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1 Introduction

In this paper, we present the lower bound on the number of rounds to solve Consensus for
a synchronous system in which processes may fail dependently. Processes are said to fail
dependently if the failure of one indicates an increase in the failure probability of another
process. Failure correlations can be due to intrinsic properties of the system. For example,
two processes may fail dependently because they use the same software version containing
the same bugs.

To describe these failure correlations, we present two new abstractions: cores and
survivor sets. These abstractions are not coupled to any particular failure model and they
constitute a generic tool for the design of fault-tolerant algorithms.

The Consensus problem briefly consists in reaching agreement among all correct pro-
cesses. KEvery process starts with an initial value, and eventually every correct process
decides upon the same value v. The lower bound on the number of rounds for Consensus
we show is generic. It applies to any system model in which Consensus is solvable. It just
requires the knowledge of the lower bound on process replication, and a system described
in terms of cores and survivor sets. To show this result, we use the technique to prove lower
bounds described by Keidar and Rajsbaum [1]. This technique is based on the notion of
layering.

In the next sections, we introduce our new abstractions and our assumptions for the

system. Finally, in the last section we show our main result.

2 System Model

A system is composed of a set II = {p1,p2,---,pp} of processes that communicate by
exchanging messages. In our model, process failures are allowed to be correlated, meaning
that the failure of a process may increase the failure probability of another process.
Assuming that faulty processes do not recover, there has to be at least one correct
process in every execution in order to achieve fault-tolerance. We hence distinguish subsets
of processes such that the chance of all processes in each of these subsets failing is negligible.
Moreover, these subsets are minimal in that removing any process of such a subset c
makes the probability of all the processes in ¢ failing non-negligible. We call such subsets
cores. Cores can be extracted from the information about process failure correlations.

For example, suppose a system where processes are represented by attributes. In such



a system, sharing attributes may indicate failure correlation and cores can be computed
accordingly. In this paper, however, we assume that the set of cores is provided as part of
the system specification. Models to describe failure correlations and methods to extract
cores from instances of these models are not addressed here.

By assumption, each core contains at least one process that is correct in some execu-
tion. Thus, a subset of processes, such that the intersection with every core is non-empty
contains all the processes that are correct in some execution. If such a subset is minimal,
then it is called a survivor set. Notice that in every run of the system there is at least one
survivor set that contains only correct processes. Our definition of survivor sets is anal-
ogous to the one of a fail-prone system B [2]: the set of survivor sets is the complement
of B.

We now define cores and survivor sets more formally. Let R be a rational number
expressing the target degree of reliability for II, and r(z), z C II, be a function that

evaluates to the reliability of the subset . We define cores and survivor sets as follows:

Definition 2.1 Given a set of processes II and target degree of reliability R € [0,1] N Q,

c is said to be a core if and only if:
1. ¢ C1II;
2. r(c) > R;
3. Vpec r(c—{p}) <R.

Given a set of processes II and a set of cores Cf, s is said to be a survivor set if and

only if:
1. s C I,
2. Vee C,sNc#0;
3. Vp; € s, dc € Oy such that p; € c and (s — {p;}) Ne = 0.

We define C; and Spp as the set of cores and the set of survivor sets of II respectively.

The function 7(.) and the target degree of reliability R are used at this point only to
formalize the idea of a core. In reality, reliability does not need to be expressed as proba-
bilities. If this information is known by other means, as by the utilization of descriptions

based on attributes for instance, then cores can be extracted without using probabilities.



For example, suppose a six process system with II = {ph,, phy, ply, ply, pls, ply}. In this
system, ph; and ph, are very reliable and each of these fail independently of every other
p € II. Processes pl;, for 1 < i < 4, however, fail dependently among each other. That
is, for every pair of processes pl;, pl;, 1 <i,5 <4 and i # j, we have that if p/; is faulty
in some execution of the system, then pl; is also faulty. Thus, a subset with maximum
reliability contains processes ph;, phy, and exactly one process pl;. Suppose that the max-
imum reliability achievable for a subset of processes satisfies the intuitive notion of target
degree of reliability for this system. We can therefore infer that for each i, 1 < ¢ < 4,

{phy, phy, pl;} is a core. The set Cpy of cores is hence as follows:

CH = {{phlaph27pl1}’ {phluph27pl2}’ {phluph27pl3}’ {ph17ph27pl4}} (1)

From (', it can be easily verified that the set Sy of survivor sets in this example is as

follows:

St = {{ph },{pho},{pl, ply, pls, pls }} (2)

In the remainder of this paper, we assume that these subsets are provided as part
of the system representation. In the following sections, a system is described by a triple
(IT, Cyy, Su), for II being a set of processes, Cyy being the set of cores of II, and Sy being the

set of survivor sets of II. From this point on, we call (II, Crr, St) a system representation.

3 Process Failures and Replication Requirements

Expressing correlated failures by using cores and survivor sets is not restricted to a par-
ticular type of process failure. Here, we assume two different models for process failures:
crash model and byzantine model. In the former model, processes fail by crashing. That
is, once a process fails, it stops sending and receiving messages. The second model assumes
that processes can fail arbitrarily. Examples of arbitrary failures are selective forwarding
of messages and arbitrary changes to the content of messages.

In the crash model, we proved in [3] that the following property for process replication

is sufficient to solve Consensus:
Property 3.1 Cy # 0

To solve Consensus in the arbitrary model, a stronger property is necessary for process
replication. The following two properties are necessary and sufficient to solve Consensus

in such a model, and we prove in [3] that they are equivalent:
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Property 3.2 (Byzantine Partition) For every partition (A, B,C) of 11, at least one

of A, B, or C contains a core.

Property 3.3 (Byzantine Intersection) Vs;,s; € Si, 3¢ € Cu, such that ¢, C (s; N
55).

Consider a system represented by (II, Ct, Str). Independently of the model assumed for
process failures, there may be more processes than necessary. For example, in the crash
model, one core is sufficient. There may be, however, more cores available in the system.
In particular, if the goal of the system is to solve another problem and Consensus is being
used as a primitive, then this extra amount of replication perhaps is necessary. Thus, we
define a subsystem as a subset of processes of the original system that can be used to solve
Consensus. In the crash model, a subsystem is a subset of processes in some core, whereas
in the arbitrary model, a subsystem is such that it satisfies Byzantine Intersection.

More formally, let A be some property that defines the process replication requirement
for a given failure model. For example, the byzantine intersection property is the lower
bound on process replication in a failure model assuming arbitrary failures and reliable

channels. A subsystem is then defined as follows:

Definition 3.4 Let [ be a replication requirement and sys = (II,Cp, Sip) be a system
representation. A system sys’ represented by (II', C[;, Sf;) is a subsystem of sys if and

only if I" C IT and Cf; C Crr and sys’ satisfies A.

Under this definition, subsystem is minimal if the removal of a single process or core
is such that the lower bound property on process replication is no longer satisfied. More
formally, a subsystem sys’ = (II',C[}, Sf;) is minimal if and only if there is no other
subsystem sys” = (II", C]}, Sf;) such that |II"| < |II'| or |C]| < |C{;|. This definition is

extensively used in Section 5.

4 Synchronous systems

Synchronous systems impose bounds on message delay, process speed, and clock drift.
These bounds, however, are not necessarily based on absolute time. As in the model of
Dolev et al. [4], steps of an algorithm are used to define these bounds. In a step a process
may: 1) receive a message; 2) undergo a state transition; 3) send a message to a single

process.



Following this model, the timing assumptions for a synchronous system are given by
two parameters: ® > 1 and A > 1. Furthermore, any execution of an algorithm « in such

a system satisfies the following properties:

Process synchrony : for any finite subsequence w of consecutive steps, if some process
p; takes ® + 1 consecutive steps in w, then any process that is still alive at the end

of w has taken at least one step in w;

Message synchrony : for any pair of indices k, [, with [ > k + A, if message m is sent

to p; during the k-th step, then m is received by the end of the [ — th step.

From these properties, an execution is further organized in rounds, which are defined
in terms of steps of processes. In a round, a process p; executes n + k steps. The first
n steps are used by p; to send real messages, whereas in the last k& rounds it sends null
messages. These k last steps are necessary to guarantee that all messages sent to p; in a
round r are received before p; proceeds to round r+ 1. The number k of steps is a function

of A, ®, n, and r.

5 Lower bound on the Number of Rounds

To demonstrate the lower bound for the synchronous model with dependent failures, we
use the technique of layering proposed by Keidar and Rajsbaum [1]. The general idea is
to show that the application of environment actions to some initial state still results in
states in which alive processes cannot decide. An environment action is exemplified by a
process crashing.

A layering is defined as a set of environment actions that can be performed by the
system. The set of possible actions is coupled to the failure model assumed. In our case,
we assume that a layering consists of crashing at most one process at a round. Before
failing in a round, a process is allowed to send messages to a number of process. We
assume that every process p; sends at most one message to another process p; at each
round. We then use (7,[j]) to denote that process p; fails during this round, but the
messages p; sent to processes {p; ---p;} C II are received.

A layer are applied to a state. If x is some state, then we denote the application of
a layer [ to « as - [. We define a state as a string of entries, one per process. Each

entry contains the values that compose the local state of a process at a given round. If



some process p; is crashed at round r, then the state of p; is represented by a special
symbol denoting that it has crashed. For the Consensus problem, every process begins
an execution with a initial value. We assume without loss of generality that the set of
possible decision values is binary. Thus, for every binary string w of length |II| = n, there
is a initial state x,, and Init is the set of all possible initial states. Note that a layer
(4,[4]) is only applicable to some state z if p; is not crashed in z.

We call an execution the application of a sequence of layers to some initial state x.
More formally, if « is a string representing the initial state of the processes and [yl --- i
is a sequence of k distinct layers of L, then ((--- ((z -11) - l2)--+) - [x) is an execution.

Let sys= (II, Cyy, Spp) be a system representation. For this system, let I' C II be a
subset of processes such that there is some execution in which all processes in I' are faulty
and |I'| = |II] — min{|s| : S € Si}. Observe that |I'| is the maximum number of failures

among all valid executions. We hence define the following layering for our model:

L={(p.la) |p €T, [g ={1---g} T}

We use L(z) = {z -I|l € L} to denote the application of layering L to state z and
L(X) = {L(z)|x € X} to express the application of layering L to the set of states X. In
addition, we define L’ as the application of L for ¢ consecutive times. This is expressed

recursively as follows:

LX) = X
LM(X) = LIL*'(X))

We observe, however, that we can have no more than x = |I'| layering applications,
where x is the maximum number of process failures. Thus, the system configuration
restricts the number of consecutive applications of L.

Another important definition is the one of similar states. Similarity of states captures
the notion of states in which a correct process cannot make a decision, because there is not
sufficient information for it to do so. This notion is used extensively in the proofs presented

below. Similar states and similarity connected sets of states are defined as follows:

Definition 5.1 States x and y are similar, denoted z ~ y, if there is a process p; that
is non-failed in these states, such that (a) z and y are identical except in the local state

of pj, and (b) there exists p; # p; that is non-failed in both = and y. A set of states is



similarity connected if for every z,y € X there are states x = zg,z1, -+, 2z, = y so that

i ~ Tiy1, for all 0 <7 < m.
We show now that Init is similarity connected with the following lemma.
Lemma 5.2 Init is similarity connected.

Proof:

Given a state z, we denote by z; the local state of process p; in the state z. Let y,y’
be two states in Init. For every 0 < m < n, define 2™ by setting T =y forall j > m
and z7" = y}- for all 7 < m. We get: #° =y and 2" = 4/. Note that ! and 2™ differ
exactly in the local state of process p,,. Since all the processes are non-failed in every
state in Init, these states are similar, that is, ™ 1 ~ z™.
O

Now, we need to show that any & < k consecutive applications of layering L on a
similarity connected set of states generates another similarity connected set of states.

With the following lemma, we show that after x layering applications on a similarity set

of states we still have a similarity connected set of states.

Lemma 5.3 Let X be a similarity connected set of states in which no process is failed and

there are at least two correct processes. L¥(X) is similarity connected for all k < k.

Proof: We prove by induction. The base case is k¥ = 0. By definition, we have that
L%(X) = X. Consequently, L°(X) is similarity connected. The induction hypothesis is
that L¥~'(X) is similarity connected and we want to show that L(L¥~'(X)) is also simi-
larity connected. To show this, we need to demonstrate that the two following properties

hold:

1. if z € L*71(X) then L(x) is similarity connected;

2. ify,y € LF"1(X), y ~ 9/, then L(y) UL(y') is similarity connected;

1: Suppose we apply layers (i, [0]) and (4, [0]) to z. Because no process is failed in none
of these layers, we have that z - (7,[0]) and z - (5, [0]) are identical. Now let us apply layers
(¢,[l = 1]) and (4, [l]) to z. = - (i,[l — 1]) and = - (3, [/]) are either identical, in the case that
process 4 did not send a message to [, or differ on the state of [, in which case they are

similar.



2: y and ¢ differ in the state of one process, let’s say i. If we apply layer (i,[n])
to both states, we get y - (i,[n]) and ¢ - (i,[n]). Notice that in this round, no process
received a message from . Moreover, all processes besides ¢ have identical state in y and
y' and consequently the messages they send have to be the same. Therefore, we have that
y - (i,[n]) ~y - (i,[n]). Along with property 1, this proves our claim that L(y) UL(y') is
similarity connected.

O
We use the two previous lemmas to show a theorem that provides the lower bound on

the number of rounds. The theorem is as follows:

Theorem 5.4 Let sys = (II,Cr, Sir) be a synchronous system representation, sys =
(I', Cfy, Spp) be the representation of a minimal subsystem of sys, A be a Consensus algo-
rithm, and k = |II'| — min{|s| : S € S} If |II| — k > 1, then there is an ezecution of A
in which f < Kk processes are faulty and some correct process takes at least f + 1 rounds

to decide.

Proof: By lemma 5.2, the set of initial states is similarity connected. According to 5.3, the
f-th application of layering L on the set of initial states Init results in another similarity
connected set of states. Thus, there is some execution in which after f rounds there is at
least one correct process that has not yet decided. We conclude that at least f + 1 rounds
are required for all correct processes to decide.

O

From this theorem, we can extract the following corollary.

Corollary 5.5 Let sys = (II, Cry, St1) be the representation of a synchronous system with
crash failures, sys = (I', C{;, Syp) be the representation of a minimum subsystem of sys, A
be a Consensus algorithm. If |IT'| < ||, then there is an execution of A with f+1 < |cmin|
in which some correct process takes at least f + 1 rounds to decide, where cpiy € Crp 4s a

minimume-sized core.

Proof: In the crash model, a core is sufficient to solve Consensus. Thus, a minimal
subsystem is composed of a single smallest core. Every survivor set in such a subsystem
has size 1. From theorem 5.4, Kk = |cpin| — 1 for sys. Consequently, for any algorithm,
there is an execution in which some correct process takes at least f + 1 rounds to decide,



Now we show a theorem that determines the lower bound on the number of rounds in
the case that there are executions with a single correct process. To prove this theorem,
we use the notation Crashed,(r) for the set of processes that have failed by round r in

execution .

Theorem 5.6 Let sys = (II,Cr, Si) be a synchronous system representation, sys =
(I', Cf;, Sy;) be the representation of a minimal subsystem of sys, A be a Consensus algo-
rithm, and k = |II'| — 1. If |II| — k = 1, then there is an execution of A in which f < k

processes are faulty and some correct process takes at least min(k, f + 1) rounds to decide.

Proof:

Suppose that 0 < f < |II| —2. By lemma 5.3, if there are at least two correct processes,
then there is at least one execution in which some correct process requires at least f + 1
rounds to decide.

Lemma 5.3 does not include the case in which f = |II| — 1. We hence show this case
separately. We provide a contradiction argument to show that at least f = x = |II] — 1
rounds are necessary for a correct process to decide in this case. Suppose that there exists
a Consensus algorithm A" such that in every execution of A" with |II| — 1 faulty processes,
no correct process decides later than round f — 1 = |II] — 2. Let « be an execution such
that f = |II| — 1, p; is the only correct process in ¢, and p; is a process that crashes
at round |II] — 1. More formally, if z, is the initial state of «, then « is defined as
(¢ ((za - l1) - l2) - ljgj=2) * Yij—1), where: 1) I;,1; € L, I; and [; denote distinct faulty
processes if i # j; 2) ly—1 = (4, [k]), & € {1,---,n}. From the previous assumption, the
single correct process p; has to decide no later than round r’ < |II| — 2.

Let 8 be an execution defined as (-+- ((za - l1) - l2) -+ - ljy—2). Execution 8 hence is
identical to v up to round |II| — 2 and p; is correct in 3. Process p; cannot distinguish
execution o from execution 3, and consequently p; and p; have to decide upon the same
value in 3. Note that we assumed an arbitrary execution « in which some process p; fails
at round |II] — 1. For every such execution, there is an execution  in which p; is correct
and p; cannot distinguish from «. Because a correct process cannot distinguish « from g,
it has to decide at most at round |II| — 2. Thus, in every execution of A" with f = |II| — 2,

a correct process decides in at most f = |II| —2. By lemmas 5.2 and 5.3, however, |II| — 2
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applications of layering L on some initial state x still results in a similarity connected set
of states. Thus, such an algorithm A’ cannot exist. We conclude that for every Consensus
algorithm A there is some execution with f = |II| — 1 in which a correct process does not
decide at round r < f.

For every Consensus algorithm 4 assuming a system such that |II| — x = 1, there is
therefore some execution of A in which some correct process does not decide earlier than
min(f + 1, |II] — 1).

a

6 Final Remarks

For the crash model, a single core is sufficient to solve Consensus, as we observed in
Section 3. Cousider a system sys= (II, C, Str) that contains at least one core. A minimal
subsystem sys’ of sys is consequently composed of a single minimum-sized core ¢p;,. That
is, I' = ¢pin and Crp = {cmin}- By the definition of core, at least one process is correct in
every execution. The set S}, is hence defined by {{p;} : pi € ¢min}. Because every survivor
contains exactly one process, we have that x = 1.

Assuming arbitrary process failures, a system configuration has to satisfy Byzantine
Intersection so that a solution for Consensus exists. For such a system, the size of a
minimum-sized survivor set for a minimal subsystem is not in general one. The single
case in which a system has a survivor set with exactly one process and still satisfies
Byzantine Intersection is the one of a single reliable process. Such a system is represented
by (pi, {{pi}}, {{pi}}). Every other case has to be such that a minimum-sized survivor set
has size at least two. Thus, in general, the lower bound on the number rounds in the worst
case differs between the two failure models. We illustrate this concept with the following

system representation:

Example 6.1 :

o [I= {pa7pbap67pd7p8}
L4 CH = {{paapbapc}a {paapd}a {pa,pe}a {pbapd}a {pbape}a {pcapd}a {pcape}a {pdape}}
o St = {{Pa:Pb, Pes Pats {Pas Poy Pes Pe s {Pas Pds Pets {Pbs Pds Pets {Pes Pas et}

For the crash model, a minimal subsystem (I', Cj;, Sf;) is such that |II| = 2, |Cf;| = 1, and

a minimum-sized survivor set contains a single process. By Theorem 5.4, the lower bound

11



on the number of rounds is 2 in the worst case (k = 1 and |II| — x > 1). In the arbitrary
model, (II, C, Stp) is already a minimal subsystem: if any process or core is removed, then
the remaining subsystem does not satisfy Byzantine Partition. By Theorem 5.4, the lower
bound on the number of rounds is 3 in the worst case (x =2 and |II| — x > 1).

This is in contrast with the traditional result for Consensus under the the assumption
of independent and identically distributed process failures, where the lower bound on the

number of rounds in the worst case is the same in both models.
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