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ABSTRACT OF THE THESIS

Statistical Methods to

Predict Earthquake Damage to Buildings

by

Henan Mao

Master of Science in Statistics

University of California, Los Angeles, 2021

Professor Yingnian Wu, Chair

Earthquake is the most destructive hazard in building design; base-isolations, as one ef-

fective method mitigating the earthquake hazard, are widely used in the building design.

However, simulating the building response under earthquake using the physical-based model

is time-consuming and undesirable. Therefore, several statistical methods (linear regression,

weighted least square, the decision tree, random forest, and neural network) are applied to

predict building responses based on the characteristics of applied earthquakes. After princi-

pal component analysis, the Statistical models’ prediction matches the simulation data very

well, indicating that it is promising to utilize statistical methods in predicting the critical

building response under earthquake. These predictions provide insightful guidance to the

designer.
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CHAPTER 1

Introduction to Base Isolation System and Study

Object

Earthquakes, as known, are the most important factor causing building damages. There are

many techniques developed to mitigate the earthquake hazard, such as mechanical damping,

soft stories, and base isolation. Among all these techniques, base isolation is the most

effective and widely adopted method [28]. It can reduce seismic demand in building design

and reduce injuries to the occupants caused by nonstructural components. There are many

contemporary buildings adopting base isolation systems. For example, Apple park, the

headquarters of Apple (Figure 1.1) utilizes 700 base isolators in construction. Another

example is the Sabiha Gokcen International Airport (Figure 1.2) finish in 2006, which uses

296 base isolators.

The isolators are set between the superstructure and the ground. The base isolation

system can elongate the natural period of the superstructure to avoid resonance caused by

the earthquake excitation. Four major types of isolators are currently commonly utilized,

which are Elastomeric Rubber Bearings, Roller and ball bearings, Steel spring bearings,

and Triple Friction pendulum bearings, shown in Figure 1.3. Among them, the Triple Fric-

tion pendulum bearings use state-of-the-art technology and provide the highest performance

[28]. The base isolation device is originally developed from the idea of “flexible first story”

[30, 25, 17, 22], then Penkuhn [35] proposed the friction pendulum concept, and Zayas et al.

created the single friction pendulum device [46]. Later on, the Earthquake Protective Sys-

tems Corporation (EPS) developed the “Triple Friction Pendulum (TFP)” bearing (Figure
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Figure 1.1: Apple Park, Cupertino, California [45].

Figure 1.2: Sabiha Gokcen International Airport, Turkey [42].
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1.4), which is an advanced version of the single friction pendulum bearing.

The TFP bearing can dissipate energy through friction and demonstrate high nonlinearity

in dynamic structural analysis. Regarding the TFP bearing’s uniaxial behavior, Fenz and

Constantinou [9, 12], and Morgan and Mahin [32] capture the five-stage behavior of the TFP

bearing by taking the equilibrium of each stage to find the force-deformation relationship

(Figure 1.5).

Figure 1.3: Elastomeric rubber bearings (a) [7], Roller and ball bearings (b) [44], steel

spring bearings (c) [8], friction pendulum bearings (d) [43].

The biaxial behavior of a TFP bearing is more complex due to the biaxial coupling effect;

Becker and Mahin [3] developed a numerical model for TFP bearing based on geometric

compatibility. In 2003, Dao et al. [11] implemented a phenomenological TFP bearing model,

adopting the idea of a serially connected spring. From another perspective, Mao et al. [29,

28] implemented a physical numerical model in commercial finite element analysis software

ABAQUS [41] based on multi-surface plasticity, which is validated through experimental

data.
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Figure 1.4: Triple Friction Pendulum Bearing section view and basic parameters.
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Figure 1.5: The force displacement relationship of TFP bearing.

In order to achieve the high-performance requirement of the base-isolated building, non-

linear history structure dynamic analysis is required, then using peak floor acceleration as

a significant indicator to decide the damage state of the building. This traditional method

is creating the high fidelity finite element model of the building and performs the dynamic

analysis to obtain the acceleration records of the floor, which is time-consuming.

This study proposed several statistical methods (linear regression, weighted least square,

4



the decision tree, random forest, and neural network) to predict the floor accelerations.

Therefore, the peak floor acceleration can be treated as the response matrix in this study. On

the other hand, there are four essential features to characterize earthquake excitations. They

are Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), spectrum acceleration

at the first structural period (SaT1), and spectrum displacement at the first structural

period (Sd). Thereafter, the design matrix can be constructed by these four features. Several

statistical methods (linear regression, weighted least square, the decision tree, random forest,

and neural network) are utilized to predict the response of the building in the following

chapters and compared with the experimental results. The accurate prediction results can

provide insightful guidance for the building designer.
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CHAPTER 2

Data Set

As mentioned in the introduction, the dynamic response of the base-isolated structure is

complex due to the nonlinearity caused by the TFP bearing. Moreover, conducting the real

experimental test is expensive and impractical. Besides, the experimental data is rare and

difficult to obtain. Therefore, numerical simulation data is utilized in this study. Mao’s

[28] numerical model for TFP bearing is adopted due to the stability of this numerical

model. The finite element numerical model of the prototype building was created based

on the experimental data conducted at E-Defense [11], which is shown in Figure 2.1. In

order to ensure the numerical model can represent the real building’s characteristics, the

modal analysis is performed. The modal analysis results are shown in Table 2.1. The

maximum difference between the finite element model and the E-Defense building is 7%,

which indicates that the finite element model can capture the characteristics of the E-Defense

building accurately and effectively.

The nonlinear dynamic analysis is performed on the E-Defense building using 3189 earth-

quakes obtained from the PEER NGA-West2 database [34]. After one week of numerical

analysis, the peak floor accelerations are obtained. Due to the complexity of the numerical

model, a few simulations did not converge at the end, causing the NAN and zeros in the

response variable. Since they do not provide useful information, they are removed from the

raw data set. The distributions of the features and responses in the revised data set are

shown in Figure 2.2 and Table 2.2.

According to HAZUS [18], the initial nonstructural damage happens when the maximum

6



Figure 2.1: The finite element model of E-Defense building.

Table 2.1: Modal analysis of the E-Defense building.

Mode No. Experiment period T (sec) Abaqus model period T (sec) Error (%)

1sty direction mode 0.677 0.674 0.52

2nd y direction mode 0.211 0.223 5.21

3rd y direction mode 0.113 0.119 4.71

1st x direction mode 0.652 0.658 0.96

2nd x direction mode 0.204 0.220 7.18

3rd x direction mode 0.112 0.117 4.56

1st vertical mode 0.142 0.146 2.8

1st rotational mode 0.472 0.475 0.65
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Table 2.2: Data description

Max. floor Acc. PGA PGV SaT1 Sd

mean 2.488 4.034 0.406 0.174 0.041

std 1.702 4.295 0.520 0.306 0.051

min 0.012 0.050 0.001 0.000 0.000

25% 1.209 1.281 0.090 0.026 0.011

50% 2.119 2.649 0.217 0.070 0.025

75% 3.425 5.128 0.507 0.192 0.052

max 10.038 39.036 4.453 3.853 0.678

floor acceleration is beyond 2 m/sec2; the building will collapse when the acceleration is

beyond 20 m/sec2. Most of the peak floor accelerations (Mac acc) are below 6 m/sec2,

shown in Figure 2.2, which is reasonable since this study only does not include the collapse

buildings. The pairwise relationships of features and responses are shown in Figure 2.3.

The plots in the first column demonstrate that all the features have a positive relationship

with the response. This is expected because the severer the earthquake is, the higher the

maximum floor acceleration will be. Besides, other plots in Figure 2.3 and the correlation

plot shown in Figure 2.4 indicate that there is also a clear positive correlation between

each pair of features. The correlation between SaT1 and PGV is as high as 0.86. The

highly correlated features may cause the multicollinearity problem. To solve this, Principal

Component Analysis is applied and will be discussed in the next chapter.
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Figure 2.2: The distributions of the features and responses.
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Figure 2.3: The pairwise scatter plot of features and response.

Figure 2.4: The correlation of features and response.
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CHAPTER 3

Method and Results

3.1 Linear Regression

Linear regression method is the most widely used method to predict the numeric response.

The design matrix is composed of a n × p matrix X = (xij), and the response is a n × 1

vector Y = (yi). The model can be expressed in the following form:

yi =

p∑
j=1

xijβj + εi, (3.1)

for i = 1, ..., n, where εi ∼ N(0, σ2) independently for i = 1, ..., n. The Equation 3.1 can be

written in the matrix form as following:

Y = XTβ + ε. (3.2)

The least squares estimate of β is

β̂ = argmin
β
‖Y − Xβ‖2`2 = (XTX)−1XTY. (3.3)

In order to evaluate the goodness of the model, the Mean Squared Error (MSE) (Eq.3.4) and

the Mean absolute error (MAE) (Eq.3.5) are used. The Mean Squared Error can penalize the

large prediction errors, but is susceptible to data with various outliers. This disadvantage

can be mitigated by evaluating the Mean absolute error.

MSE =
1

N

N∑
i=1

(yi − ŷ)2 (3.4)

11



Figure 3.1: The linear regression results.

MAE =
1

N

N∑
i=1

|yi − ŷ| (3.5)

3.2 Linear Regression Results

The simulation data has been split into train set (70%) and test set (30%), then the linear

regression analysis has been performed, the MSE and MAE are 0.819 and 0.681, separately.

The detailed results are shown in Figure 3.1. The residual is not evenly distributed, which

indicates not a good fit. On the other hand, the normal Q-Q plot demonstrates that the

error is not satisfying the normal distribution assumption. Besides, the heteroscedasticity is

observed through the Residue v.s. leverage plot.
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Table 3.1: The multicollinearity of features.

Features Const PGA PGA SaT1 Sd

VIF Factor 1.9 3.1 8.0 4.1 4.1

The multicollinearity is checked by evaluating the Variance Inflation Factor (VIF) [23].

The VIF result is shown in Table 3.1, typically, multicollinearity is considered as high if

VIF(β̂i) > 10. The maximum VIF comes from the PGV, which is 8.0. Therefore, multi-

collinearity is not the key issue.

3.3 Principal Component Analysis (PCA)

Principal component analysis was first proposed by Karl Pearson [33] and Harold Hotelling

[21]. PCA is widely used for dimensionality reduction by projecting the dataset onto new

axes, then use fewer components to represent the original dataset, and the correlations of new

components are zeros since new axes are orthogonal to each other. Because high correlations

of the design matrix are observed in the previous chapter, the principal component analysis

is performed in this section.

The first step of PCA is centralizing the design matrix (X),i.e.,
∑n

i=1 xij/n = 0. All the

component Xi need to be represented by new basis system Q, let Z be the design matrix in

Q. Therefore, Xi = QZi. Each column of (X) is orthogonal to each other by definition. Let

λj = ‖Zj‖2/n =
∑n

i=1 z
2
ij/n, ZTZ = Λ = diag(λ1, ..., λp). The Q and A can be obtained by

power method through Equation 3.6

XTX = QZTZQT = QΛQT (3.6)

13



Figure 3.2: The linear regression results after PCA.

3.4 PCA Results

After performing the principal component analysis, Figure 3.3 explains the correlation be-

tween design matrix are zeros after transforming to the new basis system. Additionally,

Figure 3.4 demonstrates that the first two principal components can explain 92.5% of the

total variance. Therefore, the four features can be reduced to two principal components in

the following study.

The linear regression was applied to the new design matrix again, utilizing only the first

two PCs. Based on the results of Figure 3.2, the improvement after adopting PCA is not

significant; the error term violates the normal distribution assumption, and outliers still

exist. Therefore, in order to obtain a better prediction, an advanced model is required.

14



Figure 3.3: The correlation of features and response before PCA (left), after PCA (right).

Figure 3.4: Percentage of variance (information) for each by PC.
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3.5 Weighted Least Squares (WLS)

The weighted least squares model is designed for the situation that variances of the obser-

vations are unequal distributed (heteroscedasticity). The coefficient of the WLS model can

be obtained by minimizing the weighted sum of squares.

arg min
β

n∑
i=1

wi

∣∣∣∣∣yi −
m∑
j=1

Xijβj

∣∣∣∣∣
2

= arg min
β

∥∥∥W 1
2 (y −Xβ)

∥∥∥2 . (3.7)

Where W is the diagonal matrix, and wi is the weight of the ith observation. Because the

weight matrix W is unknown, the Iteratively Reweighed Least Squares (IRLS) algorithm [6]

is adopted in this study. The first step of the IRLS algorithm is initialing the parameters as

following equations.

µ(0) = Y

η(0) = g(η(0))

z(0) = η(0) +
(
Y − µ(0)

)
· dη

(0)

dµ(0)

w
(0)
i =

1

V̂ar
(0)
(
z
(0)
i

) =
1

V̂ar
(0)

(Yi) ·
[
g′
(
µ
(0)
i

)]2
(3.8)

The parameters are updated through the following equations.

β(1) =
(
XTW (0)X

)−1
XTW (0)z(0)

η(1) = XTβ(1)

µ(1) = g−1
(
η(1)
) (3.9)

Finally, check whether the residue satisfies the requirement; otherwise, go back to the second

step, e.g.,
∥∥β(k+1) − β(k)

∥∥
2
< 10−5.

After applying the IRLS algorithm, the MSE and MAE are obtained as 0.927 and 0.645,

separately. These results are similar to the linear regression; in other words, no significant

improvement was observed by using weighted least squares. Figure 3.5 suggests that the

16



Figure 3.5: Residual v.s. fitted by IRLS algorithm.

residual distribute unevenly, which indicates that the issue exists linear regression still has

not been solved.

3.6 Decision Tree

The decision tree is a flow-chart-like model, which is demonstrated in Figure 3.6; each branch

represents intermediate results, the path represents the decision rule, all the decisions made

at the leaf node. The decision tree model is simple to interpret and versatile. It works even

with not enough data.

The decision tree model is applied to predict the maximum floor acceleration in this

study. In order to avoid overfitting, cross-validation [1, 39, 40] process is applied. The train

data has been split into five folds; for each fold of data, the maximum depth of the tree

varies from 1-50. This procedure will help decide the best choice of the maximum depth

of the tree. Figure 3.7 and Figure 3.8 suggest that the best choice of the maximum depth

of the tree is 4. After obtaining this parameter, MSE and MAE are evaluated by the test

17



data. Figure 3.9 demonstrates the residual distribution, MSE and MAE equal to 0.508 and

0.506 separately. These results indicate a notable improvement in the predicting accuracy

comparing to the weighted least squares. The MSE and MAE decrease by 45.0% and 21.6%,

separately. However, the residual distribution plot (Figure 3.9) indicates that the error

distributes unevenly; the additional investigation is needed.

Figure 3.6: Simple Decision Tree [10].

Figure 3.7: MSE v.s. the maximum depth of the tree.

18



Figure 3.8: MAE v.s. the maximum depth of the tree.

Figure 3.9: Residual v.s. fitted by Decision Tree.

3.7 Random Forest

Random forest was first proposed by Tin Kam Hoin 1995 [19, 20] and extended by Leo

Breiman [4] and Adele Cutler [26]. Random forest is a statistical method based on the deci-

19



sion tree algorithm, and the random forest algorithm predicts the average values of multiple

decision trees. This average process makes random forest less susceptible to overfitting is-

sues, which happens in decision tree [15]. Random forests perform better than decision tree

in general, but the performance of random forest also depend on data characteristics [36, 27].

Similarly, the five-fold cross-validation procedure is applied to the random forest algo-

rithm. In order to estimate the best value of the tree number, the tree number varies from

1-50 for each fold of the analysis. After performing 250 analysis, the relationship between

error and the number of the tree is shown in Figure 3.10 and Figure 3.11. They indicate 48

trees will achieve the highest accuracy, then plug the tree number back to the random forest

algorithm, MSE, and MAE equal to 0.576 and 0.533 separately. The MSE and MAE are

close to the decision tree; this could cause by the characteristics of the data. The random

forest also can predict the peak floor acceleration with high accuracy. The residue distri-

bution plot (Figure 3.12) has a similar issue with the decision tree, which is not surprising

since the decision tree is a type of decedent of the random forest.

Figure 3.10: MSE v.s. number of the tree.
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Figure 3.11: MAE v.s. number of the tree.

Figure 3.12: Residual v.s. fitted by Random Forest.

3.8 Neural Network

The theory of neural networks was proposed by Alexander Bain [2], and William James [24]

independently, then validated by C. S. Sherrington’s experiment [38]. In 1943, the compu-
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tational model based on mathematics was created by McCulloch and Pitts [31]. Figure 3.13

demonstrates a simple one hidden layer neural network. The inputs shown on the left side

are the features; the hidden layers transfer features to the other space that the hyperplane

can easily separate. Each layer can be expressed by Equation 3.10 and Equation 3.11.

hl = fl(sl) (3.10)

sl = Wlhl−1 + bl, for l = 1, ...L, (3.11)

where fl denotes the activation function for the hidden layer, such as the logistic function,

sigmoid function and the rectified linear unit function (ReLU). h0 = X, which is the design

matrix, Wl and bl are the weight matrix and bias vector respectively. ∂L
∂Wl,k

, ∂L
∂bl

and, ∂L
∂Wl

which are necessary for updating the neural network, can be obtained through chain rule.

∂L

∂h>l−1
=

d∑
k=1

∂L

∂hl,k

∂hl,k
∂sl,k

∂sl,k
∂h>l−1

=
d∑

k=1

∂L

∂hl,k
f ′l (sl,k)Wl,k

=
∂L

∂h>l
f ′lWl

(3.12)

∂L

∂Wl,k

=
∂L

∂hl,k

∂hl,k
∂sl,k

∂sl,k
∂Wl,k

=
∂L

∂hl,k
f ′l (sl,k)h>l−1,

(3.13)

∂L

∂Wl

= f ′l
∂L

∂hl
h>l−1. (3.14)

∂L

∂bl
= f ′l

∂L

∂hl
. (3.15)
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Figure 3.13: Neural networks

3.9 Neural Network Results

Similar to the decision tree and random forest, cross-validation has been applied to the neural

network also. The number of hidden layers varies from 1-50 in each fold. Figure 3.14 and

Figure 3.15 show that MSE and MAE vary with the number of hidden layers; the minimum

error happened when 46 hidden layers were adopted. In addition, the choice of solver and

activation function also affect the performance of the neural network. The analysis utilizing

different solves and activation functions are performed. The results, shown in Table 3.2 and

Table 3.3 suggest that the Broyden–Fletcher–Goldfarb–Shanno (BFGS) [14, 5, 13, 16, 37]

method with Tanh activation function achieve the highest accuracy. After finalizing those

parameters, then applying these parameters into the neural network model, the MSE and

MAE are 0.456 and 0.483, respectively; the residual distribution is shown in Figure 3.16.

The MSE and MAE for all models are summarized in Table 3.4, all statistical models

predict the peak floor acceleration accurately and efficiently. Among the five statistical

models, the neural network achieves the highest accuracy. Comparing to the decision tree,

the MSE and MAE decrease by 10.2% and 4.6%, separately. These results indicate that the
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Figure 3.14: MSE v.s. number of the hidden layers.

building response under earthquakes can be predicted by statistical models accurately.

Regarding the residual distribution plot (Figure 3.16), similar issues are observed in all

other statistical models, which could cause by the characteristics of the data. In order to

solve the uneven residual distribution issue, other advanced statistical models are required.

Table 3.2: The MSE of neural network.

Solver

Activation
Logistic Tanh Relu

lbfgs 0.456 0.456 0.486

sgd 0.646 0.480 0.471

adam 1.349 1.261 0.463
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Figure 3.15: MAE v.s. number of the hidden layers.

Table 3.3: The MAE of neural network.

Solver

Activation
Logistic Tanh Relu

lbfgs 0.487 0.483 0.484

sgd 0.621 0.510 0.500

adam 0.762 0.691 0.498
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Figure 3.16: Residual v.s. fitted by Neural Networks.

Table 3.4: The MSE & MAE of all models.

Method

Error type
MSE MAE

Linear regression 0.819 0.685

Weighted least square 0.927 0.645

Decision tree 0.508 0.506

Random forest 0.577 0.533

Neural network 0.456 0.483
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CHAPTER 4

Conclusions and Suggested Future Works

This study aims at predicting the maximum floor acceleration based on the characteristics

of earthquakes. Linear regression result implies the existence of heteroscedasticity. After

PCA analysis, the improvement of the linear regression utilizing two principal components

is negligible; the weighted least square results are similar to the linear regression; therefore,

three advanced models are adopted. The decision tree predicts better results than the two

previous linear models. However, the MSE and MAE estimate from the random forest

is higher than the decision tree, which indicates that the data characteristics affect the

performance. The most accurate model generates from the neural network.

All the statistical models reasonably estimate the floor acceleration; the neural network

is best among all the statistical models. It is promising to adopt statistical methods in real

building design to estimate earthquake damage efficiently and accurately.

The distribution of residuals indicates that no one model can explain the simulation

results perfectly; the residual increases when the predicted value increase. One reason causing

this issue is the complexity of the building; there are only four features adopted in this

study, which is not enough for this complex situation. The second issue comes from the

parameter tuning of the statistical methods. The parametric study of the parameters for

each model is not exhausted, so further investigation is needed. Additionally, this study

does not investigate other physical-based statistical methods which could better predict the

maximum floor acceleration.
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