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ABSTRACT
Soluble adenylyl cyclase (sAC) is a recently recognized source of the
signaling molecule cyclic AMP (cAMP) that is genetically and
biochemically distinct from the classic G-protein-regulated
transmembrane adenylyl cyclases (tmACs). Mammalian sAC is
distributed throughout the cytoplasm and it may be present in the
nucleus and inside mitochondria. sAC activity is directly stimulated
by HCO3

–, and sAC has been confirmed to be a HCO3
– sensor in a

variety of mammalian cell types. In addition, sAC can functionally
associate with carbonic anhydrases to act as a de facto sensor of pH
and CO2. The two catalytic domains of sAC are related to HCO3

–-
regulated adenylyl cyclases from cyanobacteria, suggesting the
cAMP pathway is an evolutionarily conserved mechanism for sensing
CO2 levels and/or acid/base conditions. Reports of sAC in aquatic
animals are still limited but are rapidly accumulating. In shark gills,
sAC senses blood alkalosis and triggers compensatory H+

absorption. In the intestine of bony fishes, sAC modulates NaCl and
water absorption. And in sea urchin sperm, sAC may participate in
the initiation of flagellar movement and in the acrosome reaction.
Bioinformatics and RT-PCR results reveal that sAC orthologs are
present in most animal phyla. This review summarizes the current
knowledge on the physiological roles of sAC in aquatic animals and
suggests additional functions in which sAC may be involved.

KEY WORDS: V-ATPase, Acid/base, cAMP, Carbonic anhydrase, 
pH sensing, Proton pump

Introduction
Cyclic adenosine monophosphate (cAMP) is the signaling molecule
of one of the most versatile and evolutionarily conserved signaling
pathways. cAMP is produced by adenylyl cyclase enzymes that use
ATP as substrate. There are six different classes of adenylyl cyclases
distributed throughout Bacteria, Archaea and Eukarya; these classes
are unrelated in sequence and structure but all produce cAMP as a
result of convergent evolution (Linder and Schultz, 2008). All
known eukaryotic adenylyl cyclases, including soluble adenylyl
cyclase (sAC) and transmembrane adenylyl cyclase (tmAC) from
animals, belong to Class III.

Discovery of mammalian sAC
Until recently, vertebrate animals were believed to have only one
type of adenylyl cyclase, a family of hormone and G-protein-
regulated tmACs. Mammals have nine tmAC genes (ADCY1–9),
which differ in their tissue and developmental expression as well as
in some of their regulatory properties (Cooper, 2003; Hanoune and
Defer, 2001). A genetically unrelated, novel adenylyl cyclase
(ADCY10) was recently identified by Levin and Buck (Buck et al.,
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1999; Chen et al., 2000), following on from earlier reports of Mn2+-
stimulated cAMP activity in rat testis homogenates (Braun, 1974;
Braun, 1975; Braun, 1990; Braun, 1991; Braun and Dods, 1975).
This enzyme was termed ‘soluble adenylyl cyclase’ (sAC) because
its activity is preferentially found in the cytosolic fraction, although
some activity is also found associated with membranes. Subsequent
immunolocalization and biochemical studies found sAC in the cell
cytoplasm and in organelles (Zippin et al., 2003; Zippin et al., 2004).
The intracellular localization of sAC changed the assumption that
cAMP is produced exclusively in the proximity of the cell
membrane by tmACs. Production of cAMP in various focal points
within cells supports the model of cAMP-signaling microdomains
(Fig. 1), which entails tmACs and sAC as sources of cAMP,
phosphodiesterases (PDEs) as barriers for cAMP diffusion, and the
cAMP-activated targets protein kinase A (PKA), cyclic nucleotide-
gated channels and exchange protein activated by cAMP (EPAC)
(reviewed in Cooper, 2003; Tresguerres et al., 2011; Zaccolo, 2009;
Zaccolo et al., 2006). The most widely studied cAMP effector is
PKA, which modulates the activity of multiple downstream proteins
by phosphorylation. PKA and PDE are tethered to specific
intracellular compartments by A-kinase anchoring proteins
(AKAPs), which also coordinate PKA and PDE activities, thus
allowing the spatio-temporal dynamics of cAMP signaling
(reviewed in Wong and Scott, 2004). The cAMP-signaling
microdomain model has changed the cAMP-signaling paradigm and
causing researchers to revisit previous studies on signal transduction
pathways.

The paramount feature of sAC is direct stimulation by HCO3
– to

produce cAMP, turning sAC into a putative physiological acid/base
(A/B) sensor (Chen et al., 2000). The molecular mechanism of
HCO3

– stimulation has been elucidated for CyaC, a cyanobacterial
adenylyl cyclase related to sAC (Steegborn et al., 2005b); this
mechanism is believed to also apply to mammalian sAC (reviewed
in Kamenetsky et al., 2006; Tresguerres et al., 2011). Briefly, HCO3

–

induces an allosteric change that results in an increase in the Vmax of
sAC without changing its Km for substrate ATP. The stimulatory
effect of HCO3

– on sAC and sAC-like enzymes is strictly dependent
on a specific amino acid residue that is a threonine in mammals and
a serine in bacteria and mollusks. In contrast, the corresponding
residue in tmACs, which are not stimulated by HCO3

–, is an
aspartate (Linder, 2006; Steegborn et al., 2005b).

There are several other biochemical differences between
mammalian sAC and tmACs. While tmAC activity is modulated by
heterotrimeric G-proteins, sAC is unresponsive. Most tmAC isoforms
are stimulated by low micromolar [Ca2+] via calmodulin (Wang and
Storm, 2003; Willoughby and Cooper, 2007), but inhibited by
millimolar [Ca2+], which displaces the cofactor Mg2+ from the active
site (Guillou et al., 1999). In contrast, mammalian sAC (but not
necessarily sACs from other organisms, see below) is stimulated by
millimolar [Ca2+], which lowers sAC Km for ATP (Jaiswal and Conti,
2003; Litvin et al., 2003); mammalian sAC is additionally insensitive
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to calmodulin. Most tmACs are potently activated by forskolin, a
plant dipertene that has been classically used to study cAMP function
in vivo (Seamon and Daly, 1981; Seamon et al., 1981); however, sAC
is insensitive to forskolin (Buck et al., 1999). Mammalian sAC and
tmACs also display differential sensitivity to the pharmacological
antagonists KH7 and derivatives of catechol estrogen (selective for
sAC), and ‘p-site’ inhibitors such as 2′,5′-dideoxyadenosine (selective
for tmAC) (Tresguerres et al., 2011).

Mammalian sAC is composed of two catalytic domains in the N-
terminus (~50 kDa), and a C-terminus domain with mostly unknown
regulatory functions (~140 kDa) (Buck et al., 1999; Chen et al.,
2000). Some mammals have multiple sAC genes (e.g. dog, bonobo),
while humans have a single sAC gene and one pseudo gene. Human
sAC mRNA undergoes extensive alternative splicing (Farrell et al.,
2008; Geng et al., 2005; Jaiswal and Conti, 2001; Moore et al.,
2008). The better-characterized human sAC splice variant, termed

‘truncated sAC’ (sACT), is essentially composed of just the two
catalytic domains and is ~10-fold more active than full-length sAC
(sACFL) (reflected as a higher Vmax) (Buck et al., 1999). Most of the
difference in specific activity is due to a nine amino acid auto-
inhibitory domain located C-terminal to the second catalytic domain
(Chaloupka et al., 2006). However, the half-maximum stimulation
(EC50) for HCO3

– and the Km for Mg2+, Mn2+ and Ca2+ of sACT,
sACFL and other splice variants are indistinguishable from each
other (Chaloupka et al., 2006; Geng et al., 2005), indicating that
these parameters are exclusively determined by residues in the two
catalytic domains.

Studies on sAC have been challenging because of the intrinsic
complexity of sAC and methodological issues. Among the former
is that sAC mRNA abundance is typically very low in cells, with the
exception of testes bearing maturing sperm (Buck et al., 1999;
Farrell et al., 2008; Geng et al., 2005). This trend seems to apply to
all vertebrate animals but not necessarily to invertebrates. The low
sAC mRNA abundance only implies a low protein turnover rate but
it does not preclude robust expression. However, it complicates
detection of sAC by RT-PCR and makes it almost impossible to use
degenerate PCR to clone sAC from species lacking a sequenced
genome (e.g. Tresguerres et al., 2010b). One important
methodological issue is that sAC rapidly loses its activity after more
than one freeze/thaw cycle (Barott et al., 2013), and that the activity
assay conditions that sustain HCO3

– stimulation are not universal
among species, especially when it comes to the required catalytic
metals (Mg2+, Mn2+, Ca2+). Also, the initial studies on sAC were
impaired by the lack of pharmacological inhibitors specific for sAC.
However, KH7 and derivatives of catechol estrogen are now proving
to be effective against sACs from cyanobacteria (Steegborn et al.,
2005a), coral (Barott et al., 2013), sea urchin (Beltrán et al., 2007),
shark (Tresguerres et al., 2010c) and mammals (Hess et al., 2005;
Pastor-Soler et al., 2003).

Mechanisms of sAC activation in vivo
The in vitro activity of sAC is specifically modulated by [HCO3

–]
and not by pH or CO2 (Chen et al., 2000; Tresguerres et al., 2010c).

REVIEW The Journal of Experimental Biology (2014) doi:10.1242/jeb.086157

List of abbreviations
A/B acid/base
AC adenylyl cyclase
AKAP A-kinase anchoring protein
CA carbonic anhydrase
cAMP cyclic AMP
CFTR cystic fibrosis transmembrane conductance regulator 
CyaC cyanobacterial AC
EPAC exchange protein activated by cAMP
EST expressed sequence tag
GPCR G-protein-coupled receptor
NBC sodium/bicarbonate cotransporter
NHE Na+/H+ exchanger
NKCC Na+/K+/2Cl– cotransporter
PDE phosphodiesterase
PKA protein kinase A
sAC soluble adenylyl cyclase
sACFL full-length sAC
sACT truncated sAC
tmAC transmembrane AC
TSA transcriptome shotgun assemblies
WGS whole genome shotgun

Fig. 1. Intracellular cAMP-signaling microdomains. cAMP production may occur in discrete intracellular compartments such as (1) focal points throughout
the cytoplasm, (2) the nucleus, (3) mitochondria, (4) the cell membrane vicinity and (5) internalized endosomes. Additional regulation might involve the
movement of soluble adenylyl cyclase (sAC) between compartments (not shown). Each microdomain contains a source of cAMP [sAC or transmembrane
adenylyl cyclase (tmAC)]; phosphodiesterases (PDEs) that degrade cAMP, thus acting as barriers for cAMP diffusion; and cAMP targets such as protein kinase
A (PKA) or exchange protein activated by cAMP (EPAC) (not depicted). Production of cAMP by sAC is stimulated by increased [HCO3

–] (and in some cases
Ca2+, see ‘Discovery of mammalian sAC’ and Fig. 2 for details). Production of cAMP by tmAC occurs in response to various extracellular ligands and it requires
modulation by G-protein-coupled receptors and G-protein.
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However, the presence of carbonic anhydrase (CA) and A/B ion-
transporting proteins may render sAC a de facto sensor of intra- and
extra-cellular CO2, pH and [HCO3

–] in vivo (Fig. 2). A
straightforward mechanism of sAC stimulation involves
extracellular HCO3

– entering the cell via ion transporter proteins, for
example membrane potential-driven electrogenic Na+/HCO3

–

cotransporters (NBCs) in astrocytes (Choi et al., 2012) and probably
mammalian epididymis and kidney, or CFTR channels in airway
cells (Schmid et al., 2010). Another mechanism is the entry of CO2

into the cell (by diffusion or possibly across aquaporins), where it is
hydrated into HCO3

– and H+ by intracellular CA, as observed in
shark gills (Tresguerres et al., 2010c; Tresguerres et al., 2007), and
possibly mammalian epididymis (Pastor-Soler et al., 2003) and
kidney (Gong et al., 2010; Paunescu et al., 2008). A third source of
HCO3

– is CO2 from mitochondrial aerobic respiration, which, after
CA-catalyzed hydration into HCO3

–, may stimulate sAC inside
mitochondria (Acin-Perez et al., 2009) or in the cytoplasm
(Tresguerres et al., 2010b). Additional mechanisms for sAC
stimulation may be more complex. For example, sAC in mammalian
epididymis responds to physiologically relevant variations in
extracellular pH from 6.6 to 7.8 in HCO3

–-free medium (Pastor-
Soler et al., 2003) via an unknown mechanism. And although sAC
is not directly modulated by hormones, the mechanisms that load
HCO3

– into a cell may be. For example, in mouse ovarian granulosa
cells, the follicle-stimulating hormone activates CFTR channels [via
G-protein-coupled receptor (GPCR)/G-protein/tmAC] leading to
HCO3

– entry and subsequent sAC stimulation (Chen et al., 2012a).
This illustrates a potential, more intricate, mechanism of sAC action
that depends on the interplay between cAMP from different sources.
Finally, sAC in mammalian INS-1 cells is stimulated by Ca2+ that
enters the cell across voltage-dependent Ca2+ channels, possibly in
conjunction with changes in [HCO3

–] and ATP (Ramos et al., 2008).

In vitro versus in vivo EC50 for HCO3
–

The in vitro EC50 for HCO3
– for purified mammalian and shark sAC

protein is close to the normal [HCO3
–] in the extracellular fluid of

each organism (~20 and ~5 mmol l−1, respectively; Table 1). This
implies that small changes in [HCO3

–] will result in large changes
in sAC activity, as the EC50 is the mean point in the steepest part of
the dose–response curve. However, sAC is located inside cells,

where the average [HCO3
–] is somewhat lower than in extracellular

fluids. For example, normal intracellular [HCO3
–] has been reported

to be 10–15 mmol l−1 in mammals (Bettice et al., 1984; Lodish,
1999) and 1–4 mmol l−1 in fish (Hōbe et al., 1984; Strobel et al.,
2012; Wood et al., 1990), depending on the species and cell type.
Nonetheless, variations in plasma [HCO3

–] result in proportional
changes in intracellular [HCO3

–] during stress conditions (Bettice et
al., 1984; Hōbe et al., 1984; Strobel et al., 2012; Wood et al., 1990).

There are at least two possible reasons for the small discrepancy
between sAC EC50 for HCO3

– and reported intracellular [HCO3
–]:

(1) EC50 is estimated using purified sAC protein in vitro, which does
not necessarily match the conditions inside cells (for example, co-
factors); (2) the reported intracellular [HCO3

–] values represent an
average within whole cells. It is thus possible that focal points inside
cells have higher local [HCO3

–] due to the proximity to
mitochondria or to the action of CAs (e.g. Tresguerres et al., 2006a).
In support of this possibility, sAC is more often present in cells that
also express abundant intracellular CA (reviewed in Tresguerres et
al., 2010a; Tresguerres et al., 2011).

Physiological roles of mammalian sAC
In the clear cells of the epididymis, sAC is activated by lumen
alkalinization and triggers compensatory H+ secretion via apical V-
type H+-ATPases (Pastor-Soler et al., 2003; Pastor-Soler et al.,
2008). Similar roles in A/B sensing and homeostasis have been
proposed for sAC in kidney intercalated cells (Gong et al., 2010;
Paunescu et al., 2008). sAC also regulates other physiological
functions in response to A/B status in diverse mammalian systems
such as sperm, eye, airways, pancreas, colon, brain, nervous system,
immune cells, bone, embryos and several cell lines. These functions
include epithelial ion and fluid transport, sperm flagellar movement,
gene expression, development and cell differentiation, ciliary
beating in airways and oxidative phosphorylation in mitochondria
(reviewed in Tresguerres et al., 2010a; Tresguerres et al., 2011). At
the time of writing, sAC has additionally been shown to regulate the
metabolic coupling between neurons and astrocytes (Choi et al.,
2012), intraocular pressure (Lee et al., 2011), survival of retinal
ganglion cells and axon growth (Corredor et al., 2012), aromatase
gene expression and estradiol production (Chen et al., 2012a),
pathologic activation of proteases in pancreatic acinar cells

665
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Fig. 2. Mechanisms of sAC activation in vivo. (1) sAC in the
cytoplasm can be stimulated by HCO3

– from various sources.
(a) Carbonic anhydrase (CA)-dependent hydration of external
CO2. (b) CA-dependent hydration of metabolic CO2. (c) H+-
extruding transporters (HE) such as V-type H+-ATPase or
Na+/H+ exchangers from the cell may prevent slowing down of
the CO2 hydration reaction. (d,e) HCO3

– that enters through
membrane-transporting proteins such as electrogenic
Na+/HCO3

–-cotransporters (NBCs), anion exchangers or cystic
fibrosis transmembrane conductance regulator (CFTR)
channels. (f) The entry of HCO3

– across transporters,
exchangers and channels can potentially be modulated by
hormones. (2) sAC in the nucleus may be stimulated by HCO3

–

derived from all the sources listed above. (3) sAC in the
cytoplasm may be stimulated by catalytic metals (e.g. Ca2+ in
mammals), which enter the cell through voltage-dependent
Ca2+ channels (VDCC) or potentially by Ca2+ released from the
endoplasmic reticulum or mitochondria (not depicted). (4) sAC
inside mitochondria may be stimulated by metabolically
generated CO2 through CA.
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(Kolodecik et al., 2012) and endocytosis of Na+/K+-ATPase in
cultured cells exposed to hypercapnia (Lecuona et al., 2013).
Moreover, nuclear sAC has been suggested to determine the
aggressiveness of certain skin and prostate cancers (Flacke et al.,
2013; Magro et al., 2012a; Magro et al., 2012b; Zippin et al., 2010).
In the heart, sAC controls mitochondria-dependent apoptosis in both
coronary endothelial cells (Kumar et al., 2009) and cardiomyocytes
(Appukuttan et al., 2012) (reviewed in Chen et al., 2012b). Lastly,
certain sAC splice variants present in mammalian testis and skeletal
muscle have been identified to contain a heme-binding domain
(Middelhaufe et al., 2012) of still undefined function.

While many of these functions likely also apply to aquatic
organisms (especially vertebrates, e.g. boney and cartilaginous
fishes), studies on sAC in aquatic organisms have started only
recently, so information is still scarce. The concentration of HCO3

–

in the internal fluids of aquatic organisms is generally much more
variable compared with that of mammals, in terms of both stability
and the magnitude of the changes. This has two important
implications: (1) the physiological roles of sAC may be more critical
in aquatic organisms than in mammals, and (2) studying the
physiological roles of sAC may be easier in aquatic organisms than

in mammals because it is possible to experimentally induce more
pronounced A/B stress, which may result in responses that are easier
to measure.

sAC in non-mammalian organisms
Mammalian sAC was discovered in the late 1990s (Buck et al.,
1999), a few years before the first drafts of the mouse and rat
genomes became available. Bioinformatics analyses in the early
2000s revealed sAC orthologs in the slime mold Dictyostelium and
in cyanobacteria, but not in the fully sequenced genomes of
Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis
thaliana or Saccharomyces cerevisiae. This led to the hypothesis
that the sAC gene had been lost in multiple lineages (Roelofs and
Van Haastert, 2002). The lack of sAC-related genes in drafts of the
zebrafish genome that came out several years later further
substantiated the belief that sAC was a mammal-specific A/B
sensor, and many even believed it to be a mammalian sperm-specific
sensor (see Tresguerres et al., 2011).

This view, however, was upended with the discovery of sAC in
sperm from the purple sea urchin Strongylocentrotus purpuratus
(Nomura et al., 2005), work that relied on traditional protein

REVIEW The Journal of Experimental Biology (2014) doi:10.1242/jeb.086157

Table 1. Summary of currently described properties of sAC in marine organisms 
Organism (protein 
accession no.) Co-factors 

HCO3
– EC50 

(mmol l 1) 
pH 
sensitivity Tissue distribution Notes 

Mammals 
Homo sapiens 

(NP_060887.2); Rattus 
sp. (NP_067716.1)  

Mn2+ ‡,A 
Mg2+ + Ca2+ *,B 

~11–25B–D NoD Testes, eye, airways, 
pancreas, colon, brain, 
nervous system, immune 
cells, bone, embryos, 
muscle, kidney, epididymis 
(reviewed in E) 

Km for ATP=~1–3 mmol l 1 B-D 

Multiple splice variantsF 
Present in most (all?) mammals, including 

Orcinus orca (XP_004269766.1), Tursiups 
truncatus (XP_004329889), Trichechus 
manatus (XP_004384133), Odobenus 
rosmarus (XP_004408373.1) 

Bony fishes 
Opsanus beta, Sparus 

aurata (based on 
heterologous antibodies 
and pharmacology) 

ND ND ND IntestineJ,K  Present in Oncorhynchus mykiss (TSA 
EZ789694.1, EZ814745.1), Salmo salar (5 
WGS contigs), Lepisosteus oculata (WGS 
AHAT01020068.1), Latimeria chalumnae (17 
WGS contigs), Latimeria menadoensis (TSA 
GAPS01010686.1) 

Cartilaginous fishes 
Squalus acanthias 

(ACA52542.1) 

Mn2+ ‡ 
Mg2+ + Mn2+ *,G 

~5G NoG GillG, rectal gland, red blood 
cellsH   

Present in Leucoraja erinacea (15 WGS 
contigs), Triakis semifasciata and Urbatis 
hallerii gill, rectal gland, testes, muscle, eye, 
intestine (heterologous antibodies)I 
Callorhinchus milii (WGS AAVX02006506.1) 

Sea urchin 
Strongylocentrotus 

purpuratus 
(NP_001020380.1) 

Mn2+ ‡,L 
Mg2+ *,M 

20K YesL SpermL–N, embryonic primary 
mesenchymal cellsO 

Kinetics determined from semi-purified native 
protein. Present in Patiria miniata (WGS 
AKZP01091244.1) 

 
Mollusks 

Oyster Crassostrea gigas 
(EKC32844.1) 

ND ND ND Mantle, gill, hemocytesP  Present in Ruditapes philippinarium (TSA 
JO105222.1) and Lottia gigantea (EST 
FC684349.1, WGS AMQO01004501.1) 

Cnidarians 
Acropora spp., Pocillopora 

damicornis (based on 
pharmacology on tissue 
homogenates) 

Mg2+ P ~10P ND Not in symbiotic Symbiodinium 
or mucusQ 

Present in Acropora (aug_v2a.21187.t1, 
aug_v2a.10515.t1)R; Nematostella vectensis 
(XP_001623318.1) 

ND, not determined; TSA, transcriptomic shotgun assembly; WGS, whole genome shotgun database; EST, expressed sequence tag.  
Accession numbers are from NCBI unless otherwise noted.  
*Supports HCO3

– stimulation; ‡maximum activity.  
Identification of sAC orthologs is based on BLAST searches using the two catalytic domains of dogfish sAC (amino acids 1–485) as the query. Also 
present in Poriferans (Amphimedon queenslandica XP_003384443.1); Placozoans (Trichoplax adherens XP_002117857.1); Hemichordates 
(Saccoglossus kowalevskii XP_002731233); Amphioxus (Branchiostoma floridae XP_002610143.1; XP_002610144.1)S; Tunicates (Oikopleura dioica 7 
WGS contigs; Ciona intestinalis XP_002121952.1); and reptiles (Chrysemys picta bellii XP_005308389.1, XP_005314924.1, Chelonia mydas 
EMP34522.1, Alligator mississippiensis XP_006273015.1, Python morulus 6 WGS contigs). 
ABuck et al., 1999; BLitvin et al., 2003; CChaloupka et al., 2006; DChen et al., 2000; ETresguerres et al., 2011; Fsee ‘Discovery of mammalian sAC’ for 
details; GTresguerres et al., 2010c; Hthis paper; IRoa et al., 2012; JCarvalho et al., 2012; KTresguerres et al., 2010b; LNomura et al., 2005; MBeltran et 
al., 2007; NBookbinder et al., 1990; OZhu et al., 2001; PBarron et al., 2012; QBarott et al., 2013; Rhttp://marinegenomics.oist.jp/; Smost likely a single 
protein. 
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purification techniques instead of bioinformatics. A few years later,
a sAC ortholog was identified from an EST library from the dogfish
shark Squalus acanthias, which led to the first characterization of a
sAC enzyme from a non-mammalian vertebrate (Tresguerres et al.,
2010c). Furthermore, sAC was found to be present and functional
in shark gills, demonstrating that sAC is not unique to mammals
among animals, nor it is exclusive to sperm.

With the explosion in genomic and transcriptomic information,
sAC-related genes can now be found in virtually every animal
phylum (Table 1), as well as in other organisms such as diatoms
(Matsuda et al., 2011). Although some evidence supports the
presence of sAC in plants (Lomovatskaya et al., 2008; Romanenko
et al., 2008), even the mere presence of cAMP in plants is
controversial and so this topic is not discussed further in this review.
BLAST searches of genomes from fruit fly and zebrafish still do not
reveal any sAC orthologs; however, sAC genes are found in other
insects (e.g. moth, bee, wasp, mosquito) and other fishes (e.g. trout,
salmon, gar, coelacanth, chimera, shark, skate). This phylogenetic
distribution suggests that either fly and zebrafish sense HCO3

– using
fundamentally distinct mechanisms, or that the absence of sAC in
these species is due to a glitch of sequencing and annotation
techniques.

To date, the only published biochemical reports on non-
mammalian sACs are those from the dogfish shark (purified
recombinant protein) (Tresguerres et al., 2010c) and from purple sea
urchin (semi-purified native protein) (Beltrán et al., 2007; Nomura
et al., 2005; Nomura and Vacquier, 2006). Like mammalian sAC,
dogfish and sea urchin sAC are stimulated by HCO3

–, potently
stimulated by millimolar concentrations of Mn2+, and inhibited by
micromolar concentrations of KH7 and derivatives of catechol
estrogens. However, unlike mammalian sAC, dogfish and sea urchin
sAC are inhibited by millimolar Ca2+ concentrations. More details
about dogfish and sea urchin sAC are described below, as well as
reports from marine fish and some information about sAC from
other fish, mollusks and coral.

sAC in sharks and boney fishes
The first two reports of sAC in fish described it as an essential
sensor for blood A/B homeostasis in dogfish shark (Squalus
acanthias) gills (Tresguerres et al., 2010c), and as regulator of NaCl
and water absorption in the intestinal epithelium of toadfish
(Opsanus beta) (Tresguerres et al., 2010b). This latter role was
recently confirmed by another research group working with sea
bream (Sparus aurata) (Carvalho et al., 2012).

Dogfish sAC is ~110 kDa (Tresguerres et al., 2010c), but it is still
unclear whether sAC splice variants or isoforms exist in dogfish.
Studies using purified recombinant protein comprising the two
catalytic domains established that dogfish sAC is stimulated by
HCO3

– to produce cAMP with an EC50 of ~5 mmol l−1. Like purified
mammalian sAC, dogfish sAC is insensitive to physiologically
relevant changes in pH (Tresguerres et al., 2010c). Purified dogfish
sAC is maximally stimulated by millimolar concentrations of Mn2+,
while HCO3

– stimulation is supported by a combination of Mg2+ and
Mn2+, but neither by Mg2+ alone nor a combination of Mg2+ and
Ca2+ (unlike mammalian sAC). The identity of the actual catalytic
metals and their concentrations in vivo remain to be determined.

The steepest part of the sAC dose–response curve for HCO3
– is

between 2 and 15 mmol l−1 (Tresguerres et al., 2010c), which
matches the normal [HCO3

–] in dogfish plasma as well as changes
in shark plasma [HCO3

–] induced by feeding (metabolic alkalosis)
(Wood et al., 2005), by exhaustive exercise (metabolic acidosis)
(Richards et al., 2003), in response to hypercapnia (compensatory

metabolic alkalosis) (Heisler, 1988), and by temperature changes
(increased [HCO3

–] at higher temperature, and vice versa) (Heisler,
1988). Therefore, sAC is poised to sense the A/B status and trigger
physiological responses during these physiologically relevant
situations.

The role of sAC as a sensor of A/B status in shark gills has been
confirmed through a series of experiments that induced metabolic
alkalosis via continuous intravenous infusion of NaHCO3

–

(Tresguerres et al., 2005; Tresguerres et al., 2006b; Tresguerres et
al., 2010c; Tresguerres et al., 2007). The sAC-dependent mechanism
for sensing and counteracting blood alkalosis is summarized in
Fig. 3, and is as follows: excess HCO3

– in plasma is dehydrated into
CO2 by extracellular CA IV located in gill pillar cells (Gilmour et
al., 2007). CO2 then enters the gill epithelial cells, including the
subpopulation that expresses V-type H+-ATPase, intracellular CA
and sAC (Tresguerres et al., 2005; Tresguerres et al., 2010c;
Tresguerres et al., 2007). CO2 is hydrated back into H+ and HCO3

–,
which stimulates sAC, which in turns triggers the microtubule-
dependent translocation of V-type H+-ATPases from cytoplasmic
vesicles to the basolateral membrane (Tresguerres et al., 2005;
Tresguerres et al., 2006b; Tresguerres et al., 2010c; Tresguerres et
al., 2007). This mechanism most likely occurs via PKA-dependent
phosphorylation of microtubule motor proteins; however, this has
not been experimentally confirmed. The now basolateral V-type H+-
ATPases pump intracellular H+ into the blood, thus counteracting the
alkalosis. At the same time, the excess HCO3

– is secreted across the
apical membrane into seawater, most likely via Pendrin-like anion
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Fig. 3. sAC-dependent sensing and compensation of blood alkalosis.
During increased blood HCO3

– and pH, (1) HCO3
– in blood is dehydrated into

CO2 by extracellular carbonic anhydrase (CAIV). (2) CO2 enters the V-type
H+-ATPase-rich cells, where it is hydrated back into H+ and HCO3

– by
intracellular CA II (CAII). (3) The elevated intracellular HCO3

– stimulates sAC
to generate cAMP, which triggers the microtubule-dependent translocation of
V-type H+-ATPase (blue icon) containing cytoplasmic vesicles to the
basolateral membrane. Basolateral V-type H+-ATPase reabsorbs H+ into the
blood to counteract the original alkalosis. (4) The excess HCO3

– is secreted
to seawater in exchange for chloride via a Pendrin-like anion exchanger
(AE). Chloride is probably absorbed into the blood across a basolateral
channel (CC).



Th
e 

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

668

transporters (Piermarini et al., 2002). This process seems to work
independently of any hormonal cues, and in theory is self-
regulatory: once normal blood [HCO3

–] has been restored, sAC is
no longer stimulated, permitting the retrieval of V-type H+-ATPases
away from the basolateral membrane.

In the post-feeding period, dogfish gastric cells secrete H+ into the
stomach (to aid with food digestion), which is matched by equimolar
HCO3

– absorption into the blood, resulting in pronounced alkalosis
(Wood et al., 2005; Wood et al., 2009). The blood alkalosis is
compensated for by an upregulation of branchial HCO3

– secretion
and H+ absorption across the gills (Wood et al., 2007a), which
correlates with significant V-type H+-ATPase translocation in the gill
cells (Tresguerres et al., 2007). Altogether, the evidence points to
sAC being responsible for sensing post-feeding alkalosis and
triggering the A/B compensatory mechanisms. Moreover, sAC is
present in most gill epithelial cells and not just in V-type H+-
ATPase-rich cells (Tresguerres et al., 2010c), suggesting additional
regulatory roles in acid-secreting Na+/K+-ATPase-rich cells,
pavement cells and pillar cells. Furthermore, as sAC is also present
in multiple other shark tissues (Fig. 4) (see also Roa et al., 2012), it
is a good candidate to mediate some of the profound metabolic
changes that take place throughout the shark’s body during the
alkalotic post-feeding period (Walsh et al., 2006; Wood et al., 2008),
including the stimulation of NaCl secretion across the rectal gland
(Shuttleworth et al., 2006; Wood et al., 2007b).

The published evidence for sAC presence and activity in teleost
fishes is so far limited to immunological detection in toadfish
intestine using heterologous antibodies (Tresguerres et al., 2010b)
and inhibition of NaCl and water absorption in toadfish and sea
bream intestine using sAC antagonists (Carvalho et al., 2012;
Tresguerres et al., 2010b). The proposed physiological role of sAC
in the teleost intestine is to coordinate intestinal carbonate
precipitation with NaCl and water absorption by modulating the
activities of Na+/K+-ATPase, Na+/K+/Cl– cotransporter (NKCC), V-
type H+-ATPase and anion exchangers. These processes are essential
for osmoregulation of marine teleost fishes (Grosell, 2011; Walsh et
al., 1991; Wilson et al., 2009; Wilson et al., 2002).

sAC genes are present in the sequenced genomes or whole
genome shotgun (WGS) assemblies of salmon (Salmo salar),

chimera (Callorhinchus milii), little skate (Leucoraja erinacea),
coelacanth (Latimeria chalumnae) and spotted gar (Lepiosteus
oculatus), and in transcriptome shotgun assemblies (TSA) of
rainbow trout (Oncorhynchus mykiss) (Table 1). Further evidence for
the ubiquity of sAC in elasmobranchs includes the detection of sAC
protein in gill, rectal gland, white muscle, intestine and eye of
leopard shark (Triakis semifasciata) and round ray (Urobatis
hallerii) by western blotting using antibodies against dogfish sAC
(Roa et al., 2012). We have also detected sAC by RT-PCR in the
testis of dogfish shark and rainbow trout (M.T. and J.N.R.,
unpublished observations), suggesting sAC is important for sperm
biology in fishes as it is in mammals. Intriguingly, the initiation of
sperm motility depends on cAMP in several fish species (Morisawa
and Ishida, 1987; Zilli et al., 2008), and at least in salmonids it is
stimulated by HCO3

– (Morisawa and Morisawa, 1988).

sAC in sea urchin
Among marine invertebrates, sAC has so far only been characterized
in the purple sea urchin, S. purpuratus. High levels of AC activity
in urchin spermatozoa (Garbers and Kopf, 1980) led to the
identification and purification of an AC enzyme by immunoaffinity
chromatography (Bookbinder et al., 1990). The 190 kDa protein,
which was the first AC to be identified from animal spermatozoa,
was not stimulated by forskolin or by G-proteins, and showed high
activity in response to Mn2+. However, as mammalian sAC would
not be discovered until almost a decade later, the sea urchin AC was
not identified as a sea urchin sAC and its sensitivity to HCO3

– was
not tested at the time. Eventually, analysis of the sea urchin AC
sequence indicated it was a homolog of mammalian sAC (Nomura
et al., 2005). Compared with mammalian sAC, sea urchin sAC
contains multiple amino acid insertions (16–74 amino acids in
length) with several potential phosphorylation sites (Nomura et al.,
2005).

In the presence of Mg2+, partially purified sea urchin sAC is
stimulated by HCO3

– with an EC50 of ~20 mmol l−1, and it reaches
its maximum at 50 mmol l−1 (Beltrán et al., 2007). However, these
values seem high compared with [HCO3

–] in aquatic invertebrates,
raising doubts about the physiological significance of sea urchin
sAC. Unlike the pH-insensitive mammalian (Chen et al., 2000) and
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Fig. 4. Expression of sAC in
dogfish shark tissues. (A,B) sAC
protein detected by western
immunoblot in rectal gland and red
blood cells; the band matches the
predicted ~110 kDa sAC protein.
(C) sAC mRNA detected by RT-PCR
in gill (positive control) and rectal
gland. (D) Immunolocalization of
sAC (brown) in rectal gland cells,
showing cytoplasmic and potentially
nuclear localization (nuclei stained in
green). Methods followed those
described previously (Tresguerres et
al., 2010c).
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dogfish sAC (Tresguerres et al., 2010c), sea urchin sAC displays a
steep sensitivity to pH between 7.0 and 7.5 (Beltrán et al., 2007).
However, the high EC50 value and pH sensitivity may reflect
artifacts of working with semi-purified sea urchin sAC preparations
or of not utilizing physiologically relevant assay conditions (e.g.
catalytic metals, salts, etc.).

Initial experiments found sea urchin sAC to be concentrated in the
proximal half of the sperm flagellum near the mitochondrial
midpiece (Bookbinder et al., 1990); this suggested sea urchin sAC
triggers the initiation of sperm motility, which depends on cAMP-
dependent phosphorylation of flagella-associated proteins (Bracho et
al., 1998). Sea urchin sAC is tightly complexed with several proteins
of the plasma membrane and axoneme, including dynein heavy
chains 7 and 9, sperm-specific Na+/H+ exchanger (NHE), cyclic
nucleotide-gated ion channel, sperm-specific creatine 
kinase, membrane-bound guanylyl cyclase, cGMP-specific
phosphodiesterase 5A, the receptor for the egg peptide speract, and
α- and β-tubulins (Nomura and Vacquier, 2006). The authors
proposed that this complex modulates sperm motility in response to
speract and pH changes. Further research using confocal microscopy
revealed sea urchin sAC to also be present in the head and acrosomal
area (Beltrán et al., 2007). Indeed, sea urchin sAC is important, but
not essential, for the sperm acrosome reaction (Beltrán et al., 2007).
Searches of EST and TSA databases reveal sea urchin sAC mRNA
is also present in embryonic primary mesenchyme cells (Zhu et al.,
2001), suggesting various physiological roles in addition to sperm
motility and acrosome reaction.

sAC in mollusks
sAC hits are present in the genome, TSAs and ESTs of the Pacific
oyster (Crassostrea gigas). Moreover, we have detected sAC mRNA
by RT-PCR in mantle, gill and hemocytes, and have observed KH7-
sensitive cAMP production in mantle tissue homogenates (Barron et
al., 2012). However, the physiological roles of oyster sAC remain
unknown. In addition to oysters, other mollusks with readily
identifiable sAC orthologs include the Venus clam (Ruditapes
philippinarium) and the owl limpet (Lottia gigantea) (Table 1). The
sAC amino acid sequences from these three mollusk species have a
serine in the position of the residue suggested to be involved in
HCO3

– stimulation, which is different from the threonine in sACs
from all other animals examined so far, but matches the motifs of
HCO3

–-sensing bacterial sAC-like enzymes (Linder, 2006;
Steegborn et al., 2005b). The implications of these differences are
unknown.

In bivalves, pathways involving cAMP have been found or
implied to play a role in regulating glycogen breakdown, cilia
beating and activation, spawning induction, cardiac contraction,
reproduction, mantle and siphon movement, adductor muscle
relaxation after the ‘catch response’, and stress response (reviewed
in Fabbri and Capuzzo, 2010). Research on cAMP in bivalves has
relied heavily on the use of the biogenic amines 5-HT, dopamine,
noradrenaline and adrenaline, which are extracellular ligands for
GPCRs (Fabbri and Capuzzo, 2010). As a result, cAMP production
in mollusks has been exclusively attributed to the activation of
tmACs. However, the literature on cAMP and its physiological
responses predates the discovery of sAC in mammals. For example,
cAMP production in some bivalve species such as Mytilus
galloprovincialis and Tapes philippinarum, as well as the sea hare,
Aplysia californica, are unresponsive to, or only slightly stimulated
by, forskolin (Mancebo et al., 1991; Valbonesi et al., 2004; Weiss
and Drummond, 1985). Although the results of these studies have
been explained by attributing activity to orthologs related to the

forskolin-insensitive tmAC IX isoform, orthologs of sAC could
supply an alternative, equally plausible, explanation.

Mollusks typically experience many situations associated with
increases in the [HCO3

–] in their internal fluids, which could lead to
stimulation of sAC. For example, [HCO3

–] in the hemolymph of the
freshwater clam Anodonta cygnea rises from 5 to 12 mmol l−1 on a
seasonal basis (Lopes-Lima et al., 2009), and doubles from 3 to
6.5 mmol l−1 in zebra mussel (Dreissena polymorpha) upon transfer
from freshwater to brackish water (Byrne and Dietz, 2006). The
cuttlefish (Sepia officinalis) can accumulate HCO3

– in plasma from
~2 mmol l−1 to over 10 mmol l−1 to compensate for environmental
hypercapnia (Gutowska et al., 2010); bivalves may also experience
significant elevations in hemolymph [HCO3

–] in response to ocean
acidification (Lannig et al., 2010; Michaelidis et al., 2005b) and
exposure to air (Michaelidis et al., 2005a). Although HCO3

–

accumulation in bivalves in response to hypercapnia is typically
much more modest compared with that in active cephalopods, it can
still double or in some cases quadruple. Exploring whether sAC
plays any physiological role in these situations must start by
establishing the sensitivity of mollusk sAC to HCO3

–, pH and
inhibitors, and by identifying the tissues where it is expressed.

sAC in corals
We have recently identified two isoforms of sAC in the genome of
the coral Acropora digitifera (Barott et al., 2013), and sAC is present
in at least two other coral species (A. yongei and Stylophora
pistillata; M.T., K.L.B. and M.E.B., unpublished observations), as
well as in the genome of the starlet sea anemone Nematostella
vectensis. Total AC activity in coral tissue homogenates devoid of
symbiotic zooxanthellae is among the highest observed from any
organism. Indicative of sAC activity, cAMP production in
homogenates is significantly stimulated by HCO3

– with an apparent
EC50 of ~10 mmol l−1, and the HCO3

–-stimulated activity is inhibited
by 50 μmol l−1 KH7 (Barott et al., 2013). The HCO3

– EC50 and the
KH7 dose–response of coral sAC need to be determined from
kinetic studies using purified protein.

The biological role of sAC in corals remains an outstanding
question, but multiple roles are possible, including the regulation of
A/B homeostasis, photosynthesis and calcification. Because
[HCO3

–] in coral tissues ranges from ~4 mmol l−1 in the dark to over
100 mmol l−1 in the light (Furla et al., 2000), coral sAC is likely to
be sensitive to physiologically relevant variations in [HCO3

–] and
most active in the light. Indeed, endogenous cAMP levels in corals
in vivo are highest in the light (Barott et al., 2013), but whether this
is due to sAC activity remains to be determined.

sAC in other aquatic animals
Table 1 contains a non-exhaustive list of sAC orthologs from other
aquatic animals, including those from placozoa (Trichoplax
adherens), sponge (Amphimedon queenslandica), acorn worm
(Saccoglossus kowalevskii), amphioxus (Branchiostoma floridae)
and sea squirt (Ciona intestinalis). Partial sAC sequences are also
identifiable in WGS databases of appendicularia (Oikopleura
dioica), green sea turtle (Chelonia mydas), painted turtle
(Chrysemys picta) and American alligator (Alligator
mississippiensis), as well as in snake (Python morulus) [which is
not an aquatic animal but, like most reptiles and amphibians,
undergoes a very pronounced post-feeding blood alkalosis
(reviewed in Wang et al., 2001)]. Available sequences for sAC
orthologs from marine mammals include those from orca whale
(Orcinus orca), bottlenose dolphin (Tursiups truncatus), manatee
(Trichechus manatus) and walrus (Odobenus rosmarus) (Table 1).
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Need for complementary acid sensor(s)
While the sensory role of sAC during alkalosis is straightforward,
its potential function during other A/B stress conditions is more
complex. For example, both respiratory acidosis and metabolic
alkalosis are characterized by elevated PCO2 and [HCO3

–] and could
result in sAC stimulation. However, the homeostatic A/B response
to acidosis requires secretion of H+ and absorption of HCO3

–, which
is exactly the opposite of the response to alkalosis. To correct for
A/B disturbances, cells and organisms must be able to tell the
difference between the different types of stress. Both acid- and
bicarbonate-secreting cells of shark gills and mammalian kidney
express sAC, but how does sAC ‘know’ which response it should
initiate? One potential mechanism involves the integration of inputs
from HCO3

–-responsive sAC and one or several H+ sensors (see
Brown and Wagner, 2012; Tresguerres et al., 2010a), possibly in
combination with differential cell membrane permeability to CO2 or
HCO3

–.

Conclusions
Because of the ubiquity of both HCO3

– and cAMP in biological
systems, sAC is poised to play multiple important physiological
roles as a sensor of A/B stress. The existence of multiple sources of
cAMP in different intracellular locations warrants a revisiting of the
existing literature, as many of the functions currently ascribed to
tmACs may actually depend on sAC.
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