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    I N T R O D U C T I O N 

 The central role of the cell membrane is to act as a selec-

tive barrier separating the cell from its environment 

( Lipowsky and Sackmann, 1995 ). The architecture of the 

lipid bilayer is such that hydrophobic alkyl chains are sand-

wiched between lipid head groups ( Tanford, 1991 ). This 

arrangement shields the membrane ’ s hydrophobic core 

from exposure to water and other polar or charged species 

in the surrounding environment ( Tanford, 1991 ;  Lipowsky 

and Sackmann, 1995 ). In addition to lipid molecules, the 

cell membrane is host to membrane proteins that must be 

embedded within the bilayer without disrupting its struc-

tural integrity. The hydrophobic nature of transmembrane 

(TM) segments allows membrane proteins to be main-

tained within the lipid bilayer without compromising cel-

lular homeostasis ( Engelman et al., 1986 ). 

 Membrane proteins account for a third of all proteins in 

a cell and are involved in numerous important biological 

functions, such as ion conduction, cell receptor signaling, 

and nutrient transport ( Lipowsky and Sackmann, 1995; 

von Heijne, 2007 ). Although predominantly hydrophobic 

in nature, many TM segments contain polar and charged 

residues. Notably, voltage-gated K +  channels, cystic fi brosis 

transmembrane conductance regulator, and the glycine 

receptor, GLRA1, are all known to contain charged resi-

dues within their TM domains ( Jan and Jan, 1990 ;  Hessa 

et al., 2005b ;  Bakker et al., 2006 ;  Linsdell, 2006 ). A central 

question in the study of membrane proteins is how 

charged residues can be stably accommodated within the 

  Abbreviations used in this paper: MD, molecular dynamics; SASA, sol-

vent accessible surface area; TM, transmembrane. 

lipid bilayer. The success of continuum electrostatics at 

describing the basic biophysical properties of soluble pro-

teins leads us to ask if these approaches can also be used 

to understand the energetics of membrane proteins. 

 Biochemical partitioning experiments performed on 

amino acids in two-phase bulk solutions have produced 

amino acid hydrophobicity scales that predict a high en-

ergetic barrier for inserting charged residues into low-

dielectric environments similar to the hydrocarbon core 

of the membrane. For instance, solvation energies for 

the positively charged residue arginine range from 44 to 

60 kcal/mol ( Wilce et al., 1995 ), and continuum elec-

trostatics calculations match these values well ( Sitkoff 

et al., 1996 ). In the late 60s Adrian Parsegian used con-

tinuum methods to arrive at similarly large energy bar-

riers when considering the movement of charged ions 

across the membrane ( Parsegian, 1969 ). However, a re-

cent study introduced a biological hydrophobicity scale 

that challenges the long-held notion that charged resi-

dues are not easily accommodated in the low-dielectric 

core of the bilayer. Hessa et al. (2005a) measured the 

ability of the Sec61 translocon to insert a wide range of 

designed polypeptide sequences (H-segments) into the 

membrane of rough microsomes. Surprisingly, these ex-

periments revealed that there is a very low apparent 

free energy for inserting charged residues into the 

membrane. By these methods, the apparent free energy 

for arginine was determined to be  � 2.5 kcal/mol. 
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hydrophobic core of the membrane ( Freites et al., 2005 ; 

 MacCallum et al., 2007 ). This distortion also permits 

the polar and charged lipid head groups to remain in 

favorable contact with the charged residue. However, 

these favorable interactions occur at the expense of in-

troducing strain into the lipid bilayer. 

 The physical insight gained from careful MD simula-

tions is indispensable, and the energetic analysis serves 

as a benchmark for other simulation methods. How-

ever, calculations performed with MD are computation-

ally expensive, and we wanted to determine if much 

faster continuum methods could be used to quantita-

tively reproduce the energetics of membrane protein 

insertion. In the 1990s, Honig ’ s laboratory developed 

the PARSE parameter set of partial charges and van der 

Waals radii specifi cally to reproduce the energetics of 

partitioning small molecules and analogue side chains 

between bulk phases ( Sitkoff et al., 1994 ). While consid-

ering only the electrostatic and nonpolar components of 

the free energy of transfer, this model reproduces the ex-

perimentally determined energies quite well ( Wolfenden 

et al., 1981 ). Unfortunately, applying this technique di-

rectly to membrane proteins is not straightforward. The 

small size and fast diffusional motion of most solvent 

molecules facilitate the continuum approximation of 

replacing the atomic details of the solution by a single 

dielectric value. This approximation cannot be made 

for lipid membranes due to their inhomogeneity. The 

head group region is characterized by a zone of high-

dielectric value, the hydrocarbon core by a low-dielectric 

value, and as discussed above, the shape of the mem-

brane – water interface can be far from planar. The largest 

diffi culty in applying continuum electrostatics toward 

understanding membrane proteins is describing the 

geometry of the lipid bilayer around the protein. Here 

we use elasticity theory to determine the shape and 

strain energy associated with bilayer deformations. Elas-

ticity theory has been employed to understand the ge-

ometry of membrane systems ( Helfrich, 1973 ), and at 

smaller length scales it has successfully described mem-

brane protein – bilayer interactions ( Nielsen et al., 1998 ; 

 Harroun et al., 1999 ;  Grabe et al., 2003 ). Importantly, 

once the membrane shape has been determined, we 

feed this shape into an electrostatics calculation to de-

termine the solvation energy of the TM helix. We show 

that by marrying these two theories, we are able to quan-

titatively match recent MD simulations at a fraction of 

the computational cost, demonstrating that continuum 

methods can be used to understand the energetics of 

charged membrane proteins. 

 M AT E R I A L S  A N D  M E T H O D S 

 Determination of Amino Acid Insertion Energies 
 We designed similar peptides to those used in  Hessa et al. (2005a ) 
and calculated their electrostatic, membrane dipole, membrane 

 More recently, Dorairaj and Allen (2007) performed 

detailed molecular dynamics (MD) simulations of a 

poly-leucine TM  � -helix harboring a single charged ar-

ginine to probe the energetics of charged residues in 

lipid bilayers. They calculated the free energy profi le 

for translating the charged residue from the upper leaf-

let to the lower leafl et revealing that an insertion energy 

of 17.8 kcal/mol is required to move the arginine to the 

center of the bilayer. This energy is remarkably lower 

than estimates based on the partitioning of side-chain 

analogues between bulk phases, and it makes impres-

sive strides in understanding the translocon-derived bi-

ological energy scale. In accord with observations from 

the Tobias and Tieleman laboratories, one reason that 

this energy is much lower than previously thought is 

that the membrane undergoes signifi cant bending to 

allow water access to the charged residue as it enters the 

 Figure 1.   Cartoon diagram depicting the states used to calculate 
amino acid insertion energies. (A) The total energy of a reference 
peptide harboring between zero and seven TM leucine residues 
in a background of TM alanine residues is calculated in solution 
(left) and then in the presence of the membrane (right). In both 
states, the three terms in Eq. 1 or four terms in Eq. 3 are cal-
culated. Helices were constructed using MOLDA ( Yoshida and 
Matsuura, 1997 ). (B) The central residue (green) was systemati-
cally replaced by all other residues, except proline, and the en-
ergy calculations between solution and membrane were repeated. 
Carefully subtracting energy values computed from B with those 
from the reference peptide in A removes contributions to the in-
sertion energy from the background residues as discussed in the 
online supplemental material.   
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method used to determine the strain energy from the mem-
brane shape. Finally, the height of the membrane was fed back 
into the electrostatic calculations to determine the dielectric envi-
ronment around the inserted helix. There are many ways that this 
fi nal step can be performed, but we determined that the mem-
brane – water interface could be well fi t over the entire domain by 
a high-order polynomial. The polynomial fi t is used in the code 
to edit the dielectric, ion-concentration, and charge maps. The 
exact equation for the membrane shape is given in the online 
supplemental material. 

 Nonpolar Energy Calculations 
 The solvent accessible surface area (SASA) of each transmem-
brane helix was calculated by treating each atom in the molecule 
as a solvated van der Waals ’  sphere (Lee and Richards, 1971). The 
surface of each sphere was represented by a set of 100 evenly dis-
tributed test points assigned as described in  Rakhmanov et al. 
(1994 ). The fraction of test points not occluded by neighboring 
atoms or membrane was used to calculate the SASA of each atom, 
and these values were summed to give the total SASA of the pro-
tein (Shrake and Rupley, 1973). The nonpolar contribution to 
the solvation energy was assumed to be linearly proportional to 
the SASA as described in the Results. 

 Online Supplemental Material 
 The online supplemental material is available at http://www.jgp
.org/cgi/content/full/jgp.200809959/DC1. We provide a detailed 
discussion of the calculations used to produce the computational 
insertion energy scales, and we show the relationship between the 
number of leucine residues in a TM helix and the total insertion 
energy in Fig. S1. Table S1 provides the energy values used to 
make the bar graphs in  Fig. 2 B and Fig. 7 A , while Table S2 gives 
these values using helices optimized with the SCWRL rotamer li-
brary rather than SCCOMP. Fig. S2 shows the calculated pK  a   of an 
arginine side chain as it penetrates the membrane, and Fig. S3 
reproduces  Fig. 5 D and Fig. 7 A  of the main text using a head 
group dielectric value of 40 rather than 80. 

 R E S U LT S 

 Electrostatics of a Flat, Low-dielectric Barrier 
 Both the Honig and White groups have carefully con-

sidered the essential energetic terms relevant to inserting 

deformation, and nonpolar energies in solution and in the mem-
brane as described below. The difference between these terms 
computed in solution and in the membrane is the total helix in-
sertion energy (see  Fig. 1 ).  The single amino acid energy scales 
shown in  Figs. 2 and 7  were obtained by comparing the insertion 
energies of two similar segments harboring different central 
amino acids. The energy difference between the helices is attrib-
uted to the energy difference between the central residues. Exact 
details for producing the amino acid energy scales are given in 
the online supplemental material (available at http://www.jgp
.org/cgi/content/full/jgp.200809959/DC1). 

 Electrostatic Calculations 
 All calculations were performed using the program APBS 0.5.1 
( Baker et al., 2001 ). Three levels of focusing were employed start-
ing with an initial system size of 300  Å  on each side. The spatial 
discretization at the fi nest level was 0.3   Å   per grid point. We in-
cluded symmetric counter-ion concentrations of 100 mM in all 
calculations. In the presence of the membrane, APBS was fi rst 
used to generate a set of dielectric, ion-concentration, and charge 
maps describing the system in solution. We developed code to 
then edit these 3D maps to add the effect of the membrane with 
the geometry determined from the solution of a separate elastos-
tatics calculation. Once edited, the maps were read back into 
APBS to fi nish the electrostatic calculations. Dipole charges used 
to create the membrane dipole potential were added at the two 
adjacent grid points closest to the membrane core-lipid head 
group interface. These charges were added in plus/minus pairs 
so that the net charge of the system was not affected, and the 
value of each charge was scaled to reproduce the desired internal 
potential of +300 mV. Our calculations only include the infl uence 
of the membrane dipole potential on the membrane protein 
charges; we do not consider the secondary effect of bending a 
sheet of dipole charges or the reversible work associated with 
moving charges apart for inserting the membrane protein. For 
more details on editing these maps please see  Grabe et al. (2004 ) 
and the online supplemental material. 

 Elastostatic Calculations 
 The shape and strain energy of the membrane was calculated us-
ing elasticity theory with typical membrane parameters taken 
from Nielsen et al. (1998) ( Table I ).  In the supplemental mate-
rial, we derive the fi nite difference scheme used to numerically 
solve for the membrane shape after distortion, and we discuss the 
solution ’ s convergence properties. We also discuss the integration 

 TA B L E  I 

 Parameter Values Used in All Calculations 

 Parameter  Symbol  Value  Reference 

Water dielectric  �  w 80 Floris et al., 1991

Protein dielectric  �  p 2 Gallicchio et al., 2000

Membrane core dielectric  �  hc 2 Long et al., 2007

Lipid head group dielectric  �  hg 80 Long et al., 2007

Equilibrium membrane width L 0 42  Å Nielsen and Andersen, 2000

Head group width L hg 8  Å Lipowsky and Sackman, 1995

Ion screening concentration I c 100 mM Shrake and Rupley, 1973

Bulk interfacial surface tension  � 3  ×  10  � 13  N/ Å Jacobs and White, 1989

Area compression-expansion modulus K a 1.425  ×  10  � 11  N/ Å Jacobs and White, 1989

Bending or splay-distortion modulus K c 2.85  ×  10  � 10  N Å Jacobs and White, 1989

 � /K c  � 1.05  ×  10  � 3   Å  -2 Jacobs and White, 1989

2 K a /(L 0  
2  � K c )  � 5.66  ×  10  � 5   Å  -4 Jacobs and White, 1989

SASA prefactor for nonpolar energy a 0.028 kcal/mol �  Å  2 Gallicchio et al., 2000

Constant term for nonpolar energy b  � 1.7 kcal/mol Gallicchio et al., 2000
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tinct microscopic regimes in the system; and  �  is the 

density of charge within the protein moiety. For a given 

3D structure, we used the PARSE parameter set to as-

sign the atomic partial charges,  � , and the van der Waals 

radii to each atom. Following the PARSE protocol, we 

assigned  �  = 2.0 to protein and  �  = 80.0 to water. As can 

be seen in the  Fig. 2  A for a fl at bilayer, we started by 

treating the entire length of the bilayer as a low-dielec-

tric environment with  �  = 2.0. For a specifi c protein 

confi guration and dielectric environment,  	  can be cal-

culated and the total electrostatic energy determined as 

G elec  = ∑   	 ( r  i ) � ( r  i ), where the sum runs over all charges 

in the system.  

 There is a large driving force for nonpolar solutes to 

sequester themselves from water. This phenomenon 

is associated with the hydrophobic collapse of protein 

cores during protein folding, and it is a major consider-

ation for membrane protein insertion into the hydro-

phobic bilayer. Traditionally, the hydrophobicity of an 

apolar solute is described in terms of the entropy loss 

and the enthalpy gain associated with the formation of 

rigid networks of water molecules around the solute. 

Theoretical treatments of the nonpolar energy gener-

ally assume that the transfer free energy from vacuum 

to water scales linearly with the SASA ( Ben-Tal et al., 

1996 ). However, detailed computational studies of small 

alkane molecules have shown that for cyclic alkanes the 

SASA is only weakly correlated with the total free energy 

of solvation. This is due to cyclic alkanes having a more 

favorable solute – solvent interaction energy, per unit sur-

face area, as compared with linear alkanes ( Gallicchio 

et al., 2000 ). Recently, it was shown that continuum 

methods can correctly describe these effects if they in-

corporate solvent accessible volume terms and disper-

sive solute – solvent interactions in addition to the SASA 

terms (Wagoner and Baker, 2006). Fortunately, helices 

and chain-like molecules have volumes and surface ar-

eas that are nearly proportional, and a proper parame-

terization of the prefactor multiplying the SASA term 

can effectively account for the volume dependence. 

Therefore, following the work of Sitkoff and coworkers, 

we calculated  
 G np  as the difference between the SASA 

of the TM helix embedded in the membrane, A mem , and 

the value in solution, A sol :  
 G np  = a � (A mem   �  A sol ) + b, 

where the values a = 0.028 kcal/mol �   Å   2  and b =  � 1.7 

kcal/mol were obtained by using the equation for  
 G np  

to fi t the experimentally determined transfer free ener-

gies of several alkanes between water and liquid alkane 

phases ( Sitkoff et al., 1996 ). 

 Next, we wanted to use Eq. 1 together with calcula-

tions like those shown in  Fig. 2 A  to address the apparent 

free energy of insertion for amino acids as determined 

by the translocon experiments ( Hessa et al., 2005a ). We 

used MOLDA to create ideal poly-alanine/leucine  �  he-

lices with the central position chosen to be one of the 

20 natural amino acids, excluding proline ( Yoshida and 

 �  helices into membranes (Jacobs and White, 1989; 

 Ben-Tal et al., 1996 ). In our present study, we start with 

their approach. The free energy for insertion,  
 G tot , has 

the following components: 

   Δ Δ Δ ΔG G G Gtot elec np mem= + + ,    (1) 

 where the terms on the right hand side correspond to 

the electrostatic, nonpolar, and membrane deformation 

energies, respectively. Each term is calculated with re-

spect to the state in which the helix is in bulk aqueous 

solution far from the unstrained membrane. 

 The electrostatic contribution to helix insertion is de-

termined by solving the Poisson-Boltzmann equation: 

      (2) −∇ ⋅ ∇ + =[ ( ) ( )] ( )sinh[ ( )] ( ),ε φ κ φ πρr r r r
e

k T
r

B

2 4

 

 where  �  = e 	 /k B T is the reduced electrostatic potential 

and  	  is the electrostatic potential;  �  is the Debye-

Huckel screening parameter, which accounts for ionic 

shielding;  �  is the dielectric constant for each of the dis-

 Figure 2.   Computed biological hydrophobicity scale using a clas-
sical view of the membrane. (A) A model peptide with an arginine 
at the central position (green) is shown spanning a low-dielectric 
region representing the membrane. Helical segments with this 
geometry were used to produce the bar graph in B. (B) Inser-
tion energies for 19 of the 20 naturally occurring amino acids. 
Amino acids are ordered according to the translocon scale ( Hessa 
et al., 2005a ). All molecular drawings were rendered using VMD 
( Humphrey et al., 1996 ).   
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For dipalmitoylphosphatidylcholine (DPPC) bilayers, 

the width of the head group region is between 6 and 

9  Å  based on synchrotron studies ( Helm et al., 1987 ), 

and MD simulations estimate that the corresponding 

dielectric value for this region is higher than bulk water 

(Stern and Feller, 2003). This additional level of com-

plexity is easily accounted for by adding an 8- Å -wide 

intermediate dielectric region, which we assigned to 

 �  hg  = 80, on each side of the membrane core. It is also 

known that membrane systems exhibit an interior elec-

trical potential ranging from +300 to +600 mV that is 

thought to arise from dipole charges at the upper and 

lower leafl ets ( Jordan, 1983 ). While the exact nature of 

this potential is not known, it is thought that interfa-

cial water, ester linkages, and head group charges may 

play a role. Following the work of Jordan and Coalson, 

we have adopted a physical model of the membrane di-

pole potential in which a thin layer of dipole charge 

is added to the upper and the lower leafl et between 

the head group region and hydrocarbon core ( Jordan, 

1983 ;  Cardenas et al., 2000 ). The strength of the dipoles 

was adjusted so that the value of the potential was +300 mV 

at the center of the bilayer, far from the TM helix. 

While this additional energy could be considered part 

of  
 G elec , we chose to call it  
 G dipole , and we amended 

Eq. 1 as follows: 

   Δ Δ Δ Δ ΔG G G G Gtot elec dipole np mem= + + + .    (3) 

Matsuura, 1997 ). Subsequently, we optimized the side-

chain rotamer conformations with SCCOMP ( Eyal et al., 

2004 ). The free energy difference of the helical seg-

ment in solution versus the membrane,  
 G tot , was calcu-

lated, and the insertion propensity of the central amino 

acid was determined by correcting for the background 

alanine-leucine helix (see Materials and methods). 

Next, we ordered the amino acid insertion energies 

along the x-axis according to the fi ndings of Hessa et al. 

( 2005a ) in which the far left residue inserts the most fa-

vorably, and the insertion energetics increase monoton-

ically going to the right ( Fig. 2 B ). It can be seen that 

the fl anking residues are in qualitative agreement; our 

theoretical calculations show that isoleucine is one of 

the most favorably inserted amino acids and aspartic 

acid is the least favorable. Our scale is not strictly mono-

tonic, but it does exhibit a similar trend of increasing 

insertion energy from left to right. The most obvious 

deviation from this trend occurs for the polar residues, 

which decrease in energy from N to Q. Also, while our 

calculations predict that glycine is among the least fa-

vorably inserted nonpolar residues, Hessa et al. found 

that glycine is clustered with the polar residues, which 

produces a noticeable dip in the bar graph between Y 

and S ( Fig. 2 B ). 

 Interestingly, the PARSE parameter set was developed 

to quantitatively reproduce the solubilities of side-chain 

analogues ( Sitkoff et al., 1994 ), yet when we extend this 

work to describe the results from the translocon scale, the 

computational and experimental values lack quantita-

tive agreement. Most notably the translocon scale predicts 

a very small apparent free energy difference between 

incorporating charged residues and polar residues, 

while our continuum electrostatic calculations predict 

that charged residues require 30 – 35 kcal/mol more en-

ergy to insert into the membrane ( Fig. 2 B ). While it is 

possible that the energetics of the translocon experi-

ments are skewed by the close proximity of the extruded 

segment to the membrane, among other possibilities, 

part of the discrepancy surely lies in our simplifi ed treat-

ment of the membrane. 

 Elasticity Theory Determines the Membrane Shape and 
Strain Energy 
 Molecular simulations highlight two features that are 

missing in our continuum model. First, the membrane 

is not a slab of pure hydrocarbon, but rather the lipid 

head groups are quite polar and interact intimately 

with charged moieties on the protein; and second, lip-

ids adjacent to the helix bend to allow signifi cant water 

penetration into the plane of the membrane ( Freites 

et al., 2005 ; Dorairaj and Allen, 2007). Both of these 

features can potentially reduce the energy required to in-

sert charged residues into the membrane. Phospholipid 

head groups are polar and mobile, making their electro-

static nature much more like water than hydrocarbon. 

 Figure 3.   System geometry corresponding to electrostatic and 
elasticity calculations. (A) Cross section of the deformed mem-
brane showing the fl at lower leafl et and curved upper leafl et (solid 
red). L 0  is the equilibrium membrane width and h is the height of 
the upper leafl et. The midplane is assigned z = 0 (dashed black). 
The radius of the TM helix is r 0  and only half of the helix is pic-
tured. (B) The idealized helix is shown and the contact curves of 
the upper and lower membrane leafl ets are shown in red. The 
lower curve is fl at; however, the upper curve dips down with a 
minimum value at the position where the central residue resides 
on the full molecular helix when present.   
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 The energy minima of Eq. 4 correspond to stable 

membrane confi gurations. The equation for these equi-

librium shapes is determined via standard functional 

differentiation of Eq. 4 with respect to u: 

   ∇ − ∇ + =4 2 0u u uγ β ,    (5) 

 where  �  =  � /K c  and  �  = 2K a /(L 0  
2  � K c ). We solved Eq. 5 to 

determine the shape of the membrane, but before do-

ing this we had to specify the values of the membrane 

height and slope both far from the helix and where it 

meets the helix. We assumed that the membrane asymp-

totically approaches its unstressed equilibrium height, 

u = 0, far from the TM helix. Unfortunately, we do not 

know the height of the membrane as it contacts the he-

lix. We started by positing the shape of the contact curve 

based on visual inspection of MD simulations, but later 

in the manuscript we will describe a systematic method 

for determining the true membrane – protein contact 

curve, which requires no a priori knowledge. 

 In the unstressed case, as in  Fig. 2 A , we assumed that 

 
 G mem  is zero and that the membrane meets the helix 

without bending. From the MD work of Dorairaj and 

Allen, we observed that the upper leafl et bends to con-

tact charged residues embedded in the outer half of the 

membrane (Dorairaj and Allen, 2007). The membrane 

appears to contact the helix at the height of the charged 

residue, while remaining unperturbed on the backside 

of the helix and along the entirety of the lower leafl et. 

Therefore, for the present set of calculations we only con-

cerned ourselves with deformations in the upper leafl et, 

and the energy in Eq. 4 was written to refl ect this assump-

tion (see online supplemental material, available at http://

www.jgp.org/cgi/content/full/jgp.200809959/DC1). 

 The much more diffi cult task is to determine how to 

model membrane defects at the continuum level. We chose 

to use elasticity theory, which treats the membrane surface 

as an elastic sheet characterized by material properties 

that describe its resistance to distortions such as bending 

( Helfrich, 1973 ). This method has been successfully ap-

plied to membrane mediated protein – protein interactions 

( Kim et al., 1998 ;  Grabe et al., 2003 ) and membrane sort-

ing based on height mismatch between the hydrophobic 

length of the protein and the membrane ( Nielsen et al., 

1998 ; Nielsen and Andersen, 2000). These later models are 

often termed  “ mattress models ”  since they allow the mem-

brane to compress vertically much like a mattress bed does 

when sat upon. Simulations indicate that the membrane 

undergoes signifi cant compression around buried charged 

groups, so we closely followed the formulation of the mat-

tress models in our present work. The membrane deforma-

tion energy is written in terms of the compression, bending, 

and stretch of the membrane as follows: 

      (4) 

ΔGmem

K
u K ua 2

c= + ∇ + ∇1

2

1

2

1

20
2

2 2

L
compression bending

( ) (α uu d     ) ,
2

stretch

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

∫∫ Ω
 

 where K a  is the bilayer compression modulus, K c  is the 

bilayer bending modulus,  �  is the surface tension, and 

u is the deviation of the leafl et height, h, from its equi-

librium value, u = h  �  L 0 /2. The total energy is given by 

the double integral of the deformation energy density 

over the plane of the membrane. A cartoon cross sec-

tion of the membrane bending around an embedded 

TM helix illustrates the geometry in  Fig. 3 .  

 Figure 4.   Shape of the membrane from elasticity 
theory. (A) The solution to Eq. 5 was computed 
to determine the height of the upper leafl et of 
the membrane given a deformation near the 
origin. The membrane – water interfaces of the 
upper and lower leafl ets are represented as two 
surfaces. We only show the surfaces within a 20  Å  
radius of the origin. The centers of the surfaces 
are missing since we assumed that the membrane 
terminates on a cylindrical helix with a radius of 
7.5  Å ; full molecular detail is not incorporated 
at this point. Calculations were performed with 
parameters found in  Table I . (B) The membrane 
profi le for the solution in A is shown along the 
axis of largest deformation. The cylinder repre-
senting the TM segment is shown at the origin 
(solid black lines), and the surface of the mem-
brane is shown in red. The equilibrium height of 
the upper leafl et is also pictured (dashed black 
line) to show that a signifi cant amount of water 
penetration (blue shade) accompanies membrane 
bending. (C) The membrane deformation en-
ergy increases as the leafl et bends with the defor-
mation reaching a maximum of  � 5 kcal/mol.   
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left corresponds to a compression of half the bilayer 

width, as shown in  Fig. 4 A , and the far right corre-

sponds to no compression at all. Importantly, the strain 

energy for the most drastic deformation is only  � 5.0 

kcal/mol, and the energy falls off faster than linear as 

the upper leafl et height at the helix is increased to its 

equilibrium value. Localizing the penetration to one 

side of the membrane and one side of the helix dramat-

ically reduces the strain energy, which is essential for 

this to be a viable mechanism for reducing the insertion 

energetics of charged residues while minimizing mem-

brane deformation. 

 The Electrostatics of Charge Insertion Is Minimal 
 Next, we used the membrane shape predicted from our 

elastostatic calculations to revisit the electrostatic calcu-

lations with an arginine at the central position. We as-

sumed that the deformation of the upper leafl et does 

not alter the width of the high-dielectric region corre-

sponding to the polar head groups. The helix was posi-

tioned such that the C  �   atom of arginine was at the 

membrane – water interface (21  Å ,  Fig. 5 E ), and then it 

was translated down until the C  �   atom reached a height of 

0  Å  at the center of the membrane.  For each confi gu-

ration, the membrane leafl et was deformed as in  Fig. 4 B  

so that it contacted the C  �   atom, resulting in an ever-

increasing membrane deformation as the arginine reached 

the bilayer core. The fi nal geometry is pictured in  Fig. 5 F . 

We constrained the contact curve of the upper leafl et 

to form a sinusoidal curve against the helix with the mini-

mum value being the height of the C  �   atom of the 

charged residue and the maximum value being the height 

of the unstressed bilayer as shown in  Fig. 3 B . As the 

depth of the charged residue changed, we adjusted 

the minimum value of the curve to refl ect this change. 

We solved Eq. 5 numerically as detailed in the Materials 

and methods using a fi nite difference scheme in polar 

coordinates with the standard bilayer parameter values 

provided in  Table I  and taken from  Huang (1986 ) and 

 Nielsen et al. (1998 ). 

 The shape of the membrane when the charged resi-

due is located at its center can be seen in  Fig. 4 A .  As 

discussed above, only the upper leafl et is deformed, and 

the helix is not explicitly represented at this stage, rather 

the membrane originates from a cylinder with a ra-

dius approximately the size of the TM segment (7.5  Å ). 

The membrane – water interface along the radial line 

corresponding to the point of largest deformation is de-

picted in  Fig. 4 B . By comparing the dashed black lines 

to the red line, it is clear that a signifi cant amount of 

water penetration from the extracellular space accom-

panies this deformation, solvating residues at the helix 

center. However, this deformation comes at a cost; the 

compression and curvature introduced to the mem-

brane results in a strain energy. The magnitude of the 

strain energy,  
 G mem , is plotted in  Fig. 4 C ; where the far 

 Figure 5.   Helix insertion energy of a model polyleu-
cine helix with a central arginine. As the arginine en-
ters the membrane, the upper leafl et bends to allow 
water penetration. At the upper leafl et, the arginine 
height is 21  Å , and it is 0  Å  at the center. (A) The total 
electrostatic energy remains nearly constant upon in-
sertion. (B) The nonpolar energy increases linearly to 
18 kcal/mol as the membrane bending exposes buried 
TM residues to water. (C) The membrane deformation 
energy redrawn from  Fig. 4 C . (D) The total helix in-
sertion energy is the sum of A – C plus  
 G dipole , which 
is not shown (solid red line). Correcting for the opti-
mal membrane deformation at a given arginine depth, 
as shown in  Fig. 6 B , produces a noticeably smaller 
insertion energy (dashed red line). Our continuum 
computational model matches well with results from 
fully atomistic MD simulations on the same system (di-
amonds taken from Dorairaj and Allen, 2007). The re-
sult from a classical continuum calculation is shown for 
reference (solid blue line). (E) System geometry when 
the arginine (green) is positioned at the upper leafl et. 
This confi guration represents the far right position on 
A – D. Gray surfaces represent the lipid head group – wa-
ter interface, purple surfaces represent the lipid head 
group – hydrocarbon core interface. The membrane is 
not deformed in this instance. (F) System geometry 
when the arginine is at the center of the membrane. 
This confi guration represents the far left position on 
A – D. The shape of the upper membrane – water inter-
face (gray) was determined by solving Eq. 5.   



570  Modeling Membrane Insertion Energies 

curves and their dependence on the arginine depth in 

the membrane are incredibly similar, despite our results 

(solid red line) being 3 – 5 kcal/mol higher than the MD 

simulations. Redoing the continuum calculation with-

out allowing the membrane to bend, and neglecting the 

polarity of the head groups, results in the classical calcu-

lation shown in solid blue. For this model, the insertion 

energetics quickly rise once the charged residue pene-

trates the membrane – water interface, and then the 

energy plateaus to a value  � 15 kcal/mol larger than val-

ues predicted by the membrane-bending model or MD 

simulations. Allowing for membrane bending and the 

proper treatment of the polar head group region, brings 

the qualitative shape of the continuum calculations 

much more in-line with the MD simulations, suggesting 

that our calculations are capturing the correct physics 

of charged residue insertion into the bilayer. Addition-

ally, we calculated the pK  a   of the arginine side chain as 

described in the online supplemental material and found 

it to be close to 7 at the center of the membrane, which 

is in excellent agreement with the MD simulations of 

 Li et al. (2008 ). 

 The most unsatisfying aspect of our current approach 

is that we have to fi rst posit the contact curve of the 

membrane height against the protein. In reality, the mem-

brane will adopt a shape that minimizes the system ’ s to-

tal energy. A priori we have no way of knowing what that 

shape is, nor do we know if the shapes shown in  Fig. 5 

(E and F)  are stable for the given arginine positions. 

We circumvented this shortcoming by carrying out a set 

of calculations in which the helix remained fi xed with 

the arginine at the membrane center, but we varied the 

degree of leafl et compression. As the leafl et compresses 

from its equilibrium value, the electrostatic component 

of the helix transfer energy drops by 35 kcal/mol (see 

 Fig. 6 A ), again highlighting the importance of water 

penetration and lipid head group bending.  Over 90% 

of this energy is gained by compressing the membrane 

down to a height of 5  Å , and very little further electro-

static stabilization is gained by compressing farther. The 

reason for this can be seen from  Fig. 5 F  in which the 

arginine  “ snorkels ”  up toward the extracellular space. 

Therefore, once the membrane height comes down 

to  � 5  Å , the charged guanidinium group is completely 

engulfed in a high-dielectric environment. When the 

nonpolar, lipid deformation, and membrane dipole en-

ergies are added, the energy profi le produces a notice-

able free energy minimum at 5  Å  ( Fig. 6 B ). Thus, by 

extending our simulation protocol we have shown that 

these structures with deformed membranes are me-

chanically stable, and we have removed the uncertainty 

regarding the proper placement of the membrane at 

the protein interface. 

 Initially, we expected the curve in  Fig. 6 B  to exhibit a 

sharp jump in energy as the positively charged arginine 

side chain moved across the dipole charge layer interface 

During peptide insertion, we calculated each term of the 

free energy in Eq. 3. Remarkably, the electrostatic com-

ponent of the energy is essentially fl at when the mem-

brane is allowed to bend ( Fig. 5 A ). This result is not 

obvious, and it highlights the importance of the local 

geometry with regard to the solvation energy of charged 

proteins. This result will have important consequences 

for the mechanistic workings of membrane proteins that 

move charged residues in the membrane electric fi eld 

as part of their normal function. Nonetheless, deform-

ing the membrane exposes the surface of the protein to 

water; and therefore, it incurs a signifi cant nonpolar 

energy,  
 G np , that is proportional to the change in the 

exposed surface area ( Fig. 5 B ). Additionally,  
 G mem  

increases as discussed above ( Fig. 5 C ). Adding together 

panels A – C and  
 G dipole , we obtain the continuum ap-

proximation to the potential of mean force (PMF) for 

inserting an arginine-containing helix into a membrane 

( Fig. 5 D , solid red curve). 

 Continuum Calculations Match MD Simulations 
 Our peptide system is the one explored by Dorairaj and 

Allen, which allowed us to directly compare our contin-

uum PMF with their PMF (diamonds in  Fig. 5 D,  adapted 

from Dorairaj and Allen, 2007). The shapes of both 

 Figure 6.   Determining the optimal membrane shape for a fi xed 
charge in the core of the membrane. (A) Starting with the argi-
nine at the center of the membrane as in  Fig. 5 F , the helix was 
held fi xed, and the point of contact of the upper membrane – 
water interface with the helix was varied from a height of 0  Å  to 
its equilibrium width of 21  Å . The electrostatic energy decreases 
by 35 kcal/mol as the arginine residue gains access to the polar 
head groups and extracellular water. The majority of the decrease 
in electrostatic energy occurs from 21 to 5  Å , and there is pro-
nounced fl attening in the curve between 0 and 5  Å . (B) The to-
tal insertion energy exhibits a well-defi ned energy minimum at a 
contact membrane height of 5  Å .   
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of additional energy is required to insert charged resi-

dues compared with some polar residues. For instance, 

our calculations predict that inserting lysine requires 

only a little more than 1 kcal/mol more energy than in-

serting asparagine. This result is impressive, but it is im-

portant to remember that the physical scenarios are 

quite different for these two cases. The penalty for in-

serting asparagine is primarily the electrostatic cost of 

moving a polar residue into a fl at low-dielectric environ-

ment; however, since the membrane bends in the pres-

ence of a charged residue, the penalty for arginine is 

between the membrane core and the lipid head group. 

However, the depth of the residue and the shape of the 

bending membrane smoothes out the transition and re-

sults in a 5 – 6 kcal/mol stabilization as the charge exits 

the interior of the core rather than the full 7 kcal/mol 

corresponding to a charge in a +300 mV potential. 

 Importantly, when the arginine is at the center of the 

membrane, the free energy is 5 kcal/mol lower if the 

membrane only compresses down to 5  Å  rather than com-

pressing the full half-width of the membrane ( Fig. 6 B ). 

This realization shows that the original helix insertion 

energy ( Fig. 5 D , red curve) is wrong — it is too high. For 

each vertical position of the helix, we then performed a 

set of calculations in which we swept through all values 

of the leafl et thickness from 0 to 21  Å  to determine the 

optimal compression of the membrane. These corrected 

energy values were used to determine the PMF of argi-

nine helix insertion into the membrane ( Fig. 5 D , red 

dashed curve). The results of the MD simulations and 

our continuum approach are now in excellent agree-

ment, and even at the center of the bilayer the two 

approaches give values that differ by  < 1 kcal/mol. A no-

table difference between these methods is that we can 

compute the dashed red curve in  Fig. 5 D  in several 

hours on a single desktop computer, while detailed MD 

simulations require computer clusters and several or-

ders of magnitude more time. 

 Revisiting the Calculations of Amino Acid 
Insertion Energies 
 Our initial decision to incorporate membrane bending 

into our computational model was motivated by the 

model ’ s inability to reproduce the low apparent free en-

ergy of insertion for charged residues as determined 

by the translocon scale ( Hessa et al., 2005a ). Thus, we 

wanted to readdress the translocon data with our mem-

brane-bending model. As before, we started with the 

helical segments inserted in the membrane with the amino 

acid of interest positioned at the center of the mem-

brane as in  Fig. 5 E . The upper leafl et of the membrane 

was then deformed until it reached the midplane of 

the bilayer as in  Fig. 5 F , and the total insertion en-

ergy of the helix was calculated every 1  Å  as the leafl et 

height was varied from 21 to 0. The energy minimum 

was identifi ed as in  Fig. 6 B  and used to calculate the in-

sertion energy of the central amino acid. The infl uence 

of the background helix was accounted for as discussed 

previously. Only when the central residue is charged 

do we observe stable minima with nonfl at geometries. 

Therefore, our new calculations only marginally affect 

the energetics of the polar and hydrophobic amino ac-

ids. The model predicts that the insertion energetics of 

the charged residues are 7 – 10 kcal/mol, corresponding 

to a 25 – 30 kcal/mol reduction over the fl at membrane 

geometry calculations. Interestingly, as observed by Hessa 

et al. ( 2005a ), our model shows that a minimal amount 

 Figure 7.   The infl uence of membrane bending on computing the 
biological hydrophobicity scale and the interplay of electrostatics 
and nonpolar forces. (A) Amino acid insertion energies for 17 resi-
dues calculated using our membrane-bending model (green bars) 
and compared with the translocon scale ( Hessa et al., 2005a ) (red 
bars) and a scale developed from MD simulations of lone amino 
acids ( MacCallum et al., 2007 ) (blue bars). All three scales were 
shifted by a constant factor to set the insertion energy of alanine 
to zero (1.97 kcal/mol green,  � 0.11 kcal/mol red, 2.02 kcal/mol 
blue). The insertion energy of charged residues is reduced by 25 –
 30 kcal/mol by permitting membrane bending. Calculations simi-
lar to those in  Fig. 6 B  indicate that only charged residues result 
in distorted membranes. (B) The energy difference between very 
polar amino acids and charged amino acids is quite small; however, 
our model predicts that the physical scenarios are quite different. 
The insertion penalty for asparagine is primarily electrostatic, while 
the nonpolar component stabilizes the amino acid (left bars). Con-
versely, there is very little electrostatic penalty for inserting argi-
nine and most of the cost is associated with the nonpolar energy 
required to expose the TM domain to water (right bars). For com-
parison, we show that the classical fl at membrane gives rise to a 
huge electrostatic penalty and a signifi cant 6 kcal/mol membrane 
dipole potential penalty for arginine (middle bars).   
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Allen, 2007;  Long et al., 2007 ). Shape changes that corre-

spond to deforming the membrane can be determined 

by solving the elasticity equation, Eq. 5. This determines 

the energy of bending, but it also predicts the shape of 

the membrane. This shape is then fed into electrostatics 

calculations to defi ne the distinct dielectric regions 

of the membrane and the extent of water penetration 

around the protein. This added degree of freedom dras-

tically reduces the electrostatic penalty for inserting 

charged residues into the center of the membrane at a 

marginal cost associated with membrane deformation. 

 We showed in  Fig. 6 B  that the contact curve of the 

membrane along the protein surface can be determined 

by considering multiple boundaries and picking the 

one that minimizes the free energy. Thus, the proce-

dure is self-consistent, and it results in physically stable 

structures. Importantly, our continuum approach can 

be scaled up to treat larger protein complexes that have 

charged residues in or near the TM domain such as 

voltage-gated ion channels. However, we feel that there 

are several major considerations that must be addressed 

before extending our present methodology. First, when 

multiple charged residues are present on large protein 

complexes the contact curve will be complicated. A very 

effi cient search algorithm must be implemented to de-

termine the membrane shape of lowest energy. Second, 

for large deformations the linear approximation to mem-

brane bending used in Eq. 5 may not be adequate; 

therefore, we need to consider more sophisticated mod-

els that allow for highly deformed geometries such as 

the fi nite element model of  Tang et al. (2006 ). Third, it 

has been shown that the dispersion terms are needed to 

properly describe the nonpolar contribution to the free 

energy of solvation ( Floris et al., 1991 ;  Gallicchio et al., 

2000 ; Wagoner and Baker, 2006), and the existence of 

fast continuum methods to do these calculations should 

be incorporated (see (Wagoner and Baker, 2006)). 

Lastly, we believe that our method will be a valuable as-

set to researchers considering the quantitative energet-

ics of membrane proteins and the stability of membrane 

protein complexes; and furthermore, a systematic study 

of these systems and their interaction with the mem-

brane as they undergo conformational changes will re-

quire fast computational methods currently not offered 

by molecular dynamics simulations. 
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not electrostatic, but rather it is the nonpolar cost of ex-

posing the helix to water and bending the membrane 

(see  Fig. 7 B ).  

 While our membrane-bending model reconciles many 

of the observations from the translocon experiments, 

the magnitude and the spread of the insertion energy 

values are still larger for our computational scale. There 

are many reasons why this may be the case, and the most 

obvious reason is that our hypothetical situation with a 

single TM helix and a reference state in pure aqueous 

solution is an oversimplifi cation of the full complexity of 

the translocon system. Thus, we wanted to compare our 

continuum calculations to MD simulations, which have 

equally well-defi ned states. The insertion energetics of 

amino acids in TM peptides have not been systemati-

cally computed via MD, so we compared our values to 

energies calculated for single side chains in DOPC bila-

yers ( MacCallum et al., 2007 ). It is immediately evident 

that the insertion energetics from the continuum cal-

culations (green bars) and the MD simulations (blue 

bars) have a similar spread and are well correlated with 

each other ( Fig. 7 A ). Since all three scales in  Fig. 7  A 

represent different physical situations (a single TM 

helix [green], a lone side chain [blue], and a 3 TM pro-

tein [red]), we shifted each scale by a constant factor 

that sets the alanine insertion energy to zero. Compar-

ing the 17 values of the corrected MD scale to the con-

tinuum scale, we see that 10 values agree to within 1.3 

kcal/mol. Notably, the values for tyrosine and arginine 

are the largest outliers, exhibiting a difference of 5 – 7.5 

kcal/mol between the two methods. The agreement be-

tween the continuum method developed here and the 

fully molecular approach is encouraging, and with the 

proper parameterization, it is likely that a purely con-

tinuum approach will accurately describe the energetics 

of membrane protein – lipid interactions. Finally, in the 

online supplemental text we explored the robustness of 

our conclusions with respect to changes in key parame-

ters such as the dielectric value of the lipid head group 

region, the partial charges and atomic radii, and the 

choice of rotamer library; in all cases, our main conclu-

sions are insensitive to these parameters. 

 D I S C U S S I O N 

 We have developed a method for calculating the ener-

getics of membrane proteins that merges two contin-

uum theories that have on their own been very successful 

at describing biophysical phenomena: elasticity theory 

and continuum electrostatics. Electrostatic calculations 

with fl at membranes have been considered in the past 

( Roux, 1997 ;  Grabe et al., 2004 ), but recent experi-

ments and simulations suggest a more dynamic role for 

the membrane and the charge properties of the lipid 

head groups ( Freites et al., 2005 ;  Hessa et al., 2005a ; 

 Ramu et al., 2006 ;  Schmidt et al., 2006 ; Dorairaj and 
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