One would expect, however, 
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Table I. Comparison of the Hydrodynamic Properties of the 
Purified PC12 Cell Integrins with Those of Other lntegrin 
Heterodimers 

Integrins Dimers Monomers 

Rs(A) sz0.w Mr R~(A) s20.w 

PCI2  cell integrins 68 8.8 269,000~ - 5.0 
Platelet IIb/IIIa* 71 8.6 265,000 61§,6711 4.7§,3.211 
Avian integrin I ~  60 8.6 235,000 - 4.0 

The sedimentation coefficients (s20.w), Stokes radii (Rs), and estimated relative 
molecular mass (Mr) of the purified PC12 cell integrins were compared with 
the published values for the human integrin 133 heterodimer, platelet proteins 
llb/IUa, and the avian integrin % heterodimers recognized by the CSAT 
monoclonal antibody. 
* Data from Jennings and Phillips, 1982. 
~: Data from Horwitz et al., 1985. 
§ Values for platelet lib monomers. 
II Values for platelet llIa monomers. 
ql An estimate of the relative molecular mass (Mr) of the PCI2 cell integrins 
was calculated from the formula: 

Mr = 6nNRss2o.~ , 
1 - p ~  

where R~=68/~, s2o,~=8.8S, and the value for the partial molar volume (p) of 
the antigen was taken to be equivalent to that of the avian integrin !5~ hetero- 
dimers (0.75 ml/g) determined experimentally in Horwitz et al. (1985). 

monomers and dimers with similar effective Stokes radii to 
be resolved in sucrose density gradients, since sedimentation 
in such gradients depends, in part, on molecular mass. 

Discussion 

In the present study, we have used antibodies directed against 
synthetic peptides derived from integrin ct and 13 subunit pro- 
tein sequences to characterize integrin 13t-class heterodi- 
mers expressed by the rat neuronal cell line, PC12. In addi- 
tion, we have characterized the ligand-binding specificity 
and hydrodynamic properties of these PCI2 cell integrins af- 
ter immunopurification using an adhesion-perturbing antise- 
rum (anti-ECMR). We provide evidence that these PC12 cell 
integrins are structurally and functionally distinct from the 
previously characterized FN-binding integrin heterodimers 
and, thus, can account for the ability of these cells to attach 
to LN and Col IV but not FN. 

PC12 cells express two distinct integrin fil-class cell sur- 
face heterodimers. Immunoprecipitation of detergent ex- 
tracts of surface-labeled PC12 cells with antibodies to the cy- 
toplasmic domains of the human and avian integrin fil 
subunit monomers yields three surface-labeled proteins of 
apparent molecular mass 120, 140, and 180 kD under non- 
reducing conditions (cf. Fig. 1 A). These proteins are identi- 
cal to three cell surface glycoproteins recognized by the 
adhesion-perturbing antiserum, anti-ECMR, in PC12 cell 
extracts (cf. Fig. 1 A and Fig. 2; see also Tomaselli et al., 
1987). We have previously shown that polyclonal antibodies 
to the purified avian integrin fit subunit specifically recog- 
nize only the 120-kD PC12 cell protein in antigen blots yet 
also coprecipitate both the 140- and 180-kD proteins (Toma- 
selli et al., 1987). Taken together with the hydrodynamic 
data (see below), these observations implicate the 140- and 
180-kD proteins as integrin ct subunits that are each noncova- 
lently associated with a common 120 kD fit subunit to form 
two a/fi heterodimers of 120/140 and 120/180 kD on the sur- 

faces of PC12 cells. At present, it is difficult to say if the 
PC12 cell integrin a subunits correspond to any of the five 
human a subunits that are known to form dimers with the 
human integrin fit subunit (VLA 1-5 a's; Hemler et al., 
1987; Takada et al., 1987b). However, based on the mobili- 
ties of the 180- and 140-kD PC12 cell proteins in SDS gels 
under reducing and nonreducing conditions, it seems plausi- 
ble that the 180-kD protein corresponds to the 200-kD hu- 
man VLA 1 a subunit and the 140-kD protein corresponds 
to the 150-kD human VLA 3 tt subunit. 

PC12 cells attach to and extend neurites efficiently on sub- 
strates coated with LN and Col IV, but attach poorly to FN 
(Tomaselli et al., 1987; Turner et al., 1987). Thus, it seems 
unlikely that either of the two PC12 cell integrin heterodi- 
mers described here corresponds to the FN-binding integrin 
fiJaFN heterodimer previously characterized in human and 
rodent cells (Pytela et al., 1985a; Brown and Juliano, 1986; 
Patel and Lodish, 1986; see Hynes, 1987, for integrin 
nomenclature). Immunoprecipitation studies with the inte- 
grin fit peptide antibodies and with antibodies to the cyto- 
plasmic domain of the human integrin ~tFN subunit are in 
agreement with this interpretation. Integrin aFN antibodies 
immunoprecipitate two cell surface proteins of •160 kD 
(O-FN) and 110 kD (fit) from both NRK and human fibro- 
blastic cells (Fig. 1 B), both cell types that adhere well to 
FN. In contrast to NRK cells, PC12 cells appear to express 
little or no integrin fit/aFN FN receptor since integrin O-FN 
antibodies failed to immunoprecipitate detectable amounts of 
the rat 160-kD aFN protein from PC12 cell extracts (Fig. 1 
B, lane 5). Quantitative estimates based on the specifc ac- 
tivities of the labeled PC12 and NRK cell proteins indicates 
that PC12 cells express <4% of the levels of fit/Ct~N dimers 
expressed by NRK cells, despite having comparable total lev- 
els of integrin fit dimers. Although we cannot detect fit/avN 
dimers on the surfaces of PC12 cells, even after long au- 
toradiographic exposures, the ability of PC12 cells to attach 
weakly to FN-coated substrates in an integrin-dependent (cf. 
Fig. 4) and RGD peptide-sensitive manner (Tomaselli et al., 
1987; Akeson and Warren, 1986) suggests that they may ex- 
press low levels of this FN receptor. Alternatively, one of the 
two prominent integrin heterodimers on PC12 cells may 
directly interact with FN and thus mediate low levels of PC12 
cell attachment to FN. 

To study the structure and function of the PC12 cell inte- 
grins recognized by the integrin [3t peptide antibodies and 
the ECMR serum antibodies, the 120-, 140-, and 180-kD 
proteins were purified using combined lectin and ECMR an- 
tibody affinity chromatography (cf. Fig. 3). The specificity 
of the ECMR antiserum used in the purification was estab- 
lished by immunodepletion studies using the integrin 131 
subunit-specific antibodies (Fig. 2). The immunopurified 
PC12 cell integrins completely neutralize the ability of the 
anti-ECMR serum to inhibit PC12 cell attachment to LN and 
Col IV (cf. Fig. 4), demonstrating that these proteins func- 
tion in PC12 cell adhesion to LN and Col IV. To directly as- 
say ECM receptor function, the purified integrins were 
tested for their ability to bind to ECM protein-coated sub- 
strates after incorporation into lipid vesicles. Integrin- 
containing liposomes bound specifically, but at low levels, to 
substrates coated with LN or Col IV but failed to bind 
significantly to FN or hemoglobin (cf. Fig. 6). In contrast, 
"empty" liposomes did not bind significantly to any of these 
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ECM protein-coated substrates. This pattern of integrin- 
reconstituted liposome binding to purified ECM proteins 
reflects the adhesive specificity of intact PC12 cells, namely: 
LN = Col IV>>FN (Tomaselli et al., 1987; Turner et al., 
1987). 

The observed binding of PC12 cell integrin-containing 
liposomes to LN and Col IV provides evidence that these 
proteins function directly as receptors for LN and Col IV. 
These findings are also consistent with previous observations 
that (a) integrin 151 antibodies (CSAT) inhibit neuronal at- 
tachment to both LN and Col IV (Bozyczko and Horwitz, 
1986; Hall et al., 1987) and (b) avian integrin complexes im- 
munopurified using the integrin 151 subunit-specific mono- 
clonal antibody, CSAT, are capable of interacting with LN 
in equilibrium gel filtration assays (Horwitz et al., 1985). 
There are several possible explanations for the low levels of 
binding (two- to threefold above background) exhibited by 
the integrin-containing vesicles in the present study. First, 
elution of the glycoproteins from the ECMR antibody 
column was effected at pH 11.5, a condition that has been 
reported to denature one of the human integrin 13~ heterodi- 
mers, VLA 4, into monomers (Hemler et al., 1987a, b). 
Thus, a proportion of the purified PC12 cell integrins may 
have been denatured by the conditions used to elute them 
from the ECMR antibody affinity column. A consistent ob- 
servation is the finding that *50% of the eluted proteins have 
a sedimentation coefficient (5.0S) expected of integrin 
subunit monomers (cf. Fig. 7 A and Table I). Since interac- 
tions of purified avian integrins with LN and FN have been 
shown to require the integrity of the oligomeric complexes 
(Buck et al., 1986), dissociated PC12 cell integrin subunits 
are probably not capable of ligand binding. Another possibil- 
ity is that the binding affinities of the PC12 cell integrins for 
LN and Col IV are quite low. Detergent-solubilized avian 
integrin 131 receptors bind LN and FN with an estimated Kd 
of '~10 -7 M (Horwitz et al., 1985). Due to the "weak" na- 
ture of these interactions, one would expect the binding of 
liposomes containing these receptors to depend critically on 
the incorporation of large numbers of intact, functional 
receptors. We estimate from silver-stained gels of purified 
material that each liposome contained ~10-20 molecules of 
each of the 120-, 140-, and 180-kD proteins. Since only 
some of these are expected to be inserted in the right orienta- 
tion (extracellular domains facing outward) and since some 
of the receptor complexes are probably denatured (see 
above), the actual number of functional receptors per lipo- 
some may be quite low. In previous studies, liposomes con- 
raining comparable amounts of integrin 131 or 133 receptor het- 
erodimers to those used here were shown to bind to FN and 
vitronectin at levels ranging from •5-10-fold above back- 
ground (Pytela et al., 1985a, b; Cardarelli and Piersch- 
bacher, 1987). However, it is likely that smaller proportions 
of these receptor heterodimers were denatured, since they 
were purified on ECM protein affinity columns using milder 
RGDS-containing peptide elution conditions (Pytela et al., 
1985a, b). In addition, the liposomes in these earlier studies 
probably contained only one type of receptor heterodimer. 
Since RGDS peptides have no noticeable inhibitory effect on 
PC12 cell attachment to either LN or Col IV (Tomaselli et 
al., 1987), it is not clear that RGDS peptide elution will be 
useful for receptor purification from LN or Col IV affinity 
columns. 

Our immunoprecipitation studies using antibodies (anti- 
integrin 13~) that recognize only the 120-kD PC12 cell gly- 
coprotein in antigen blots demonstrate that the 120-kD inte- 
grin 15j-like subunit is noncovalently associated with both 
the 140- and 180-kD glycoproteins (cf. Fig. 1 A and Toma- 
selli et al., 1987). Thus the 120-, 140-, and 180-kD PC12 
cell proteins are likely to comprise either a single hetero- 
trimer or two noncovalently associated a/15 heterodimers 
with a shared 120-kD subunit. Data presented here support 
the latter interpretation: the sedimentation coefficients, 
Stokes radii, and estimated molecular masses of the putative 
PC12 cell integrin dimers are very similar to those of both 
the human integrin 153 heterodimer, platelet glycoproteins 
IIb/IIIa, and the avian integrin 15~ heterodimers recognized 
by the CSAT monoclonal antibody (cf. Table I). These mea- 
surements are most consistent with a dimeric structure for 
the purified integrins. In preliminary studies we have found 
that when the PC12 cell integrins are cross-linked using 
dithiobissuccinimidylpropionate (as in Hemler et al., 1985; 
1987a), the cross-linked products migrate in SDS gels with 
apparent molecular weights expected of cross-linked dimers 
(260 kD and 320 kD) and not a cross-linked trimer (~450 
kD; Tomaselli, K., unpublished observations). Thus it ap- 
pears likely that the 120-, 140-, and 180-kD proteins are or- 
ganized as two dimers of 120/140 and 120/180 kD. Immuno- 
precipitations with a subunit-specific antibodies would 
provide the most direct evidence that the 140- and 180-kD 
glycoproteins are each separately associated with the 120-kD 
integrin 15~ subunit. 

Our results implicate two integrin heterodimers as recep- 
tors for LN and Col IV on PC12 cells. It is not yet certain 
whether distinct heterodimers bind separately to LN and Col 
IV, or whether a single heterodimer binds to both ECM pro- 
teins. In favor of the first possibility, PC12 cell attachment 
to LN is much more sensitive to an antibody to a hamster 
fibronectin receptor than is attachment of the same cells to 
Col IV (Tomaselli et al., 1987). Furthermore, in retinal neu- 
rons, the functions of integrin class receptors for LN and Col 
IV appear to be regulated independently (Hall et al., 1986). 
Consistent with the second possibility, integrin heterodimers 
in the 153 and 13~ families that bind to more than one ECM 
protein have been described previously (Pytela et al., 1986; 
Plow et al., 1985; Wayner and Carter, 1987). Most relevant 
to this study, a monoclonal anibody that recognizes a single 
VLA 3-like a subunit associated with the integrin 15~ sub- 
unit has been shown to inhibit attachment of HT 1080 hu- 
man fibrosarcoma cells to LN, Col IV, and FN (Wayner and 
Carter, 1987). Studies using individual PC12 integrin het- 
erodimers should make it possible to distinguish between 
these possibilities. 

It is important to note that additional PC12 cell surface 
proteins may interact with LN or Col IV, both of which are 
large, multidomain adhesive proteins. LN, for example, has 
more than one cell-binding domain (Goodman et al., 1987; 
Graf et al., 1987; Engvall et al., 1986), as does FN (Hum- 
phries et al., 1986, 1987; Bernardi et al., 1987; Rogers et al., 
1985, 1987). Recently, several LN-binding cell surface pro- 
teins have been described, some of which are expressed in 
cell lines of mixed neuronal and glial origin (cf. Graf et al., 
1987; Smalheiser and Schwartz, 1987; Kleinman et al., 
1988). Preliminary characterization of these putative LN 
receptors indicates that they are unrelated to integrin-class 
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ECM protein receptors. It will be important in the future to 
further examine the relationship of these binding proteins to 
integrins and to establish their functions in the response of 
neurons to LN-containing substrates. Similarly, several col- 
lagen receptors have recently been described (Santoro, 1986; 
Wayner and Carter, 1987; Dedhar et al., 1987), two of which 
appear to be integrin heterodimers. The platelet Ia/IIa het- 
erodimer binds type I collagen in a Mg++-dependent fash- 
ion (Santoro, 1986; Santoro, S. A., unpublished observa- 
tions) and a similar, if not identical, VLA 2-like heterodimer 
on human fibrosarcoma cells appears to interact with several 
collagens, including Col IV (Wayner and Carter, 1987). 

In summary, we have immunopurified three PC12 cell sur- 
face glycoproteins of 120, 140, and 180 kD that belong to the 
integrin family of adhesive protein receptor heterodimers. 
These glycoproteins likely comprise two ~t/l~ heterodimers 
with a shared 120-kD integrin 13~ subunit. Liposomes con- 
taining these integrin heterodimers bind specifically to LN 
and Col IV, and thus mediate, in part, PCI2 cell attachment 
and process outgrowth on LN and Col IV. As the ECMR an- 
tiserum inhibits rat sympathetic neuronal attachment and 
process outgrowth on LN substrates (Tomaselli et al., 1987), 
mammalian neurons are likely to use similar receptors. 
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