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1 Introdu
tion

In this paper, we present the lower bound on the number of rounds to solve Consensus for

a syn
hronous system in whi
h pro
esses may fail dependently. Pro
esses are said to fail

dependently if the failure of one indi
ates an in
rease in the failure probability of another

pro
ess. Failure 
orrelations 
an be due to intrinsi
 properties of the system. For example,

two pro
esses may fail dependently be
ause they use the same software version 
ontaining

the same bugs.

To des
ribe these failure 
orrelations, we present two new abstra
tions: 
ores and

survivor sets. These abstra
tions are not 
oupled to any parti
ular failure model and they


onstitute a generi
 tool for the design of fault-tolerant algorithms.

The Consensus problem brie
y 
onsists in rea
hing agreement among all 
orre
t pro-


esses. Every pro
ess starts with an initial value, and eventually every 
orre
t pro
ess

de
ides upon the same value v. The lower bound on the number of rounds for Consensus

we show is generi
. It applies to any system model in whi
h Consensus is solvable. It just

requires the knowledge of the lower bound on pro
ess repli
ation, and a system des
ribed

in terms of 
ores and survivor sets. To show this result, we use the te
hnique to prove lower

bounds des
ribed by Keidar and Rajsbaum [1℄. This te
hnique is based on the notion of

layering.

In the next se
tions, we introdu
e our new abstra
tions and our assumptions for the

system. Finally, in the last se
tion we show our main result.

2 System Model

A system is 
omposed of a set � = fp

1

; p

2

; � � � ; p

n

g of pro
esses that 
ommuni
ate by

ex
hanging messages. In our model, pro
ess failures are allowed to be 
orrelated, meaning

that the failure of a pro
ess may in
rease the failure probability of another pro
ess.

Assuming that faulty pro
esses do not re
over, there has to be at least one 
orre
t

pro
ess in every exe
ution in order to a
hieve fault-toleran
e. We hen
e distinguish subsets

of pro
esses su
h that the 
han
e of all pro
esses in ea
h of these subsets failing is negligible.

Moreover, these subsets are minimal in that removing any pro
ess of su
h a subset 


makes the probability of all the pro
esses in 
 failing non-negligible. We 
all su
h subsets


ores. Cores 
an be extra
ted from the information about pro
ess failure 
orrelations.

For example, suppose a system where pro
esses are represented by attributes. In su
h
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a system, sharing attributes may indi
ate failure 
orrelation and 
ores 
an be 
omputed

a

ordingly. In this paper, however, we assume that the set of 
ores is provided as part of

the system spe
i�
ation. Models to des
ribe failure 
orrelations and methods to extra
t


ores from instan
es of these models are not addressed here.

By assumption, ea
h 
ore 
ontains at least one pro
ess that is 
orre
t in some exe
u-

tion. Thus, a subset of pro
esses, su
h that the interse
tion with every 
ore is non-empty


ontains all the pro
esses that are 
orre
t in some exe
ution. If su
h a subset is minimal,

then it is 
alled a survivor set. Noti
e that in every run of the system there is at least one

survivor set that 
ontains only 
orre
t pro
esses. Our de�nition of survivor sets is anal-

ogous to the one of a fail-prone system B [2℄: the set of survivor sets is the 
omplement

of B.

We now de�ne 
ores and survivor sets more formally. Let R be a rational number

expressing the target degree of reliability for �, and r(x), x � �, be a fun
tion that

evaluates to the reliability of the subset x. We de�ne 
ores and survivor sets as follows:

De�nition 2.1 Given a set of pro
esses � and target degree of reliability R 2 [0; 1℄ \Q,


 is said to be a 
ore if and only if:

1. 
 � �;

2. r(
) � R;

3. 8p 2 
, r(
� fpg) < R.

Given a set of pro
esses � and a set of 
ores C

�

, s is said to be a survivor set if and

only if:

1. s � �;

2. 8
 2 C, s \ 
 6= ;;

3. 8p

i

2 s, 9
 2 C

�

su
h that p

i

2 
 and (s� fp

i

g) \ 
 = ;.

We de�ne C

�

and S

�

as the set of 
ores and the set of survivor sets of � respe
tively.

The fun
tion r(:) and the target degree of reliability R are used at this point only to

formalize the idea of a 
ore. In reality, reliability does not need to be expressed as proba-

bilities. If this information is known by other means, as by the utilization of des
riptions

based on attributes for instan
e, then 
ores 
an be extra
ted without using probabilities.
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For example, suppose a six pro
ess system with � = fph

1

; ph

2

; pl

1

; pl

2

; pl

3

; pl

4

g. In this

system, ph

1

and ph

2

are very reliable and ea
h of these fail independently of every other

p 2 �. Pro
esses pl

i

, for 1 � i � 4, however, fail dependently among ea
h other. That

is, for every pair of pro
esses pl

i

, pl

j

, 1 � i; j � 4 and i 6= j, we have that if pl

i

is faulty

in some exe
ution of the system, then pl

j

is also faulty. Thus, a subset with maximum

reliability 
ontains pro
esses ph

1

, ph

2

, and exa
tly one pro
ess pl

i

. Suppose that the max-

imum reliability a
hievable for a subset of pro
esses satis�es the intuitive notion of target

degree of reliability for this system. We 
an therefore infer that for ea
h i, 1 � i � 4,

fph

1

; ph

2

; pl

i

g is a 
ore. The set C

�

of 
ores is hen
e as follows:

C

�

= ffph

1

; ph

2

; pl

1

g; fph

1

; ph

2

; pl

2

g; fph

1

; ph

2

; pl

3

g; fph

1

; ph

2

; pl

4

gg (1)

From C

�

, it 
an be easily veri�ed that the set S

�

of survivor sets in this example is as

follows:

S

�

= ffph

1

g; fph

2

g; fpl

1

; pl

2

; pl

3

; pl

4

gg (2)

In the remainder of this paper, we assume that these subsets are provided as part

of the system representation. In the following se
tions, a system is des
ribed by a triple

h�; C

�

; S

�

i, for � being a set of pro
esses, C

�

being the set of 
ores of �, and S

�

being the

set of survivor sets of �. From this point on, we 
all h�; C

�

; S

�

i a system representation.

3 Pro
ess Failures and Repli
ation Requirements

Expressing 
orrelated failures by using 
ores and survivor sets is not restri
ted to a par-

ti
ular type of pro
ess failure. Here, we assume two di�erent models for pro
ess failures:


rash model and byzantine model. In the former model, pro
esses fail by 
rashing. That

is, on
e a pro
ess fails, it stops sending and re
eiving messages. The se
ond model assumes

that pro
esses 
an fail arbitrarily. Examples of arbitrary failures are sele
tive forwarding

of messages and arbitrary 
hanges to the 
ontent of messages.

In the 
rash model, we proved in [3℄ that the following property for pro
ess repli
ation

is suÆ
ient to solve Consensus:

Property 3.1 C

�

6= ;

To solve Consensus in the arbitrary model, a stronger property is ne
essary for pro
ess

repli
ation. The following two properties are ne
essary and suÆ
ient to solve Consensus

in su
h a model, and we prove in [3℄ that they are equivalent:

4



Property 3.2 (Byzantine Partition) For every partition (A;B;C) of �, at least one

of A, B, or C 
ontains a 
ore.

Property 3.3 (Byzantine Interse
tion) 8s

i

; s

j

2 S

�

, 9


k

2 C

�

, su
h that 


k

� (s

i

\

s

j

).

Consider a system represented by h�; C

�

; S

�

i. Independently of the model assumed for

pro
ess failures, there may be more pro
esses than ne
essary. For example, in the 
rash

model, one 
ore is suÆ
ient. There may be, however, more 
ores available in the system.

In parti
ular, if the goal of the system is to solve another problem and Consensus is being

used as a primitive, then this extra amount of repli
ation perhaps is ne
essary. Thus, we

de�ne a subsystem as a subset of pro
esses of the original system that 
an be used to solve

Consensus. In the 
rash model, a subsystem is a subset of pro
esses in some 
ore, whereas

in the arbitrary model, a subsystem is su
h that it satis�es Byzantine Interse
tion.

More formally, let � be some property that de�nes the pro
ess repli
ation requirement

for a given failure model. For example, the byzantine interse
tion property is the lower

bound on pro
ess repli
ation in a failure model assuming arbitrary failures and reliable


hannels. A subsystem is then de�ned as follows:

De�nition 3.4 Let l be a repli
ation requirement and sys = h�; C

�

; S

�

i be a system

representation. A system sys

0

represented by h�

0

; C

0

�

; S

0

�

i is a subsystem of sys if and

only if �

0

� � and C

0

�

� C

�

and sys

0

satis�es �.

Under this de�nition, subsystem is minimal if the removal of a single pro
ess or 
ore

is su
h that the lower bound property on pro
ess repli
ation is no longer satis�ed. More

formally, a subsystem sys

0

= h�

0

; C

0

�

; S

0

�

i is minimal if and only if there is no other

subsystem sys

00

= h�

00

; C

00

�

; S

00

�

i su
h that j�

00

j < j�

0

j or jC

00

�

j < jC

0

�

j. This de�nition is

extensively used in Se
tion 5.

4 Syn
hronous systems

Syn
hronous systems impose bounds on message delay, pro
ess speed, and 
lo
k drift.

These bounds, however, are not ne
essarily based on absolute time. As in the model of

Dolev et al. [4℄, steps of an algorithm are used to de�ne these bounds. In a step a pro
ess

may: 1) re
eive a message; 2) undergo a state transition; 3) send a message to a single

pro
ess.
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Following this model, the timing assumptions for a syn
hronous system are given by

two parameters: � � 1 and � � 1. Furthermore, any exe
ution of an algorithm � in su
h

a system satis�es the following properties:

Pro
ess syn
hrony : for any �nite subsequen
e w of 
onse
utive steps, if some pro
ess

p

i

takes � + 1 
onse
utive steps in w, then any pro
ess that is still alive at the end

of w has taken at least one step in w;

Message syn
hrony : for any pair of indi
es k; l, with l � k +�, if message m is sent

to p

i

during the k-th step, then m is re
eived by the end of the l � th step.

From these properties, an exe
ution is further organized in rounds, whi
h are de�ned

in terms of steps of pro
esses. In a round, a pro
ess p

i

exe
utes n + k steps. The �rst

n steps are used by p

i

to send real messages, whereas in the last k rounds it sends null

messages. These k last steps are ne
essary to guarantee that all messages sent to p

i

in a

round r are re
eived before p

i

pro
eeds to round r+1. The number k of steps is a fun
tion

of �, �, n, and r.

5 Lower bound on the Number of Rounds

To demonstrate the lower bound for the syn
hronous model with dependent failures, we

use the te
hnique of layering proposed by Keidar and Rajsbaum [1℄. The general idea is

to show that the appli
ation of environment a
tions to some initial state still results in

states in whi
h alive pro
esses 
annot de
ide. An environment a
tion is exempli�ed by a

pro
ess 
rashing.

A layering is de�ned as a set of environment a
tions that 
an be performed by the

system. The set of possible a
tions is 
oupled to the failure model assumed. In our 
ase,

we assume that a layering 
onsists of 
rashing at most one pro
ess at a round. Before

failing in a round, a pro
ess is allowed to send messages to a number of pro
ess. We

assume that every pro
ess p

i

sends at most one message to another pro
ess p

j

at ea
h

round. We then use (i; [j℄) to denote that pro
ess p

i

fails during this round, but the

messages p

i

sent to pro
esses fp

1

� � � p

j

g � � are re
eived.

A layer are applied to a state. If x is some state, then we denote the appli
ation of

a layer l to x as x � l. We de�ne a state as a string of entries, one per pro
ess. Ea
h

entry 
ontains the values that 
ompose the lo
al state of a pro
ess at a given round. If

6



some pro
ess p

i

is 
rashed at round r, then the state of p

i

is represented by a spe
ial

symbol denoting that it has 
rashed. For the Consensus problem, every pro
ess begins

an exe
ution with a initial value. We assume without loss of generality that the set of

possible de
ision values is binary. Thus, for every binary string w of length j�j = n, there

is a initial state x

w

, and Init is the set of all possible initial states. Note that a layer

(i; [j℄) is only appli
able to some state x if p

i

is not 
rashed in x.

We 
all an exe
ution the appli
ation of a sequen
e of layers to some initial state x.

More formally, if x is a string representing the initial state of the pro
esses and l

1

l

2

� � � l

k

is a sequen
e of k distin
t layers of L, then ((� � � ((x � l

1

) � l

2

) � � �) � l

k

) is an exe
ution.

Let sys= h�; C

�

; S

�

i be a system representation. For this system, let � � � be a

subset of pro
esses su
h that there is some exe
ution in whi
h all pro
esses in � are faulty

and j�j = j�j �minfjsj : S 2 S

�

g. Observe that j�j is the maximum number of failures

among all valid exe
utions. We hen
e de�ne the following layering for our model:

L = f(p; [q℄) j p 2 �; [q℄ = f1 � � � qg � �g

We use L(x) = fx � ljl 2 Lg to denote the appli
ation of layering L to state x and

L(X) = fL(x)jx 2 Xg to express the appli
ation of layering L to the set of states X. In

addition, we de�ne L

i

as the appli
ation of L for i 
onse
utive times. This is expressed

re
ursively as follows:

L

0

(X) = X

L

k

(X) = L(L

k�1

(X))

We observe, however, that we 
an have no more than � = j�j layering appli
ations,

where � is the maximum number of pro
ess failures. Thus, the system 
on�guration

restri
ts the number of 
onse
utive appli
ations of L.

Another important de�nition is the one of similar states. Similarity of states 
aptures

the notion of states in whi
h a 
orre
t pro
ess 
annot make a de
ision, be
ause there is not

suÆ
ient information for it to do so. This notion is used extensively in the proofs presented

below. Similar states and similarity 
onne
ted sets of states are de�ned as follows:

De�nition 5.1 States x and y are similar, denoted x � y, if there is a pro
ess p

j

that

is non-failed in these states, su
h that (a) x and y are identi
al ex
ept in the lo
al state

of p

j

, and (b) there exists p

i

6= p

j

that is non-failed in both x and y. A set of states is

7



similarity 
onne
ted if for every x; y 2 X there are states x = x

0

; x

1

; � � � ; x

m

= y so that

x

i

� x

i+1

, for all 0 � i � m.

We show now that Init is similarity 
onne
ted with the following lemma.

Lemma 5.2 Init is similarity 
onne
ted.

Proof:

Given a state z, we denote by z

j

the lo
al state of pro
ess p

j

in the state z. Let y; y

0

be two states in Init. For every 0 � m � n, de�ne x

m

by setting x

m

j

= y

j

for all j > m

and x

m

j

= y

0

j

for all j � m. We get: x

0

= y and x

n

= y

0

. Note that x

m�1

and x

m

di�er

exa
tly in the lo
al state of pro
ess p

m

. Sin
e all the pro
esses are non-failed in every

state in Init, these states are similar, that is, x

m�1

� x

m

.

2

Now, we need to show that any k � � 
onse
utive appli
ations of layering L on a

similarity 
onne
ted set of states generates another similarity 
onne
ted set of states.

With the following lemma, we show that after � layering appli
ations on a similarity set

of states we still have a similarity 
onne
ted set of states.

Lemma 5.3 Let X be a similarity 
onne
ted set of states in whi
h no pro
ess is failed and

there are at least two 
orre
t pro
esses. L

k

(X) is similarity 
onne
ted for all k � �.

Proof: We prove by indu
tion. The base 
ase is k = 0. By de�nition, we have that

L

0

(X) = X. Consequently, L

0

(X) is similarity 
onne
ted. The indu
tion hypothesis is

that L

k�1

(X) is similarity 
onne
ted and we want to show that L(L

k�1

(X)) is also simi-

larity 
onne
ted. To show this, we need to demonstrate that the two following properties

hold:

1. if x 2 L

k�1

(X) then L(x) is similarity 
onne
ted;

2. if y; y

0

2 L

k�1

(X), y � y

0

, then L(y) [ L(y

0

) is similarity 
onne
ted;

1: Suppose we apply layers (i; [0℄) and (j; [0℄) to x. Be
ause no pro
ess is failed in none

of these layers, we have that x � (i; [0℄) and x � (j; [0℄) are identi
al. Now let us apply layers

(i; [l � 1℄) and (i; [l℄) to x. x � (i; [l � 1℄) and x � (i; [l℄) are either identi
al, in the 
ase that

pro
ess i did not send a message to l, or di�er on the state of l, in whi
h 
ase they are

similar.

8



2: y and y

0

di�er in the state of one pro
ess, let's say i. If we apply layer (i; [n℄)

to both states, we get y � (i; [n℄) and y

0

� (i; [n℄). Noti
e that in this round, no pro
ess

re
eived a message from i. Moreover, all pro
esses besides i have identi
al state in y and

y

0

and 
onsequently the messages they send have to be the same. Therefore, we have that

y � (i; [n℄) � y

0

� (i; [n℄). Along with property 1, this proves our 
laim that L(y) [ L(y

0

) is

similarity 
onne
ted.

2

We use the two previous lemmas to show a theorem that provides the lower bound on

the number of rounds. The theorem is as follows:

Theorem 5.4 Let sys = h�; C

�

; S

�

i be a syn
hronous system representation, sys

0

=

h�

0

; C

0

�

; S

0

�

i be the representation of a minimal subsystem of sys, A be a Consensus algo-

rithm, and � = j�

0

j �minfjsj : S 2 S

0

�

g. If j�j � � > 1, then there is an exe
ution of A

in whi
h f � � pro
esses are faulty and some 
orre
t pro
ess takes at least f + 1 rounds

to de
ide.

Proof: By lemma 5.2, the set of initial states is similarity 
onne
ted. A

ording to 5.3, the

f -th appli
ation of layering L on the set of initial states Init results in another similarity


onne
ted set of states. Thus, there is some exe
ution in whi
h after f rounds there is at

least one 
orre
t pro
ess that has not yet de
ided. We 
on
lude that at least f +1 rounds

are required for all 
orre
t pro
esses to de
ide.

2

From this theorem, we 
an extra
t the following 
orollary.

Corollary 5.5 Let sys = h�; C

�

; S

�

i be the representation of a syn
hronous system with


rash failures, sys

0

= h�

0

; C

0

�

; S

0

�

i be the representation of a minimum subsystem of sys, A

be a Consensus algorithm. If j�

0

j < j�j, then there is an exe
ution of A with f+1 � j


min

j

in whi
h some 
orre
t pro
ess takes at least f + 1 rounds to de
ide, where 


min

2 C

�

is a

minimum-sized 
ore.

Proof: In the 
rash model, a 
ore is suÆ
ient to solve Consensus. Thus, a minimal

subsystem is 
omposed of a single smallest 
ore. Every survivor set in su
h a subsystem

has size 1. From theorem 5.4, � = j


min

j � 1 for sys. Consequently, for any algorithm,

there is an exe
ution in whi
h some 
orre
t pro
ess takes at least f + 1 rounds to de
ide,

f + 1 � j


min

j.

9



2

Now we show a theorem that determines the lower bound on the number of rounds in

the 
ase that there are exe
utions with a single 
orre
t pro
ess. To prove this theorem,

we use the notation Crashed

�

(r) for the set of pro
esses that have failed by round r in

exe
ution �.

Theorem 5.6 Let sys = h�; C

�

; S

�

i be a syn
hronous system representation, sys

0

=

h�

0

; C

0

�

; S

0

�

i be the representation of a minimal subsystem of sys, A be a Consensus algo-

rithm, and � = j�

0

j � 1. If j�j � � = 1, then there is an exe
ution of A in whi
h f � �

pro
esses are faulty and some 
orre
t pro
ess takes at least min(�; f +1) rounds to de
ide.

Proof:

Suppose that 0 � f � j�j�2. By lemma 5.3, if there are at least two 
orre
t pro
esses,

then there is at least one exe
ution in whi
h some 
orre
t pro
ess requires at least f + 1

rounds to de
ide.

Lemma 5.3 does not in
lude the 
ase in whi
h f = j�j � 1. We hen
e show this 
ase

separately. We provide a 
ontradi
tion argument to show that at least f = � = j�j � 1

rounds are ne
essary for a 
orre
t pro
ess to de
ide in this 
ase. Suppose that there exists

a Consensus algorithm A

0

su
h that in every exe
ution of A

0

with j�j� 1 faulty pro
esses,

no 
orre
t pro
ess de
ides later than round f � 1 = j�j � 2. Let � be an exe
ution su
h

that f = j�j � 1, p

i

is the only 
orre
t pro
ess in �, and p

j

is a pro
ess that 
rashes

at round j�j � 1. More formally, if x

�

is the initial state of �, then � is de�ned as

((� � � ((x

�

� l

1

) � l

2

) � � � l

j�j�2

) � l

j�j�1

), where: 1) l

i

; l

j

2 L, l

i

and l

j

denote distin
t faulty

pro
esses if i 6= j; 2) l

j�j�1

= (j; [k℄), k 2 f1; � � � ; ng. From the previous assumption, the

single 
orre
t pro
ess p

i

has to de
ide no later than round r

0

� j�j � 2.

Let � be an exe
ution de�ned as (� � � ((x

�

� l

1

) � l

2

) � � � l

j�j�2

). Exe
ution � hen
e is

identi
al to � up to round j�j � 2 and p

j

is 
orre
t in �. Pro
ess p

i


annot distinguish

exe
ution � from exe
ution �, and 
onsequently p

i

and p

j

have to de
ide upon the same

value in �. Note that we assumed an arbitrary exe
ution � in whi
h some pro
ess p

j

fails

at round j�j � 1. For every su
h exe
ution, there is an exe
ution � in whi
h p

j

is 
orre
t

and p

i


annot distinguish from �. Be
ause a 
orre
t pro
ess 
annot distinguish � from �,

it has to de
ide at most at round j�j � 2. Thus, in every exe
ution of A

0

with f = j�j � 2,

a 
orre
t pro
ess de
ides in at most f = j�j � 2. By lemmas 5.2 and 5.3, however, j�j � 2

10



appli
ations of layering L on some initial state x still results in a similarity 
onne
ted set

of states. Thus, su
h an algorithm A

0


annot exist. We 
on
lude that for every Consensus

algorithm A there is some exe
ution with f = j�j � 1 in whi
h a 
orre
t pro
ess does not

de
ide at round r < f .

For every Consensus algorithm A assuming a system su
h that j�j � � = 1, there is

therefore some exe
ution of A in whi
h some 
orre
t pro
ess does not de
ide earlier than

min(f + 1; j�j � 1).

2

6 Final Remarks

For the 
rash model, a single 
ore is suÆ
ient to solve Consensus, as we observed in

Se
tion 3. Consider a system sys= h�; C

�

; S

�

i that 
ontains at least one 
ore. A minimal

subsystem sys

0

of sys is 
onsequently 
omposed of a single minimum-sized 
ore 


min

. That

is, �

0

= 


min

and C

�

= f


min

g. By the de�nition of 
ore, at least one pro
ess is 
orre
t in

every exe
ution. The set S

0

�

is hen
e de�ned by ffp

i

g : p

i

2 


min

g. Be
ause every survivor


ontains exa
tly one pro
ess, we have that � = 1.

Assuming arbitrary pro
ess failures, a system 
on�guration has to satisfy Byzantine

Interse
tion so that a solution for Consensus exists. For su
h a system, the size of a

minimum-sized survivor set for a minimal subsystem is not in general one. The single


ase in whi
h a system has a survivor set with exa
tly one pro
ess and still satis�es

Byzantine Interse
tion is the one of a single reliable pro
ess. Su
h a system is represented

by hp

i

; ffp

i

gg; ffp

i

ggi. Every other 
ase has to be su
h that a minimum-sized survivor set

has size at least two. Thus, in general, the lower bound on the number rounds in the worst


ase di�ers between the two failure models. We illustrate this 
on
ept with the following

system representation:

Example 6.1 :

� � = fp

a

; p

b

; p




; p

d

; p

e

g

� C

�

= ffp

a

; p

b

; p




g; fp

a

; p

d

g; fp

a

; p

e

g; fp

b

; p

d

g; fp

b

; p

e

g; fp




; p

d

g; fp




; p

e

g; fp

d

; p

e

gg

� S

�

= ffp

a

; p

b

; p




; p

d

g; fp

a

; p

b

; p




; p

e

g; fp

a

; p

d

; p

e

g; fp

b

; p

d

; p

e

g; fp




; p

d

; p

e

gg

For the 
rash model, a minimal subsystem h�

0

; C

0

�

; S

0

�

i is su
h that j�j

0

= 2, jC

0

�

j = 1, and

a minimum-sized survivor set 
ontains a single pro
ess. By Theorem 5.4, the lower bound
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on the number of rounds is 2 in the worst 
ase (� = 1 and j�j � � > 1). In the arbitrary

model, h�; C

�

; S

�

i is already a minimal subsystem: if any pro
ess or 
ore is removed, then

the remaining subsystem does not satisfy Byzantine Partition. By Theorem 5.4, the lower

bound on the number of rounds is 3 in the worst 
ase (� = 2 and j�j � � > 1).

This is in 
ontrast with the traditional result for Consensus under the the assumption

of independent and identi
ally distributed pro
ess failures, where the lower bound on the

number of rounds in the worst 
ase is the same in both models.
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