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Abstract—Autonomous vehicle operation would be enhanced
if a specified level of accuracy could be guaranteed. Risk-averse
performance-specified (RAPS) state estimation works within an
optimization setting to choose the set of measurements that
achieves a performance specification with minimum risk of
inclusion of outliers. This paper considers the challenge of
preventing outlier measurements from affecting the accuracy and
reliability of state estimation, with minimal risk. This paper
is that for the first time applies the RAPS approach to the
GNSS vehicle state estimation problem, including a review of the
theoretical derivation and experimental results. The experimental
results utilize real-world Doppler and differential pseudorange
data that allows a comparative study with the standard Neyman-
Pearson (NP) approach and RAPS state estimation.

I. INTRODUCTION

Autonomous and connected vehicle applications would be
enhanced by reliable full-state estimation consistent with sub-
meter positioning accuracy. While GNSS-based navigation has
increased drastically in recent decades, even for differential
applications reliable submeter positioning accuracy is chal-
lenging due to the presence of outliers in GNSS measurements
that may be caused for example by multipath, overhead
foliage, or non-line-of-sight signals (see Chapter 26 in [1]).
This is especially true in urban environments.

In general, land vehicle navigation applications are sig-
nal rich: images contain many features, IMU’s are viable,
and GNSS comprises many separate systems (e.g., GPS,
GLONASS, BeiDou, Galileo) each of which over-supplies
the number of satellites necessary for state estimation. To
achieve a specified level of state estimation accuracy, the full
set of measurements is typically not required, so long as
the measurements that are used are valid (i.e., outlier free).
Therefore, if the full set of measurements was used, then
the state estimate would have been exposed to unnecessary
risk, while the computed covariance would show that the
estimator is over-performing relative to the specification. In
reality, outliers are likely to have been included, making the
state estimate incorrect and the covariance overly confident in
that incorrect estimate. Therefore, outlier accommodation is
both possible (due to redundancy) and important.

The literature discusses various outlier detection techniques
building on fundamental ideas [2]–[7]. The RAIM techniques
are based on computing a party vector from the measurement
residual [8]–[11] assuming that there is enough measurement
redundancy to discriminate the outlier source. While many
RAIM approaches assume that there is only one outlier,

multiple outlier detection has also been well developed [9],
[10], [12]–[14]. Extended RAIM (eRAIM) [15] incorporates
an Inertial Measurement Unit (IMU) and Kalman filter based
estimation into RAIM.

Data redundancy, quantified by the number of degrees-of-
freedom (DOFs), is critical to successful outlier accommo-
dation. Both RAIM and eRAIM are based on measurements
from a single epoch, limiting data redundancy. Redundancy
can be enhanced both by adding additional sensors or by
solving the estimation problem using all sensor data within
a sliding temporal window.

The outlier detection problem is fundamentally unobserv-
able, when all measurements have the potential to be af-
fected by outliers [16], [17]. Therefore, outlier detection
methods such as those reviewed above are built on outlier
hypothesis assumptions, resulting in tests to choose the most
likely assumption. When the number of possible hypothesis
assumptions is too low, the actual outlier scenario may not be
included, but the required level of computations increases with
the number and complexity of the assumed fault scenarios.

Recently new methods for outlier accommodation without
explicit detection have been presented in the literature. The
Least Soft-thresholded Squares (LSS) approach, building on
l1-regularization, that was presented in [18]–[22]. A version
of the LSS approach adapted to the problem of [23] is
presented in [24]. Alternatively, [16] works within an opti-
mization setting to find the largest set of measurements self-
consistent with the assumed model. Finally, [17] works within
an optimization setting to choose the set of measurements that
achieves a performance specification with minimum risk. The
performance specification is phrased in terms of the posterior
information matrix. The method is able to quantify when the
performance specification is feasible and to quantify the risk
associated with the achieved level of performance. The risk
is defined by the norm of the covariance normalized residual
vector. Reference [17] works in a general theoretical setting,
with generic academic examples and no in-depth evaluation
has been conducted so far.

The main contribution of this paper is that for the first time,
the risk-averse performance-specified approach of [17] will
be applied to and explained for the GNSS state estimation
problem, including both the theoretical derivation and exper-
imental results. The experimental results utilize real-world
Doppler and differential pseudorange data, considering the risk
associated with both sets of measurements.
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The next section presents the problem statement for the
GNSS/IMU state estimation problem. Section III quickly
reviews the risk-averse performance-specified state estimation
method. Presentation and evaluation of experimental results
follows in Section IV.

II. PROBLEM STATEMENT

This section introduces GNSS navigation system back-
ground and notation [25].

The rover state estimation algorithm has two steps: time
propagation and measurement update. This article considers
the standard position, velocity, acceleration (PVA) model for
the time propagation step. GNSS pseudorange and Doppler
used for the measurement update. This section introduces the
PVA and GNSS models.

A. Time Propagation

Let x = [p>,v>,a>, tr,br,Mr]
> ∈ IRns denote the rover state

vector, where p, v and a ∈ IR3 represent the rover position,
velocity, and acceleration vectors, respectively. The symbols
tr,br ∈ IR1 represent the receiver clock bias and drift rate.
The symbol Mr ∈ IRm represent the multipath state, where
m is the number of GNSS measurements available. Thus, the
dimension of the state vector is ns = 11+m.

The rover state propagates forward through time as

xi+1 = ΦT xi +ωi. (1)

The matrix

ΦT =


I3 TI3 T 2I3 0 0 0
0 I3 TI3 0 0 0
0 0 I3 0 0 0
0 0 0 1 T 0
0 0 0 0 1 0
0 0 0 0 0 Im

 (2)

where Iq is the identity matrix for IRq and the symbol 0 a
zero matrix with the number of rows and columns necessary
to conform. The propagation matrix ΦT is constant over
time. The length of the time propagation step is T . Using
the symbols ηa, ηd and ηm to represent the acceleration,
clock drift and multipath state process noise, respectively,
then ωi ∼N (0,Qd) represents the integrated effect of process
noise vector ω = [0 0 η>a 0 ηd η>m ]> over time interval T .

Let tk−1 and tk represent the time of the previous and
current GNSS measurements. Let Np =

(tk−tk−1)
T ) be a whole

number. The rover state integrates the expected value of eqn.
1. Therefore,

x̂−k = (ΦT )
Np x+k−1 (3)

The covariance of the state error over the interval [tk−1, tk]
accumulates as

P−k = ΦP+
k−1Φ

>+Qd (4)

where P−k is the prior covariance and Φ = (ΦT )
Np .

B. Measurements

Our experiment uses single-differenced GNSS pseudorange
measurement [25] that will be denoted as ∆ρ̃s

r (k). The single-
differenced GNSS pseudorange measurement model is

∆ρ
s
r (k) = R(pk, p̂s

k)+ ctr(k)+Ms
r(k)+η

s
r (k) (5)

where R(pk, ps
k) = ‖pk− p̂s

k‖ is the range from receiver r to
satellite s, ctr is receiver clock bias in meters, Ms

r is multipath
error for satellite s, and ηs

r ∼N (0,Rp) is random pseudorange
measurement noise.

Linearization of the single-differenced pseudorange mea-
surement at p̂−k yields the measurement model

∆ρ
s
r (k) = R(p̂−k , p̂s

k)+hk(pk− p̂−k )+ ctrk +Ms
r(k)+η

s
rk

where hs
k =

p−k −p̂s
k

‖p−k −p̂s
k‖

is the line-of-sight vector from receiver
r to satellite s. The psuedorange measurement residual is
computed as

δρ
s
r (k) = ∆ρ̃

s
r (k)−R(p̂−k , p̂s

k)− M̂s
r(k)

and modeled as

δρ
s
r (k) = hs

kδ pk + ctrk +δMs
r(k)+η

s
r (k)

where δ pk = pk− p̂−k and δMs
r(k) = Ms

r(k)− M̂s
r(k).

After correction for the satellite velocity, the Doppler mea-
surement model is:

λDs
r(k) = hs

kvk + cbr(k)+ ε
s
r (k) (6)

where v is the rover velocity vector, εs
r is measurement noise

with εs
r (k)∼N (0,Rd). The Doppler measurement is linear in

the rover velocity. The Doppler residual is computed as

δDs
r(k) = λ D̃s

r(k)−
(
hs

kv̂k + cb̂r(k)
)

and modeled as

δDs
r(k) = hs

kδvk + cδbr(k)+ ε
s
r (k)

where δvk = vk− v̂−k and δbr(k) = br(k)− b̂r(k).
The measurement vector for satellite s is

zs
k =

[
δρs

r (k)
δDs

r(k)

]
. (7)

The linearized measurement model has the form

zs
k = Hs

kδxk + γ
s
r (k) (8)

where δxk = x−k − x̂−k . The measurement matrix is

Hs
k =

[
hs

k 0 0 0 0 1 0 · · · 1 · · ·
0 hs

k 0 0 0 0 1 · · · 0 · · ·

]
(9)

where the rightmost 1 in the first row corresponds to element
s of the multipath vector. The noise vector

γ
s
rk =

[
ηs

rk
εs

rk

]
∼N (0,R) where R =

[
Rp 0
0 Rd

]
.
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C. Notation

The presentation will use information vectors and matrices.
For a random variable with distribution N (µ, P) a canonical
representation of is given by the information matrix J = P−1

and the information vector ζ = P−1µ .
Corresponding to the optimal gain, the measurement update

for the covariance is

P+
k = (I−KkHk)P−k . (10)

Corresponding to eqns. (4) and (10), the time and (optimal)
measurement update equations for the information matrix are
[26]:

J−k = (Φ(J+k−1)
−1

Φ
>+Qd)

−1

J+k = H>k R−1Hk + J−k .
(11)

The assumption of Gaussian noise will naturally result in
squared Mahalanobis norms for the optimizaion problems. The
squared Mahalanobis norm of vector r with covariance C is
denoted by ||r||2C = r>C−1r = ||Σr||22 where C−1 = Σ>Σ.

III. PROBLEM SOLUTION

A main new idea of [16], [17] was to change the focus from
detecting outliers to find a subset of the measurements that can
be consistently produced by the assumed measurement model
and satisfying the accuracy specification.

In the standard Maximum A Posteriori (MAP) state estima-
tion approach, using all measurements at time k, the negative
log-likelihood of the distribution yields the optimization

x?k = argmin
xk

(
‖Φxk−1− xk‖2

Qd

+‖xk−1− x̂+k−1‖P+
k−1

+‖Hkxk− zk‖2
R
) (12)

where x̂+k−1 represents the optimal a posteriori estimate at time
k−1.

In this paper, the prior and state transition are always trusted
(i.e., outlier-free). Therefore, the first and second term of the
optimization can be propagated to produce x̂−k and P−k using
eqns. (3) and (4). This simplifies eqn. (12) to the equivalent
problem

x?k = argmin
xk

(
‖xk− x̂−k ‖P−k

+‖Hkxk− zk‖2
R
)

(13)

The solution to eqn. (13) is the standard (extended) Kalman
filter for the GPS INS problem.

To find the optimal measurement subset, a binary selection
vector b = (b1 b2 · · · bm)

> is introduced. The selection
variable bi, associated with ith measurement, is used to disable
or enable a measurement with bi = 0 and bi = 1, respectively.
The optimization works on an augmented problem, searching
for a state estimate and selection variable that minimizes
the risk while satisfying the performance constraint that the
posterior information matrix for using the selected set of
measurements must be larger than the user defined lower
bound accuracy Jl .

Allowing for measurement selection and the performance
constraint, eqn. (12) becomes:

P1a : min
x,b

[
‖x− x−k ‖

2
P−k

+‖Φ(b)(Hx− zk)‖2
R

]
subject to: H>R−1

Φ(b)H + J−k ≥ Jl

bi ∈
{

0,1
}

for i = 1, . . . ,m, .

(14)

where Φ(b) = diag(b). Minor simplifications were made,
assuming that R was diagonal and noting that due to the binary
definition of b: b2

i = bi.
Relaxing the binary constraint on each bi yields:

P1b : min
x,b

[
‖x− x−k ‖

2
P−k

+‖Φ(b)(Hx− zk)‖2
R

]
subject to: H>R−1

Φ(b)H + J−k ≥ Jl

bi ∈ [0,1] for i = 1, . . . ,m.

(15)

which is a convex problem separately in x and b. Based on
[17], [27], P1b can be solved using multi-convex programming
by alternatively updating b and x, with the addition of proximal
terms in the cost function (see below).

The iteration number will be indicated by a right superscript
`, starting at zero. To initiate the iterative solution, the two
steps of updating b and X are interchangeable. In the `th

iteration, x`+1 and b`+1 are computed in two steps [17]:
1) Selecting the measurements: Optimize the selection

vector b`+1 for fixed x` by:

P2 : min
b
‖Φ(b)(Hx`− zk)‖2

R +λ‖b−b`‖2

subject to: Jl−
(
H>R−1

Φ(b)H + J−k
)
≤ 0

bi ∈
[
0,1
]
∀i = 1, · · · ,m.

where λ > 0 is the user-defined proximal parameter. P2
is a standard semidefinite programming (SDP) problem
and can be solved using an interior point method, and
etc.

2) State update: Optimize the variable x`+1 for fixed b`+1

as:

P3 : min
X

[
‖x− x−k ‖

2
P−k

+‖Φ(b`+1)(Hx− zk)‖2
R

+β‖x− x`‖2

where β > 0 is the user-defined proximal parameter. P3
is an unconstrained least squares optimization problem
and can be minimized using QR decomposition, singular
value decomposition (SVD), etc.

Remark 1: The method above provides a non-binary selec-
tion vector bp ∈ [0,1]m. For implementation the designer has
at least the following choices.

The designer could specify a threshold τ , such that

bi =

{
1 bp(i)≥ τ

0 otherwise.

If bi = 0, the corresponding ith row in H and zk will be dis-
carded. Using this threshold approach imposes two drawbacks.
a) The computed accuracy using binary bi is different than the
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solution of the optimization (14) which may not satisfy the
lower bound information constraint. b) The designer needs to
select an appropriate threshold.

Alternatively, the designer could treat bp(i)∈ [0,1] as a mea-
surement information weight to corresponding to the ith row,
by replacing H and zk by Φ(bp)H and Φ(bp)zk, respectively, in
the state estimation process, measurements with smaller bp(i)
are deweighted relative to those with larger values. This is
equivalent to replacing the measurement covariance R for that
satellite by R

b2
p(i)

. 4

IV. NUMERICAL RESULTS

This section provides experimental results including com-
parative studies of performance with Kalman filter, Neyman-
Pearson Kalman filter and RAPS algorithms.

A. Hardware and Data Description

The experimental setup included a low-cost single-
frequency GPS receiver (u-blox M8T). The antenna was
positioned in a previously surveyed location and was sta-
tionary. Performance is analyzed using single differenced L1
pseudorange and Doppler. No phase measurements were used.
The DGNSS correction data was provided in RTCM standard
using NTRIP protocol using a base station ESRI with 14.5 km
baseline separation.

B. Algorithm Description

The position estimate algorithm uses a PVA model based
Kalman filter approach [28]. The state vector is x =[
p>, v>, a>, tr, dr, Mr

]>. The details of the model are in
Section II and of the algorithm are mentioned in Section III.
Due to the location of the stationary antenna on the roof of
a four story building the sky was clear and there were no
obstacles; therefore the collected data set should contained no
outliers. This was confirmed by analysis of the KF residuals.

To allow analysis of algorithm performance in the pres-
ence of outliers, outliers will be added to the pseudorange
measurements in a sequence of Monte Carlo tests. For each
Monte Carlo test manually generated outliers are added to two
randomly chosen measurements at each time instant. The size
of each outlier is drawn from a uniform uniform distribution
parameterized by µ ∈ [0.2,20]. For µ < 4, the distribution is
U [0,µ]. For µ >= 4, the distribution is U [µ − 4,µ + 4]. For
each Monte Carlo run, the same outlier corrupted data is used
for both NPKF and RAPS.

The results are compared with three algorithms:
• Kalman filter (KF): For this algorithm the results include

all measurements and no outliers are added. These results
show the best possible results in an ideal outlier-free
situation.

• Neyman-Pearson Kalman filter (NP-KF): This algo-
rithm has all the measurements available to it, but outliers
have been added as described in the previous paragraph.
NP-KF applies a threshold test, ignoring all measure-
ments when the absolute value of their residual is greater

than the threshold sii = γ

√
Rii +hiP−k h>i where hi is the

ith row of H and γ = 5.
• Risk-Averse Performance-Specified (RAPS): This al-

gorithm has all the measurements available to it, but
outliers have been added as described in the previous
paragraph. RAPS solves the optimization in eqn. (14),
which provides a non-binary selection vector bp ∈ [0,1]m.
Measuremnts are selected by converting bp to a binary
vector as described in Remark 1.

The above mentioned algorithms are used on the same data,
with the same outlier corruption, and performance is analyzed.

Peformance analysis includes the norm of position error,
sub-meter accuracy percentage, maximum position error. The
norm of position error is calculated as:

En
pk
= ‖pr− p̂n

k‖ (16)

where pr is the surveyed antenna position, p̂n
k is the estimated

rover position at time epoch k. The symbol n is the algo-
rithm number. The symbol ern

ps represents the percentage of
instances where the position error norm is less that 1 meter.

C. Experimental Results Discussion

Fig. 1 shows the temporal progression of the norm of the
position components of the square-root of the diagonal of the
computed information matrix for t ∈ [588,595] seconds. It is
similar for all other time periods. At each integer second a
measurement update occurs which increases the information
matrix above the black dotted line that shows the lower
bound. Between the measurement time instants the position
information decreases due to the accumulating propagation
uncertainty. The blue curve depicts the information achieved
by the KF which uses all measurements at each time step. Note
that this is the information that the KF thinks it has, which is
true for the outlier free case. If the KF use an outlier-corrupted

Fig. 1: Position Information Comparison. Blue curve is the Kalman Filter.
Red curve is RAPS.
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(a) Position Error with µ = 8 (b) Position Error with µ = 13

Fig. 2: Performance Comparison. Red curves are the Kalman Filter. Green curves are for NP-KF. Blue curves are for RAPS.

Fig. 3: Position error for outliers of magnitude [0.2,20]. Red curves are RAPS.
Green curves are for NP-KF.

measurement, then the state estimate would be wrong and the
information matrix would be too large (over-confident). The
red curve shows the progression of the RAPS information
matrix. The information increase at the measurement times
achieves the lower bound (black curve), but is not as large as
the Kalman filter, due to the cost function penalizing risk;
therefore, the approach only takes on the amount of risk
necessary to achieve the specification.

Figs. 2a and 2b compare the position error for two different
scenarios. Each figure shows results from a single 1000
second experiment. The blue curve is the KF without outliers,
representing the best performance achievable for the given
dataset, without outliers. The red and green curves represent
the performance of RAPS and NP-KF when outliers are added.
In Fig. 2a the outlier parameter µ = 8. In Fig 2b the outlier

TABLE I: Algorithm Comparison (See algorithm description. The KF is
outlier free. NP-KF and RAPS have outliers.)

Performance analysis KF NP-KF1 NP-KF2 RAPS

Mean of position error (m) 0.55 1.17 0.85 0.59

Std. of position error (m) 0.17 0.28 0.26 0.18

Sub-meter accuracy % 99 19 67 98

Maximum error (m) 1.2 1.8 1.4 1.2

parameter µ = 13. In both figures, the RAPS performance is
not quite as good as the KF (no outliers), but better than NP-
KF. The performance of the NP-KF is better in Fig 2b (µ = 13)
than it is in Fig. 2a (µ = 13), because the larger magnitude of
the outlier results in the threshold test being more successful
in detecting and removing outliers correctly.

It is important to note that the RAPS approach does not
simply use the smallest residuals. Selecting the smallest resid-
uals might not satisfy the performance constraint, because the
corresponding rows of the H matrix may not be sufficiently di-
verse. In the RAPS approach, the optimization process ensures
that the selected measurements result in sufficient diversity in
the rows of H to satisfy the position error specification, while
minimizing the risk of including outliers. As the number of
measurements increases, the expected information from those
measurement increases, but so does the risk of inclusion of
outliers. The RAPS may ignore some of the smaller residuals,
as they would add risk without supplying a sufficient amount
of new information. In the RAPS approach the number of
measurements used at each time may vary. In this experiment,
over 60% of the measurements at each time are used.

Table I summarizes various measures of positioning accu-
racy for [0,1000] seconds of data with two different scenarios:
a) The outlier magnitude is µ = 8. The results are presented
in the column headed by NP-KF1. b) The outlier magnitude is
µ = 13. The results are presented in the column headed by NP-
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KF2. The RAPS results for the two scenarios were the same
to within centimeters of accuracy. The first and second rows
compare the mean and standard deviation (std) of position
error defined in eqn. (16). Rows 3 reports the percentage
of samples that achieved sub-meter accuracy. That paper
using KF methods shows 99% of samples achieving submeter
accuracy over 1000 seconds of data while using RAPS yields
to 98% of submeter accuracy. The RAPS approach performs
better that the NP-KF approach in both scenarios by all
measures.

Fig. 3 shows the NP-KF and RAPS performance, averaged
over 20 Monte Carlo simulations. To produce one point on the
curve for one value of µ ∈ [0.2,20] meter: twenty experiment
were each run over [0,1000] seconds; the position error at each
second were computed; the position errors were averaged both
over the 1000 seconds and the 20 Monte Carlo experiments.
Each Monte Carlo experiment generate a new set of outliers
that was used both for NP-KF and RAPS. With nine satellites
available and two outliers per epoch, the measurement set
(pseudorange plus Doppler) contains 11% outliers. The red
curves displays the result for the RAPS algorithm. The green
curves displays the results for NP-KF approach. The y-axis in
the top figure is the mean of the error. The y-axis in bottom
figure is the percentage of the measurements are used for
state estimation. NP-KF uses all measurements when µ is
small. Then its threshold test removes an increasingly higher
percentage of the outliers correctly as the magnitude of the
outlier increases, until it is correctly removing 11% of the
pseudoranges. Therefore, NP-KF mean error initially rises and
later falls as the magnitude of the outlier increases. RAPS
mean position error performance is robust to the magnitude of
the outlier.

V. CONCLUSIONS

Many applications require reliable, high precision state
estimation consistent with (i.e., sub-meter) position accuracy.
Success requires mitigation of measurement outliers. This
paper applied the risk-averse performance-specified (RAPS)
method [17] to estimate the rover state using GNSS measure-
ments. In this paper, the feasibility of the proposed approach
has been demonstrated and performance was evaluated relative
to a Neyman-Pearson Kalman Filter with the same outlier sets
and to an outlier free Kalman filter using experimental data.
Performance is summarized in Figs. 2a and 2b and Table I.
RAPS successfully estimated the rover state with horizontal
position accuracy at the submeter level for 98% of the samples.
The mean and standard deviation of the position error using
RAPS are 59 cm and 18 cm, respectively. The comparisons
herein are limited. Further comparison as a function of the
NP-KF threshold γ and the number of measurements affected
by outliers are also of interest. A companion paper at this
conference [29] discusses and compares KF algorithms and
a differential correction computation approach to maintain
accuracy in the presence of communication latency.

The proposed approach is not limited to GNSS state estima-
tion, but can be beneficially applied to other domains where

outliers have to be suspected, such as SLAM , machine learn-
ing, etc. Implementation in other applications and comparison
with alternative methods proposed by other authors are of
interest for future work. Moreover, in this article an interior
point method is employed to solve the SDP optimization
problem (14) which is time-consuming and the computational
cost grows as the number of measurements increases. Future
research can focus on enhancing computational efficiency
toward real-time solution, application to moving data sets, and
application with inertial sensors.
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