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The liver plays a central role in metabolism and produces important hormones. Hepatic
estrogen receptors and the release of insulin-like growth factor 1 (IGF1) are critical
links between liver function and the reproductive system. However, the role of liver
in pubertal development is not fully understood. To explore this question, we applied
transcriptomic analyses to liver samples of pre- and post-pubertal Brahman heifers
and identified differentially expressed (DE) genes and genes encoding transcription
factors (TFs). Differential expression of genes suggests potential biological mechanisms
and pathways linking liver function to puberty. The analyses identified 452 DE genes
and 82 TF with significant contribution to differential gene expression by using a
regulatory impact factor metric. Brain-derived neurotrophic factor was observed as the
most down-regulated gene (P = 0.003) in post-pubertal heifers and we propose this
gene influences pubertal development in Brahman heifers. Additionally, co-expression
network analysis provided evidence for three TF as key regulators of liver function
during pubertal development: the signal transducer and activator of transcription 6, PBX
homeobox 2, and polybromo 1. Pathway enrichment analysis identified transforming
growth factor-beta and Wnt signaling pathways as significant annotation terms for the
list of DE genes and TF in the co-expression network. Molecular information regarding
genes and pathways described in this work are important to further our understanding
of puberty onset in Brahman heifers.
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INTRODUCTION

The beef industry in Northern Australia is facing increased
demand for improved herd productivity. Brahman cattle, a
breed of the Bos indicus sub-species, can withstand hot-humid
conditions, but enter puberty at older age in comparison with
Bos taurus (Johnston et al., 2009). Late onset of puberty in
B. indicus predicts a decrease in lifetime productivity (Lesmeister
et al., 1973; Johnston et al., 2013). Therefore, reducing the age at
puberty to increase B. indicus cow productivity is a worthwhile
goal for management and breeding.

Reproduction is an energy intensive process that is likely
to require specific involvement of the liver. The physiological
mechanisms controlling energy balance are closely linked to
fertility, to minimize the risk that pregnancy and lactation
coincide with periods of nutritional stress (Mircea et al., 2007).
While in placental mammals, the hypothalamus–pituitary–
ovaries axis takes precedence in the integration of metabolic and
reproductive status, there are evidences for the involvement of
the liver in this process. In the postpartum cow, it is known
that the metabolic stress associated with transition is linked to
impaired liver function and delayed ovulation (Montagner et al.,
2016). In mice, it has been shown that hepatic synthesis of
Insulin-like growth factor 1 (IGF1) is regulated by amino acid-
dependent activation of ERα in the liver (Della Torre et al.,
2011). Additionally, an association between single nucleotide
polymorphisms in genes of the IGF1 signaling pathways and age
at puberty in Brahman cattle was observed (Fortes et al., 2013).

Several studies investigated the change in hepatic mRNA
expression of genes encoding proteins that participate in various
processes including growth hormone signaling, liver lipoprotein
assembly, ureagenesis, and gluconeogenesis (Loor, 2010). Few
studies have utilized microarray technology to evaluate hepatic
metabolic adaptations to dairy cow throughout pregnancy,
transition period, early lactation, and mid lactation (Herath et al.,
2004; Loor et al., 2005; Loor, 2010; McCarthy et al., 2010; Akbar
et al., 2013). A microarray study of the effect of pregnancy
and diet in liver gene expression revealed specific hepatic
adaptations of beef cows to different nutritional environments.
For example, the study found clear evidence of gluconeogenesis
in the liver of pregnant cows during limited forage availability
(Laporta et al., 2014). Using candidate gene approach or
transcriptomics investigating genomic peripartal adaptions in
dairy cows provided insights into physiological function and
genetics of key tissues.

A study has evaluated the liver transcriptome during puberty
onset in Brangus heifers (3/8 Brahman; B. indicus × 5/8
Angus; B. taurus) (Cánovas et al., 2014). This study has used
RNA sequencing, which is a more sensitive transcriptome
profiling method than microarray. Sequencing RNA is capable
of detecting not only expression differences in the most highly
expressed metabolic genes, but also in regulatory genes (Marioni
et al., 2008). Our study used sequencing to evaluated mRNA
expression, regulatory factors, and potential biological pathways
that occur in the liver related to pubertal development in
Brahman heifers; a different population that is predominantly
B. indicus. These heifers were used in two studies that reported

transcriptomics of the hypothalamus–pituitary–ovarian axis,
with no observation of liver function (Fortes et al., 2016;
Nguyen et al., 2017). Molecular information of key regulators
and pathways in liver may reveal mechanisms involved in
puberty onset and energy metabolism. To access IGF1 signaling
in this context, we also report hormonal measurements. This
information may contribute to future approaches for reducing
the age at puberty of B. indicus cattle used in tropical beef
production systems.

MATERIALS AND METHODS

Animals and Samples
Heifers used in this study were managed, handled, and
euthanized as per approval of the Animal Ethics Committee
of the University of Queensland, Production, and Companion
Animal group (certificate number QAAFI/279/12). Heifer used
were 12 young animals from commercial Queensland herds with
typical phenotypic characteristics of B. indicus cattle. In Australia,
the average content of B. indicus in Brahman cattle is about 95%
(Porto Neto et al., 2013). They were unrelated heifers of similar
age (born during the wet season 2011/2012) and weight <250 kg.
They were maintained on pasture at the Gatton Campus facilities
of the University of Queensland.

We performed ultrasound observations of pubertal
development every fortnight from October 2012 to May
2013. With ultrasound, the observation of the first corpus
luteum (CL) was used to define pubertal status (Johnston
et al., 2009). Euthanasia occurred 15 days after the observation
of the first CL, with samples collected in the next estrous
cycle. Six post-pubertal heifers were euthanized during the
luteal phase of their second estrous cycle, confirmed by the
observation of the second CL at euthanasia. Serum progesterone
concentrations were measured to confirm a functional CL in
post-pubertal heifers (2.0± 0.7 ng/mL, mean± SE). Pre-puberty
heifers were randomly selected from the group that had never
ovulated (plasma progesterone concentration 0.4 ± 0.2 ng/mL,
mean ± SE) and paired with post-pubertal animals in slaughter
day. Therefore, on each slaughter day, two heifers were
euthanatized, one pre- and one post-puberty.

Serum progesterone concentrations were measured in hexane
extracts by RIA (Curlewis et al., 1985) at the Laboratory for
Animal Endocrinology at the University of Queensland. The
extraction efficiency was 75% and reported values were not
corrected for these losses. The assay sensitivity was 0.1 ng/mL and
the within-assay coefficient of variation was 5.0%.

Circulating IGF1 concentrations were measured using a
commercial radioimmunoassay kit (10IGF100 Kit; Bioclone,
Sydney, NSW, Australia). The method included an acid–ethanol
extraction to remove IGF1-binding proteins and measure total
IGF1. All samples were analyzed within a single assay kit
as previously described (Dahlanuddin et al., 2014). The assay
sensitivity was 0.2 ng/mL and the within-assay coefficient of
variation was 2.5%.

Body weight (BW, kg) and body condition scores (BCSs,
5-point scale) were also measured before tissue harvesting, as
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previously described (Fortes et al., 2016). BWs were 338 ± 54
and 363 ± 39 kg and BCSs were 3.5 ± 0.4 and 3.8 ± 0.4 for pre-
and post-pubertal heifers, respectively. There was no statistical
difference in an unpaired t-test in either BW (P = 0.38) or BCS
(P = 0.18) between the heifer groups (Fortes et al., 2016).

After slaughter, tissue harvest was conducted as fast as possible
to preserve RNA integrity. The entire liver was removed from the
animal and three samples of 1 cm3 were dissected from the liver
and snap frozen in liquid nitrogen. Samples were stored at−80◦C
until RNA extraction. In total, 12 liver samples were processed
separately for RNA extraction and sequencing.

Ribonucleic Acid Extraction
Total RNA was isolated from fragmented frozen liver tissue
(∼100 mg) as previously described by Nguyen et al. (2017).
Quality of the total RNA was evaluated using the RNA integrity
number (RIN) measured with an Agilent Bioanalyzer 2100
(Agilent Technologies). Values of RIN range from 7.3 to 8.5,
which indicated good quality of the RNA samples, which were
sent to the University of California, Davis, for library preparation
and sequencing.

Library Preparation and Sequencing
mRNA was purified, fragmented, and used to synthesize
cDNA, as described in (Cánovas et al., 2010). Briefly, after
ligation of the adapters to the ends of double-stranded cDNA
fragments, PCR was conducted to create the final cDNA library.
Sequencing libraries were constructed with the TruSeq RNA
sample preparation kit (Illumina, San Diego, CA, United States).
RNA sequencing was conducted with a HiSeq 2000 Sequencer
Analyzer (Illumina, San Diego, CA, United States). Quality
control was performed using procedures described previously
(Cánovas et al., 2013) using the application NGS quality control
of CLC Bio Genomic workbench software (CLC Bio, Aarhus,
Denmark). All samples passed all the parameters indicating a very
good quality.

Sequence pair-end reads (100 bp) were assembled against
the annotated bovine genome (release 771). The “reads per
kilo base per million mapped reads” (RPKM = total exon
reads/mapped reads in millions × exon length in kb) was
calculated for data normalization (Mortazavi et al., 2008).
A threshold of RPKM ≥ 0.2 was utilized to annotated
expressed genes (Wickramasinghe et al., 2012). Normalization
and transformation data were performed using CLCBio Genomic
workbench software (CLC Bio, Aarhus, Denmark) to transform
the expression data from negative binomial distribution to
normal distribution.

Identification of Differentially Expressed
Genes
Because genes with low counts can be easily biased without
transformation, the base-2 log-transformed RPKM values were
used. Mixed model equations are an optimal method for data
normalization in gene expression studies (Reverter et al., 2005).

1ftp://ftp.ensembl.org/pub/release-77/genbank/bos_taurus/

We normalize the log-transformed RPKM values using mixed
model equations to increase the sensitivity to detect differential
expression and co-expression. This normalization approach for
transformed RPKM values was previously described (Reverter
et al., 2005; Cánovas et al., 2014). In more detail, differential
gene expression after puberty was calculated using a mixed
model: Y ijkpt = µ + Li + Gj + GAPTjkpt + eijkpt , where log 2-
transformed RPKM (Yijkpt) was modeled as a function of the
fixed effect of the i library (Li) and of the random effects of
gene (Gj), and the interaction of gene × animal × physiological
state × tissue (GAPTjkpt) for the i library (with 72 levels) and
the j gene (with 16,978 levels) of the k animal (12 levels) in
the p physiological state (with two levels) from the t tissue
(with five levels). Finally, eijkpt represents the random residual
term. Our liver study was part of a larger experiment where
five tissues were sampled per animal (hypothalamus, pituitary,
liver, ovaries, and uterus), which allows fitting for tissue in the
model. The VCE6 software2 was used to assemble and solve the
mixed model equations and to estimate variance components
associated with random effects. For each gene, the normalized
mean expression was obtained based on adding the solutions
G + GAPT. A t-test was used to test the hypothesis that
the differential expression in post- vs. pre-pubertal heifers was
significant. With the strict normalization performed, we then
used P < 0.05 as the threshold to determine DE genes. This
seemingly not very stringent nominal P was used in context with
the strict normalization performed and the subsequent analyses,
for which differential expression is one of many criteria under
scrutiny.

Identification of Key Gene Regulators
To determine gene regulators from the data, we mined
the AnimalTFDB bovine database3, which comprises the
classification and annotation of animal genomes for transcription
factors (TFs), chromatin remodeling factors, and transcription
co-factors. Among the annotated TF for B. taurus, 1,085 were
expressed in the liver and further filtered for significance in
terms of co-expression with DE genes, using regulatory impact
factor (RIF) metrics (Hudson et al., 2009; Reverter et al., 2010).
The RIF metric was explored in two measures: RIF1 and RIF2,
calculated from the number of DE genes and the predicted
interactions between TF and target DE genes (Reverter et al.,
2010). In brief, RIF1 captured those TF that showed a large
differential connectivity to highly abundant DE genes, whereas
RIF2 focused on TF showing evidence as predictors of change
in abundance of DE genes. A TF was considered as a key
regulator if either of the two RIF scores was higher than 1.96
of the standard deviation, equivalent to a P-value level of
at least 0.05.

Gene Network Prediction
The partial correlation and information theory (PCIT) algorithm
was utilized to detect the association between genes in
a co-expression gene network (Reverter and Chan, 2008).

2ftp://ftp.tzv.fal.de/pub/vce6
3http://bioinfo.life.hust.edu.cn/AnimalTFDB/download_index?tr=Bos_taurus
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In brief, PCIT explores all pair-wise direct and partial
correlations among all possible trios of genes before identifying
significant correlations that will establish edges during network
reconstruction. The co-expression network predicted for the liver
data was then visualized with Cytoscape (Shannon et al., 2003).
From the large predicted network, we explored the subnetwork
deemed to have biological significance for puberty trait. The
subnetwork was used to identify the best trio TF that spanned
most of the network topology with minimum redundancy.
Specifically, an information lossless approach (Reverter and
Fortes, 2013) that explored the 59,640 possible trios among 82
available TFs in the network was used to identify the best TF trio.

Functional Enrichment Analysis
For enriched pathways and gene expression patterns, the
Database for Annotation, Visualization, and Integrated
Discovery (DAVID4) was utilized (Dennis et al., 2003; Huang
da et al., 2009). In our study, the queried gene lists included
genes and TF that formed the predicted gene network. This
list of genes was utilized as a target gene list in comparison
with a background gene list formed by all genes expressed in
liver. Functional annotation chart revealed the most relevant
(overrepresented) gene ontology terms and pathways associated
with these gene lists, reporting an enrichment P-value for each
annotation term. Significant results after Benjamini–Hochberg
correction for multiple testing are reported.

RESULTS

RNA-Seq Data and Normalization
The liver transcriptome data passed quality control performed
with CLC Genomics workbench (CLC Bio, Aarhus, Denmark).
Each individual sample had about 63 million sequence reads.
Previous studies demonstrated that approximately 30 million
reads are sufficient to detect more than 90% of annotated genes
in mammalian genomes (Wang et al., 2011; Lee et al., 2013;
Singh et al., 2017). The relatively high number of sequence
reads generated in this transcriptome study indicates that our
data are adequate for identification of DE genes. The number
of unique reads and RPKM of each gene per physiological
state are provided (Supplementary Table S1). Sequence data are
available through the Functional Annotation of Animal Genomes
project5.

Identification of Differentially Expressed
Genes
A total of 16,978 transcripts were detected in both groups (pre-
and post-puberty). A t-test of log-transformed data identified
452 DE genes (including 57 novel genes), of which 253
were up-regulated and 199 were down-regulated post-puberty
(P < 0.05). Ten genes showed a threefold change (FC) difference
in expression levels and P < 0.01 between pre- and post-puberty
heifers (Table 1). Figure 1 shows a volcano plot of log 2 FC

4http://david.abcc.ncifcrf.gov
5http://data.faang.org/home

TABLE 1 | The reads per kilobase per million (RPKM) mapped read values for
genes that significantly differ in expression in liver between pre- vs. post-pubertal
Brahman heifers (|FC| ≥ 3, P ≤ 0.01).

ENSB tag1 Symbol2 RPKM_PRE3 RPKM_POST4 FC5

ENSBTAG00000043414 snoR38 1.415 6.750 5.335

ENSBTAG00000044882 Novel gene 0.546 4.877 4.330

ENSBTAG00000011660 MSMB 4.309 7.658 3.349

ENSBTAG00000042447 SNORD49 4.599 0.457 −4.142

ENSBTAG00000030124 Novel gene 6.815 2.908 −3.907

ENSBTAG00000008134 BDNF 5.890 2.022 −3.868

ENSBTAG00000017502 RIMKLA 6.187 2.928 −3.259

ENSBTAG00000045577 MCCD1 6.804 3.690 −3.114

ENSBTAG00000004657 FBLL1 4.978 1.947 −3.031

ENSBTAG00000033173 BHLHE22 6.871 3.865 −3.007

1ENSB tag: Ensembl gene identifier according to www.ensembl.org. 2Gene: gene
symbol related to the ENSB tag. 3RPKM_PRE: The RPKM in pre-pubertal heifers
(average). 4RPKM_POST: The RPKM in post-pubertal heifers (average). 5FC: Fold
change (RPKM _POST minus RPKM_PRE).

vs. –log10 P-values for pre- vs. post-puberty gene expression. The
gene annotation, FC, and P-value of 452 DE genes are presented
in Supplementary Table S2. Significant DE genes were useful for
understanding the biological mechanisms in the liver underlying
puberty onset in Brahman cattle.

Insulin-like growth factor 1 is the major hormone secreted by
the liver and is known to increase during puberty. In our study,
the circulating IGF1 concentrations differed between pre- and
post-pubertal heifers at euthanasia (P = 0.008) with the average
serum IGF1 levels were 159.3 ± 25.5 ng/mL at pre-puberty and
203.2 ± 31.1 ng/mL at post-pubertal heifers. Although, RNA-
seq analysis showed increase in IGF-1 mRNA levels (2.01 ± 0.17
vs. 2.35 ± 0.19) after puberty in the liver, the result was not
significant (P = 0.222).

Identification of Key Gene Regulators
From AnimalTFDB Bovine database, we retrieved 1,085 TF that
were expressed in the liver. Using RIF metrics, these known TFs
were filtered for those most consistently associated with DE genes
from this study, identifying 82 TF (P < 0.05). Supplementary
Table S3 summarizes relevant data for these TF:RIF results,
expression levels, and its description. Of the 82 TF, 19 genes (23%)
coded for TF of the zinc finger family (ZNF). Further, out of the
82 TF, 2 TF (SOX13 and BHLHE22) were themselves identified as
DE genes.

Predicted Gene Co-expression Network
and Sub-network
Partial correlation and information theory algorithm determined
significant partial correlations between DE and TF. A predicted
gene co-expression network with 1,408 nodes representing genes
and a total of 8,330 edges which account for the predicted
interactions was constructed (Figure 2). In order to identify
potential regulators of the predicted gene co-expression network,
we focused on 82 TF contained in the network. After exploring
all the TF trios, the top trio which spanned most of the
network topology with highest connectivity (a total of 59,640
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FIGURE 1 | Volcano plot of differentially expressed genes (N = 452) in liver between pre- vs post-pubertal heifers. The x-axis represents the FC while the y-axis
represents statistical significance for each gene. Red dots indicate genes that differ significantly (P < 0.05) between the two groups. Genes plotted in the left portion
of the graph were expressed at a lower level in post-pubertal liver, and gene in the right-hand portion had higher expression levels post-puberty. Gene symbols are
provided for genes with a |FC| ≥ 3 and P ≤ 0.01.

possible connections) and minimum redundancy was identified,
including the signal transducer and activator of transcription 6
(STAT6), PBX homeobox 2 (PBX2), and polybromo 1 (PBRM1).
Figure 3 presents the connections between the top trio of TF and
their potential targets.

Functional Enrichment Analysis of Target
Genes Involved in Gene Co-expression
Network
Functional analysis using DAVID (Dennis et al., 2003; Huang
da et al., 2009) allowed identification of biological functions
overrepresented in our nodes in the co-expression network.
Results showed that 91 GO terms (49.7%, 91/183) were
significantly enriched in the biological process category, 8
GO terms (53.3%, 8/15) were significantly enriched in the
molecular function category, and 21 GO terms (75%, 21/28)
were significantly enriched in the cellular component category.
In the biological process category, GO terms were related
to liver development, gonad development, immune system
development, and muscle organ development. Most importantly,
many of the enriched GO terms were closely related to
reproduction, including reproductive developmental process,
reproductive structure development, and response to protein
stimulus. In addition, the molecular function term associated
with steroid hormone receptor activity was also enriched
in our co-expression network. Pathway analyses revealed
10 significantly enriched pathways (47.6%, 10/21). Among
these overrepresented pathways identified, we observed TGF-β
signaling (adjusted P = 1.7 × 10−4) and Wnt signaling (adjusted
P = 7.4 × 10−4) pathways. Supplementary Table S4 provides the

full list of enriched GO terms and pathways, discovered using all
genes in the network as the target dataset.

DISCUSSION

Reducing the age at puberty to increase cattle productivity is a
major aim for B. indicus breeders. Although the hypothalamus–
pituitary–ovarian axis is central to reproduction, the involment of
the liver in controlling energy balance and affecting reproduction
was reported before (Fontana and Della Torre, 2016; Montagner
et al., 2016). IGF1 seems to be an important link between liver
function and puberty onset (Akers et al., 2005). Although the
post-pubertal liver samples were collected from animals with
significantly higher progesterone levels, we found no direct
evidence of increased synthesis of liver enzymes involved in
the metabolism of steroid hormones. IGF1 transcripts were not
among the list of DE genes, although this endocrine signal from
the liver is known to increase leading up to puberty and serum
IGF1 was increased at post-pubertal Brahman heifers (current
study). The bioavailability of and circulating half-life of IGF1 are
determined by IGF-binding proteins (IGFBPs) and these may be
an important consideration in puberty. It should be noted that
most assays measure total IGF1, after extraction procedures that
remove IGFBPs, like our results in the current study. Very few
studies determine the small (<1% total), free bioactive fraction
of IGF1 and/or concentrations of IGFBPs. Our results suggest
that circulating IGF1 concentrations are influenced by multiple
factors beyond IGF1 gene expression.

In liver, 452 genes were DE between pre- and post-
pubertal Brahman heifers (this study). Previously, 288 genes
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FIGURE 2 | Liver gene co-expression network constructed by PCIT in pre- and post-puberty Brahman heifers. The entire network comprises 1,408 nodes (or genes)
and 8,330 interactions. The color spectrum ranges from green to red for low and high number of connection, respectively.

were DE between pre- and post-pubertal Brangus heifers
(Cánovas et al., 2014). In Brangus heifers, liver DE genes
contributed an abundant number of connections to the
co-expression network and had the largest disappearance of
connections after puberty. In short, network topology suggests
that the liver warrants further scrutiny in Brangus heifers that
was beyond the scope of the original publication (Cánovas
et al., 2014). Here, we performed gene ontology and pathway
enrichment analyses for both lists of DE genes, from the
Brangus study and the current Brahman data. No ontologies
were the same across breeds. Only 10 DE genes were the
same across breeds and these are discussed further below. In
short, biological differences between Brangus and Brahman
heifers seem evident from the contrasting results in these
transcriptomics studies.

The most DE genes (|FC| > 3 and P ≤ 0.01) in the
liver of Brahman heifers were snoR38, snorD49, MSMB,
RIMKLA, MCCD1, FBLL1, BHLHE22, brain-derived
neurotrophic factor (BDNF), and two uncharacterized proteins
(ENSBTAG00000044882 and ENSBTAG00000030124). These
emerging candidate genes are discussed in the following
paragraphs.

Small nucleolar RNA R38 (snoR38) and small nucleolar
RNA SNORD49 (snorD49) are non-coding RNAs functioning
in modifications of other small nuclear RNA (Matera et al.,
2007). The snoRNA families are essential for major biological
processes such as mRNA splicing and protein translation

(Matera et al., 2007). There is limited evidence for the
involvement of these snoRNA with puberty. The first deletion
animal model of other snoRNA gene (snorD116) in mice revealed
a role in growth and feeding regulation for the snoRNA family
(Ding et al., 2008). The highest and lowest mRNA levels after
puberty of snoR38 (FC = 5.33) and snorD49 (FC =−4.12) warrant
further studies to understand the role that these non-coding
RNAs play in liver function and puberty.

The gene β-microseminoprotein (MSMB) plays an important
role in semen quality and fertilization (Anahí Franchi et al., 2008).
Not restricted to male tissues, MSMB protein was also identified
in porcine CL (Tanaka et al., 1995) and its gene expression was
identified in human female reproductive tissues (Baijal-Gupta
et al., 2000). Importantly, MSMB influences FSH secretion from
pituitary gland, impacting on ovarian function (Thakur et al.,
1981; Sheth et al., 1984; Frankenberg et al., 2011). It remains to
be explored if liver production of MSMB achieves the pituitary
signaling in growing heifers.

Very little is known about mitochondrial coiled-coil domain
1 (MCCD1) and fibrillarin-like 1 (FBLL1) function in the liver or
with relation to puberty onset. One study in humans identified
high expression levels of MCCD1 in fetal liver (Semple et al.,
2003). In cattle, MCCD1 was DE in both RNA sequencing studies
of puberty, ours, and the study by Cánovas et al. (2014). Its liver
function merits further investigation.

The gene RIMKLA is involved in alanine, aspartate, and
glutamate metabolism; as per KEEG pathway annotation
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FIGURE 3 | Subset of the liver co-expression network showing the best trio of TF and its predicted target genes in pre- and post-puberty Brahman heifers. Each
node represents a gene. Nodes represented as triangles are TF and other coding sequences are represented as ellipses. Edges represent significant interaction
between nodes. Node color indicates the number of connections of a specific node in the network. The color spectrum ranges from green to red for low and high
number of connections.

(Kanehisa et al., 2017). Notably, glutamate and aspartate
are major metabolic fuels for nutrient metabolism and
oxidative defense (Yao et al., 2008; Brasse-Lagnel et al.,
2009). It seems coherent that RIMKLA would be relevant
for the liver metabolic function and perhaps it is another
link between energy metabolism and reproduction to be
explored.

The gene BHLHE22 (FC = −3.00 and P ≤ 0.01) was revealed
as the most down-regulated DE gene after puberty. This gene
is also a significant TF (RIF2 score of −2.88). The BHLHE22
gene belongs to basic helix–loop–helix (bHLH) family and
plays significant role in cell proliferation and differentiation of
several developmental pathways as well as cell fate determination
(Lee et al., 1995; Ma et al., 1996; Farah et al., 2000; Xu
et al., 2002). Further, an in vitro transfection assay used in
mice showed that BHLHB5 (an alias of BHLHE22) strongly
inhibits the expression of the human PAX6 promoter (Xu et al.,
2002). The PAX6 promoter is known as a TF involved in
embryonic development and neurulation (Callaerts et al., 1997).
A PAX6 mutation was associated with isolated GH deficiency
(Guerra-Junior et al., 2008). BHLHE22 has been described as a
transcriptional repressor of insulin expression in pancreatic β

cells (Peyton et al., 1996; Melkman-Zehavi et al., 2011). Insulin
can mediate follicular growth in cattle (Webb et al., 2004),
stimulate GnRH release from the hypothalamus in combination
with glucose (Arias et al., 1992), and may also facilitate IGF1
synthesis and secretion by the liver (Keisler and Lucy, 1996;
Webb et al., 2004). The role of insulin in the regulation of
lipid, glucose, protein homeostasis, and energy balance (Saltiel

and Kahn, 2001; Liu and Barrett, 2002; Obici and Rossetti,
2003) suggests a link between insulin and the reproductive axis.
In our study, BHLHE22 was the most down-regulated gene,
with lower expression in post-pubertal heifers (FC = −3.00
and P = 0.01). Lower expression of BHLHE22 could mean
decreased repression of insulin expression leading to increased
GH and GnRH stimulus via IGF1 signaling. Therefore, liver
produced BHLHE22 could impact on animal growth and pubertal
development.

The BDNF gene is related to neural development and
peripheral metabolism (Binder and Scharfman, 2004; Pedersen
et al., 2009). In the brain, BDNF can suppress GABAergic
synaptic transmission by acute down-regulation of GABAA
receptors and thus can affect GnRH release (Henneberger et al.,
2002). Previous studies suggested BDNF as a key component
of the hypothalamic pathway controlling energy homeostasis
and BW (Wisse and Schwartz, 2003; Xu et al., 2003; Jo and
Chua, 2013). A genome-wide association studies (GWASs)
in humans found BDNF to be related to timing of puberty
and body mass index (Perry et al., 2014). Further, estrogen–
BDNF–NPY has been noted as important tri-molecular cascade
in understanding the hormonal regulation in hippocampus
(Scharfman and MacLusky, 2006). It is unclear whether BDNF
is able to cross the blood–brain barrier. Some researchers have
found evidence for a link between central BDNF and peripheral
BDNF (Poduslo and Curran, 1996; Pan et al., 1998; Rasmussen
et al., 2009; Seifert et al., 2010), whereas others have argued that
it does not cross the blood–brain barrier (Pardridge et al., 1998;
Kyeremanteng et al., 2012). Hence, if further research can prove
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BDNF delivery across blood–brain barrier, it is possible that
BDNF produced in the liver may have endocrine effects in the
brain.

Brain-derived neurotrophic factor in the liver, similarly to
skeletal muscle, results in increase of AMP-activated protein
kinase (AMPK) and its downstream target acetyl coenzyme A
carboxylase (ACC), inhibiting fatty acid synthesis and enhancing
fatty acid oxidation (Matthews et al., 2009; Pedersen et al., 2009;
Genzer et al., 2017). A study in humans suggested that fatty acid
oxidation is higher in children than adults (Kostyak et al., 2007).
Estrogen was also cited to regulate hepatic fatty acid oxidation
(O’Sullivan, 2012). In liver, there is little information of precise
mechanisms in which estrogen reduces fatty acid oxidation.
Our study results led us to hypothesize that the interaction
between estrogen and BDNF in fatty acid oxidation in liver,
contributing to metabolic changes that can regulate puberty
onset.

Comparing the liver transcriptional profile between our
Brahman heifer study and a study by Cánovas et al. (2014)
in Brangus heifers, we found 10 genes (including a novel
gene) that were DE in both populations (P < 0.05). Five
genes, MCCD1, ADGRF2, brain expressed X-linked 2 (BEX2),
PDZD7, and LRRC46, had a | FC| > 1 in both breeds.
The expression of these genes was up-regulated in Brangus
heifers and down-regulated in Brahman heifers. The Brangus
study involved eight heifers greatly differing in age and weight
whereas our Brahman study used 12 heifers that were age
and weight matched. Further, in the absence of a reference
genome of B. indicus, we have utilized B. taurus reference
genome for sequence assembly, and so the divergence between
B. taurus and B. indicus genomes can impact our results. The
significant difference in expression levels and patterns of these
five DE genes between two breeds warrants further studies. The
candidate gene MCCD1 and its limited literature were discussed
above. Similarly, PDZD7 and LRRC46 roles in puberty and
liver function cannot be speculated from current knowledge.
The remaining two genes, ADGRF2 and BEX2, are discussed
below.

The expression of adhesion G protein-coupled receptor F2
(ADGRF2, alias GPR111), in reproductive tissues and lung was
reported (Fredriksson et al., 2002). Our study was the first to
report mRNA expression of ADGRF2 in the liver of B. indicus
heifers. It is intriguing to suggest that ADGRF2 could be another
link between liver function and puberty, because G protein-
coupled receptors have been associated with GnRH regulation
(Noel and Kaiser, 2011).

The BEX2 was observed as a DE gene in the ovary
of pre- and post-pubertal Brahman heifers (Nguyen et al.,
2017) and in the adipose tissue of pre- and post-pubertal
Brangus heifers (Cánovas et al., 2014). The BEX2 gene is
highly expressed in the human embryonic brain and have a
regulatory role in embryonic development (Han et al., 2005).
A study of mice liver gene expression revealed a strong
expression of BEX2 in stem/progenitor cells (Ito et al., 2014).
Further, BEX2 is a downstream molecule of the mammalian
target of rapamycin (mTOR) signaling pathway (Hu et al.,
2015) that can regulate lipogenesis and ketogenesis in liver

(Laplante and Sabatini, 2012). The mTOR pathway is also
a known regulator of ovarian activity (Lu et al., 2017). In
short, BEX2 was DE in two studies of pubertal heifers, two
different breeds, and thus it merits further investigation. It
is possible that this is a liver signal with impact on ovarian
activity.

Transcription factors play a key role in controlling gene
expression, but their expression levels are often low and not
detected as DE (Vaquerizas et al., 2009). The interactions between
TF are important for tissue remodeling and temporal changes
in gene expression (Ravasi et al., 2010). Differential expression
analyses overlook vital changes in regulatory information.
Adding an analysis focused on identifying key TF could help
to understand the gene regulation processes under investigation
(i.e., puberty). Previously, we found that TFs in the ZNF
were DE and/or important TF in the transcriptomic profile
of hypothalamus, pituitary gland, and ovaries in Brahman
heifers undergoing puberty (Fortes et al., 2016; Nguyen et al.,
2017). These studies noted that 26% of top ranking TF from
hypothalamus, 28% from ovaries, and 22% from the pituitary
gland top ranking TF coded for ZNF members in the same
Brahman heifers (Fortes et al., 2016; Nguyen et al., 2017).
Likewise, this current study revealed that 23% of TF identified
by RIF analysis of liver transcriptome data belong to the ZNF.

The potential role of ZNF genes in the puberty process
was suggested by several studies. A mouse study found that a
mutation in regulator of sex-limitation (RSL), one of the Kruppel-
associated box zinc finger proteins (KRAB-ZFP) genes, can
impact reproduction by regulating expression patterns of target
genes in liver (Krebs and Robins, 2010). In addition, ZNF genes
have been implicated in the epigenetic control of transcription
in the female primate hypothalamus around puberty (Lomniczi
et al., 2015). Previous GWASs in women reported the association
between single-nucleotide polymorphism located near ZNF462
and ZNF483 and age of menarche, which is the age of puberty
in girls (Perry et al., 2009; Elks et al., 2010; Chen et al., 2012;
Demerath et al., 2013). Expression of ZNF127 was increased
pre-puberty and decreased immediately before puberty (Abreu
et al., 2013). Study of female monkeys also reported decrease of
ZNF573 mRNA levels in peripubertal animals (Lomniczi et al.,
2015). Our study contributes to the growing body of evidence that
support ZNF genes can influence puberty onset, a developmental
role which may extend to tissues and organs outside of the
reproductive axis.

In the sub-network, the trio of TF that spanned most
of network topology with minimum redundancy and highest
connectivity was STAT6, PBX2, and PBRM1. Previous evidence
suggested these TF have important roles in liver and reproductive
function. Specifically, the STAT6 locus on BTA5 has been
described as a QTL associated with reproduction (Kappes et al.,
2000; Allan et al., 2009; Kim et al., 2009; Luna-Nevarez et al.,
2011; Hawken et al., 2012). Further, this gene was identified as
a key TF in a gene network constructed using GWAS results
of first service conception in Brangus heifers (Fortes et al.,
2012). Other studies noted the association between STAT6 gene
and age at first CL, an indicator of puberty onset in Brahman
and Tropical Composite heifers (Fortes et al., 2010, 2011). Our
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study supported the potential role of STAT6 in puberty onset in
Brahman heifers.

The PBX2 gene has a role in the development of ovarian
follicles (Ota et al., 2008). Pbx2–Prep1 complexes repress
HNF1α-mediated activation of the UDP glucuronosyltransferase
family 2 member B17 (UGT2B17) promoter in liver cells
(Gregory and Mackenzie, 2002). The UGT2B17 gene, a sex
steroid-metabolizing gene, has been associated with male
infertility and impaired spermatogenesis (Plaseska-Karanfilska
et al., 2012). Hepatocyte nuclear factor-1α (HNF-1α) is a
homeodomain-containing TF that regulates liver-specific gene
transcription (Mendel and Crabtree, 1991) and was suggested to
control development and metabolism in a HNF-1α-null mouse
study (Pontoglio et al., 1996). In liver, HNF-1α regulates the
expression of glucocorticoid receptor (GR), IGF1, STAT5, and
other GH-responsive genes (Lee et al., 1998; Lin et al., 2008).
In our sub-network of predicted gene co-expression, PBX2
and STAT6 was also connected to STAT5 (RIF2 score of 2.13)
suggesting that the interaction between these TF could contribute
to the regulation of growth, liver metabolism, and puberty onset.

Finally, the gene PBRM1 seems to play a role in metabolic
and immune system regulation, pertinent to liver expression.
The gene PBMR1 was described as a repressor of interleukin 10
(IL-10) transcription; an anti-inflammatory cytokine involved in
metabolic syndrome (Mallat et al., 1999; Calcaterra et al., 2009;
Wurster et al., 2012). Calcaterra et al. (2009) study showed high
levels of IL-10 in serum samples of obese children. Further, IL-
10 was proposed to be involved in the inflammatory network
of metabolic syndrome in correlation with adiponectin (Böttner
et al., 2004; Nishida et al., 2007). Of note, adiponectin plays
a significant role in energy homeostasis (Lee and Shao, 2014).
In liver, adiponectin can activate glucose transport as well as
enhances insulin sensitivity (Berg et al., 2001; Combs et al.,
2001; Ye and Scherer, 2013). A study of Holstein cows reported
an association between follicular growth and the change in
adiponectin and its receptor expression (Tabandeh et al., 2010).
The role of PBRM1 as a regulator of heifer puberty needs further
investigation, but it is possible that it acts through adiponectin
signaling.

After identification of DE genes and TF, GO and pathway
analysis was performed to better understand the biological
function of these genes in the context of puberty. Information
about gene co-expression, enriched GO, and pathways
facilitates the interpretation of RNA-Seq results. Based on
GO analysis of 1,408 nodes from the liver co-expression
network, multiple biological processes were affected. GO
terms “reproductive developmental process” and “reproductive
structure development” were significantly enriched and are
logical in the context of puberty. Steroid hormone receptor
activity and steroid binding were expected GO terms as liver is
the principal site of steroid hormone metabolism.

We observed TGF-β signaling (P = 6.4 × 10−6) and Wnt
signaling (P = 3.8 × 10−5) pathways among the enriched
pathways. Both pathways were also enriched in pre- vs. post-
pubertal results from the pituitary gland of Brahman heifers
(Nguyen et al., 2017). Of note, transforming growth factor-
beta (TGF-β) superfamily signaling plays a pivotal role in the

regulation of cell differentiation, growth, morphogenesis, tissue
homeostasis, and regeneration (Massague, 2012). In neural tissue,
TGF-β1 one member of the TGF-β superfamily can increase
GnRH gene expression as well as GnRH release (Prevot, 2002;
Mahesh et al., 2006). Expression and release of GnRH are
pivotal for puberty. The Wnt signaling pathway is an important
physiological regulator of embryonic and liver development as
well as mammalian hepatic metabolism (McLin et al., 2007;
Marfil et al., 2010; Sethi and Vidal-Puig, 2010; Liu et al., 2011).
Results from functional enrichment analyses provide evidence
of pathways that are relevant for both liver metabolism and
reproductive function. These pathways may point to some of
the links between liver and reproductive function in B. indicus
cattle.

We successfully exploited RNA-Seq data to identify the
transcriptomic differences in liver between pre- and post-
pubertal Brahman heifers. Previously, liver transcriptomics in
B. indicus bulls and steers identified DE genes related to feed
efficiency (Alexandre et al., 2015; Tizioto et al., 2015). This
paper is the first attempt to demonstrate molecular mechanisms
of puberty in liver of Brahman heifers. In the study, 452
DE genes were identified, many of which are closely related
to reproductive developmental process, reproductive structure
development, steroid hormone receptor activity, and steroid
binding. In liver, TGF-β signaling and Wnt signaling genes may
play a role in reproductive function. Moreover, the genes, BDNF,
STAT6, PBX2, and PBRM1, might impact on the regulation of
growth, liver metabolism, and puberty onset. As BDNF and
estrogen can regulate fatty acid oxidation, we reasoned that
BDNF and estrogen signaling may interact. This interaction
can contribute to metabolic changes that can regulate the
occurrence of puberty in Brahman heifers. Further studies are
warranted to determine the function of these candidate genes.
Our findings provide useful information for understanding
molecular mechanisms in liver that may influence puberty onset
of Brahman heifers.

AUTHOR CONTRIBUTIONS

LN performed RNA extraction, data analyses, interpretation
of results and wrote the first draft. AR performed statistical
analyses using mixed models. AC assemble, annotation and
count of RNA sequencing data. MD and NC performed quality
control of raw data. BV performed laboratory work. SA measured
hormones. AI-T performed laboratory work. SL designed the
experiment and interpreted the results. JM supervised library
preparation and RNA sequencing. MT designed the experiment
and interpreted the results. SM obtained funds for the research
and supervised the project. MF performed the field trial, sample
collection, experimental design, drafting of the manuscript, and
interpretation of results.

FUNDING

The project was funded by a grant to Professor SM from
University of Queensland.

Frontiers in Genetics | www.frontiersin.org 9 March 2018 | Volume 9 | Article 87

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00087 March 16, 2018 Time: 18:37 # 10

Nguyen et al. Liver Transcriptome Related to Puberty in Heifers

ACKNOWLEDGMENTS

The authors acknowledge the contributions to the field experi-
ment and sample collection of Dr. Gry Boe-Hansen, Dr. Laercio
R. Porto-Neto, Dr. Lisa Kidd, and Dr. Joao Paulo A. do Rego.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2018.00087/full#supplementary-material

REFERENCES
Abreu, A. P., Dauber, A., Macedo, D. B., Noel, S. D., Brito, V. N., Gill, J. C.,

et al. (2013). Central precocious puberty caused by mutations in the imprinted
gene MKRN3. N. Engl. J. Med. 368, 2467–2475. doi: 10.1056/NEJMoa130
2160

Akbar, H., Bionaz, M., Carlson, D. B., Rodriguez-Za, S. L., Everts, R. E., Lewin,
H. A., et al. (2013). Feed restriction, but not l-carnitine infusion, alters the
liver transcriptome by inhibiting sterol synthesis and mitochondrial oxidative
phosphorylation and increasing gluconeogenesis in mid-lactation dairy cows.
J. Dairy Sci. 96, 2201–2213. doi: 10.3168/jds.2012-6036

Akers, R. M., Ellis, S. E., and Berry, S. D. (2005). Ovarian and IGF-I axis control of
mammary development in prepubertal heifers. Domest. Anim. Endocrinol. 29,
259–267. doi: 10.1016/j.domaniend.2005.02.037

Alexandre, P. A., Kogelman, L. J., Santana, M. H., Passarelli, D., Pulz, L. H.,
Fantinato-Neto, P., et al. (2015). Liver transcriptomic networks reveal main
biological processes associated with feed efficiency in beef cattle. BMC Genomics
16:1073. doi: 10.1186/s12864-015-2292-8

Allan, M. F., Kuehn, L. A., Cushman, R. A., Snelling, W. M., Echternkamp, S. E.,
and Thallman, R. M. (2009). Confirmation of quantitative trait loci using a
low-density single nucleotide polymorphism map for twinning and ovulation
rate on bovine chromosome 5. J. Anim. Sci. 87, 46–56. doi: 10.2527/jas.2008-
0959

Anahí Franchi, N., Avendaño, C., Molina, R. I., Tissera, A. D., Maldonado, C. A.,
Oehninger, S., et al. (2008). beta-Microseminoprotein in human spermatozoa
and its potential role in male fertility. Reproduction 136, 157–166. doi: 10.1530/
REP-08-0032

Arias, P., Rodriguez, M., Szwarcfarb, B., Sinay, I. R., and Moguilevsky, J. A.
(1992). Effect of insulin on LHRH release by perifused hypothalamic fragments.
Neuroendocrinology 56, 415–418. doi: 10.1159/000126257

Baijal-Gupta, M., Clarke, M. W., Finkelman, M. A., McLachlin, C. M., and Han,
V. K. (2000). Prostatic secretory protein (PSP94) expression in human female
reproductive tissues, breast and in endometrial cancer cell lines. J. Endocrinol.
165, 425–433. doi: 10.1677/joe.0.1650425

Berg, A. H., Combs, T. P., Du, X., Brownlee, M., and Scherer, P. E. (2001). The
adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med.
7, 947–953. doi: 10.1038/90992

Binder, D. K., and Scharfman, H. E. (2004). Brain-derived neurotrophic factor.
Growth Factors 22, 123–131. doi: 10.1080/08977190410001723308

Böttner, A., Kratzsch, J., Müller, G., Kapellen, T. M., Blüher, S., Keller, E., et al.
(2004). Gender differences of adiponectin levels develop during the progression
of puberty and are related to serum androgen levels. J. Clin. Endocrinol. Metab.
89, 4053–4061. doi: 10.1210/jc.2004-0303

Brasse-Lagnel, C., Lavoinne, A., and Husson, A. (2009). Control of mammalian
gene expression by amino acids, especially glutamine. FEBS J. 276, 1826–1844.
doi: 10.1111/j.1742-4658.2009.06920.x

Calcaterra, V., De Amici, M., Klersy, C., Torre, C., Brizzi, V., Scaglia, F., et al.
(2009). Adiponectin, IL-10 and metabolic syndrome in obese children and
adolescents. Acta Biomed. 80, 117–123.

Callaerts, P., Halder, G., and Gehring, W. J. (1997). PAX-6 in development and
evolution. Annu. Rev. Neurosci. 20, 483–532. doi: 10.1146/annurev.neuro.20.
1.483

Cánovas, A., Reverter, A., DeAtley, K. L., Ashley, R. L., Colgrave, M. L.,
Fortes, M. R., et al. (2014). Multi-tissue omics analyses reveal molecular
regulatory networks for puberty in composite beef cattle. PLoS One 9:e102551.
doi: 10.1371/journal.pone.0102551

Cánovas, A., Rincón, G., Islas-Trejo, A., Jimenez-Flores, R., Laubscher, A., and
Medrano, J. F. (2013). RNA sequencing to study gene expression and single
nucleotide polymorphism variation associated with citrate content in cow milk.
J. Dairy Sci. 96, 2637–2648. doi: 10.3168/jds.2012-6213

Cánovas, A., Rincon, G., Islas-Trejo, A., Wickramasinghe, S., and Medrano,
J. F. (2010). SNP discovery in the bovine milk transcriptome using RNA-Seq
technology. Mamm. Genome 21, 592–598. doi: 10.1007/s00335-010-9297-z

Chen, C. T., Fernández-Rhodes, L., Brzyski, R. G., Carlson, C. S., Chen, Z.,
Heiss, G., et al. (2012). Replication of loci influencing ages at menarche and
menopause in Hispanic women: the Women’s Health Initiative SHARe Study.
Hum. Mol. Genet. 21, 1419–1432. doi: 10.1093/hmg/ddr570

Combs, T. P., Berg, A. H., Obici, S., Scherer, P. E., and Rossetti, L. (2001).
Endogenous glucose production is inhibited by the adipose-derived protein
Acrp30. J. Clin. Invest. 108, 1875–1881. doi: 10.1172/JCI14120

Curlewis, J. D., Axelson, M., and Stone, G. M. (1985). Identification of the
major steroids in ovarian and adrenal venous plasma of the brush-tail
possum (Trichosurus vulpecula) and changes in the peripheral plasma levels of
oestradiol and progesterone during the reproductive cycle. J. Endocrinol. 105,
53–62. doi: 10.1677/joe.0.1050053

Dahlanuddin, D., Ningsih, B. S., Poppi, D. P., Anderson, S. T., and Quigley,
S. P. (2014). Long-term growth of male and female Bali cattle fed Sesbania
grandiflora. Anim. Prod. Sci. 54, 1615–1619.

Della Torre, S., Rando, G., Meda, C., Stell, A., Chambon, P., Krust, A., et al. (2011).
Amino acid-dependent activation of liver estrogen receptor alpha integrates
metabolic and reproductive functions via IGF-1. Cell Metab. 13, 205–214. doi:
10.1016/j.cmet.2011.01.002

Demerath, E. W., Liu, C. T., Franceschini, N., Chen, G., Palmer, J. R., Smith,
E. N., et al. (2013). Genome-wide association study of age at menarche in
African-American women. Hum. Mol. Genet. 22, 3329–3346. doi: 10.1093/hmg/
ddt181

Dennis, G. Jr., Sherman, B. T., and Hosack, D. A. (2003). DAVID: database for
annotation, visualization, and integrated discovery. Genome Biol. 4:R60. doi:
10.1186/gb-2003-4-9-r60

Ding, F., Li, H. H., Zhang, S., Solomon, N. M., Camper, S. A., Cohen, P., et al.
(2008). SnoRNA Snord116 (Pwcr1/MBII-85) deletion causes growth deficiency
and hyperphagia in mice. PLoS One 3:e1709. doi: 10.1371/journal.pone.0001709

Elks, C. E., Perry, J. R., Sulem, P., Chasman, D. I., Franceschini, N., He, C.,
et al. (2010). Thirty new loci for age at menarche identified by a meta-analysis
of genome-wide association studies. Nat. Genet. 42, 1077–1085. doi: 10.1038/
ng.714

Farah, M. H., Olson, J. M., Sucic, H. B., Hume, R. I., Tapscott, S. J., and Turner, D. L.
(2000). Generation of neurons by transient expression of neural bHLH proteins
in mammalian cells. Development 127, 693–702.

Fontana, R., and Della Torre, S. (2016). The deep correlation between energy
metabolism and reproduction: a view on the effects of nutrition for women
fertility. Nutrients 8:87. doi: 10.3390/nu8020087

Fortes, M. R., Li, Y., Collis, E., Zhang, Y., and Hawken, R. J. (2013). The IGF1
pathway genes and their association with age of puberty in cattle. Anim. Genet.
44, 91–95. doi: 10.1111/j.1365-2052.2012.02367.x

Fortes, M. R., Nguyen, L. T., Weller, M. M., Cánovas, A., Islas-Trejo, A., Porto-
Neto, L. R., et al. (2016). Transcriptome analyses identify five transcription
factors differentially expressed in the hypothalamus of post- versus prepubertal
Brahman heifers. J. Anim. Sci. 94, 3693–3702. doi: 10.2527/jas.2016-
0471

Fortes, M. R., Reverter, A., Nagaraj, S. H., Zhang, Y., Jonsson, N. N., Barris, W., et al.
(2011). A single nucleotide polymorphism-derived regulatory gene network
underlying puberty in 2 tropical breeds of beef cattle. J. Anim. Sci. 89,
1669–1683. doi: 10.2527/jas.2010-3681

Fortes, M. R., Reverter, A., Zhang, Y., Collis, E., Nagaraj, S. H., Jonsson, N. N.,
et al. (2010). Association weight matrix for the genetic dissection of puberty in
beef cattle. Proc. Natl. Acad. Sci. U.S.A. 107, 13642–13647. doi: 10.1073/pnas.
1002044107

Fortes, M. R., Snelling, W. M., Reverter, A., Nagaraj, S. H., Lehnert, S. A., Hawken,
R. J., et al. (2012). Gene network analyses of first service conception in Brangus

Frontiers in Genetics | www.frontiersin.org 10 March 2018 | Volume 9 | Article 87

https://www.frontiersin.org/articles/10.3389/fgene.2018.00087/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2018.00087/full#supplementary-material
https://doi.org/10.1056/NEJMoa1302160
https://doi.org/10.1056/NEJMoa1302160
https://doi.org/10.3168/jds.2012-6036
https://doi.org/10.1016/j.domaniend.2005.02.037
https://doi.org/10.1186/s12864-015-2292-8
https://doi.org/10.2527/jas.2008-0959
https://doi.org/10.2527/jas.2008-0959
https://doi.org/10.1530/REP-08-0032
https://doi.org/10.1530/REP-08-0032
https://doi.org/10.1159/000126257
https://doi.org/10.1677/joe.0.1650425
https://doi.org/10.1038/90992
https://doi.org/10.1080/08977190410001723308
https://doi.org/10.1210/jc.2004-0303
https://doi.org/10.1111/j.1742-4658.2009.06920.x
https://doi.org/10.1146/annurev.neuro.20.1.483
https://doi.org/10.1146/annurev.neuro.20.1.483
https://doi.org/10.1371/journal.pone.0102551
https://doi.org/10.3168/jds.2012-6213
https://doi.org/10.1007/s00335-010-9297-z
https://doi.org/10.1093/hmg/ddr570
https://doi.org/10.1172/JCI14120
https://doi.org/10.1677/joe.0.1050053
https://doi.org/10.1016/j.cmet.2011.01.002
https://doi.org/10.1016/j.cmet.2011.01.002
https://doi.org/10.1093/hmg/ddt181
https://doi.org/10.1093/hmg/ddt181
https://doi.org/10.1186/gb-2003-4-9-r60
https://doi.org/10.1186/gb-2003-4-9-r60
https://doi.org/10.1371/journal.pone.0001709
https://doi.org/10.1038/ng.714
https://doi.org/10.1038/ng.714
https://doi.org/10.3390/nu8020087
https://doi.org/10.1111/j.1365-2052.2012.02367.x
https://doi.org/10.2527/jas.2016-0471
https://doi.org/10.2527/jas.2016-0471
https://doi.org/10.2527/jas.2010-3681
https://doi.org/10.1073/pnas.1002044107
https://doi.org/10.1073/pnas.1002044107
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00087 March 16, 2018 Time: 18:37 # 11

Nguyen et al. Liver Transcriptome Related to Puberty in Heifers

heifers: use of genome and trait associations, hypothalamic-transcriptome
information, and transcription factors. J. Anim. Sci. 90, 2894–2906.
doi: 10.2527/jas.2011-4601

Frankenberg, S., Fenelon, J., Dopheide, B., Shaw, G., and Renfree, M. B.
(2011). A novel MSMB-related microprotein in the postovulatory egg
coats of marsupials. BMC Evol. Biol. 11:373. doi: 10.1186/1471-2148
-11-373

Fredriksson, R., Lagerstr, M. C., Höglund, P. J., and Schiöth, H. B. (2002). Novel
human G protein-coupled receptors with long N-terminals containing GPS
domains and Ser/Thr-rich regions. FEBS Lett. 531, 407–414. doi: 10.1016/
S0014-5793(02)03574-3

Genzer, Y., Chapnik, N., and Froy, O. (2017). Effect of brain-derived neurotrophic
factor (BDNF) on hepatocyte metabolism. Int. J. Biochem. Cell Biol. 88(Suppl.
C), 69–74. doi: 10.1016/j.biocel.2017.05.008

Gregory, P. A., and Mackenzie, P. I. (2002). The homeodomain Pbx2-Prep1
complex modulates hepatocyte nuclear factor 1alpha-mediated activation of
the UDP-glucuronosyltransferase 2B17 gene. Mol. Pharmacol. 62, 154–161.
doi: 10.1124/mol.62.1.154

Guerra-Junior, G., Spinola-Castro, A. M., Siviero-Miachon, A. A., Nogueira, R. G.,
Lemos-Marini, S. H., D’Souza-Li, L. F., et al. (2008). Absence of mutations in
Pax6 gene in three cases of morning glory syndrome associated with isolated
growth hormone deficiency. Arq. Bras. Endocrinol. Metabol. 52, 1221–1227.
doi: 10.1590/S0004-27302008000800004

Han, C., Liu, H., Liu, J., Yin, K., Xie, Y., Shen, X., et al. (2005). Human Bex2
interacts with LMO2 and regulates the transcriptional activity of a novel
DNA-binding complex. Nucleic Acids Res. 33, 6555–6565. doi: 10.1093/nar/
gki964

Hawken, R. J., Zhang, Y. D., Fortes, M. R., Collis, E., Barris, W. C., Corbet,
N. J., et al. (2012). Genome-wide association studies of female reproduction
in tropically adapted beef cattle. J. Anim. Sci. 90, 1398–1410. doi: 10.2527/jas.
2011-4410

Henneberger, C., Juttner, R., Rothe, T., and Grantyn, R. (2002). Postsynaptic action
of BDNF on GABAergic synaptic transmission in the superficial layers of the
mouse superior colliculus. J. Neurophysiol. 88, 595–603. doi: 10.1152/jn.2002.
88.2.595

Herath, C. B., Shiojima, S., Ishiwata, H., Katsuma, S., Kadowaki, T.,
Ushizawa, K., et al. (2004). Pregnancy-associated changes in genome-
wide gene expression profiles in the liver of cow throughout pregnancy.
Biochem. Biophys. Res. Commun. 313, 666–680. doi: 10.1016/j.bbrc.2003.1
1.151

Hu, Z., Wang, Y., Huang, F., Chen, R., Li, C., Wang, F., et al. (2015).
Brain-expressed X-linked 2 is pivotal for hyperactive mechanistic target of
rapamycin (mTOR)-mediated tumorigenesis. J. Biol. Chem. 290, 25756–25765.
doi: 10.1074/jbc.M115.665208

Huang da, W., Sherman, B. T., and Lempicki, R. A. (2009).
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat. Protoc. 4, 44–57. doi: 10.1038/nprot.20
08.211

Hudson, N. J., Reverter, A., Wang, Y., Greenwood, P. L., and Dalrymple, B. P.
(2009). Inferring the transcriptional landscape of bovine skeletal muscle by
integrating co-expression networks. PLoS One 4:e7249. doi: 10.1371/journal.
pone.0007249

Ito, K., Yamazaki, S., Yamamoto, R., Tajima, Y., Yanagida, A., Kobayashi, T.,
et al. (2014). Gene targeting study reveals unexpected expression of
Brain-expressed X-linked 2 in endocrine and tissue Stem/Progenitor
cells in Mice. J. Biol. Chem. 289, 29892–29911. doi: 10.1074/jbc.M114.
580084

Jo, Y.-H., and Chua, S. C. (2013). The brain–liver connection between BDNF and
glucose control. Diabetes Metab. Res. Rev. 62, 1367–1368. doi: 10.2337/db12-
1824

Johnston, D. J., Barwick, S. A., Corbet, N. J., et al. (2009). Genetics of heifer
puberty in two tropical beef genotypes in northern Australia and associations
with heifer- and steer-production traits. Anim. Prod. Sci. 49, 399–412.
doi: 10.1071/EA08276

Johnston, D. J., Barwick, S. A., Fordyce, G., Holroyd, R. G., Williams, P. J.,
Corbet, N. J., et al. (2013). Genetics of early and lifetime annual reproductive
performance in cows of two tropical beef genotypes in northern Australia.
Anim. Prod. Sci. 54, 1–15. doi: 10.1071/AN13043

Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. (2017).
KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic
Acids Res. 45, D353–D361. doi: 10.1093/nar/gkw1092

Kappes, S. M., Bennett, G. L., Keele, J. W., Echternkamp, S. E., Gregory, K. E.,
and Thallman, R. M. (2000). Initial results of genomic scans for ovulation rate
in a cattle population selected for increased twinning rate. J. Anim. Sci. 78,
3053–3059. doi: 10.2527/2000.78123053x

Keisler, D. H., and Lucy, M. C. (1996). Perception and interpretation of the
effects of undernutrition on reproduction. J. Anim. Sci. 74(Suppl._3), 1–17.
doi: 10.2527/1996.74suppl_31x

Kim, E. S., Shi, X., Cobanoglu, O., Weigel, K., Berger, P. J., and Kirkpatrick, B. W.
(2009). Refined mapping of twinning-rate quantitative trait loci on bovine
chromosome 5 and analysis of insulin-like growth factor-1 as a positional
candidate gene. J. Anim. Sci. 87, 835–843. doi: 10.2527/jas.2008-1252

Kostyak, J. C., Kris-Etherton, P., Bagshaw, D., DeLany, J. P., and Farrell, P. A.
(2007). Relative fat oxidation is higher in children than adults. Nutr. J. 6, 19–19.
doi: 10.1186/1475-2891-6-19

Krebs, C. J., and Robins, D. M. (2010). A pair of mouse KRAB Zinc finger
proteins modulates multiple indicators of female reproduction. Biol. Reprod.
82, 662–668. doi: 10.1095/biolreprod.109.080846

Kyeremanteng, C., James, J., Mackay, J., and Merali, Z. (2012). A study of brain and
serum brain-derived neurotrophic factor protein in Wistar and Wistar-Kyoto
rat strains after electroconvulsive stimulus. Pharmacopsychiatry 45, 244–249.
doi: 10.1055/s-0032-1306278

Laplante, M., and Sabatini, D. M. (2012). mTOR signaling in growth control and
disease. Cell 149, 274–293. doi: 10.1016/j.cell.2012.03.017

Laporta, J., Rosa, G. J., Naya, H., and Carriquiry, M. (2014). Liver functional
genomics in beef cows on grazing systems: novel genes and pathways revealed.
Physiol. Genomics 46, 138–147. doi: 10.1152/physiolgenomics.00120.2013

Lee, B., and Shao, J. (2014). Adiponectin and energy homeostasis. Rev. Endocr.
Metab. Disord. 15, 149–156. doi: 10.1007/s11154-013-9283-3

Lee, H. J., Jang, M., Kim, H., Kwak, W., Park, W., Hwang, J. Y., et al. (2013).
Comparative transcriptome analysis of adipose tissues reveals that ECM-
receptor interaction is involved in the depot-specific adipogenesis in cattle.
PLoS One 8:e66267. doi: 10.1371/journal.pone.0066267

Lee, J. E., Hollenberg, S. M., Snider, L., Turner, D. L., Lipnick, N., and Weintraub, H.
(1995). Conversion of Xenopus ectoderm into neurons by neuroD, a
basic helix-loop-helix protein. Science 268, 836–844. doi: 10.1126/science.775
4368

Lee, Y. H., Sauer, B., and Gonzalez, F. J. (1998). Laron dwarfism and non-insulin-
dependent diabetes mellitus in the Hnf-1alpha knockout mouse. Mol. Cell. Biol.
18, 3059–3068. doi: 10.1128/MCB.18.5.3059

Lesmeister, J. L., Burfening, P. J., and Blackwell, R. L. (1973). Date of first calving
in beef cows and subsequent calf production. J. Anim. Sci. 36, 1–6. doi: 10.2527/
jas1973.3611

Lin, W.-Y., Yu-Jie, H., and Lee, Y.-H. (2008). Hepatocyte nuclear factor-1α

regulates glucocorticoid receptor expression to control postnatal body growth.
Am. J. Physiol. Gastrointest. Liver Physiol. 295, G542–G551. doi: 10.1152/ajpgi.
00081.2008

Liu, H., Fergusson, M. M., Wu, J. J., Rovira, I. I., Liu, J., Gavrilova, O., et al. (2011).
Wnt signaling regulates hepatic metabolism. Sci. Signal. 4:ra6. doi: 10.1126/
scisignal.2001249

Liu, Z., and Barrett, E. J. (2002). Human protein metabolism: its measurement and
regulation. Am. J. Physiol. Endocrinol. Metab. 283, E1105–E1112. doi: 10.1152/
ajpendo.00337.2002

Lomniczi, A., Wright, H., Castellano, J. M., Matagne, V., Toro, C. A.,
Ramaswamy, S., et al. (2015). Epigenetic regulation of puberty via Zinc
finger protein-mediated transcriptional repression. Nat. Commun. 6:10195.
doi: 10.1038/ncomms10195

Loor, J. J. (2010). Genomics of metabolic adaptations in the peripartal cow. Animal
4, 1110–1139. doi: 10.1017/S1751731110000960

Loor, J. J., Dann, H. M., Everts, R. E., Oliveira, R., Green, C. A., Guretzky, N. A.,
et al. (2005). Temporal gene expression profiling of liver from periparturient
dairy cows reveals complex adaptive mechanisms in hepatic function. Physiol.
Genomics 23, 217–226. doi: 10.1152/physiolgenomics.00132.2005

Lu, X., Guo, S., Cheng, Y., Kim, J. H., Feng, Y., and Feng, Y. (2017). Stimulation
of ovarian follicle growth after AMPK inhibition. Reproduction 153, 683–694.
doi: 10.1530/REP-16-0577

Frontiers in Genetics | www.frontiersin.org 11 March 2018 | Volume 9 | Article 87

https://doi.org/10.2527/jas.2011-4601
https://doi.org/10.1186/1471-2148-11-373
https://doi.org/10.1186/1471-2148-11-373
https://doi.org/10.1016/S0014-5793(02)03574-3
https://doi.org/10.1016/S0014-5793(02)03574-3
https://doi.org/10.1016/j.biocel.2017.05.008
https://doi.org/10.1124/mol.62.1.154
https://doi.org/10.1590/S0004-27302008000800004
https://doi.org/10.1093/nar/gki964
https://doi.org/10.1093/nar/gki964
https://doi.org/10.2527/jas.2011-4410
https://doi.org/10.2527/jas.2011-4410
https://doi.org/10.1152/jn.2002.88.2.595
https://doi.org/10.1152/jn.2002.88.2.595
https://doi.org/10.1016/j.bbrc.2003.11.151
https://doi.org/10.1016/j.bbrc.2003.11.151
https://doi.org/10.1074/jbc.M115.665208
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1371/journal.pone.0007249
https://doi.org/10.1371/journal.pone.0007249
https://doi.org/10.1074/jbc.M114.580084
https://doi.org/10.1074/jbc.M114.580084
https://doi.org/10.2337/db12-1824
https://doi.org/10.2337/db12-1824
https://doi.org/10.1071/EA08276
https://doi.org/10.1071/AN13043
https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.2527/2000.78123053x
https://doi.org/10.2527/1996.74suppl_31x
https://doi.org/10.2527/jas.2008-1252
https://doi.org/10.1186/1475-2891-6-19
https://doi.org/10.1095/biolreprod.109.080846
https://doi.org/10.1055/s-0032-1306278
https://doi.org/10.1016/j.cell.2012.03.017
https://doi.org/10.1152/physiolgenomics.00120.2013
https://doi.org/10.1007/s11154-013-9283-3
https://doi.org/10.1371/journal.pone.0066267
https://doi.org/10.1126/science.7754368
https://doi.org/10.1126/science.7754368
https://doi.org/10.1128/MCB.18.5.3059
https://doi.org/10.2527/jas1973.3611
https://doi.org/10.2527/jas1973.3611
https://doi.org/10.1152/ajpgi.00081.2008
https://doi.org/10.1152/ajpgi.00081.2008
https://doi.org/10.1126/scisignal.2001249
https://doi.org/10.1126/scisignal.2001249
https://doi.org/10.1152/ajpendo.00337.2002
https://doi.org/10.1152/ajpendo.00337.2002
https://doi.org/10.1038/ncomms10195
https://doi.org/10.1017/S1751731110000960
https://doi.org/10.1152/physiolgenomics.00132.2005
https://doi.org/10.1530/REP-16-0577
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00087 March 16, 2018 Time: 18:37 # 12

Nguyen et al. Liver Transcriptome Related to Puberty in Heifers

Luna-Nevarez, P., Rincon, G., Medrano, J. F., Riley, D. G., Chase, C. C. Jr.,
Coleman, S. W., et al. (2011). Single nucleotide polymorphisms in the
growth hormone-insulin-like growth factor axis in straightbred and crossbred
Angus, Brahman, and Romosinuano heifers: population genetic analyses and
association of genotypes with reproductive phenotypes. J. Anim. Sci. 89,
926–934. doi: 10.2527/jas.2010-3483

Ma, Q., Kintner, C., and Anderson, D. J. (1996). Identification of neurogenin, a
vertebrate neuronal determination gene. Cell 87, 43–52. doi: 10.1016/S0092-
8674(00)81321-5

Mahesh, V. B., Dhandapani, K. M., and Brann, D. W. (2006). Role of
astrocytes in reproduction and neuroprotection. Mol. Cell. Endocrinol. 246, 1–9.
doi: 10.1016/j.mce.2005.11.017

Mallat, Z., Heymes, C., Ohan, J., Faggin, E., Lesèche, G., and Tedgui, A.
(1999). Expression of interleukin-10 in advanced human atherosclerotic
plaques: relation to inducible nitric oxide synthase expression and cell
death. Arterioscler. Thromb. Vasc. Biol. 19, 611–616. doi: 10.1161/01.ATV.19.
3.611

Marfil, V., Moya, M., Pierreux, C. E., Castell, J. V., Lemaigre, F. P., Real, F. X., et al.
(2010). interaction between Hhex and SOX13 modulates Wnt/TCF activity.
J. Biol. Chem. 285, 5726–5737. doi: 10.1074/jbc.M109.046649

Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M., and Gilad, Y. (2008).
RNA-seq: an assessment of technical reproducibility and comparison with gene
expression arrays. Genome Res. 18, 1509–1517. doi: 10.1101/gr.079558.108

Massague, J. (2012). TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 13,
616–630. doi: 10.1038/nrm3434

Matera, A. G., Terns, R. M., and Terns, M. P. (2007). Non-coding RNAs: lessons
from the small nuclear and small nucleolar RNAs. Nat. Rev. Mol. Cell Biol. 8,
209–220. doi: 10.1038/nrm2124

Matthews, V. B., Aström, M. B., Chan, M. H., Bruce, C. R., Krabbe, K. S.,
Prelovsek, O., et al. (2009). Brain-derived neurotrophic factor is produced by
skeletal muscle cells in response to contraction and enhances fat oxidation
via activation of AMP-activated protein kinase. Diabetologia 52, 1409–1418.
doi: 10.1007/s00125-009-1364-1

McCarthy, S. D., Waters, S. M., Kenny, D. A., Diskin, M. G., Fitzpatrick, R.,
Patton, J., et al. (2010). Negative energy balance and hepatic gene
expression patterns in high-yielding dairy cows during the early postpartum
period: a global approach. Physiol. Genomics 42A, 188–199. doi: 10.1152/
physiolgenomics.00118.2010

McLin, V. A., Rankin, S. A., and Zorn, A. M. (2007). Repression of Wnt/β-catenin
signaling in the anterior endoderm is essential for liver and pancreas
development. Development 134, 2207–2217. doi: 10.1242/dev.001230

Melkman-Zehavi, T., Oren, R., Kredo-Russo, S., Shapira, T., Mandelbaum, A. D.,
Rivkin, N., et al. (2011). miRNAs control insulin content in pancreatic
β-cells via downregulation of transcriptional repressors. EMBO J. 30, 835–845.
doi: 10.1038/emboj.2010.361

Mendel, D. B., and Crabtree, G. R. (1991). HNF-1, a member of a novel class of
dimerizing homeodomain proteins. J. Biol. Chem. 266, 677–680.

Mircea, C. N., Lujan, M. E., and Pierson, R. A. (2007). Metabolic fuel and clinical
implications for female reproduction. J. Obstet. Gynaecol. Can. 29, 887–902.
doi: 10.1016/S1701-2163(16)32661-5

Montagner, P., Krause, A. R., Schwegler, E., Weschenfelder, M. M., Rabassa, V. R.,
Schneider, A., et al. (2016). Reduction of liver function delays resumption of
postpartum ovarian activity and alters the synthesis of acute phase proteins in
dairy cows. Res. Vet. Sci. 106, 84–88. doi: 10.1016/j.rvsc.2016.02.015

Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., and Wold, B. (2008).
Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat.
Methods 5, 621–628. doi: 10.1038/nmeth.1226

Nguyen, L. T., Reverter, A., Cánovas, A., Venus, B., Islas-Trejo, A., Porto-Neto,
L. R., et al. (2017). Global differential gene expression in the pituitary gland and
the ovaries of pre- and post-pubertal Brahman heifers. J. Anim. Sci. 95, 599–615.
doi: 10.2527/jas.2016.0921

Nishida, M., Moriyama, T., Sugita, Y., and Yamauchi-Takihara, K. (2007).
Interleukin-10 associates with adiponectin predominantly in subjects
with metabolic syndrome. Circ. J. 71, 1234–1238. doi: 10.1253/circj.71.
1234

Noel, S. D., and Kaiser, U. B. (2011). G protein-coupled receptors involved
in GnRH regulation: molecular insights from human disease. Mol. Cell.
Endocrinol. 346, 91–101. doi: 10.1016/j.mce.2011.06.022

Obici, S., and Rossetti, L. (2003). Minireview: nutrient sensing and the regulation of
insulin action and energy balance. Endocrinology 144, 5172–5178. doi: 10.1210/
en.2003-0999

O’Sullivan, A. J. (2012). “Fat storage in women: from puberty to the menopause,”
in Handbook of Growth and Growth Monitoring in Health and Disease, ed. V. R.
Preedy (New York, NY: Springer), 1087–1101. doi: 10.1007/978-1-4419-1795-
9_65

Ota, T., Asahina, H., Park, S. H., Huang, Q., Minegishi, T., Auersperg, N., et al.
(2008). HOX cofactors expression and regulation in the human ovary. Reprod.
Biol. Endocrinol. 6:49. doi: 10.1186/1477-7827-6-49

Pan, W., Banks, W. A., Fasold, M. B., Bluth, J., et al. (1998). Transport of brain-
derived neurotrophic factor across the blood-brain barrier. Neuropharmacology
37, 1553–1561. doi: 10.1016/S0028-3908(98)00141-5

Pardridge, W. M., Wu, D., and Sakane, T. (1998). Combined use of carboxyl-
directed protein pegylation and vector-mediated blood-brain barrier drug
delivery system optimizes brain uptake of brain-derived neurotrophic factor
following intravenous administration. Pharm. Res. 15, 576–582. doi: 10.1023/A:
1011981927620

Pedersen, B. K., Pedersen, M., Krabbe, K. S., Bruunsgaard, H., Matthews,
V. B., and Febbraio, M. A. (2009). Role of exercise-induced brain-derived
neurotrophic factor production in the regulation of energy homeostasis
in mammals. Exp. Physiol. 94, 1153–1160. doi: 10.1113/expphysiol.2009.04
8561

Perry, J. R., Day, F., Elks, C. E., Sulem, P., Thompson, D. J., Ferreira, T., et al. (2014).
Parent-of-origin-specific allelic associations among 106 genomic loci for age at
menarche. Nature 514, 92–97. doi: 10.1038/nature13545

Perry, J. R., Stolk, L., Franceschini, N., Lunetta, K. L., Zhai, G., McArdle, P. F.,
et al. (2009). Meta-analysis of genome-wide association data identifies two
loci influencing age at menarche. Nat. Genet. 41, 648–650. doi: 10.1038/
ng.386

Peyton, M., Stellrecht, C. M., Naya, F. J., Huang, H. P., Samora, P. J., and Tsai,
M. J. (1996). BETA3, a novel helix-loop-helix protein, can act as a negative
regulator of BETA2 and MyoD-responsive genes. Mol. Cell. Biol. 16, 626–633.
doi: 10.1128/MCB.16.2.626

Plaseska-Karanfilska, D., Noveski, P., Plaseski, T., Maleva, I., Madjunkova, S., and
Moneva, Z. (2012). Genetic causes of male infertility. Balkan J. Med. Genet. 15,
31–34.

Poduslo, J. F., and Curran, G. L. (1996). Permeability at the blood-brain and blood-
nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Mol. Brain
Res. 36, 280–286. doi: 10.1016/0169-328X(95)00250-V

Pontoglio, M., Barra, J., Hadchouel, M., Doyen, A., Kress, C., Bach, J. P., et al.
(1996). Hepatocyte nuclear factor 1 inactivation results in hepatic dysfunction,
phenylketonuria, and renal Fanconi syndrome. Cell 84, 575–585. doi: 10.1016/
S0092-8674(00)81033-8

Porto Neto, L. R., Lehnert, S. A., Fortes, M. R. S., Kelly, M., and Reverter, A.
(2013). “Population stratification and breed composition of australian tropically
adapted cattle,” in Proceedings of the Association for the Advancement of Animal
Breeding and Genetics, Napier, 147–150.

Prevot, V. (2002). Glial-neuronal-endothelial interactions are involved in the
control of GnRH secretion. J. Neuroendocrinol. 14, 247–255. doi: 10.1046/j.
0007-1331.2001.00772.x

Rasmussen, P., Brassard, P., Adser, H., Pedersen, M. V., Leick, L., Hart, E., et al.
(2009). Evidence for a release of brain-derived neurotrophic factor from the
brain during exercise. Exp. Physiol. 94, 1062–1069. doi: 10.1113/expphysiol.
2009.048512

Ravasi, T., Suzuki, H., Cannistraci, C. V., Katayama, S., Bajic, V. B., Tan, K., et al.
(2010). An atlas of combinatorial transcriptional regulation in mouse and man.
Cell 140, 744–752. doi: 10.1016/j.cell.2010.01.044

Reverter, A., Barris, W., McWilliam, S., Byrne, K. A., Wang, Y. H., Tan,
S. H., et al. (2005). Validation of alternative methods of data normalization
in gene co-expression studies. Bioinformatics 21, 1112–1120. doi: 10.1093/
bioinformatics/bti124

Reverter, A., and Chan, E. K. (2008). Combining partial correlation and an
information theory approach to the reversed engineering of gene co-expression
networks. Bioinformatics 24, 2491–2497. doi: 10.1093/bioinformatics/
btn482

Reverter, A., and Fortes, M. R. (2013). Breeding and genetics symposium:
building single nucleotide polymorphism-derived gene regulatory networks:

Frontiers in Genetics | www.frontiersin.org 12 March 2018 | Volume 9 | Article 87

https://doi.org/10.2527/jas.2010-3483
https://doi.org/10.1016/S0092-8674(00)81321-5
https://doi.org/10.1016/S0092-8674(00)81321-5
https://doi.org/10.1016/j.mce.2005.11.017
https://doi.org/10.1161/01.ATV.19.3.611
https://doi.org/10.1161/01.ATV.19.3.611
https://doi.org/10.1074/jbc.M109.046649
https://doi.org/10.1101/gr.079558.108
https://doi.org/10.1038/nrm3434
https://doi.org/10.1038/nrm2124
https://doi.org/10.1007/s00125-009-1364-1
https://doi.org/10.1152/physiolgenomics.00118.2010
https://doi.org/10.1152/physiolgenomics.00118.2010
https://doi.org/10.1242/dev.001230
https://doi.org/10.1038/emboj.2010.361
https://doi.org/10.1016/S1701-2163(16)32661-5
https://doi.org/10.1016/j.rvsc.2016.02.015
https://doi.org/10.1038/nmeth.1226
https://doi.org/10.2527/jas.2016.0921
https://doi.org/10.1253/circj.71.1234
https://doi.org/10.1253/circj.71.1234
https://doi.org/10.1016/j.mce.2011.06.022
https://doi.org/10.1210/en.2003-0999
https://doi.org/10.1210/en.2003-0999
https://doi.org/10.1007/978-1-4419-1795-9_65
https://doi.org/10.1007/978-1-4419-1795-9_65
https://doi.org/10.1186/1477-7827-6-49
https://doi.org/10.1016/S0028-3908(98)00141-5
https://doi.org/10.1023/A:1011981927620
https://doi.org/10.1023/A:1011981927620
https://doi.org/10.1113/expphysiol.2009.048561
https://doi.org/10.1113/expphysiol.2009.048561
https://doi.org/10.1038/nature13545
https://doi.org/10.1038/ng.386
https://doi.org/10.1038/ng.386
https://doi.org/10.1128/MCB.16.2.626
https://doi.org/10.1016/0169-328X(95)00250-V
https://doi.org/10.1016/S0092-8674(00)81033-8
https://doi.org/10.1016/S0092-8674(00)81033-8
https://doi.org/10.1046/j.0007-1331.2001.00772.x
https://doi.org/10.1046/j.0007-1331.2001.00772.x
https://doi.org/10.1113/expphysiol.2009.048512
https://doi.org/10.1113/expphysiol.2009.048512
https://doi.org/10.1016/j.cell.2010.01.044
https://doi.org/10.1093/bioinformatics/bti124
https://doi.org/10.1093/bioinformatics/bti124
https://doi.org/10.1093/bioinformatics/btn482
https://doi.org/10.1093/bioinformatics/btn482
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00087 March 16, 2018 Time: 18:37 # 13

Nguyen et al. Liver Transcriptome Related to Puberty in Heifers

towards functional genomewide association studies. J. Anim. Sci. 91, 530–536.
doi: 10.2527/jas.2012-5780

Reverter, A., Hudson, N. J., Nagaraj, S. H., Perez-Enciso, M., and Dalrymple, B. P.
(2010). Regulatory impact factors: unraveling the transcriptional regulation of
complex traits from expression data. Bioinformatics 26, 896–904. doi: 10.1093/
bioinformatics/btq051

Saltiel, A. R., and Kahn, C. R. (2001). Insulin signalling and the regulation
of glucose and lipid metabolism. Nature 414, 799–806. doi: 10.1038/
414799a

Scharfman, H. E., and MacLusky, N. J. (2006). Estrogen and brain-derived
neurotrophic factor (BDNF) in hippocampus: complexity of steroid hormone-
growth factor interactions in the adult CNS. Front. Neuroendocrinol. 27,
415–435. doi: 10.1016/j.yfrne.2006.09.004

Seifert, T., Brassard, P., Wissenberg, M., Rasmussen, P., Nordby, P., Stallknecht, B.,
et al. (2010). Endurance training enhances BDNF release from the human brain.
Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R372–R377. doi: 10.1152/
ajpregu.00525.2009

Semple, J. I., Ribas, G., Hillyard, G., Brown, S. E., Sanderson, C. M., and Campbell,
R. D. (2003). A novel gene encoding a coiled-coil mitochondrial protein located
at the telomeric end of the human MHC Class III region. Gene 314, 41–54.
doi: 10.1016/S0378-1119(03)00735-2

Sethi, J. K., and Vidal-Puig, A. (2010). Wnt signalling and the control
of cellular metabolism. Biochem. J. 427, 1–17. doi: 10.1042/BJ2009
1866

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D.,
et al. (2003). Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13, 2498–2504. doi: 10.1101/
gr.1239303

Sheth, A. R., Arabatti, N., Carlquist, M., and Jornvall, H. (1984). Characterization
of a polypeptide from human seminal plasma with inhibin (inhibition of
FSH secretion)-like activity. FEBS Lett. 165, 11–15. doi: 10.1016/0014-5793(84)
80004-6

Singh, P., Singh, G., Bhandawat, A., Singh, G., Parmar, R., Seth, R., et al.
(2017). Spatial transcriptome analysis provides insights of key gene(s) involved
in steroidal saponin biosynthesis in medicinally important herb Trillium
govanianum. Sci. Rep. 7:45295. doi: 10.1038/srep45295

Tabandeh, M. R., Hosseini, A., Saeb, M., Kafi, M., and Saeb, S. (2010). Changes
in the gene expression of adiponectin and adiponectin receptors (AdipoR1
and AdipoR2) in ovarian follicular cells of dairy cow at different stages of
development. Theriogenology 73, 659–669. doi: 10.1016/j.theriogenology.2009.
11.006

Tanaka, T., Itahana, K., Andoh, N., Takeya, T., and Sato, E. (1995). Expression
of prostatic secretory protein (PSP)-like protein in porcine corpus luteum:
isolation and characterization of a new gene encoding PSP94-like protein. Mol.
Reprod. Dev. 42, 149–156. doi: 10.1002/mrd.1080420204

Thakur, A. N., Vaze, A. Y., Dattatreyamurthy, B., and Sheth, A. R. (1981). Isolation
& characterization of inhibin from human seminal plasma. Indian J. Exp. Biol.
19, 307–313.

Tizioto, P. C., Coutinho, L. L., Decker, J. E., Schnabel, R. D., Rosa, K. O.,
Oliveira, P. S., et al. (2015). Global liver gene expression differences in Nelore

steers with divergent residual feed intake phenotypes. BMC Genomics 16:242.
doi: 10.1186/s12864-015-1464-x

Vaquerizas, J. M., Kummerfeld, S. K., Teichmann, S. A., and Luscombe,
N. M. (2009). A census of human transcription factors: function,
expression and evolution. Nat. Rev. Genet. 10, 252–263. doi: 10.1038/nrg
2538

Wang, Y., Ghaffari, N., Johnson, C. D., Braga-Neto, U. M., Wang, H., Chen, R.,
et al. (2011). Evaluation of the coverage and depth of transcriptome by RNA-
Seq in chickens. BMC Bioinformatics 12(Suppl. 10):S5. doi: 10.1186/1471-2105-
12-S10-S5

Webb, R., Garnsworthy, P. C., Gong, J. G., and Armstrong, D. G. (2004). Control
of follicular growth: local interactions and nutritional influences. J. Anim. Sci.
82(E–Suppl.), E63–E74.

Wickramasinghe, S., Rincon, G., Islas-Trejo, A., and Medrano, J. F. (2012).
Transcriptional profiling of bovine milk using RNA sequencing. BMC Genomics
13:45. doi: 10.1186/1471-2164-13-45

Wisse, B. E., and Schwartz, M. W. (2003). The skinny on neurotrophins. Nat.
Neurosci. 6, 655–656. doi: 10.1038/nn0703-655

Wurster, A. L., Precht, P., Becker, K. G., Wood, W. H. III, Zhang, Y., Wang, Z., et al.
(2012). IL-10 transcription is negatively regulated by BAF180, a component
of the SWI/SNF chromatin remodeling enzyme. BMC Immunol. 13:9.
doi: 10.1186/1471-2172-13-9

Xu, B., Goulding, E. H., Zang, K., Cepoi, D., Cone, R. D., Jones, K. R., et al.
(2003). Brain-derived neurotrophic factor regulates energy balance downstream
of melanocortin-4 receptor. Nat. Neurosci. 6, 736–742. doi: 10.1038/
nn1073

Xu, Z. P., Dutra, A., Stellrecht, C. M., Wu, C., Piatigorsky, J., and Saunders, G. F.
(2002). Functional and structural characterization of the human gene BHLHB5,
encoding a basic helix-loop-helix transcription factor. Genomics 80, 311–318.
doi: 10.1006/geno.2002.6833

Yao, K., Yin, Y. L., Chu, W., Liu, Z., Deng, D., Li, T., et al. (2008).
Dietary arginine supplementation increases mTOR signaling activity in
skeletal muscle of neonatal pigs. J. Nutr. 138, 867–872. doi: 10.1093/jn/138.
5.867

Ye, R., and Scherer, P. E. (2013). Adiponectin, driver or passenger on the road
to insulin sensitivity? Mol. Metab. 2, 133–141. doi: 10.1016/j.molmet.2013.
04.001

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Nguyen, Reverter, Cánovas, Venus, Anderson, Islas-Trejo, Dias,
Crawford, Lehnert, Medrano, Thomas, Moore and Fortes. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Genetics | www.frontiersin.org 13 March 2018 | Volume 9 | Article 87

https://doi.org/10.2527/jas.2012-5780
https://doi.org/10.1093/bioinformatics/btq051
https://doi.org/10.1093/bioinformatics/btq051
https://doi.org/10.1038/414799a
https://doi.org/10.1038/414799a
https://doi.org/10.1016/j.yfrne.2006.09.004
https://doi.org/10.1152/ajpregu.00525.2009
https://doi.org/10.1152/ajpregu.00525.2009
https://doi.org/10.1016/S0378-1119(03)00735-2
https://doi.org/10.1042/BJ20091866
https://doi.org/10.1042/BJ20091866
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1016/0014-5793(84)80004-6
https://doi.org/10.1016/0014-5793(84)80004-6
https://doi.org/10.1038/srep45295
https://doi.org/10.1016/j.theriogenology.2009.11.006
https://doi.org/10.1016/j.theriogenology.2009.11.006
https://doi.org/10.1002/mrd.1080420204
https://doi.org/10.1186/s12864-015-1464-x
https://doi.org/10.1038/nrg2538
https://doi.org/10.1038/nrg2538
https://doi.org/10.1186/1471-2105-12-S10-S5
https://doi.org/10.1186/1471-2105-12-S10-S5
https://doi.org/10.1186/1471-2164-13-45
https://doi.org/10.1038/nn0703-655
https://doi.org/10.1186/1471-2172-13-9
https://doi.org/10.1038/nn1073
https://doi.org/10.1038/nn1073
https://doi.org/10.1006/geno.2002.6833
https://doi.org/10.1093/jn/138.5.867
https://doi.org/10.1093/jn/138.5.867
https://doi.org/10.1016/j.molmet.2013.04.001
https://doi.org/10.1016/j.molmet.2013.04.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	STAT6, PBX2, and PBRM1 Emerge as Predicted Regulators of 452 Differentially Expressed Genes Associated With Puberty in Brahman Heifers
	Introduction
	Materials and Methods
	Animals and Samples
	Ribonucleic Acid Extraction
	Library Preparation and Sequencing
	Identification of Differentially Expressed Genes
	Identification of Key Gene Regulators
	Gene Network Prediction
	Functional Enrichment Analysis

	Results
	RNA-Seq Data and Normalization
	Identification of Differentially Expressed Genes
	Identification of Key Gene Regulators
	Predicted Gene Co-expression Network and Sub-network
	Functional Enrichment Analysis of Target Genes Involved in Gene Co-expression Network

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References




