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1 Introdution

In this paper, we present the lower bound on the number of rounds to solve Consensus for

a synhronous system in whih proesses may fail dependently. Proesses are said to fail

dependently if the failure of one indiates an inrease in the failure probability of another

proess. Failure orrelations an be due to intrinsi properties of the system. For example,

two proesses may fail dependently beause they use the same software version ontaining

the same bugs.

To desribe these failure orrelations, we present two new abstrations: ores and

survivor sets. These abstrations are not oupled to any partiular failure model and they

onstitute a generi tool for the design of fault-tolerant algorithms.

The Consensus problem briey onsists in reahing agreement among all orret pro-

esses. Every proess starts with an initial value, and eventually every orret proess

deides upon the same value v. The lower bound on the number of rounds for Consensus

we show is generi. It applies to any system model in whih Consensus is solvable. It just

requires the knowledge of the lower bound on proess repliation, and a system desribed

in terms of ores and survivor sets. To show this result, we use the tehnique to prove lower

bounds desribed by Keidar and Rajsbaum [1℄. This tehnique is based on the notion of

layering.

In the next setions, we introdue our new abstrations and our assumptions for the

system. Finally, in the last setion we show our main result.

2 System Model

A system is omposed of a set � = fp

1

; p

2

; � � � ; p

n

g of proesses that ommuniate by

exhanging messages. In our model, proess failures are allowed to be orrelated, meaning

that the failure of a proess may inrease the failure probability of another proess.

Assuming that faulty proesses do not reover, there has to be at least one orret

proess in every exeution in order to ahieve fault-tolerane. We hene distinguish subsets

of proesses suh that the hane of all proesses in eah of these subsets failing is negligible.

Moreover, these subsets are minimal in that removing any proess of suh a subset 

makes the probability of all the proesses in  failing non-negligible. We all suh subsets

ores. Cores an be extrated from the information about proess failure orrelations.

For example, suppose a system where proesses are represented by attributes. In suh
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a system, sharing attributes may indiate failure orrelation and ores an be omputed

aordingly. In this paper, however, we assume that the set of ores is provided as part of

the system spei�ation. Models to desribe failure orrelations and methods to extrat

ores from instanes of these models are not addressed here.

By assumption, eah ore ontains at least one proess that is orret in some exeu-

tion. Thus, a subset of proesses, suh that the intersetion with every ore is non-empty

ontains all the proesses that are orret in some exeution. If suh a subset is minimal,

then it is alled a survivor set. Notie that in every run of the system there is at least one

survivor set that ontains only orret proesses. Our de�nition of survivor sets is anal-

ogous to the one of a fail-prone system B [2℄: the set of survivor sets is the omplement

of B.

We now de�ne ores and survivor sets more formally. Let R be a rational number

expressing the target degree of reliability for �, and r(x), x � �, be a funtion that

evaluates to the reliability of the subset x. We de�ne ores and survivor sets as follows:

De�nition 2.1 Given a set of proesses � and target degree of reliability R 2 [0; 1℄ \Q,

 is said to be a ore if and only if:

1.  � �;

2. r() � R;

3. 8p 2 , r(� fpg) < R.

Given a set of proesses � and a set of ores C

�

, s is said to be a survivor set if and

only if:

1. s � �;

2. 8 2 C, s \  6= ;;

3. 8p

i

2 s, 9 2 C

�

suh that p

i

2  and (s� fp

i

g) \  = ;.

We de�ne C

�

and S

�

as the set of ores and the set of survivor sets of � respetively.

The funtion r(:) and the target degree of reliability R are used at this point only to

formalize the idea of a ore. In reality, reliability does not need to be expressed as proba-

bilities. If this information is known by other means, as by the utilization of desriptions

based on attributes for instane, then ores an be extrated without using probabilities.
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For example, suppose a six proess system with � = fph

1

; ph

2

; pl

1

; pl

2

; pl

3

; pl

4

g. In this

system, ph

1

and ph

2

are very reliable and eah of these fail independently of every other

p 2 �. Proesses pl

i

, for 1 � i � 4, however, fail dependently among eah other. That

is, for every pair of proesses pl

i

, pl

j

, 1 � i; j � 4 and i 6= j, we have that if pl

i

is faulty

in some exeution of the system, then pl

j

is also faulty. Thus, a subset with maximum

reliability ontains proesses ph

1

, ph

2

, and exatly one proess pl

i

. Suppose that the max-

imum reliability ahievable for a subset of proesses satis�es the intuitive notion of target

degree of reliability for this system. We an therefore infer that for eah i, 1 � i � 4,

fph

1

; ph

2

; pl

i

g is a ore. The set C

�

of ores is hene as follows:

C

�

= ffph

1

; ph

2

; pl

1

g; fph

1

; ph

2

; pl

2

g; fph

1

; ph

2

; pl

3

g; fph

1

; ph

2

; pl

4

gg (1)

From C

�

, it an be easily veri�ed that the set S

�

of survivor sets in this example is as

follows:

S

�

= ffph

1

g; fph

2

g; fpl

1

; pl

2

; pl

3

; pl

4

gg (2)

In the remainder of this paper, we assume that these subsets are provided as part

of the system representation. In the following setions, a system is desribed by a triple

h�; C

�

; S

�

i, for � being a set of proesses, C

�

being the set of ores of �, and S

�

being the

set of survivor sets of �. From this point on, we all h�; C

�

; S

�

i a system representation.

3 Proess Failures and Repliation Requirements

Expressing orrelated failures by using ores and survivor sets is not restrited to a par-

tiular type of proess failure. Here, we assume two di�erent models for proess failures:

rash model and byzantine model. In the former model, proesses fail by rashing. That

is, one a proess fails, it stops sending and reeiving messages. The seond model assumes

that proesses an fail arbitrarily. Examples of arbitrary failures are seletive forwarding

of messages and arbitrary hanges to the ontent of messages.

In the rash model, we proved in [3℄ that the following property for proess repliation

is suÆient to solve Consensus:

Property 3.1 C

�

6= ;

To solve Consensus in the arbitrary model, a stronger property is neessary for proess

repliation. The following two properties are neessary and suÆient to solve Consensus

in suh a model, and we prove in [3℄ that they are equivalent:
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Property 3.2 (Byzantine Partition) For every partition (A;B;C) of �, at least one

of A, B, or C ontains a ore.

Property 3.3 (Byzantine Intersetion) 8s

i

; s

j

2 S

�

, 9

k

2 C

�

, suh that 

k

� (s

i

\

s

j

).

Consider a system represented by h�; C

�

; S

�

i. Independently of the model assumed for

proess failures, there may be more proesses than neessary. For example, in the rash

model, one ore is suÆient. There may be, however, more ores available in the system.

In partiular, if the goal of the system is to solve another problem and Consensus is being

used as a primitive, then this extra amount of repliation perhaps is neessary. Thus, we

de�ne a subsystem as a subset of proesses of the original system that an be used to solve

Consensus. In the rash model, a subsystem is a subset of proesses in some ore, whereas

in the arbitrary model, a subsystem is suh that it satis�es Byzantine Intersetion.

More formally, let � be some property that de�nes the proess repliation requirement

for a given failure model. For example, the byzantine intersetion property is the lower

bound on proess repliation in a failure model assuming arbitrary failures and reliable

hannels. A subsystem is then de�ned as follows:

De�nition 3.4 Let l be a repliation requirement and sys = h�; C

�

; S

�

i be a system

representation. A system sys

0

represented by h�

0

; C

0

�

; S

0

�

i is a subsystem of sys if and

only if �

0

� � and C

0

�

� C

�

and sys

0

satis�es �.

Under this de�nition, subsystem is minimal if the removal of a single proess or ore

is suh that the lower bound property on proess repliation is no longer satis�ed. More

formally, a subsystem sys

0

= h�

0

; C

0

�

; S

0

�

i is minimal if and only if there is no other

subsystem sys

00

= h�

00

; C

00

�

; S

00

�

i suh that j�

00

j < j�

0

j or jC

00

�

j < jC

0

�

j. This de�nition is

extensively used in Setion 5.

4 Synhronous systems

Synhronous systems impose bounds on message delay, proess speed, and lok drift.

These bounds, however, are not neessarily based on absolute time. As in the model of

Dolev et al. [4℄, steps of an algorithm are used to de�ne these bounds. In a step a proess

may: 1) reeive a message; 2) undergo a state transition; 3) send a message to a single

proess.
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Following this model, the timing assumptions for a synhronous system are given by

two parameters: � � 1 and � � 1. Furthermore, any exeution of an algorithm � in suh

a system satis�es the following properties:

Proess synhrony : for any �nite subsequene w of onseutive steps, if some proess

p

i

takes � + 1 onseutive steps in w, then any proess that is still alive at the end

of w has taken at least one step in w;

Message synhrony : for any pair of indies k; l, with l � k +�, if message m is sent

to p

i

during the k-th step, then m is reeived by the end of the l � th step.

From these properties, an exeution is further organized in rounds, whih are de�ned

in terms of steps of proesses. In a round, a proess p

i

exeutes n + k steps. The �rst

n steps are used by p

i

to send real messages, whereas in the last k rounds it sends null

messages. These k last steps are neessary to guarantee that all messages sent to p

i

in a

round r are reeived before p

i

proeeds to round r+1. The number k of steps is a funtion

of �, �, n, and r.

5 Lower bound on the Number of Rounds

To demonstrate the lower bound for the synhronous model with dependent failures, we

use the tehnique of layering proposed by Keidar and Rajsbaum [1℄. The general idea is

to show that the appliation of environment ations to some initial state still results in

states in whih alive proesses annot deide. An environment ation is exempli�ed by a

proess rashing.

A layering is de�ned as a set of environment ations that an be performed by the

system. The set of possible ations is oupled to the failure model assumed. In our ase,

we assume that a layering onsists of rashing at most one proess at a round. Before

failing in a round, a proess is allowed to send messages to a number of proess. We

assume that every proess p

i

sends at most one message to another proess p

j

at eah

round. We then use (i; [j℄) to denote that proess p

i

fails during this round, but the

messages p

i

sent to proesses fp

1

� � � p

j

g � � are reeived.

A layer are applied to a state. If x is some state, then we denote the appliation of

a layer l to x as x � l. We de�ne a state as a string of entries, one per proess. Eah

entry ontains the values that ompose the loal state of a proess at a given round. If
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some proess p

i

is rashed at round r, then the state of p

i

is represented by a speial

symbol denoting that it has rashed. For the Consensus problem, every proess begins

an exeution with a initial value. We assume without loss of generality that the set of

possible deision values is binary. Thus, for every binary string w of length j�j = n, there

is a initial state x

w

, and Init is the set of all possible initial states. Note that a layer

(i; [j℄) is only appliable to some state x if p

i

is not rashed in x.

We all an exeution the appliation of a sequene of layers to some initial state x.

More formally, if x is a string representing the initial state of the proesses and l

1

l

2

� � � l

k

is a sequene of k distint layers of L, then ((� � � ((x � l

1

) � l

2

) � � �) � l

k

) is an exeution.

Let sys= h�; C

�

; S

�

i be a system representation. For this system, let � � � be a

subset of proesses suh that there is some exeution in whih all proesses in � are faulty

and j�j = j�j �minfjsj : S 2 S

�

g. Observe that j�j is the maximum number of failures

among all valid exeutions. We hene de�ne the following layering for our model:

L = f(p; [q℄) j p 2 �; [q℄ = f1 � � � qg � �g

We use L(x) = fx � ljl 2 Lg to denote the appliation of layering L to state x and

L(X) = fL(x)jx 2 Xg to express the appliation of layering L to the set of states X. In

addition, we de�ne L

i

as the appliation of L for i onseutive times. This is expressed

reursively as follows:

L

0

(X) = X

L

k

(X) = L(L

k�1

(X))

We observe, however, that we an have no more than � = j�j layering appliations,

where � is the maximum number of proess failures. Thus, the system on�guration

restrits the number of onseutive appliations of L.

Another important de�nition is the one of similar states. Similarity of states aptures

the notion of states in whih a orret proess annot make a deision, beause there is not

suÆient information for it to do so. This notion is used extensively in the proofs presented

below. Similar states and similarity onneted sets of states are de�ned as follows:

De�nition 5.1 States x and y are similar, denoted x � y, if there is a proess p

j

that

is non-failed in these states, suh that (a) x and y are idential exept in the loal state

of p

j

, and (b) there exists p

i

6= p

j

that is non-failed in both x and y. A set of states is

7



similarity onneted if for every x; y 2 X there are states x = x

0

; x

1

; � � � ; x

m

= y so that

x

i

� x

i+1

, for all 0 � i � m.

We show now that Init is similarity onneted with the following lemma.

Lemma 5.2 Init is similarity onneted.

Proof:

Given a state z, we denote by z

j

the loal state of proess p

j

in the state z. Let y; y

0

be two states in Init. For every 0 � m � n, de�ne x

m

by setting x

m

j

= y

j

for all j > m

and x

m

j

= y

0

j

for all j � m. We get: x

0

= y and x

n

= y

0

. Note that x

m�1

and x

m

di�er

exatly in the loal state of proess p

m

. Sine all the proesses are non-failed in every

state in Init, these states are similar, that is, x

m�1

� x

m

.

2

Now, we need to show that any k � � onseutive appliations of layering L on a

similarity onneted set of states generates another similarity onneted set of states.

With the following lemma, we show that after � layering appliations on a similarity set

of states we still have a similarity onneted set of states.

Lemma 5.3 Let X be a similarity onneted set of states in whih no proess is failed and

there are at least two orret proesses. L

k

(X) is similarity onneted for all k � �.

Proof: We prove by indution. The base ase is k = 0. By de�nition, we have that

L

0

(X) = X. Consequently, L

0

(X) is similarity onneted. The indution hypothesis is

that L

k�1

(X) is similarity onneted and we want to show that L(L

k�1

(X)) is also simi-

larity onneted. To show this, we need to demonstrate that the two following properties

hold:

1. if x 2 L

k�1

(X) then L(x) is similarity onneted;

2. if y; y

0

2 L

k�1

(X), y � y

0

, then L(y) [ L(y

0

) is similarity onneted;

1: Suppose we apply layers (i; [0℄) and (j; [0℄) to x. Beause no proess is failed in none

of these layers, we have that x � (i; [0℄) and x � (j; [0℄) are idential. Now let us apply layers

(i; [l � 1℄) and (i; [l℄) to x. x � (i; [l � 1℄) and x � (i; [l℄) are either idential, in the ase that

proess i did not send a message to l, or di�er on the state of l, in whih ase they are

similar.

8



2: y and y

0

di�er in the state of one proess, let's say i. If we apply layer (i; [n℄)

to both states, we get y � (i; [n℄) and y

0

� (i; [n℄). Notie that in this round, no proess

reeived a message from i. Moreover, all proesses besides i have idential state in y and

y

0

and onsequently the messages they send have to be the same. Therefore, we have that

y � (i; [n℄) � y

0

� (i; [n℄). Along with property 1, this proves our laim that L(y) [ L(y

0

) is

similarity onneted.

2

We use the two previous lemmas to show a theorem that provides the lower bound on

the number of rounds. The theorem is as follows:

Theorem 5.4 Let sys = h�; C

�

; S

�

i be a synhronous system representation, sys

0

=

h�

0

; C

0

�

; S

0

�

i be the representation of a minimal subsystem of sys, A be a Consensus algo-

rithm, and � = j�

0

j �minfjsj : S 2 S

0

�

g. If j�j � � > 1, then there is an exeution of A

in whih f � � proesses are faulty and some orret proess takes at least f + 1 rounds

to deide.

Proof: By lemma 5.2, the set of initial states is similarity onneted. Aording to 5.3, the

f -th appliation of layering L on the set of initial states Init results in another similarity

onneted set of states. Thus, there is some exeution in whih after f rounds there is at

least one orret proess that has not yet deided. We onlude that at least f +1 rounds

are required for all orret proesses to deide.

2

From this theorem, we an extrat the following orollary.

Corollary 5.5 Let sys = h�; C

�

; S

�

i be the representation of a synhronous system with

rash failures, sys

0

= h�

0

; C

0

�

; S

0

�

i be the representation of a minimum subsystem of sys, A

be a Consensus algorithm. If j�

0

j < j�j, then there is an exeution of A with f+1 � j

min

j

in whih some orret proess takes at least f + 1 rounds to deide, where 

min

2 C

�

is a

minimum-sized ore.

Proof: In the rash model, a ore is suÆient to solve Consensus. Thus, a minimal

subsystem is omposed of a single smallest ore. Every survivor set in suh a subsystem

has size 1. From theorem 5.4, � = j

min

j � 1 for sys. Consequently, for any algorithm,

there is an exeution in whih some orret proess takes at least f + 1 rounds to deide,

f + 1 � j

min

j.

9



2

Now we show a theorem that determines the lower bound on the number of rounds in

the ase that there are exeutions with a single orret proess. To prove this theorem,

we use the notation Crashed

�

(r) for the set of proesses that have failed by round r in

exeution �.

Theorem 5.6 Let sys = h�; C

�

; S

�

i be a synhronous system representation, sys

0

=

h�

0

; C

0

�

; S

0

�

i be the representation of a minimal subsystem of sys, A be a Consensus algo-

rithm, and � = j�

0

j � 1. If j�j � � = 1, then there is an exeution of A in whih f � �

proesses are faulty and some orret proess takes at least min(�; f +1) rounds to deide.

Proof:

Suppose that 0 � f � j�j�2. By lemma 5.3, if there are at least two orret proesses,

then there is at least one exeution in whih some orret proess requires at least f + 1

rounds to deide.

Lemma 5.3 does not inlude the ase in whih f = j�j � 1. We hene show this ase

separately. We provide a ontradition argument to show that at least f = � = j�j � 1

rounds are neessary for a orret proess to deide in this ase. Suppose that there exists

a Consensus algorithm A

0

suh that in every exeution of A

0

with j�j� 1 faulty proesses,

no orret proess deides later than round f � 1 = j�j � 2. Let � be an exeution suh

that f = j�j � 1, p

i

is the only orret proess in �, and p

j

is a proess that rashes

at round j�j � 1. More formally, if x

�

is the initial state of �, then � is de�ned as

((� � � ((x

�

� l

1

) � l

2

) � � � l

j�j�2

) � l

j�j�1

), where: 1) l

i

; l

j

2 L, l

i

and l

j

denote distint faulty

proesses if i 6= j; 2) l

j�j�1

= (j; [k℄), k 2 f1; � � � ; ng. From the previous assumption, the

single orret proess p

i

has to deide no later than round r

0

� j�j � 2.

Let � be an exeution de�ned as (� � � ((x

�

� l

1

) � l

2

) � � � l

j�j�2

). Exeution � hene is

idential to � up to round j�j � 2 and p

j

is orret in �. Proess p

i

annot distinguish

exeution � from exeution �, and onsequently p

i

and p

j

have to deide upon the same

value in �. Note that we assumed an arbitrary exeution � in whih some proess p

j

fails

at round j�j � 1. For every suh exeution, there is an exeution � in whih p

j

is orret

and p

i

annot distinguish from �. Beause a orret proess annot distinguish � from �,

it has to deide at most at round j�j � 2. Thus, in every exeution of A

0

with f = j�j � 2,

a orret proess deides in at most f = j�j � 2. By lemmas 5.2 and 5.3, however, j�j � 2
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appliations of layering L on some initial state x still results in a similarity onneted set

of states. Thus, suh an algorithm A

0

annot exist. We onlude that for every Consensus

algorithm A there is some exeution with f = j�j � 1 in whih a orret proess does not

deide at round r < f .

For every Consensus algorithm A assuming a system suh that j�j � � = 1, there is

therefore some exeution of A in whih some orret proess does not deide earlier than

min(f + 1; j�j � 1).

2

6 Final Remarks

For the rash model, a single ore is suÆient to solve Consensus, as we observed in

Setion 3. Consider a system sys= h�; C

�

; S

�

i that ontains at least one ore. A minimal

subsystem sys

0

of sys is onsequently omposed of a single minimum-sized ore 

min

. That

is, �

0

= 

min

and C

�

= f

min

g. By the de�nition of ore, at least one proess is orret in

every exeution. The set S

0

�

is hene de�ned by ffp

i

g : p

i

2 

min

g. Beause every survivor

ontains exatly one proess, we have that � = 1.

Assuming arbitrary proess failures, a system on�guration has to satisfy Byzantine

Intersetion so that a solution for Consensus exists. For suh a system, the size of a

minimum-sized survivor set for a minimal subsystem is not in general one. The single

ase in whih a system has a survivor set with exatly one proess and still satis�es

Byzantine Intersetion is the one of a single reliable proess. Suh a system is represented

by hp

i

; ffp

i

gg; ffp

i

ggi. Every other ase has to be suh that a minimum-sized survivor set

has size at least two. Thus, in general, the lower bound on the number rounds in the worst

ase di�ers between the two failure models. We illustrate this onept with the following

system representation:

Example 6.1 :

� � = fp

a

; p

b

; p



; p

d

; p

e

g

� C

�

= ffp

a

; p

b

; p



g; fp

a

; p

d

g; fp

a

; p

e

g; fp

b

; p

d

g; fp

b

; p

e

g; fp



; p

d

g; fp



; p

e

g; fp

d

; p

e

gg

� S

�

= ffp

a

; p

b

; p



; p

d

g; fp

a

; p

b

; p



; p

e

g; fp

a

; p

d

; p

e

g; fp

b

; p

d

; p

e

g; fp



; p

d

; p

e

gg

For the rash model, a minimal subsystem h�

0

; C

0

�

; S

0

�

i is suh that j�j

0

= 2, jC

0

�

j = 1, and

a minimum-sized survivor set ontains a single proess. By Theorem 5.4, the lower bound
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on the number of rounds is 2 in the worst ase (� = 1 and j�j � � > 1). In the arbitrary

model, h�; C

�

; S

�

i is already a minimal subsystem: if any proess or ore is removed, then

the remaining subsystem does not satisfy Byzantine Partition. By Theorem 5.4, the lower

bound on the number of rounds is 3 in the worst ase (� = 2 and j�j � � > 1).

This is in ontrast with the traditional result for Consensus under the the assumption

of independent and identially distributed proess failures, where the lower bound on the

number of rounds in the worst ase is the same in both models.
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