
ION: Navigating the HPC I/O Optimization Journey
using Large Language Models

Chris Egersdoerfer
cegersdo@charlotte.edu

University of North Carolina at
Charlotte

Charlotte, NC, USA

Arnav Sareen
asareen2@charlotte.edu

University of North Carolina at
Charlotte

Charlotte, NC, USA

Jean Luca Bez
jlbez@lbl.gov

Lawrence Berkeley National
Laboratory

Berkeley, CA, USA

Suren Byna
byna.1@osu.edu

The Ohio State University
Columbus, OH, USA

Dong Dai
ddai@charlotte.edu

University of North Carolina at
Charlotte

Charlotte, NC, USA

Abstract
Effectively leveraging the complex software and hardware

I/O stacks of HPC systems to deliver needed I/O performance
has been a challenging task for domain scientists. To identify
and address I/O issues in their applications, scientists largely
rely on I/O experts to analyze the recorded I/O traces of
their applications and provide insights into the potential is-
sues. However, due to the limited number of I/O experts and
the growing demand for data-intensive applications across
the wide spectrum of sciences, inaccessibility has become
a major bottleneck hindering scientists from maximizing
their productivity. Inspired by the recent rapid progress of
large language models (LLMs), in this work we propose IO
Navigator (ION), an LLM-based framework that takes a
recorded I/O trace of an application as input and leverages
the in-context learning, chain-of-thought, and code genera-
tion capabilities of LLMs to comprehensively analyze the I/O
trace and provide diagnosis of potential I/O issues. Similar
to an I/O expert, ION provides detailed justifications for the
diagnosis and an interactive interface for scientists to ask
detailed questions about the diagnosis. We illustrate ION’s
applicability by assessing it on a set of controlled I/O traces
generated with different I/O issues. We also demonstrate that
ION can match state-of-the-art I/O optimization tools and
provide more insightful and adaptive diagnoses for real ap-
plications. We believe ION, with its full capabilities, has the
potential to become a powerful tool for scientists to navigate
through complex I/O subsystems in the future.

1 Introduction
High-performance computing (HPC) systems encapsulate

a broad range of scientific applications, such as large-scale
climate modeling and forecasting [1, 34] and fluid dynamic
simulations [15, 16, 26]. Today, these scientific applications
are increasingly data-intensive [9, 31]. Hence, it is of great
importance for scientists to effectively leverage the HPC I/O

subsystems to deliver optimal I/O performance for their ap-
plications. This, however, is a non-trivial task due to the com-
plicated nature of the HPC I/O stack, which includes high-
level parallel I/O libraries (e.g., HDF5 [10], PnetCDF [19]),
interfaces (e.g., MPI-IO, POSIX, STDIO), and file systems (e.g.,
Lustre [28], GPFS [12]).
One effective way to help scientists better utilize their

I/O systems is to record the I/O traces of their applications
for post-hoc analysis and accordingly propose optimization
and tuning solutions to improve performance [7, 41]. I/O
experts have developed real-time I/O profiling tools such as
Darshan [6] and enabled them in modern HPC facilities to
provide I/O traces for applications. Based on the recorded
traces, tools such as PyDarshan [24] and DXT-Explorer [4]
have subsequently been introduced to effectively interpret
the traces, identify potential I/O issues, and even provide
accurate suggestions to scientists [8, 40].

However, diagnosing I/O issues of applications using their
I/O traces has a key issue: it necessitates human I/O experts
in the loop. With professionals across the scientific spectrum
interested in developing HPC applications, the lack of readily
available I/O experts makes diagnosis and optimization of
I/O an inaccessible burden and consequently inhibits the
potential of their work while costing precious computational
time and resources. Hence, an automated tool is urgently
needed to make this expertise broadly available to all users.
Recently, substantial strides have been made in the field

of large language models (LLMs) such as ChatGPT1 and
Claude2. The combination of their anthropomorphic nature
and the internet-scale data used to train them makes these
models highly approachable and easily applicable to a wide
range of tasks, positioning them well to potentially address
the inaccessibility of I/O experts. Further, LLMs’ in-context
learning capability [30] and strong propensity to follow in-
structions enables them to seamlessly be adapted to several

1https://openai.com/chatgpt
2https://www.anthropic.com/claude

1



different domains, allowing the user to confine their gener-
ations within the bounds of a predefined set of knowledge,
while adjusting these bounds on the fly with new informa-
tion and guidance. Notable examples of applications lever-
aging in-context learning include medical questioning [20],
military simulation and strategy [29], and educational guid-
ance [38]. Lastly, the robust code interpreters built to work
in tandem with state-of-the-art LLMs further provide a swift
avenue for running and debugging LLM-generated code for
data analysis and visualization [18, 25] if necessary, allowing
for fully automated data analysis through multiple iterations
of running or debugging code.

These capabilities inspire us to leverage LLMs to interpret,
analyze, and reason over HPC applications’ I/O traces to
guide scientists in optimizing their I/O performance. By do-
ing so, we aim to provide a more accessible tool for domain
scientists to navigate through the complexities of their HPC
I/O subsystems.
To the end, we propose I/O Navigator (ION), an LLM-

based framework for analyzing application I/O traces (i.e.,
Darshan trace). ION is able to: 1) provide a comprehensive
diagnosis summary of prevalent I/O issues extracted from
Darshan traces, 2) produce a detailed, logical set of analysis
steps allowing the user to understand the entire diagnosis
process up to the conclusion. ION also provides an interactive
interface encouraging scientists to ask questions about the
analysis and better understand the conclusion, providing
a similar level of intimacy typically limited to only human
experts. We demonstrate ION’s ability to match state-of-the-
art I/O optimization tools and generate detailed diagnosis
summaries from I/O traces across scientific domains.
This paper is organized as follows: In §2 we discuss the

background of this study and introduce Darshan I/O profiling
tool as well as existing efforts in I/O issue diagnosis from
recorded traces, particularly Drishti. In §3, we present the
key components of ION in detail. We present the extensive
experimental results in §4, conclude this paper and discuss
the future work in §5.

2 Background
Darshan.Multiple I/O profiling tools, such as STAT [2],

mpiP [32], IOPin [13], Recorder [33], and Darshan [6], have
been developed to understand applications’ I/O behaviors.
Among them, Darshan is widely adopted in the HPC com-
munity due to its lightweight design and focus on high-level
application behavior [27]. Specifically, for each application,
Darshan traces key statistical metrics for each file accessed
at the I/O-software-stack-level across different types of I/O
interfaces including POSIX (Portable Operating System Inter-
face) I/O, MPI (Message Passing Interface) I/O, and Standard
I/O. These metrics include the amount of read/write data, ag-
gregate time for read/write/meta operations, ID of the rank
issuing I/O requests, and variance of I/O size and time among

different application ranks. Darshan also collects Lustre-file-
system-level metrics such as stripe width and OST IDs over
which a file is striped. Darshan eXtended Tracing (DXT) [39]
further extends Darshan by providing a fine-grained record
of the application’s I/O, such as the file, operation type, offset,
length, start and end timestamps, and the issuing rank’s ID.
Such detailed I/O traces are key in identifying problematic
requests and providing guidance. In this study, we focus on
Darshan and Darshan DXT logs, which are widely supported
across HPC facilities.
Drishti There are a number of tools designed to ana-

lyze I/O traces and detect potential I/O problems, such as
IOMiner [35], UMAMI [22], TOKIO [21], DXT Explorer [4],
recorder-viz [33], and Drishti [3]. The closest one to our work
is Drishti, which takes a Darshan trace as input, conducts
analysis and reports various (file-based and overall) perfor-
mance issues as well as actionable tasks for potentially resolv-
ing the reported issues. Drishti identifies I/O performance
issues based on a set of heuristic-based triggers. Currently,
Drishti includes a group of 30 triggers corresponding to vari-
ous application behaviors and identifies nine different types
of I/O issues, such as ‘Small I/O Operations’, ’Mis-aligned
I/O’, or ’Imbalanced I/O’.

However, Drishti suffers from several pitfalls that impede
its ability to serve as a general I/O expert. First, it relies on
pre-defined triggers to identify potential I/O issues. However,
setting correct threshold values for these triggers is not a
simple task—they may vary significantly among different
systems and across distinct workloads. For instance, by de-
fault, Drishti considers write requests smaller than 1MB as
small writes and reports a ’Small I/O’ issue if there are more
than 10% small I/Os across all the requests. However, both
assumptions (i.e., 1MB and 10%) could be inaccurate, as will
be demonstrated in Section 4. Second, Drishti does not pro-
vide accurate or contextually based reasoning for identified
I/O issues, as its pre-defined triggers and messages make its
explanations far-fetched and error-prone. Vitally, missing
practical and contextually-based explanations hinder non-
expert domain scientists’ use of such tools. Finally, Drishti
and other existing I/O diagnosis tools do not provide an inter-
active interface for users to directly ask follow-up questions
about their application’s I/O analysis and correct their under-
standing about I/O, which is a key aspect of having a human
I/O expert on the team; they can be hardly considered as an
automated I/O expert without such a capability. In this study,
we create ION with the aim of addressing these issues.

3 Design and Implementation
Figure 1 illustrates the overall workflow of ION, which

contains two primary parts. Extractor parses the Darshan
trace into multiple CSV files for the upcoming analysis. The
Analyzer then takes charge of constructing multiple prompts

2



Large Language 
Model ...as stripes can be located in different servers, unaligned requests can 

require multiple servers ... introduce inefficiencies...capture ... 
(POSIX_MEM_NOT_ALIGNED)... (POSIX_FILE_NOT_ALIGNED) accesses .

Extractor

Darshan 

 Log

CSV Parser

I/O Performance Issue Context

HPC I/O works in the following way...The I/O requests will be transferred 
using RPC. ...I/O request smaller than RPC ... inefficient ... since... This is 
often called a small I/O issue. However, ... client-side buffering... If the I/O 
request is smaller than a page size, it will be aligned into a page and 
buffered...aggregated ... in one RPC. ..., so neighboring small I/O ...will not 
lead to small I/O issue. ...if two I/O writes are targeting the same 
page...not be aggregated...immediately force ...RPC...for data consistency 
reasons.

Small I/O

Misaligned I/O

..., ...
Issue One

 

DXT POSIX MPI-IO

+ + ..., ...

Issue Two

 

..., ...

+
Large Language 

Model

Issue One

 

Code

Steps

Summary

Issue Two

 

Code

Steps

Summary

Issue Three

 

Code

Steps

Summary

Front-end

Global Summary 
of significant IO 

performance 
Issues

Summarization

Prompt

I/O Issue 

Prompts

Analyzer

Figure 1. The overall workflow of ION and its key components.

to query the LLM for proper analysis and visually represents
the results to the user.

The ION Extractor unpacks and parses Darshan log files
into the format expected by the later Analyzer. Specifically,
it uses Darshan’s built-in darshan-parser and darshan-dxt-
parser to read the entirety of each output. In the case of
the general darshan-parser, each Darshan module which is
found within the log file is formatted into a CSV file named
after the module itself (i.e., POSIX module data is written to
POSIX.csv). Though the exact information contained within
each module CSV file is dependent upon the counters that
Darshan records for each respective module, the general
structure defines each row in the CSV to include a unique file
ID and MPI rank combination as well as a column for each of
the Darshan module counters. In the case of the darshan-dxt-
parser, which is only used to extract Darshan’s DXT module
data, the extractor creates a ’DXT.csv’ file which contains a
single row for each POSIX or MPI-IO read/write operation.
Each row also carries the file ID targeted by the operation,
as well as its wall time, offset, and size. The Analyzer will
then use these CSV files individually or together to form the
actual LLM prompts.
The ION Analyzer takes the CSV files created by the

aforementioned Extractor as input and automatically con-
structs multiple prompts based on the I/O performance Issue
Context to query the LLM.

We construct the I/O performance Issue Context to leverage
the in-context learning capability of LLMs. From preliminary
experimental observationswe found that without proper con-
text, LLMs can only generate vacuous and general replies
to HPC I/O traces. This is because understanding HPC I/O

performance issues is complex and requires in-depth domain
knowledge such as a description of when client-side aggre-
gation of small I/O requests is possible or a description of file
striping in parallel file systems, which is likely a minimal sub-
set within the training sets of pre-trained LLMs’. Therefore,
it is necessary to teach LLMs such detailed knowledge. The
benefit of in-context learning over other techniques such as
finetuning is that the latter often requires a much higher ini-
tial cost and substantial computational cost every time new
context is introduced, even if all the context is not pertinent
to the particular issue being targeted. In-context learning is
incredibly cost-efficient, integrates only what is needed for
valid generations, and enables dynamic adjustment of the
context to meet the specific needs of scientists.
Initially, in-context learning was attempted by injecting

a single large block of text to describe all common I/O per-
formance issues and combining that with a description of
the extracted CSV files to query the LLM with a single, volu-
minous prompt. However, even top-performing LLMs like
gpt-4-1106-preview faced challenges in extracting key in-
formation from the context in this format. In light of this,
the ION Analyzer takes a new divide-and-conquer approach.
Specifically, it creates a set of contexts, each focusing on one
particular type of I/O performance issue (i.e., ‘Small I/O’ or
‘Misaligned I/O’). Then, it formats a unique prompt for each
type of I/O issue using the corresponding context. Addition-
ally, considering that some issues do not need information
from all Darshan modules (i.e. small I/O issues can be iden-
tified without considering the MPI-IO level CSV records),
a predefined mapping of necessary modules for each issue

3



type filters the amount of file descriptions included in each
prompt’s context.
It is worth noting that the I/O Performance Issue Context

differentiates ION from solely relying on predefined trig-
gers, as was done in Drishti. In each of the contexts, we
minimize the use of fixed thresholds, instead describing the
nature of the I/O issues and pinpointing key metrics that can
be leveraged to identify if the issue is present. Importantly,
these metrics are specific system settings such as lustre stripe
size which do not require domain expertise to extract un-
like the threshold values used by Drishti. Though currently
implemented as input hyper-parameters, we consider our
future work to include dynamic extraction of these metrics
to remove the need for hyper-parameters completely.
In addition to the issue context, each prompt includes a

description of the columns in the associated CSV files and an
output format description. In light of the noticeable improve-
ments achieved by Chain Of Thought (CoT) Prompting in
terms of accuracy, reliability, and explainability [20, 36, 37],
we also utilize it to elicit step-by-step reasoning for each
diagnosis, leading to better user interpretability and more
consistent diagnosis results. Once the prompts for all issues
are formatted, they are sent, in parallel, to GPT-4 (gpt-4-
1106-preview) via the Assistants API. Due to the built-in
functionality of the Assistants API, ION can generate diagno-
sis steps, write/run analysis code, and reason over the results
of running generated code, all as part of a single prompt
completion.

Once the completions for each prompt are generated, the
Analyzer extracts the diagnosis steps, code, and diagnosis
conclusion generated by the LLM during each completion.
For each issue, these parts are shown in the user interface as
represented by the ’Issue *’ modals in the Front-end section of
Figure 1, allowing the user to trace back the diagnosis conclu-
sion by reading the generated analytic code and individual
reasoning steps.

The Analyzer also creates a summarization prompt, com-
bining all diagnosis summaries generated by the LLM in
the previous step. This is sent to GPT-4 for completion and
shown on the user interface upon success. Following the
completion of the global diagnosis summary, the Analyzer
exposes a message input window that allows the user to
ask direct questions about any analysis, reasoning, or re-
sult generated throughout any of the diagnosis or summa-
rization steps. This enables users to interact with ION sim-
ilarly to a human expert through conversation to gain a
deeper understanding of the diagnosis output. Further de-
tails regarding the content of any prompts used by the ION
Analyzer can be found in the following GitHub repository:
https://github.com/DIR-LAB/ION.

4 Evaluation
In order to evaluate ION, we used a combination of syn-

thetic traces generated from the IO500 benchmark [14]where
I/O issues were manually injected, as well as two real appli-
cations experiencing I/O performance issues.

IO500 Results. The IO500 benchmark consists of a com-
prehensive set of I/O patterns commonly seen throughout
HPC applications [14]. By running individual configurations
of IO500, such as ior-hard, which conducts small, random
I/O operations on a shared file or tuning parameters of other
sections, such as the transfer size of ior-easy to inject mis-
alignment issues, we constructed a set of traces with known
ground-truth issues, as shown in Figure 2.
We then applied ION to each of the collected Darshan

traces. As shown by the examples, ION successfully identi-
fies each of the known ground truth issues. Further, in many
cases ION gives an accurate description of issues that are
present in the ground truth but mitigated due to some con-
dition. For example, all IOR-based configurations (ior-easy,
ior-hard, ior-rnd4k) conduct I/O operations smaller than the
configured Lustre RPC size (4MB), but only ior-hard, and
ior-rnd4k use random access patterns, meaning the negative
impact of small operations in these cases is fully realized by
the application as opposed to sequential operations, which
may be aggregated into larger requests, hence mitigating
the overall negative impact on performance. Leveraging the
issue context, ION correctly points out this fact in all cases.
Similarly, ION can correctly address the presence of a shared
file accessed by all ranks but also highlights that during
analysis, it found the requests not to overlap, leading to its
conclusion that access to the shared file would not lead to
stripe conflicts or excessive lock overhead, which are signifi-
cant risks associated with shared file access.

Real Applications Results. We further examined ION’s
performance by analyzing traces of two real-world, scien-
tific applications. In the Baseline version, both applications
contain I/O issues that experts have previously diagnosed.
Their optimized versions, where the primary issues had been
fixed, were also analyzed.
The first set of real application traces originates from

OpenPMD [11], an open metadata schema representing par-
ticle and mesh data from scientific simulations and experi-
ments. In the non-optimized version of this application trace,
users noted a significant performance issue caused by a bug
in HDF5[5], which caused collective I/O operations to ac-
tually create a pattern of individual small and misaligned
I/O operations. The optimized version of this trace incorpo-
rates a fix to this bug in HDF5, which eliminates the issue
of individual small, misaligned operations but introduces
some operations with random access patterns. As shown
in Figure 3, both Drishti and ION accurately identify the
presence of pervasive file misalignment issues and small I/O
operations. However, ION found that many of the small I/O

4

https://github.com/DIR-LAB/ION


Figure 2. Evaluation of ION diagnosis output compared to ground truth on IO500 workloads. (note that, these outputs are
augmented with color-coding for visualization purposes)

Figure 3. Comparison of ION and Drishti Diagnosis for real applications (note that, outputs are augmented with color-coding
for visualization purposes)

operations are consecutive and, therefore, accurately points
out the potential for aggregation, which would minimize
the possible negative impact of small operations on the file
system. In the optimized version, both ION and Drishti ac-
curately identify the presence of operations with random
access patterns; however, ION accurately puts the number
of random accesses into the context of the number of ranks
conducting I/O and further elucidates upon the amount of
data processed by random operations.
The second set of real application traces originates from

the end-to-end (E2E)[23] domain decomposition I/O kernel.

In the non-optimized version of this application, an over-
whelming load imbalance on rank 0 was caused by the use of
fill values for subsequently overwritten datasets. As noted by
the users, disabling this behavior created a 10× speedup[3].
In the baseline version of this application, both ION and
Drishti accurately identify the presence of pervasive file
misalignment and load imbalance, but ION provides more
useful detail regarding the rank responsible for the perceived
load imbalance and which is doing more work in terms of
throughput and operation count. In the optimized version of
this application, both Drishti and ION continue to identify
file misalignment, but ION recognizes that while the load

5



imbalance is no longer imbalanced solely on rank 0, there
seems to be a subset of ranks doing more work than the rest,
indicating that this may be inherent to the algorithm rather
than warning the user of a significant issue.

5 Conclusion and Future Work
In this study, we propose and implement ION, an LLM-

based framework to analyze HPC applications’ I/O traces
and provide diagnosis regarding potential I/O performance
issues. ION leverages in-context learning, chain-of-thought,
and code analysis capabilities of LLMs (i.e. GPT4) to com-
prehensively understand the I/O traces and accurately diag-
nose I/O issues for scientists. We show that, without relying
on extensive pre-defined triggers or thresholds which re-
quire extensive expertise to accurately set, ION can match
or exceed the performance of state-of-the-art I/O diagnosis
tools (i.e., Drishti). Currently, ION is still a proof-of-concept,
but with its promising results, we plan to 1) build more
comprehensive knowledge base about HPC I/O so that the
underlying LLM can conduct more accurate reasoning; 2)
optimize the prompts to enable consistency checking of the
diagnosis results; 3) test alternatives to in-context learning
like Retrieval-Augmented Generation (RAG) [17] for more
efficient continued interactive interfaces.

Acknowledgments
We sincerely thank the anonymous reviewers for their

valuable feedback. This work was supported in part by NSF
grants CNS-2008265 and CCF-2412345. This research was
also supported in part by the U.S. Department of Energy
(DOE), Office of Science, Office of Advanced Scientific Com-
puting Research (ASCR) under contract number DE-AC02-
05CH11231 at Lawrence BerkeleyNational Laboratory (LBNL)
and under a subcontract at The Ohio State University under
a subcontract (GR130493).

References
[1] Jean-Claude André, Giovanni Aloisio, Joachim Biercamp, Reinhard

Budich, Sylvie Joussaume, Bryan Lawrence, and Sophie Valcke. 2014.
High-Performance Computing for Climate Modeling. Bulletin of the
American Meteorological Society 95, 5 (2014), ES97 – ES100. https:
//doi.org/10.1175/BAMS-D-13-00098.1

[2] Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski, Gregory L.
Lee, Barton P. Miller, and Martin Schulz. 2007. Stack Trace Analysis
for Large Scale Debugging. In 2007 IEEE International Parallel and Dis-
tributed Processing Symposium. 1–10. https://doi.org/10.1109/IPDPS.
2007.370254

[3] Jean Luca Bez, Hammad Ather, and Suren Byna. 2022. Drishti: Guid-
ing End-Users in the I/O Optimization Journey. In 2022 IEEE/ACM
International Parallel Data Systems Workshop (PDSW). 1–6. https:
//doi.org/10.1109/PDSW56643.2022.00006

[4] Jean Luca Bez, Houjun Tang, Bing Xie, David Williams-Young, Rob
Latham, Rob Ross, Sarp Oral, and Suren Byna. 2021. I/O Bottleneck
Detection and Tuning: Connecting the Dots using Interactive Log
Analysis. In 2021 IEEE/ACM Sixth International Parallel Data Systems

Workshop (PDSW). 15–22. https://doi.org/10.1109/PDSW54622.2021.
00008

[5] Jean Luca Bez, Houjun Tang, Bing Xie, David Williams-Young, Rob
Latham, Rob Ross, Sarp Oral, and Suren Byna. 2021. I/O Bottleneck
Detection and Tuning: Connecting the Dots using Interactive Log
Analysis. In 2021 IEEE/ACM Sixth International Parallel Data Systems
Workshop (PDSW). 15–22. https://doi.org/10.1109/PDSW54622.2021.
00008

[6] Philip Carns, Kevin Harms, William Allcock, Charles Bacon, Samuel
Lang, Robert Latham, and Robert Ross. 2011. Understanding and
Improving Computational Science Storage Access through Continuous
Characterization. ACMTrans. Storage 7, 3, Article 8 (oct 2011), 26 pages.
https://doi.org/10.1145/2027066.2027068

[7] Chris Egersdoerfer, Di Zhang, and Dong Dai. 2022. Clusterlog: Cluster-
ing logs for effective log-based anomaly detection. In 2022 IEEE/ACM
12th Workshop on Fault Tolerance for HPC at eXtreme Scale (FTXS).
IEEE, 1–10.

[8] Chris Egersdoerfer, Di Zhang, and DongDai. 2023. Early exploration of
using chatgpt for log-based anomaly detection on parallel file systems
logs. In Proceedings of the 32nd International Symposium on High-
Performance Parallel and Distributed Computing. 315–316.

[9] Girone,Maria, Southwick, David, Khristenko, Viktor,Medeiros,Miguel
F., Giordano, Domenico, Brevik Høgstøyl, Ingvild, and Atzori, Luca.
2021. Exploitation of HPC Resources for data intensive sciences.
EPJ Web Conf. 251 (2021), 02042. https://doi.org/10.1051/epjconf/
202125102042

[10] The HDF Group. 1997-. The HDF5® Library & File Format. https:
//www.hdfgroup.org/solutions/hdf5/

[11] Axel Huebl, Rémi Lehe, Jean-Luc Vay, David P. Grote, Ivo Sbalzarini,
Stephan Kuschel, David Sagan, Frédéric Pérez, Fabian Koller, and
Michael Bussmann. 2018. openPMD 1.1.0: Base paths for mesh- and
particle- only files and updated attributes. https://doi.org/10.5281/
zenodo.1167843

[12] IBM. 1998-. General Parallel File System 4.1.0.4. https://www.ibm.com/
docs/en/gpfs

[13] Seong Jo Kim, Seung Woo Son, Wei-keng Liao, Mahmut Kandemir,
Rajeev Thakur, and Alok Choudhary. 2012. IOPin: Runtime Profiling of
Parallel I/O in HPC Systems. In 2012 SC Companion: High Performance
Computing, Networking Storage and Analysis. 18–23. https://doi.org/
10.1109/SC.Companion.2012.14

[14] Julian M. Kunkel, John Bent, Jay Lofstead, and George S. Markomano-
lis. 2016. Establishing the IO-500 Benchmark. White Paper, the IO500
Foundation, Tech. [Online]. Available: https://www.vi4io.org/_media/
io500/about/io500-establishing.pdf.

[15] Thorsten Kurth, Sean Treichler, Joshua Romero, Mayur Mudigonda,
Nathan Luehr, Everett Phillips, Ankur Mahesh, Michael Math-
eson, Jack Deslippe, Massimiliano Fatica, Prabhat, and Michael
Houston. 2018. Exascale Deep Learning for Climate Analytics.
arXiv:1810.01993 [cs.DC]

[16] Marius Kurz, Philipp Offenhäuser, Dominic Viola, Oleksandr
Shcherbakov, Michael Resch, and Andrea Beck. 2022. Deep rein-
forcement learning for computational fluid dynamics on HPC sys-
tems. Journal of Computational Science 65 (2022), 101884. https:
//doi.org/10.1016/j.jocs.2022.101884

[17] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen tau
Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2021.
Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.
arXiv:2005.11401 [cs.CL]

[18] Jinyang Li, Nan Huo, Yan Gao, Jiayi Shi, Yingxiu Zhao, Ge Qu, Yurong
Wu, Chenhao Ma, Jian-Guang Lou, and Reynold Cheng. 2024. Tapilot-
Crossing: Benchmarking and Evolving LLMs Towards Interactive Data
Analysis Agents. arXiv:2403.05307 [cs.AI]

6

https://doi.org/10.1175/BAMS-D-13-00098.1
https://doi.org/10.1175/BAMS-D-13-00098.1
https://doi.org/10.1109/IPDPS.2007.370254
https://doi.org/10.1109/IPDPS.2007.370254
https://doi.org/10.1109/PDSW56643.2022.00006
https://doi.org/10.1109/PDSW56643.2022.00006
https://doi.org/10.1109/PDSW54622.2021.00008
https://doi.org/10.1109/PDSW54622.2021.00008
https://doi.org/10.1109/PDSW54622.2021.00008
https://doi.org/10.1109/PDSW54622.2021.00008
https://doi.org/10.1145/2027066.2027068
https://doi.org/10.1051/epjconf/202125102042
https://doi.org/10.1051/epjconf/202125102042
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://doi.org/10.5281/zenodo.1167843
https://doi.org/10.5281/zenodo.1167843
https://www.ibm.com/docs/en/gpfs
https://www.ibm.com/docs/en/gpfs
https://doi.org/10.1109/SC.Companion.2012.14
https://doi.org/10.1109/SC.Companion.2012.14
https://www.vi4io.org/_media/io500/about/io500-establishing.pdf
https://www.vi4io.org/_media/io500/about/io500-establishing.pdf
https://arxiv.org/abs/1810.01993
https://doi.org/10.1016/j.jocs.2022.101884
https://doi.org/10.1016/j.jocs.2022.101884
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2403.05307


[19] Jianwei Li, Wei keng Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale. 2003. Parallel
netCDF: A High-Performance Scientific I/O Interface. In SC ’03: Pro-
ceedings of the 2003 ACM/IEEE Conference on Supercomputing. 39–39.
https://doi.org/10.1109/SC.2003.10053

[20] Valentin Liévin, Christoffer Egeberg Hother, Andreas Geert Motzfeldt,
and Ole Winther. 2023. Can large language models reason about
medical questions? arXiv:2207.08143 [cs.CL]

[21] Glenn K. Lockwood, Nicholas J. Wright, Shane Snyder, Philip Carns,
George Brown, and Kevin Harms. 2018. TOKIO on ClusterStor: Con-
necting Standard Tools to Enable Holistic I/O Performance Analysis.
(2018). https://www.osti.gov/biblio/1632125

[22] Glenn K. Lockwood, Wucherl Yoo, Suren Byna, Nicholas J. Wright,
Shane Snyder, Kevin Harms, Zachary Nault, and Philip Carns. 2017.
UMAMI: a recipe for generating meaningful metrics through holis-
tic I/O performance analysis. In Proceedings of the 2nd Joint Inter-
national Workshop on Parallel Data Storage & Data Intensive Scal-
able Computing Systems (Denver, Colorado) (PDSW-DISCS ’17). As-
sociation for Computing Machinery, New York, NY, USA, 55–60.
https://doi.org/10.1145/3149393.3149395

[23] Jay Lofstead, Milo Polte, Garth Gibson, Scott Klasky, Karsten Schwan,
Ron Oldfield, Matthew Wolf, and Qing Liu. 2011. Six degrees of
scientific data: reading patterns for extreme scale science IO. In Pro-
ceedings of the 20th International Symposium on High Performance
Distributed Computing (San Jose, California, USA) (HPDC ’11). As-
sociation for Computing Machinery, New York, NY, USA, 49–60.
https://doi.org/10.1145/1996130.1996139

[24] Jakob Luettgau, Shane Snyder, Tyler Reddy, Nikolaus Awtrey, Kevin
Harms, Jean Luca Bez, Rui Wang, Rob Latham, and Philip Carns. 2023.
Enabling Agile Analysis of I/O Performance Data with PyDarshan. In
Proceedings of the SC ’23 Workshops of The International Conference
on High Performance Computing, Network, Storage, and Analysis (SC-
W ’23). Association for Computing Machinery, New York, NY, USA,
1380–1391. https://doi.org/10.1145/3624062.3624207

[25] Paula Maddigan and Teo Susnjak. 2023. Chat2VIS: Generating Data
Visualisations via Natural Language using ChatGPT, Codex and GPT-3
Large Language Models. arXiv:2302.02094 [cs.HC]

[26] Peter Mora, Gabriele Morra, and David A Yuen. 2019. A concise
python implementation of the lattice Boltzmann method on HPC for
geo-fluid flow. Geophysical Journal International 220, 1 (2019), 682–702.
https://doi.org/10.1093/gji/ggz423

[27] Nafiseh Moti, André Brinkmann, Marc-André Vef, Philippe Deniel,
Jesus Carretero, Philip Carns, Jean-Thomas Acquaviva, and Reza
Salkhordeh. 2023. The I/O Trace Initiative: Building a Collaborative
I/O Archive to Advance HPC. In Proceedings of the SC’23 Workshops of
The International Conference on High Performance Computing, Network,
Storage, and Analysis. 1216–1222.

[28] OpenSFS and EOFS. 2003-. Lustre File System. https://www.lustre.org/
[29] Juan-Pablo Rivera, Gabriel Mukobi, Anka Reuel, Max Lamparth,

Chandler Smith, and Jacquelyn Schneider. 2024. Escalation Risks
from Language Models in Military and Diplomatic Decision-Making.
arXiv:2401.03408 [cs.AI]

[30] Leonard Salewski, Stephan Alaniz, Isabel Rio-Torto, Eric Schulz, and
Zeynep Akata. 2023. In-Context Impersonation Reveals Large Lan-
guage Models’ Strengths and Biases. arXiv:2305.14930 [cs.AI]

[31] Amoghavarsha Suresh, Pietro Cicotti, and Laura Carrington. 2014.
Evaluation of emerging memory technologies for HPC, data intensive
applications. In 2014 IEEE International Conference on Cluster Com-
puting (CLUSTER). 239–247. https://doi.org/10.1109/CLUSTER.2014.
6968745

[32] Jeffrey S. Vetter and Michael O. McCracken. 2001. Statistical scalability
analysis of communication operations in distributed applications. In
Proceedings of the Eighth ACM SIGPLAN Symposium on Principles and
Practices of Parallel Programming (Snowbird, Utah, USA) (PPoPP ’01).

Association for Computing Machinery, New York, NY, USA, 123–132.
https://doi.org/10.1145/379539.379590

[33] Chen Wang, Jinghan Sun, Marc Snir, Kathryn Mohror, and Elsa Gon-
siorowski. 2020. Recorder 2.0: Efficient Parallel I/O Tracing and Analy-
sis. In 2020 IEEE International Parallel and Distributed Processing Sympo-
siumWorkshops (IPDPSW). 1–8. https://doi.org/10.1109/IPDPSW50202.
2020.00176

[34] Feiyi Wang, John Harney, Galen Shipman, Dean Williams, and Luca
Cinquini. 2011. Building a large scale climate data system in support
of HPC environment. In 2011 7th International Conference on Next
Generation Web Services Practices. 380–385. https://doi.org/10.1109/
NWeSP.2011.6088209

[35] Teng Wang, Shane Snyder, Glenn Lockwood, Philip Carns, Nicholas
Wright, and Suren Byna. 2018. IOMiner: Large-Scale Analytics
Framework for Gaining Knowledge from I/O Logs. In 2018 IEEE In-
ternational Conference on Cluster Computing (CLUSTER). 466–476.
https://doi.org/10.1109/CLUSTER.2018.00062

[36] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sha-
ran Narang, Aakanksha Chowdhery, and Denny Zhou. 2023. Self-
Consistency Improves Chain of Thought Reasoning in Language Mod-
els. arXiv:2203.11171 [cs.CL]

[37] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma,
brian ichter, Fei Xia, Ed Chi, Quoc V Le, and Denny Zhou.
2022. Chain-of-Thought Prompting Elicits Reasoning in Large
Language Models. In Advances in Neural Information Process-
ing Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates, Inc., 24824–
24837. https://proceedings.neurips.cc/paper_files/paper/2022/file/
9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf

[38] Changrong Xiao, Sean Xin Xu, Kunpeng Zhang, Yufang Wang, and
Lei Xia. 2023. Evaluating Reading Comprehension Exercises Gener-
ated by LLMs: A Showcase of ChatGPT in Education Applications. In
Proceedings of the 18th Workshop on Innovative Use of NLP for Building
Educational Applications (BEA 2023), Ekaterina Kochmar, Jill Burstein,
Andrea Horbach, Ronja Laarmann-Quante, Nitin Madnani, Anaïs
Tack, Victoria Yaneva, Zheng Yuan, and Torsten Zesch (Eds.). As-
sociation for Computational Linguistics, Toronto, Canada, 610–625.
https://doi.org/10.18653/v1/2023.bea-1.52

[39] Cong Xu, Shane Snyder, Omkar Kulkarni, Vishwanath Venkate-
san, Phillip Carns, Surendra Byna, Robert Sisneros, and Kalyana
Chadalavada. 2019. DXT: Darshan eXtended Tracing. (1 2019).
https://www.osti.gov/biblio/1490709

[40] Di Zhang, Dong Dai, Runzhou Han, and Mai Zheng. 2021. Sentilog:
Anomaly detecting on parallel file systems via log-based sentiment
analysis. In Proceedings of the 13th ACM workshop on hot topics in
storage and file systems. 86–93.

[41] Di Zhang, Chris Egersdoerfer, Tabassum Mahmud, Mai Zheng, and
Dong Dai. 2023. Drill: Log-based anomaly detection for large-scale
storage systems using source code analysis. In 2023 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 189–199.

7

https://doi.org/10.1109/SC.2003.10053
https://arxiv.org/abs/2207.08143
https://www.osti.gov/biblio/1632125
https://doi.org/10.1145/3149393.3149395
https://doi.org/10.1145/1996130.1996139
https://doi.org/10.1145/3624062.3624207
https://arxiv.org/abs/2302.02094
https://doi.org/10.1093/gji/ggz423
https://www.lustre.org/
https://arxiv.org/abs/2401.03408
https://arxiv.org/abs/2305.14930
https://doi.org/10.1109/CLUSTER.2014.6968745
https://doi.org/10.1109/CLUSTER.2014.6968745
https://doi.org/10.1145/379539.379590
https://doi.org/10.1109/IPDPSW50202.2020.00176
https://doi.org/10.1109/IPDPSW50202.2020.00176
https://doi.org/10.1109/NWeSP.2011.6088209
https://doi.org/10.1109/NWeSP.2011.6088209
https://doi.org/10.1109/CLUSTER.2018.00062
https://arxiv.org/abs/2203.11171
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.18653/v1/2023.bea-1.52
https://www.osti.gov/biblio/1490709

	Abstract
	1 Introduction
	2 Background
	3 Design and Implementation
	4 Evaluation
	5 Conclusion and Future Work
	References

